WO2014050889A1 - 超音波検査装置、超音波検査装置の信号処理方法およびプログラム - Google Patents

超音波検査装置、超音波検査装置の信号処理方法およびプログラム Download PDF

Info

Publication number
WO2014050889A1
WO2014050889A1 PCT/JP2013/075913 JP2013075913W WO2014050889A1 WO 2014050889 A1 WO2014050889 A1 WO 2014050889A1 JP 2013075913 W JP2013075913 W JP 2013075913W WO 2014050889 A1 WO2014050889 A1 WO 2014050889A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound speed
region
image quality
unit
preliminary
Prior art date
Application number
PCT/JP2013/075913
Other languages
English (en)
French (fr)
Inventor
拓明 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012214132A external-priority patent/JP5829198B2/ja
Priority claimed from JP2012216181A external-priority patent/JP5836241B2/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201380050328.8A priority Critical patent/CN104661598A/zh
Publication of WO2014050889A1 publication Critical patent/WO2014050889A1/ja
Priority to US14/670,108 priority patent/US10792014B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/585Automatic set-up of the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards

Definitions

  • the present invention relates to an ultrasonic inspection apparatus that performs imaging of an inspection target such as an organ in a living body by transmitting and receiving an ultrasonic beam, and generates an ultrasonic image used for inspection and diagnosis of the inspection target.
  • the present invention relates to a signal processing method and program for an ultrasonic inspection apparatus.
  • an ultrasonic inspection apparatus such as an ultrasonic diagnostic imaging apparatus using an ultrasonic image
  • this type of ultrasonic inspection apparatus has an ultrasonic probe (ultrasonic probe) including a plurality of elements (ultrasonic transducers), and an apparatus main body connected to the ultrasonic probe.
  • the ultrasonic probe transmits the ultrasonic beam from the multiple elements of the ultrasonic probe toward the inspection object (subject), receives the ultrasonic echo from the subject, and receives the ultrasonic echo.
  • An ultrasonic image is generated by electrically processing the ultrasonic echo signal thus processed in the apparatus main body.
  • an ultrasonic wave is focused on a region to be inspected of a subject, for example, an organ in a living body or a lesion in the organ from a plurality of elements of the probe. Transmits a beam and receives ultrasonic echoes from the surface or interface of a reflector in the examination target area, for example, an organ or a lesion, via multiple elements, but is reflected by the same reflector. Are reflected by the reflector located at the focal position of the ultrasonic beam transmitted from the transmitting element, and reflected by the same reflector with respect to the ultrasonic echo signal received by the transmitting element.
  • the ultrasonic echo signals received by other elements different from the transmitting element are delayed, the ultrasonic echo signals received by a plurality of elements are subjected to A / D (analog / digital) conversion to obtain element data and After Data reception focusing processing, and generates an ultrasound image based on the generated sound ray signals by phasing and adding the combined phase, thus obtained sound ray signal or delay correction to.
  • a / D analog / digital
  • the ultrasonic inspection apparatus when generating an ultrasonic image, the ultrasonic image is generated on the assumption that the sound speed in the living body of the subject is constant. However, in the actual living body, the sound speed value changes depending on the properties of the tissue in the living body, so the sound speed value varies. Due to this variation, the ultrasonic image has spatial distortion, contrast, or spatial resolution. Image quality degradation such as lowering of image quality. On the other hand, in recent years, in order to more accurately diagnose a diagnostic part in a subject, the sound velocity value at an arbitrary diagnostic part is optimized, and such image distortion and reduction in spatial resolution are reduced. Has been made to improve.
  • the present invention is an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, an area setting unit that sets a plurality of areas in the inspection object, and an area A sound speed calculation unit that calculates the sound speed of the sound region, a sound speed acquisition unit that acquires one of a plurality of regions as a region of interest, and acquires a preliminary sound speed of the region of interest, and a region of interest when based on the preliminary sound speed acquired by the sound speed acquisition unit
  • An image quality determination unit that determines the image quality of the image, and the sound speed acquisition unit acquires the preliminary sound speed based on the sound speed in at least one region within a predetermined range from the region of interest.
  • the sound speed calculation section calculates the sound speed of the attention area.
  • the sound speed acquisition unit acquires the preliminary sound speed based on the sound speed in at least one region that is within a predetermined range in time and / or space from the region of interest.
  • the area within the predetermined range in the space is an area close to the attention area on the same image.
  • the area within a predetermined range in the space is an area in the same partial image when the image is divided into a plurality of partial images.
  • the region within the predetermined range in terms of time is preferably a region corresponding to the attention region in the image before the predetermined frame.
  • the region within a predetermined range in time is a region corresponding to a region of interest in at least one image obtained by performing a predetermined process on a plurality of images before a predetermined frame, or a plurality of predetermined frames. It is a region corresponding to a region of interest in at least one of the previous images, and the sound speed in the region is preferably a sound speed obtained by performing a predetermined process on sound speeds before a plurality of predetermined frames.
  • the predetermined process is preferably a process for obtaining either an average value or a median value of sound speeds before a plurality of predetermined frames.
  • the present invention is an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, and an area setting unit that sets a plurality of areas in the inspection object;
  • a sound speed calculation unit that calculates the sound speed of the region, a sound speed acquisition unit that acquires one of the plurality of regions as a target region, acquires a preliminary sound speed of the target region, an initial sound speed storage unit that stores a preset initial sound speed,
  • An image quality determination unit that determines an image quality of a region of interest based on the preliminary sound speed acquired by the sound speed acquisition unit, and the sound speed acquisition unit acquires the initial sound speed stored in the initial sound speed storage unit as the preliminary sound speed
  • the sound speed calculation unit To calculate the speed of sound in the region.
  • the initial sound speed storage unit preferably stores a plurality of initial sound speeds, and selects an initial sound speed to be used for image quality determination by the image quality determination unit based on an input from the operation unit.
  • the initial sound speed stored in the initial sound speed storage unit is preferably a value close to the sound speed in the living body.
  • the value close to the sound speed in the living body is preferably a value between 1400 and 1700 m / s.
  • the value close to the sound speed in the living body is preferably a value between 1450 and 1550 m / s.
  • the present invention provides a signal processing method for an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, wherein the region setting sets a plurality of areas in the inspection object.
  • An image quality determination step for determining the image quality of the attention area in the case, and the sound speed acquisition step acquires the preliminary sound speed based on the sound speed in at least one area within the predetermined range from the attention area.
  • the preliminary sound speed acquired in the sound speed acquisition step is adopted as the sound speed of the attention area. If the determination result is negative, the sound speed calculation step is used. Calculating the sound speed of the region of interest to provide a signal processing method for the ultrasonic inspection apparatus according to claim by.
  • the present invention is a program for causing a computer to perform signal processing of an ultrasonic inspection apparatus that inspects an inspection object using an ultrasonic beam, and a plurality of regions in the inspection object.
  • An area setting step for setting the sound speed
  • a sound speed calculating step for calculating the sound speed of the area
  • a sound speed acquiring step for acquiring one of the plurality of areas as the attention area, and acquiring a preliminary sound speed of the attention area
  • a sound speed acquiring step for determining the image quality of the attention area based on the preliminary sound speed
  • the sound speed acquisition step acquires the preliminary sound speed based on the sound speed in at least one area within a predetermined range from the attention area.
  • the preliminary sound speed acquired in the sound speed acquisition step is adopted as the sound speed of the attention area, There the case of not, to provide an ultrasonic inspection apparatus signal processing program, characterized in that to calculate the speed of sound of the region of interest by sound velocity calculation step.
  • FIG. 1 is a block diagram conceptually showing an embodiment of the configuration of the first aspect of the ultrasonic inspection apparatus of the present invention.
  • the ultrasonic inspection apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
  • each of the predetermined number of ultrasonic transducers forming one set among the plurality of ultrasonic transducers of the transducer array 36 generates each component of one ultrasonic beam, and sets a predetermined number of ultrasonic transducers.
  • the ultrasonic transducer generates one ultrasonic beam that is transmitted to the subject.
  • the transmission unit 14 includes, for example, a plurality of pulsars, and according to a transmission delay pattern selected according to a control signal from the control unit 30, a set of a predetermined number of ultrasonic transducers (hereinafter, referred to as a transducer array 36).
  • the delay amount of each drive signal is adjusted so that the ultrasonic beam component transmitted from the ultrasonic element forms one ultrasonic beam and is supplied to a plurality of ultrasonic elements forming a set.
  • the receiving unit 16 In response to a control signal from the control unit 30, the receiving unit 16 causes the transducer array 36 to transmit the ultrasonic echo generated by the interaction between the ultrasonic beam transmitted from the transducer array 36 and the subject. Received and output received signals, ie, analog element signals for each ultrasonic element are amplified and output.
  • the element data storage unit 20 sequentially stores digital element data output from the A / D conversion unit 18.
  • the element data storage unit 20 stores information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the visual field width) in the digital element data ( Hereinafter, the data is stored in association with element data).
  • the phasing addition unit 38 receives one reception delay pattern from a plurality of reception delay patterns stored in advance based on the distribution of sound speeds stored in the sound speed storage unit 54 according to the reception direction set in the control unit 30.
  • a reception focus process is performed by selecting a delay pattern and adding and adding a delay to each element signal of element data based on the selected reception delay pattern. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
  • the phasing addition unit 38 supplies the received data to the detection processing unit 40.
  • the image creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
  • the image memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44.
  • the inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
  • the display control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to the image processing by the image creation unit 44.
  • the display unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
  • the region setting unit 50 sets a plurality of regions in the imaging region where scanning with ultrasonic waves is performed according to an input from the operation unit 32 by the operator or according to an instruction from the control unit 30. In this apparatus, an appropriate sound speed is determined for each region.
  • FIG. 3 schematically shows the set area.
  • the y direction corresponds to the ultrasonic wave transmission direction
  • the x direction corresponds to the arrangement direction of the ultrasonic elements.
  • the imaging region is divided into a plurality of rectangular portions to set the region.
  • the area is rectangular. However, the area is not limited to this, and the area may be a line area corresponding to a line for transmitting an ultrasonic beam, or may correspond to one pixel.
  • each region may have a fan shape corresponding to the shape of the imaging region.
  • the size of each region is the same. However, the size is not limited to this, and the size may be different for each region.
  • the size of the area to be set is not particularly limited. However, as the area is set smaller, the accuracy of the entire ultrasonic image is improved, but the processing time for determining the sound speed may be longer.
  • the region setting unit 50 supplies information on the set region to the sound speed determination unit 52 (element data acquisition unit 56).
  • the sound speed determination unit 52 is a part that sequentially determines an appropriate sound speed for each region set by the region setting unit 50. As illustrated in FIG. 2, the sound speed determination unit 52 includes an element data acquisition unit 56, a sound speed acquisition unit 58, an image quality determination unit 60, and a sound speed calculation unit 62.
  • the sound velocity of the region is defined as the region from the ultrasonic probe 12 to the region when it is assumed that the space between the region and the ultrasonic probe 12 (the transducer array 36) is filled with a uniform material. It represents the speed of sound. That is, the average sound speed between the region and the ultrasonic probe 12 is also referred to as ambient sound speed.
  • the element data acquisition unit 56 is a part that reads out element data corresponding to a region for obtaining a sound speed (hereinafter also referred to as a region of interest) from the element data storage unit 20 based on information on the region set by the region setting unit 50. .
  • the element data acquisition unit 56 supplies the read element data to the image quality determination unit 60.
  • the sound speed acquisition unit 58 has already determined a region within a predetermined range, that is, a spatially neighboring region, from the region for calculating the sound speed (region of interest) based on the region information set by the region setting unit 50. This is a part for reading the completed sound speed from the sound speed storage unit 54 and acquiring the preliminary sound speed as a temporary sound speed value of the region of interest. Specifically, in the example shown in FIG.
  • the attention area for obtaining the sound speed is E (x, y)
  • the hatched area (the area of x-2, x-1 and E (x, y-1) ) Is a region in which the speed of sound has been previously determined in the same frame
  • the sound speed acquisition unit 58 receives the attention region E (x, y) from the sound speed storage unit 54 as the preliminary sound speed of the region of interest E (x, y) .
  • the sound speed value of the area E (x, y-1) adjacent to y) is acquired.
  • the sound velocity acquisition unit 58 is limited to a configuration that acquires the sound velocity values of the region E (x, y-1) adjacent to the region of interest E (x, y) and the y direction (transmission direction of ultrasonic waves ) as the preliminary sound velocity.
  • the sound speed value of the region of interest E (x, y) and the region E (x-1, y) adjacent in the x direction may be acquired as the preliminary sound velocity.
  • the area for acquiring the preliminary sound speed is not limited to the area adjacent to the attention area, and may be an area (a neighboring area) within a predetermined range from the attention area.
  • the predetermined range may be determined according to the diagnosis target (type of organ to be examined) and the like.
  • a region within 10 cm from the region of interest may be set as the predetermined range.
  • the predetermined area may be changed by the operator.
  • the configuration is not limited to the configuration in which the sound velocity value of one region is acquired as the preliminary sound velocity, and the sound velocity values in two or more regions may be read and the average value or the weighted average value may be acquired as the preliminary sound velocity.
  • the average value of the sound speed value in the area E (x, y-1) and the sound speed value in the area E (x-1, y) may be used as the preliminary sound speed in the attention area E (x, y).
  • the sound speed acquisition unit 58 is not limited to the structure of acquiring the sound speed value of the area in the same frame as the preliminary sound speed, and the structure of acquiring the sound speed value of the area at the same position before the predetermined frame as the preliminary sound speed, that is, It is good also as a structure which acquires the sound speed value of the area
  • FIG. 4 is a schematic diagram for explaining a region of interest and a temporally neighboring region. In FIG.
  • the sound speed acquisition unit 58 performs the attention of the frame F t ⁇ 1 immediately before the frame of interest F t region E (x, y-1) , the region of the same position as t E (x, y), reads out the sound velocity of the t-1, the region of interest E (x, y), may be pre-speed of sound t.
  • the sound velocity value in the temporally neighboring region is read out, the sound velocity value in the region at the same position several frames before (frames F t-2 and F t-3 ) is not limited to the immediately preceding frame.
  • the preliminary sound speed of the attention area E (x, y) and t may be read out.
  • the sound speed value of each area of a plurality of frames may be read, and the average value may be used as the preliminary sound speed of the attention area E (x, y) and t .
  • the sound speed acquisition unit 58 may read out the sound speed value in the temporally neighboring area and the sound speed value in the spatially neighboring area, and use these average values as the preliminary sound speed of the attention area.
  • the average value of these values may be read out and used as the preliminary sound speed of the attention area E (x, y) and t .
  • the sound speed acquisition unit 58 supplies the acquired preliminary sound speed to the image quality determination unit 60.
  • the image quality determination unit 60 Based on the preliminary sound speed acquired by the sound speed acquisition unit 58, the image quality determination unit 60 generates an image of the region of interest (attention image) from the element data of the region of interest acquired by the element data acquisition unit 56. This is a part for determining image quality. First, the image quality determination unit 60 generates an image of the attention area from the supplied element data.
  • the image generation method is basically the same as that of the image generation unit 24. That is, according to the reception delay pattern based on the preliminary sound speed acquired by the sound speed acquisition unit 58, the element data is added with a delay to perform reception focus processing and generate reception data (sound ray signal). B-mode image data is generated by correcting the attenuation in accordance with the depth of the generated sound ray signal and performing envelope detection processing.
  • the image quality is determined by evaluating the sharpness value of the generated B-mode image data of the attention area. If the sharpness value is greater than or equal to a predetermined threshold, it is determined that the image quality is good, and if it is less than the threshold, it is determined that the image quality is low.
  • a method for calculating the sharpness value of the image a known calculation method may be used. For example, a calculation method for calculating the half-value width of the maximum luminance point in the region of interest as the sharpness value can be used.
  • the image quality determination method performed by the image quality determination unit 60 is not limited to the determination based on the sharpness value, and the contrast, luminance value, image spatial frequency, integral value, square integral value, peak value, half-value width, frequency spectrum, and the like.
  • the image quality may be determined by an evaluation index such as a frequency spectrum integrated value, a square integrated value, or an autocorrelation value standardized by integration, maximum value, or DC component.
  • the image quality determination method performed by the image quality determination unit 60 is not limited to the configuration in which the sharpness value (evaluation index) of the image is compared with a predetermined threshold value, and is compared with the sharpness value of the image in the same region of the previous frame. If the difference is within a predetermined range, it may be determined to be good.
  • the image quality determination unit 60 performs reception focus processing by adding a delay to the element data according to a reception delay pattern based on the preliminary sound speed acquired by the sound speed acquisition unit 58 instead of the image of the region of interest. Image quality determination can also be performed based on the data. Specifically, the reference signal in which the received data after phasing addition at the preliminary sound speed is arranged for the same receiving elements as before the phasing addition, and the received data (delayed) before performing the phasing addition by correcting the delay time at the preliminary sound speed.
  • Similarity with time-corrected element data is evaluated, and if the similarity is equal to or greater than a predetermined threshold, it is determined that the image quality is good, and if it is equal to or less than the threshold, it is determined that the image quality is low.
  • the image quality determination section 60 adopts the preliminary sound speed used for the image quality determination as the sound speed of the attention area and supplies it to the sound speed storage section 54. If it is determined that the image quality is poor, the determination result is supplied to the sound speed calculation unit 62.
  • the sound speed calculation unit 62 is a part that calculates the sound speed in detail for a region of interest that is determined to have poor image quality as a result of image quality determination by the image quality determination unit 60.
  • the sound speed calculation unit 62 acquires the element data corresponding to the region of interest acquired by the element data acquisition unit 56, and the element data
  • the sound speed value (hereinafter referred to as the set sound speed) is changed in various ways, and based on the set sound speed, a reception focus process is performed to form an ultrasonic image, and the set sound speed at which the contrast and / or sharpness of the image is the highest is obtained. And calculated as the optimum sound speed value of the attention area.
  • the optimal sound speed value can be determined based on image contrast, scan direction spatial frequency, dispersion, and the like. .
  • the sharpness value of the image at each set sound speed V is compared, and the obtained set sound speed V having the highest sharpness value is adopted as the optimum sound speed value.
  • the search range of the set sound speed V may be set such that Vst is 1400 m / s, Vend is 1700 m / s, and ⁇ V is about 10 to 50 m / s.
  • the sound speed calculation unit 62 supplies the calculated sound speed value to the sound speed storage unit 54.
  • an index (focus index) for comprehensively determining image quality based on a plurality of set sound speeds for each region (pixel, line). Etc.) and the set sound speed at which the image quality determination result is the best is obtained as the optimum sound speed value. Therefore, there is a problem that it takes time to obtain the optimum sound speed in all regions. As a result, there is a problem that the frame rate is lowered.
  • the operator wants to acquire an ultrasound image, the operator stops the ultrasound probe and acquires the ultrasound image. In such a case, since the same tissue is detected in the same region between frames, the optimum sound speed value is also the same value. Therefore, even when the sound speed value in the temporally neighboring area is adopted as the sound speed value in the attention area, a high-quality image can be obtained.
  • the control unit 30 controls each unit of the ultrasonic inspection apparatus 10 based on a command input from the operation unit 32 by the operator.
  • the control unit 30 determines various information by the operator via the operation unit 32, particularly information necessary for setting a region by the region setting unit 50, and sound speed by the sound speed determination unit 52.
  • the necessary information is input, the above-described various information input from the operation unit 32 is transmitted as necessary to the transmission unit 14, the reception unit 16, the element data storage unit 20, and the image generation unit 24.
  • the display control unit 26, the region setting unit 50, the sound speed determination unit 52, and the like are supplied.
  • the ultrasonic inspection apparatus 10 when generating an ultrasonic image will be described.
  • an ultrasonic beam is transmitted from the transducer array 36 according to the drive signal supplied from the transmission unit 14, and the ultrasonic wave from the subject is transmitted.
  • the transducer array 36 receives the echo and outputs an analog element signal as a reception signal.
  • the receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18.
  • the A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
  • the phasing addition unit 38 of the image generation unit 24 reads the element data from the element data storage unit 20, performs reception focus processing on the element data, generates reception data (sound ray signal), and supplies the reception data (sound ray signal) to the detection processing unit 40. To do. At this time, the phasing addition unit 38 performs reception focus processing based on the sound speed map stored in the sound speed storage unit 54.
  • the detection processing unit 40 processes the sound ray signal and generates a B-mode image signal.
  • the DSC 42 performs raster conversion on the B-mode image signal, and the image creation unit 44 performs image processing to generate an ultrasonic image.
  • the generated ultrasonic image is stored in the image memory 46, and the ultrasonic image is displayed on the display unit 28 by the display control unit 26.
  • FIG. 6 is a flowchart for explaining the operation of the ultrasonic inspection apparatus 10 shown in FIG.
  • the transducer array 36 receives the echo and outputs an analog element signal as a reception signal.
  • the receiving unit 16 outputs an analog element signal output from each element as one analog element data, and supplies it to the A / D converter 18.
  • the A / D conversion unit 18 converts analog element data into digital element data, supplies the element data to the element data storage unit 20, and stores and holds the data.
  • the area setting unit 50 sets a plurality of areas in an imaging area where scanning with ultrasound is performed in response to an input from the operation unit 32 or an instruction from the control unit 30.
  • Sound speed determination unit 52 for each area set by the area setting unit 50 sequentially (from E 11 to E end The), by changing the region of interest to determine the speed of sound in each region.
  • the element data acquisition unit 56 of the sound speed determination unit 52 reads element data corresponding to the region of interest from the element data storage unit 20 and supplies the element data to the image quality determination unit 60.
  • the sound speed acquisition unit 58 reads the already determined sound speed in the vicinity of the attention area from the sound speed storage unit 54, acquires it as a preliminary sound speed, and supplies the preliminary sound speed to the image quality determination unit 60.
  • the image quality determination unit 60 first performs reception focus processing of the element data of the attention area acquired by the element data acquisition unit 56 according to the reception delay pattern based on the preliminary sound speed acquired by the sound speed acquisition unit 58, generates reception data, B-mode image data is generated by correcting the attenuation according to the depth and performing envelope detection processing. Next, the sharpness value of the generated B-mode image data of the attention area is evaluated to determine the image quality. If the image quality is determined to be good, the preliminary sound speed used for the image quality determination is adopted as the sound speed of the attention area. , And supplied to the sound speed storage unit 54. If the image quality determination result is negative, the determination result is supplied to the sound speed calculation unit 62.
  • the sound speed calculation unit 62 comprehensively changes the set sound speed, calculates the sound speed with the best image quality as the sound speed of the attention area, and supplies the sound speed to the sound speed storage unit 54.
  • the sound speed storage unit 54 stores the sound speed values supplied from the image quality determination unit 60 and the sound speed calculation unit 62 as a sound speed map in association with the position information of the area.
  • the ultrasonic inspection apparatus acquires the preliminary sound speed based on the sound velocity value of the area within the predetermined range from the attention area, and generates the image of the attention area based on the preliminary sound speed. If the image quality determination result is good and the result of image quality determination is good, this preliminary sound speed is adopted as the sound speed of the region of interest. Since it is not necessary to obtain the set sound speed at which the result is the best, an appropriate sound speed value for each region can be obtained in a short time. Further, since the optimum sound speed value depends on the distance (depth) from the ultrasonic probe and the property of the tissue through which the ultrasonic wave passes, the optimum sound speed value is likely to be a close value in areas close to each other.
  • the operator wants to acquire an ultrasound image, the operator stops the ultrasound probe and acquires the ultrasound image. In such a case, since the same tissue is detected in the same region between frames, the optimum sound speed value is also the same value. Therefore, even when the sound speed value in the temporally neighboring area is adopted as the sound speed value in the attention area, a high-quality image can be obtained.
  • the ultrasonic inspection apparatus of the present invention can obtain an appropriate sound speed value for each region in a short time, and can construct a highly accurate ultrasonic image without reducing the frame rate.
  • the image quality determination unit 60 has a function of generating an image for determining the image quality.
  • the present invention is not limited to this, and the image generation unit 24 performs image quality determination. It is good also as a structure which produces
  • the configuration is not limited to the configuration in which the image quality determination is performed by acquiring the preliminary sound speed in all areas within one frame, and the initial value set in advance for the area in which the sound speed is first determined within one frame. May be used as the preliminary sound speed, or the optimal sound speed may be calculated by the sound speed calculation unit 62 without acquiring the preliminary sound speed (without performing image quality determination).
  • the sound speed calculation unit 62 may calculate the optimum sound speed without acquiring the preliminary sound speed and determining the image quality. For example, in the region including the focal point of the ultrasonic beam, the optimum sound speed can be obtained more accurately by calculating the optimum sound speed, and the calculated sound speed can be used as a preliminary sound speed. The image quality of the area around the area can be improved.
  • the generation of the ultrasonic image and the determination of the sound speed may be performed simultaneously or separately.
  • the sound speed may be determined from the element data obtained by transmitting and receiving a set of ultrasonic waves for one frame, and an ultrasonic image may be generated. From the element data obtained by separate transmission and reception, The generation of the sound image and the determination of the sound speed may be performed, respectively.
  • the ultrasonic image is generated from the element data used for the determination of the sound speed
  • the image used for the determination of the image quality is used as the ultrasonic image. Also good.
  • the sound speed may be determined every frame or once every several frames.
  • the reception focus process is performed based on the sound speed map stored in the sound speed storage unit 54 when the reception focus process is performed on the element data.
  • the present invention is not limited to this.
  • the delay amount of the drive signal may be adjusted based on the sound speed map stored in the sound speed storage unit 54.
  • the preliminary sound speed is acquired and the image quality is determined. If the determination result is negative, the sound speed calculation unit 62 calculates the optimum sound speed of the attention area. There is no limitation, and if the determination result is negative, the determination result may be displayed on the display unit 28 to warn the operator. In this case, the operator may determine whether or not to calculate the sound speed.
  • the region for which the sound velocity acquisition unit 58 acquires the preliminary sound velocity may be a region that is temporally or spatially close to the region of interest, but the sound velocity value of any region is acquired. This may be determined in advance or may be determined automatically. For example, when the movement of the ultrasonic probe 12 is sensed by a difference from an acceleration sensor or an image of the previous frame and is stopped, it is preferable to acquire a sound velocity value in a temporally neighboring region. In addition, when the feature amount of the image moves between frames, it is preferable to obtain the sound speed value of a spatially neighboring region, and depending on the direction of motion, It is only necessary to automatically determine which sound speed of the area is acquired. Alternatively, the imaging area may be divided into a plurality of partial images according to the image feature amount and the sound speed value of the area in the same partial image may be acquired as the preliminary sound speed.
  • FIG. 7 is a block diagram conceptually showing an embodiment of the configuration of the second aspect of the ultrasonic inspection apparatus of the present invention.
  • the ultrasonic inspection apparatus 100 shown in FIG. 7 has a sound speed determination unit 52a instead of the sound speed determination unit 52, does not have the sound speed storage unit 54, and has an initial sound speed storage unit 64 in FIG. Since it has the same configuration as the ultrasonic diagnostic apparatus 10 shown, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the ultrasonic inspection apparatus 100 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
  • the initial sound speed storage unit 64 is a part that stores an initial sound speed, which is a predetermined sound speed value set in advance, used by the sound speed determination unit 52 to determine the sound speed of each region.
  • the initial sound speed stored in the initial sound speed storage unit 64 is preferably a value close to the sound speed value in the living body, and is preferably in the range of 1400 to 1700 m / s, and more preferably in the range of 1450 to 1550 m / s.
  • the initial sound speed storage unit 64 may store at least one initial sound speed value, but may store an appropriate initial sound speed value for each diagnosis site (organ type).
  • the initial sound speed storage unit 64 supplies information on the initial sound speed to the sound speed acquisition unit 58a of the sound speed determination unit 52a.
  • the sound speed determination unit 52a includes an element data acquisition unit 56, a sound speed acquisition unit 58a, an image quality determination unit 60a, and a sound speed calculation unit 62.
  • the sound speed acquisition unit 58a is a part that reads the initial sound speed value stored in the initial sound speed storage unit 64 as a preliminary sound speed.
  • the initial sound speed may be acquired as the preliminary sound speed.
  • an appropriate initial value is input according to the information on the diagnosis part input from the operation unit 32 or set in advance. What is necessary is just to select and acquire a sound speed value.
  • the sound speed acquisition unit 58 supplies the acquired initial sound speed value to the image quality determination unit 60a.
  • the image quality determination unit 60a obtains an image of the attention area (attention image) from the element data of the attention area acquired by the element data acquisition unit 56 based on the preliminary sound speed acquired by the sound speed acquisition unit 58a. Generate. Next, as with the image quality determination unit 60, the image quality determination unit 60a determines the image quality by evaluating the sharpness value of the generated B-mode image data of the attention area. If the sharpness value is greater than or equal to a predetermined threshold, it is determined that the image quality is good, and if it is less than the threshold, it is determined that the image quality is low.
  • the image quality determination unit 60a has a function of generating an image for performing image quality determination.
  • the present invention is not limited to this, and the image generation unit 24 performs image quality determination. It is good also as a structure which produces
  • the image generation unit 24 may generate an image again based on the sound speed calculated by the sound speed calculation unit 62 to generate the entire ultrasonic image. .
  • the ultrasonic inspection apparatus of the present invention As described above, the ultrasonic inspection apparatus of the present invention, the signal processing method of the ultrasonic inspection apparatus, and the program have been described in detail, but the present invention is not limited to the above examples, and in a range not departing from the gist of the present invention. Of course, various improvements and modifications may be made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Nonlinear Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 画像内の領域ごとの適切な音速値を、短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる超音波検査装置を提供する。検査対象物内に複数の領域を設定する領域設定部と、領域の音速を算出する音速算出部と、注目領域の予備音速を取得する音速取得部と、予備音速に基づいた場合の注目領域の画質を判定する画質判定部とを備え、画質判定部の判定結果が良の場合には、音速取得部が取得した予備音速を注目領域の音速として採用し、判定結果が否の場合には、音速算出部によって注目領域の音速を算出することにより、上記課題を解決する。

Description

超音波検査装置、超音波検査装置の信号処理方法およびプログラム
 本発明は、超音波ビームを送受信することにより生体内の臓器等の検査対象物の撮像を行って、検査対象物の検査や診断のために用いられる超音波画像を生成する超音波検査装置、超音波検査装置の信号処理方法およびプログラムに関する。
 従来から、医療分野において、超音波画像を利用した超音波画像診断装置等の超音波検査装置が実用化されている。一般に、この種の超音波検査装置は、複数の素子(超音波トランスデューサ)を内蔵した超音波探触子(超音波プローブ)と、この超音波探触子に接続された装置本体とを有しており、超音波探触子の複数の素子から検査対象物(被検体)に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波探触子で受信して、その受信した超音波エコー信号を装置本体で電気的に処理することにより超音波画像が生成される。
 超音波検査装置においては、超音波画像を生成するとき、被検体の検査対象領域、例えば、生体内の臓器やその臓器内の病巣等に探触子の複数の素子から焦点を合わせて超音波ビームを送信し、検査対象領域の反射体、例えば臓器や病巣等の表面や界面からの超音波エコーを複数の素子を介して受信しているが、同一の反射体で反射された超音波エコーを複数の素子で受信するので、送信素子から送信された超音波ビームの焦点位置に位置する反射体で反射され、送信素子で受信された超音波エコー信号に対して、同一の反射体で反射され、送信素子と異なるその他の素子で受信された超音波エコー信号は遅延することになるので、複数の素子で受信した超音波エコー信号をA/D(アナログ/デジタル)変換して素子データとした後、素子データを受信フォーカス処理して、即ち遅延補正して位相を合わせ整相加算して音線信号を生成し、こうして得られた音線信号に基づいて超音波画像を生成している。
 ところで、超音波検査装置において、超音波画像を生成するときには、被検体の生体内の音速は一定であると仮定して、超音波画像を生成している。しかしながら、実際の生体内は、生体内組織の性状に依存して音速値が変化するため、音速値にはばらつきがあり、このばらつきによって、超音波画像には空間的な歪みやコントラストあるいは空間分解能の低下といった画質劣化を生じていた。
 これに対して、近年、被検体内の診断部位をより精度よく診断するために、任意の診断部位における音速値を最適化し、このような画像の歪みや空間分解能の低下等を低減し、画質を向上することが行われている。
 例えば、特許文献1には、着目領域を設定する着目領域設定手段と、超音波探触子に対して着目領域に超音波を送信フォーカスさせる送信フォーカス指示手段と、着目領域からの超音波検出信号に対して受信フォーカスするための複数の設定音速を指定する設定音速指定手段と、複数の設定音速毎に受信フォーカスして、超音波検出信号のフォーカス指標を算出するフォーカス指標算出手段と、複数の設定音速毎のフォーカス指標に基づき、着目領域の環境音速を決定する環境音速決定手段とを備える超音波診断装置が開示されている。
 特許文献1では、フォーカス指標に基づいて、超音波画像を構成する画素レベル毎あるいはライン画像レベル毎に、適正に環境音速を決定し、高精度の超音波画像を構築することが開示している。
特開2011-92686号公報
 しかしながら、特許文献1に開示の技術では、従来技術よりも高画質な画像が得られるが、画素レベル毎あるいはライン画像レベル毎に、複数の設定音速に基づいて、網羅的にフォーカス指標を求めて、フォーカス指標が最も良くなる設定音速を、最適な音速(環境音速)とするため、全ての画素(ライン)の環境音速を求めるためには、時間を要するという問題があった。また、その結果、フレームレートが低下するという問題があった。
 本発明の目的は、上記従来技術の問題点を解消し、画像内の領域ごとの適切な音速値を、短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる超音波検査装置、超音波検査装置の信号処理方法およびプログラムを提供することにある。
 上記目的を達成するために、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、記検査対象物内に複数の領域を設定する領域設定部と、領域の音速を算出する音速算出部と、複数の領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得部と、音速取得部が取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定部と、を備え、音速取得部が、注目領域から所定の範囲内にある少なくとも1つの領域における音速に基づいて予備音速を取得するものであり、画質判定部の判定結果が良の場合には、音速取得部が取得した予備音速を注目領域の音速として採用し、判定結果が否の場合には、音速算出部によって注目領域の音速を算出することを特徴とする超音波検査装置を提供する。
 ここで、音速取得部は、注目領域から時間的および/または空間的に所定の範囲内にある少なくとも1つの領域における音速に基づいて予備音速を取得することが好ましい。
 ここで、空間的に所定の範囲内の領域とは、同一画像上で注目領域に近接する領域であることが好ましい。
 また、空間的に所定の範囲内の領域とは、画像を複数の部分画像に領域分割したときの同一部分画像内の領域であることが好ましい。
 また、時間的に所定の範囲内の領域とは、所定フレーム前の画像における注目領域に対応する領域であることが好ましい。
 また、時間的に所定の範囲内の領域とは、複数の所定フレーム前の画像に所定の処理を行って得られた少なくとも1つの画像における注目領域に対応する領域か、あるいは、複数の所定フレーム前の画像のうち少なくとも1つの画像における注目領域に対応する領域であり、領域における音速とは、複数の所定フレーム前の音速に所定の処理を行って得られた音速であることが好ましい。
 また、所定の処理とは、複数の所定フレーム前の音速の平均値あるいは中央値のいずれかを求める処理であることが好ましい。
 また、上記目的を達成するために、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置であって、検査対象物内に複数の領域を設定する領域設定部と、領域の音速を算出する音速算出部と、複数の領域の1つを注目領域とし、注目領域の予備音速を取得する音速取得部と、予め設定された初期音速を記憶する初期音速記憶部と、音速取得部が取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定部と、を備え、音速取得部が、初期音速記憶部に記憶されている初期音速を予備音速として取得するものであり、各領域において、画質判定部の判定結果が良の場合には、音速取得部が取得した予備音速を領域の音速として採用し、判定結果が否の場合には、音速算出部によって領域の音速を算出することを特徴とする超音波検査装置を提供する。
 ここで、初期音速記憶部は、複数の初期音速を記憶しておき、操作部からの入力に基づいて、画質判定部による画質判定に使用する初期音速を選択するのが好ましい。
 また、初期音速記憶部に記憶される初期音速は、生体内の音速に近い値であるのが好ましい。
 また、生体内の音速に近い値は、1400~1700m/sの間の値であるのが好ましい。
 また、生体内の音速に近い値は、1450~1550m/sの間の値であるのが好ましい。
 また、画質判定部の判定結果に基づいて、初期音速記憶部に記憶される初期音速を再設定するのが好ましい。
 また、画質判定部は、予備音速に基づいて生成した注目領域の画像のシャープネス、輝度、コントラスト、周波数のいずれかに基づいて画質判定を行うことが好ましい。
 また、画質判定部は、予備音速に基づいて生成した注目領域の画像と、前回画像の同一領域の画像とを比較して画質判定を行うことが好ましい。
 また、画質判定部は、予備音速に基づいて生成した注目領域の整相加算後の受信データに基づいて生成した基準データと、整相加算前の受信データとの類似性を評価して画質判定を行うことが好ましい。
 また、振動子アレイの各素子が超音波エコーを受信して出力する素子データを記憶する素子データ記憶部を有することが好ましい。
 また、上記目的を達成するため、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理方法であって、検査対象物内に複数の領域を設定する領域設定ステップと、領域の音速を算出する音速算出ステップと、複数の領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、音速取得ステップが取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定ステップと、を備え、音速取得ステップが、注目領域から所定の範囲内にある少なくとも1つの領域における音速に基づいて予備音速を取得するものであり、画質判定ステップの判定結果が良の場合には、音速取得ステップが取得した予備音速を注目領域の音速として採用し、判定結果が否の場合には、音速算出ステップによって注目領域の音速を算出することを特徴とする超音波検査装置の信号処理方法を提供する。
 また、上記目的を達成するため、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理をコンピュータに実行させるプログラムであって、検査対象物内に複数の領域を設定する領域設定ステップと、領域の音速を算出する音速算出ステップと、複数の領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、音速取得ステップが取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定ステップと、を備え、音速取得ステップが、注目領域から所定の範囲内にある少なくとも1つの領域における音速に基づいて予備音速を取得するものであり、画質判定ステップの判定結果が良の場合には、音速取得ステップが取得した予備音速を注目領域の音速として採用し、判定結果が否の場合には、音速算出ステップによって注目領域の音速を算出することを特徴とする超音波検査装置の信号処理プログラムを提供する。
 また、上記目的を達成するため、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理方法であって、検査対象物内に複数の領域を設定する領域設定ステップと、領域の音速を算出する音速算出ステップと、複数の領域の1つを注目領域とし、注目領域の予備音速を取得する音速取得ステップと、音速取得ステップが取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定ステップと、を備え、音速取得ステップが、予め設定された初期音速を予備音速として取得するものであり、各領域において、画質判定ステップの判定結果が良の場合には、音速取得ステップが取得した予備音速を領域の音速として採用し、判定結果が否の場合には、音速算出ステップによって領域の音速を算出することを特徴とする超音波検査装置の信号処理方法を提供する。
 また、上記目的を達成するため、本発明は、超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理をコンピュータに実行させるプログラムであって、検査対象物内に複数の領域を設定する領域設定ステップと、領域の音速を算出する音速算出ステップと、複数の領域の1つを注目領域とし、注目領域の予備音速を取得する音速取得ステップと、音速取得ステップが取得した予備音速に基づいた場合の注目領域の画質を判定する画質判定ステップと、を備え、音速取得ステップが、予め設定された初期音速を予備音速として取得するものであり、各領域において、画質判定ステップの判定結果が良の場合には、音速取得ステップが取得した予備音速を領域の音速として採用し、判定結果が否の場合には、音速算出ステップによって領域の音速を算出することを特徴とする超音波検査装置の信号処理プログラムを提供する。
 本発明によれば、領域ごとの適切な音速を求める場合に、短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる。
本発明に係る超音波検査装置の第1態様の構成の一例を概念的に示すブロック図である。 図1に示す超音波検査装置の音速決定部の構成の一例を概念的に示すブロック図である。 注目領域および近傍の領域を説明するための模式図である。 注目領域および近傍の領域を説明するための模式図である。 図1に示す超音波検査装置の音速算出部の動作を説明するためのフローチャートである。 図1に示す超音波検査装置の動作を説明するためのフローチャートである。 本発明に係る超音波検査装置の第2態様の構成の一例を概念的に示すブロック図である。 図7に示す超音波検査装置の音速決定部の構成の一例を概念的に示すブロック図である。 画質判定部による領域ごとの判定結果を説明するための模式図である。 図7に示す超音波検査装置の動作を説明するためのフローチャートである。
 本発明に係る超音波検査装置、超音波検査装置の信号処理方法およびプログラムを添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
 図1は、本発明の超音波検査装置の第1態様の構成の一実施例を概念的に示すブロック図である。
 図1に示すように、超音波検査装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、領域設定部50と、音速決定部52と、音速記憶部54とを有する。
 超音波プローブ(超音波探触子)12は、通常の超音波検査装置に用いられる振動子アレイ36を有する。
 振動子アレイ36は、1次元又は2次元アレイ状に配列された複数の素子、即ち超音波トランスデューサを有している。これらの超音波トランスデューサは、検査対象物(以下、被検体という)の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号(アナログ素子信号)を出力する。本実施形態では、振動子アレイ36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。
 各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子、即ち振動子によって構成される。
 このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号(アナログ素子信号)として出力される。
 送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号に応じて選択された送信遅延パターンに従い、振動子アレイ36の一組の所定数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成するようにそれぞれの駆動信号の遅延量を調節して組を成す複数の超音波素子に供給する。
 受信部16は、制御部30からの制御信号に応じて、振動子アレイ36から送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを、振動子アレイ36が受信して出力した、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して出力する。
 ここで、受信部16は、1回の超音波ビームの送信に対応して、複数の超音波素子が受信した複数のアナログ素子信号を、受信した超音波素子の情報および受信時間の情報を含む、1つのアナログの素子データとして出力する。すなわち、素子データは、素子の位置と受信時間とに対する受信信号の強度を表すデータである。
 また、受信部16は、送信部14による1回の超音波ビームの送信ごとに、超音波エコーを受信してアナログの素子データを出力する。したがって、送信部14が、複数回の超音波ビームの送信を行うことにより、各送信に対応した複数のアナログの素子データを出力する。
 受信部16は、アナログの素子データをA/D変換部18に供給する。
 A/D変換部18は、受信部16に接続され、受信部16から供給されたアナログの素子データを、デジタルの素子データ(第1の素子データ)に変換する。A/D変換部18は、A/D変換されたデジタルの素子データを素子データ記憶部20および画像生成部24に供給する。
 素子データ記憶部20は、A/D変換部18から出力されるデジタルの素子データを順次格納する。また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタルの素子データ(以下、単に素子データという)に関連付けて格納する。
 画像生成部24は、制御部30による制御下で、A/D変換部18あるいは素子データ記憶部20から供給された素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成するものである。
 画像生成部24は、整相加算部38、検波処理部40、DSC42、画像作成部44、および、画像メモリ46を有する。
 整相加算部38は、制御部30において設定された受信方向に応じて、音速記憶部54に記憶されている音速の分布に基づく予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データの素子ごとの信号にそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
 整相加算部38は、受信データを検波処理部40に供給する。
 検波処理部40は、整相加算部38で生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
 DSC(digital scan converter)48は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。
 画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
 画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。
 表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
 表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。
 領域設定部50は、操作者による操作部32からの入力に応じて、あるいは、制御部30からの指示に応じて、超音波による走査を行う撮像領域に、複数の領域を設定する。本装置においては、この領域単位で適切な音速を決定する。
 図3に、設定した領域を模式的に表す図を示す。図3において、y方向が超音波の送信方向に対応し、x方向が超音波素子の配列方向に対応している。
 図3に破線で示すように、撮像領域を複数の矩形状の部分ごとに分割して領域を設定する。
 なお、図示例においては、領域は矩形状としたが、これに限定はされず、超音波ビームを送信するラインに対応するライン状の領域であってもよいし、1画素に対応する点であってもよい。また、撮像領域の形状に対応して、例えば、コンベックスプローブの場合であれば、各領域は扇型であってもよい。また、図示例においては、各領域の大きさは同じとしたが、これに限定はされず、領域ごとに異なる大きさとしてもよい。
 また、設定する領域の大きさには特に限定はないが、領域を小さく設定するほど、超音波画像全体の精度は向上するものの、音速を決定する際の処理時間が長くなるおそれがある。
 領域設定部50は、設定した領域の情報を音速決定部52(素子データ取得部56)に供給する。
 音速決定部52は、領域設定部50が設定した領域ごとの適切な音速を順次、決定する部位である。
 図2に示すように、音速決定部52は、素子データ取得部56と、音速取得部58と、画質判定部60と、音速算出部62とを有する。
 なお、本発明において、領域の音速とは、領域と超音波プローブ12(振動子アレイ36)との間が均一な物質で満たされていると仮定した場合の、超音波プローブ12から領域までの音速を表すものである。すなわち、領域と超音波プローブ12との間の平均的な音速であり、これを環境音速ともいう。
 素子データ取得部56は、領域設定部50が設定した領域の情報に基づいて、音速を求める領域(以下、注目領域、ともいう)に対応する素子データを素子データ記憶部20から読み出す部位である。
 素子データ取得部56は、読み出した素子データを画質判定部60に供給する。
 音速取得部58は、領域設定部50が設定した領域の情報に基づいて、音速を求める領域(注目領域)から、所定の範囲内にある領域、すなわち、空間的に近傍の領域の、すでに決定済みの音速を音速記憶部54から読み出して、注目領域の仮の音速値としての予備音速を取得する部位である。
 具体的には、図3に示す例において、音速を求める注目領域をE(x,y)とし、斜線で示す領域(x-2、x-1の領域および、E(x、y-1))を、同一フレーム内で先に音速を決定されている領域とすると、音速取得部58は、注目領域E(x,y)の予備音速として、音速記憶部54から、注目領域E(x、y)に隣接する領域E(x、y-1)の音速値を取得する。
 なお、音速取得部58は、注目領域E(x、y)とy方向(超音波の送信方向)に隣接する領域E(x、y-1)の音速値を予備音速として取得する構成に限定はされず、注目領域E(x、y)とx方向に隣接する領域E(x-1、y)の音速値を予備音速として取得してもよい。また、予備音速を取得する領域は、注目領域と隣接する領域に限定はされず、注目領域から所定の範囲内にある領域(近傍の領域)であればよい。
 なお、この所定の範囲は、診断対象(検査する臓器の種類)等に応じて決定すればよいが、例えば、注目領域から10cm以内の範囲にある領域を所定の範囲の領域とすればよい。また、この所定の領域を、操作者が変更可能にしてもよい。
 また、1つの領域の音速値を予備音速として取得する構成に限定はされず、2以上の領域の音速値を読み出して、その平均値や加重平均値を予備音速として取得する構成としてもよい。例えば、図3において、領域E(x、y-1)の音速値と領域E(x-1、y)の音速値との平均値を注目領域E(x、y)の予備音速としてもよい。
 また、音速取得部58は、同一フレーム内の領域の音速値を予備音速として取得する構成に限定はされず、所定フレーム前の同じ位置の領域の音速値を予備音速として取得する構成、すなわち、時間的に近傍の領域の音速値を予備音速として取得する構成としてもよい。
 図4に、注目領域および時間的に近傍の領域を説明するための模式図を示す。
 図4において、音速値を求める注目領域E(x、y)、tを含むフレームを注目フレームFとすると、音速取得部58は、注目フレームFの直前のフレームFt-1の、注目領域E(x、y-1),tと同じ位置の領域E(x、y)、t-1の音速値を読み出して、注目領域E(x,y)、tの予備音速としてもよい。
 なお、時間的に近傍の領域の音速値を読み出す場合には、直前のフレームに限定はされず、数フレーム前(フレームFt-2やFt-3)の同じ位置の領域の音速値を読み出して、注目領域E(x,y)、tの予備音速としてもよい。また、複数フレームの各領域の音速値を読み出して、平均値を注目領域E(x,y)、tの予備音速としてもよい。
 また、音速取得部58は、時間的に近傍の領域の音速値と、空間的に近傍の領域の音速値とを読み出して、これらの平均値を注目領域の予備音速としてもよい。例えば、同一フレームの領域E(x,y-1)、tと、領域E(x-1,y)、tと、前フレームの領域E(x,y)、t-1の音速値をそれぞれ読み出して、これらの平均値を注目領域E(x,y)、tの予備音速としてもよい。
 音速取得部58は、取得した予備音速を画質判定部60に供給する。
 画質判定部60は、音速取得部58が取得した予備音速に基づいて、素子データ取得部56が取得した注目領域の素子データから注目領域の画像(注目画像)を生成して、この注目画像の画質を判定する部位である。
 画質判定部60は、まず、供給された素子データから注目領域の画像を生成する。画像の生成方法は、基本的には、画像生成部24と同様である。すなわち、音速取得部58が取得した予備音速に基づく受信遅延パターンに従って、素子データに遅延を加えて加算することにより、受信フォーカス処理を行い、受信データ(音線信号)を生成する。生成した音線信号に対して、深度に応じた減衰の補正を施して、包絡線検波処理を施すことにより、Bモード画像データを生成する。
 次に、生成した注目領域のBモード画像データのシャープネス値を評価して画質を判定する。シャープネス値が所定の閾値以上であれば、画質は良いと判定し、閾値より小さければ画質は低いと判定する。
 なお、画像のシャープネス値の算出方法としては、公知の算出方法を利用すればよく、例えば、注目領域における最大輝度点の半値幅をシャープネス値として算出する算出方法等が利用可能である。
 なお、画質判定部60が行う画質の判定方法は、シャープネス値による判定に限定はされず、コントラストや輝度値、画像の空間周波数、積分値、2乗積分値、ピーク値、半値幅、周波数スペクトル積分、最大値や直流成分で規格化された周波数スペクトル積分値や2乗積分値、自己相関値等の評価指標により画質の判定を行ってもよい。
 また、画質判定部60が行う画質の判定方法は、画像のシャープネス値(評価指標)を、所定の閾値と比較する構成に限定はされず、前回フレームの同じ領域の画像のシャープネス値と比較して、差が所定範囲以内であれば、良と判定する構成としてもよい。
 また、画質判定部60は、注目領域の画像ではなく、音速取得部58が取得した予備音速に基づく受信遅延パターンに従って、素子データに遅延を加えて加算することにより、受信フォーカス処理を行った受信データに基づいて画質判定を行うこともできる。具体的には、予備音速における整相加算後の受信データを整相加算前と同じ受信素子分並べた基準信号と、予備音速で遅延時間補正して整相加算を行う前の受信データ(遅延時間補正された素子データ)との類似性を評価し、類似性が所定の閾値以上であれば、画質は良いと判定し、閾値以下であれば画質は低いと判定する。
 画質判定部60は、注目領域の画質判定の結果、画質が良と判定された場合には、画質判定に利用した予備音速を注目領域の音速として採用して、音速記憶部54に供給し、判定の結果画質が悪いと判定された場合には、音速算出部62に判定結果を供給する。
 音速算出部62は、画質判定部60の画質判定の結果、画質が悪いと判定された注目領域について、詳細に音速を算出する部位である。
 音速算出部62は、画質判定部60から画質が悪いとの判定結果が供給されると、素子データ取得部56が取得した、注目領域に対応する素子データを取得し、この素子データに対して、音速値(以下、設定音速という)を種々変更し、それぞれの設定音速に基づいて、受信フォーカス処理をして超音波画像を形成し、画像のコントラストおよび/またはシャープネスが最も高くなる設定音速を、注目領域の最適な音速値として算出する。
 最適な音速値の判定方法としては、例えば、特開平8-317926号公報に記載のように、画像のコントラスト、スキャン方向の空間周波数、分散等に基づいて最適音速値の判定を行うことができる。
 音速算出部62について、図5に示すフローチャートを用いてより詳細に説明する。
 音速算出部62は、注目領域の素子データを取得すると、設定音速Vを、VstからVendまで、ΔV刻みで変化させて、それぞれの設定音速Vにおいて、設定音速Vに基づいて、素子データ取得部から供給された注目領域の素子データを用いて受信フォーカス処理をして音線信号を生成し、この音線信号から超音波画像を形成し、それぞれの設定音速Vでの注目領域の画像のシャープネスを算出する。
 各設定音速Vでの画像のシャープネス値を比較して、得られたシャープネスの値が最も高い設定音速Vを最適な音速値として採用する。
 なお、設定音速Vの探索範囲としては、Vstは1400m/s、Vendは1700m/s、ΔVは10~50m/s程度とすればよい。
 音速算出部62は、算出した音速値を音速記憶部54に供給する。
 なお、音速算出部は、シャープネス値が最も高くなる設定音速を最適な音速値とする構成に限定はされず、コントラストや輝度値、あるいは、画像の空間周波数等の評価指標に基づいて、画質が最も良くなる設定音速を最適な音速値とすればよい。
 また、上記実施例では、音速算出部は、所定の探索範囲で設定音速の探索を行う構成としたが、これに限定はされず、音速取得部58が取得した予備音速を基準にして探索範囲を決定する構成としてもよい。例えば、予備音速の±50m/sの範囲を探索範囲として、最適な音速を求めるようにしてもよい。さらに、予備音速を基準にして探索範囲を決定して探索した後に、画質判定を行って、判定結果が否の場合には、探索範囲を拡大して最適な音速を求めるようにしてもよい。
 また、音速算出部62の音速の算出方法は、所定の探索範囲で設定音速を順次、変更して画質が最も良くなる音速値を求める構成に限定はされず、各種の、領域ごとの最適な音速値の算出方法が利用可能である。例えば、各設定音速における整相加算後の受信データを整相加算前と同じ受信素子分並べた基準信号と、各設定音速で遅延時間補正して整相加算を行う前の受信データ(遅延時間補正された素子データ)とを、それぞれ各設定音速で類似性を評価し、類似性の高いときの音速を最適な音速値とする方法(特願2012-120242号に記載の方法)が利用可能である。
 前述のとおり、超音波検査装置において、より高画質な画像を得るために、領域(画素、ライン)ごとに、複数の設定音速に基づいて、網羅的に画質を判定するための指標(フォーカス指標等)を求めて、画質の判定結果が最も良くなる設定音速を、最適な音速値として求めていた。そのため、全ての領域で最適な音速を求めるためには、時間を要するという問題があった。また、その結果、フレームレートが低下するという問題があった。
 これに対して、本発明は、注目領域から所定の範囲内にある領域の音速値に基づいて予備音速を取得し、予備音速に基づいて注目領域の画像を生成した場合の画質を判定し、画質判定の結果が良であれば、この予備音速を注目領域の音速として採用するので、複数の設定音速で、網羅的に画質判定のための指標を求めて、判定結果が最も良くなる設定音速を求める必要がないため、短時間で、領域ごとの適切な音速値を求めることができる。
 また、最適な音速値は、超音波プローブからの距離(深さ)や超音波が通過する組織の性状によるので、互いに近傍の領域では、最適な音速値も近い値となる可能性が高い。従って、空間的に近傍の領域の音速値を注目領域の音速として採用したとしても、高画質な画像を得ることができる。
 また、操作者が超音波画像を取得したい場合には、操作者は超音波プローブを静止させて超音波画像を取得する。このような場合、フレーム間で同じ領域には同じ組織が検出されているので、最適な音速値も同じ値となる。従って、時間的に近傍の領域の音速値を注目領域の音速値として採用した場合にも、高画質な画像を得ることができる。
 また、組織の境界の位置や、操作者が超音波プローブを移動させた場合には、予備音速に基づく画質判定の結果が否となり、近傍の領域から取得した予備音速に基づく画質判定の結果が否の場合には、最適な音速を求めるので、やはり、高画質な画像を得ることができる。
 以上から、本発明の超音波検査装置は、領域ごとの適切な音速値を短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる。
 音速記憶部54は、画質判定部60および音速算出部62から供給される音速値を、領域の位置情報と関連づけて、いわゆる、音速マップとして記憶するものである。
 音速記憶部54は、画質判定部60または音速算出部62から音速値が供給されるたびに、対応する領域の音速値を順次、更新する構成としてもよいし、フレームごとに音速マップを生成するようにしてもよい。
 また、音速取得部58が、時間的に近傍の領域の音速値を読み出す場合には、音速記憶部54は、フレームごとに音速マップを生成すると共に、最新の音速(音速マップ)のみならず、数フレーム前までの音速マップを記憶しておく。
 音速記憶部54は、音速マップの情報を整相加算部38および音速取得部58に供給する。
 制御部30は、操作者により操作部32から入力された指令に基づいて超音波検査装置10の各部の制御を行う。
 ここで、制御部30は、操作者によって操作部32を介して種々の情報、特に、領域設定部50で領域を設定するために必要な情報、および、音速決定部52で音速を決定するために必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、画像生成部24、表示制御部26、領域設定部50および音速決定部52等の各部に供給する。
 操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
 また、操作部32は、操作者が必要に応じて各種の情報、特に上述の領域の設定に用いられる情報、ならびに、音速決定に用いられる情報等を入力操作するための入力装置を備えている。
 格納部34は、操作部32から入力された各種の情報等や、送信部14、受信部16、素子データ記憶部20、画像生成部24、表示制御部26、領域設定部50および音速決定部52等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD-ROM、DVD-ROM等の記録媒体を用いることができる。
 なお、整相加算部38、検波処理部40、DSC42、画像作成部44、音速取得部58、画質判定部60、音速算出部62及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。
 図1に示す超音波検査装置の動作、作用について説明する。
 まず、超音波画像を生成する際の超音波検査装置10の動作について説明する。
 操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。
 受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
 画像生成部24の整相加算部38は、素子データ記憶部20から素子データを読み出して、素子データに受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。この際、整相加算部38は、音速記憶部54に記憶されている音速マップに基づいて受信フォーカス処理を施す。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。
 次に、音速マップを求める際の超音波検査装置10の動作を説明する。
 図6は、図1に示す超音波検査装置10の動作を説明するためのフローチャートである。
 操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。
 受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
 一方、領域設定部50は、操作部32からの入力、あるいは、制御部30からの指示に応じて、超音波による走査を行う撮像領域に、複数の領域を設定する。
 音速決定部52は、領域設定部50で設定された各領域について、順次(E11からEendまで)、注目する領域を変更して、各領域の音速を決定する。
 音速決定部52の素子データ取得部56は、素子データ記憶部20から、注目領域に対応する素子データを読み出し、画質判定部60に供給する。また、音速取得部58は、注目領域の近傍の領域の、すでに決定済みの音速を音速記憶部54から読み出して、予備音速として取得し、画質判定部60に供給する。
 画質判定部60は、まず、音速取得部58が取得した予備音速に基づく受信遅延パターンに従って、素子データ取得部56が取得した注目領域の素子データの受信フォーカス処理を行い、受信データを生成し、深度に応じた減衰の補正を施して、包絡線検波処理を施すことにより、Bモード画像データを生成する。次に、生成した注目領域のBモード画像データのシャープネス値を評価して画質を判定し、画質が良と判定された場合には、画質判定に利用した予備音速を注目領域の音速として採用し、音速記憶部54に供給する。また、画質判定の結果が否の場合には、判定結果を音速算出部62に供給する。
 音速算出部62は、画質判定の結果が否の場合に、設定音速を網羅的に変更して、最も画質が良くなる音速を、注目領域の音速として算出し、音速記憶部54に供給する。
 音速記憶部54は、画質判定部60および音速算出部62から供給される音速値を、領域の位置情報と関連付けて、音速マップとして記憶する。
 このように本発明の第1態様の超音波検査装置は、注目領域から所定の範囲内にある領域の音速値に基づいて予備音速を取得し、予備音速に基づいて注目領域の画像を生成した場合の画質を判定し、画質判定の結果が良であれば、この予備音速を注目領域の音速として採用するので、複数の設定音速で、網羅的に画質判定のための指標を求めて、判定結果が最も良くなる設定音速を求める必要がないため、短時間で、領域ごとの適切な音速値を求めることができる。
 また、最適な音速値は、超音波プローブからの距離(深さ)や超音波が通過する組織の性状によるので、互いに近傍の領域では、最適な音速値も近い値となる可能性が高い。従って、空間的に近傍の領域の音速値を注目領域の音速として採用したとしても、高画質な画像を得ることができる。
 また、操作者が超音波画像を取得したい場合には、操作者は超音波プローブを静止させて超音波画像を取得する。このような場合、フレーム間で同じ領域には同じ組織が検出されているので、最適な音速値も同じ値となる。従って、時間的に近傍の領域の音速値を注目領域の音速値として採用した場合にも、高画質な画像を得ることができる。
 また、組織の境界の位置や、操作者が超音波プローブを移動させた場合には、予備音速に基づく画質判定の結果が否となり、近傍の領域から取得した予備音速に基づく画質判定の結果が否の場合には、最適な音速を求めるので、やはり、高画質な画像を得ることができる。
 以上から、本発明の超音波検査装置は、領域ごとの適切な音速値を短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる。
 なお、上記実施例においては、画質判定部60は、注目領域の画像を生成して、画像に基づく評価指標(シャープネス値等)を求めて画質を評価する構成としたが、本発明はこれに限定はされず、注目領域の画像を生成せずに、注目領域の素子データから画質の判定を行ってもよい。すなわち、複数の設定音速毎に、素子データに受信フォーカス処理を施して、フォーカス指標を求めて、フォーカス指標に基づいて最適な音速を決定する構成としてもよい。
 フォーカス指標の算出方法および判定方法としては、例えば、特開2011-92686号公報に記載の方法を利用することができる。
 また、上記実施例においては、画質判定部60は、画質の判定を行うための画像を生成する機能を有する構成としたが、本発明はこれに限定はされず、画像生成部24において、画質判定用の画像を生成して、画質判定部60において判定する構成としてもよい。
 また、一フレーム内で、全ての領域で予備音速を取得して画質判定を行う構成に限定はされず、一フレーム内で、最初に音速を決定する領域については、予め設定されている初期値を予備音速として用いても良いし、あるいは、予備音速を取得せず(画質判定を行わず)、音速算出部62によって、最適な音速を算出するようにしても良い。また、一部の所定の領域では、予備音速の取得および画質判定は行わず、音速算出部62によって最適な音速を算出するようにしてもよい。例えば、超音波ビームの焦点を含む領域では、最適な音速を算出するようにすることにより、最適な音速をより正確に求めることができると共に、算出した音速を予備音速として利用することにより、この領域の周辺の領域の画質を向上することができる。
 また、超音波画像の生成と音速の決定は、同時に行ってもよいし、別々に行ってもよい。すなわち、1フレーム分の1組の超音波の送受信により得られる素子データから、音速の決定を行うと共に、超音波画像の生成を行ってもよいし、別々の送受信により得られる素子データから、超音波画像の生成と音速の決定とをそれぞれ行ってもよい。音速の決定に利用した素子データから超音波画像を生成する構成とする場合には、画質判定部による判定結果が良の領域では、画質の判定に利用した画像を、超音波画像に利用してもよい。
 また、音速の決定は毎フレーム行ってもよいし、数フレームに一回行うようにしてもよい。
 また、上記実施例においては、素子データに対して受信フォーカス処理を行う際に、音速記憶部54に記憶された音速マップに基づく受信フォーカス処理を行う構成としたが、これに限定はされず、送信部14により、超音波ビームの送信を行う際にも、音速記憶部54に記憶された音速マップに基づいて、駆動信号の遅延量を調整するようにしてもよい。
 また、上記実施例においては、予備音速を取得して画質判定を行い、判定結果が否の場合には、音速算出部62により、注目領域の最適な音速を算出する構成としたが、これに限定はされず、判定結果が否の場合には、判定結果を表示部28に表示して、操作者に警告を行う構成としてもよい。この場合は、音速の算出を行わせるか否かは、操作者が決定すればよい。
 前述のとおり、音速取得部58が、予備音速を取得する対象となる領域は、注目領域に対して、時間的あるいは空間的に近傍の領域であればよいが、どの領域の音速値を取得するかは、予め決定されていてもよいし、自動的に決定されるようにしてもよい。例えば、超音波プローブ12の動きを、加速度センサや前フレームの画像との差分で感知し、停止している場合には、時間的に近傍の領域の音速値を取得するのが好ましい。また、フレーム間で画像の特徴量が動いている場合には、空間的に近傍の領域の音速値を取得するのが好ましく、動きの方向に応じて、注目領域の左右の領域と、上下の領域どちらの音速を取得するかを自動的に決定すればよい。
 また、撮像領域を画像特徴量などに応じて、複数の部分画像に分割しておき、同じ部分画像内の領域の音速値を予備音速として取得するようにしてもよい。
 次に、本発明の超音波検査装置の第2態様について説明する。
 図7は、本発明の超音波検査装置第2態様の構成の一実施例を概念的に示すブロック図である。
 なお、図7に示す超音波検査装置100は、音速決定部52に代えて音速決定部52aを有し、音速記憶部54を有さず、初期音速記憶部64を有する以外は、図1に示す超音波診断装置10と同じ構成を有するので、同一の構成要素には、同一の参照符号を付し、その詳細な説明は省略する。
 図7に示すように、超音波検査装置100は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34と、領域設定部50と、音速決定部52aと、初期音速記憶部64とを有する。
 初期音速記憶部64は、音速決定部52で各領域の音速を決定するために使用する、予め設定された所定の音速値である初期音速を記憶する部位である。
 初期音速記憶部64が記憶する初期音速は、生体内の音速値に近い値であることが好ましく、1400~1700m/sの範囲、特に、1450~1550m/sの範囲であることが好ましい。
 なお、初期音速記憶部64は、少なくとも1つの初期音速値を記憶すればよいが、診断部位(臓器の種類)ごとに適切な初期音速値をそれぞれ記憶しておいてもよい。
 初期音速記憶部64は、初期音速の情報を音速決定部52aの音速取得部58aに供給する。
 図8に示すように、音速決定部52aは、素子データ取得部56と、音速取得部58aと、画質判定部60aと、音速算出部62とを有する。
 音速取得部58aは、初期音速記憶部64が記憶している初期音速値を予備音速として読み出す部位である。
 初期音速記憶部64が、1つの初期音速値を記憶している場合には、この初期音速を予備音速として取得すればよい。また、初期音速記憶部64が、複数の初期音速値を記憶している場合には、操作部32から入力された、あるいは、予め設定されている診断部位の情報等に応じて、適切な初期音速値を選択して取得すればよい。
 音速取得部58は、取得した初期音速値を画質判定部60aに供給する。
 画質判定部60aは、画質判定部60と同様に、音速取得部58aが取得した予備音速に基づいて、素子データ取得部56が取得した注目領域の素子データから注目領域の画像(注目画像)を生成する。
 次に、画質判定部60aは、画質判定部60と同様に、生成した注目領域のBモード画像データのシャープネス値を評価して画質を判定する。シャープネス値が所定の閾値以上であれば、画質は良いと判定し、閾値より小さければ画質は低いと判定する。
 図9を用いて、画質判定部60aが行う画質判定の一例を説明する。
 図9においては、一例として、撮像領域に5×5の領域が設定されている。画質判定部60aは、領域ごとに画質判定を行い、それぞれの領域で判定結果が良(OK)か否(NG)かが判断される。図示例のように、画質判定の結果、NGと判定された領域((2、3)~(2、5)、(3、3)~(3、5))については、音速算出部62による詳細な音速の算出が行われる。
 音速算出部62は、画質判定部60aの画質判定の結果、画質が悪いと判定された注目領域について、詳細に音速を算出し、算出した音速値を注目領域の音速値として、画像生成部24の整相加算部38に供給する。
 このように、本発明の第2態様は、設定された複数の領域ごとに、予め設定されている初期音速値に基づいて画像を生成した場合の画質を判定して、画質判定の結果が良であれば、初期音速値を該当する領域の音速として採用するので、複数の設定音速で、網羅的に画質判定のための指標を求めて、判定結果が最も良くなる設定音速を求める必要がないため、短時間で、領域ごとの適切な音速値を求めることができる。
 また、初期音速に基づく画質判定の結果が否となった場合には、該当する領域の最適な音速を求めるので、高画質な画像を得ることができる。
 以上から、本発明の超音波検査装置は、領域ごとの適切な音速値を短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる。
 次に、図10に示す超音波検査装置100の動作、作用について説明する。
 まず、領域設定部50は、操作部32からの入力、あるいは、制御部30からの指示に応じて、超音波による走査を行う撮像領域に、複数の領域を設定する。また、初期音速記憶部64には、予め設定された初期音速が記憶されている。
 操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って振動子アレイ36から超音波ビームが送信され、被検体からの超音波エコーを、振動子アレイ36が受信し、受信信号としてアナログ素子信号を出力する。
 受信部16は、各素子が出力するアナログ素子信号を1つのアナログの素子データとして出力し、A/D変換部18に供給する。A/D変換部18は、アナログの素子データをデジタルの素子データに変換して素子データ記憶部20に供給して、記憶保持させる。
 素子データが記憶されると、音速決定部52aにより、領域ごとの音速が決定される。
 音速決定部52の動作を、図10のフローチャートを用いて説明する。
 音速決定部52の音速取得部58aは、初期音速記憶部64に記憶されている初期音速を読み出して、画質判定部60aに供給する。また、素子データ取得部56は、画質を判断する領域(注目領域)に対応する素子データを読み出し、画質判定部60aに供給する。
 画質判定部60aは、まず、音速取得部58aが取得した初期音速に基づく受信遅延パターンに従って、素子データ取得部56が取得した注目領域の素子データの受信フォーカス処理を行い、受信データを生成し、深度に応じた減衰の補正を施して、包絡線検波処理を施すことにより、Bモード画像データを生成する。次に、生成した注目領域のBモード画像データのシャープネス値を評価して画質を判定し、画質が良と判定された場合には、画質判定に利用した初期音速を注目領域の音速として採用し、画像生成部24の整相加算部38に供給する。また、画質判定の結果が否の場合には、判定結果を音速算出部62に供給する。
 音速算出部62は、画質判定の結果が否の場合に、設定音速を網羅的に変更して、最も画質が良くなる音速を、注目領域の音速として算出し、整相加算部38に供給する。
 画像生成部24の整相加算部38は、素子データ記憶部20から素子データを読み出して、素子データ対して、画質判定部60aおよび音速算出部62から供給された領域ごとの音速に基づいて、受信遅延パターンを選択して、受信フォーカス処理を施して受信データ(音線信号)を生成し、検波処理部40に供給する。検波処理部40は、音線信号を処理してBモード画像信号を生成する。Bモード画像信号を、DSC42がラスター変換し、画像作成部44が画像処理を施し、超音波画像が生成される。生成された超音波画像は、画像メモリ46に格納されると共に、表示制御部26により超音波画像が表示部28に表示される。
 このように本発明の第2態様の超音波検査装置は、設定された複数の領域ごとに、予め設定されている初期音速値に基づいて画像を生成した場合の画質を判定して、画質判定の結果が良であれば、初期音速値を該当する領域の音速として採用するので、複数の設定音速で、網羅的に画質判定のための指標を求めて、判定結果が最も良くなる設定音速を求める必要がないため、短時間で、領域ごとの適切な音速値を求めることができる。
 また、初期音速に基づく画質判定の結果が否となった場合には、該当する領域の最適な音速を求めるので、高画質な画像を得ることができる。
 以上から、本発明の超音波検査装置は、領域ごとの適切な音速値を短時間で求めることができ、フレームレートを低下させることなく、高精度な超音波画像を構築することができる。
 なお、上記実施形態においては、初期音速記憶部64が記憶する初期音速は、予め設定されているものとしたが、本発明はこれに限定はされず、初期音速記憶部64が記憶されている初期音速を、適宜、更新するようにしてもよい。例えば、音速決定部52aが決定した各領域の音速の平均値等を、次フレームでの初期音速に設定してもよい。
 また、記憶される初期音速を更新するタイミングにも、特に限定はなく、毎フレームごとや所定のフレーム間隔で、初期音速の更新を行ってもよいし、画質判定部60による画質判定の結果NGとなった領域の数が所定数を超えた場合に、初期音速を更新するようにしてもよい。
 また、上記実施形態においては、画質判定部60aは、画質の判定を行うための画像を生成する機能を有する構成としたが、本発明はこれに限定はされず、画像生成部24において、画質判定用の画像を生成して、画質判定部60aにおいて判定する構成としてもよい。この場合は、画質判定の結果NGとされた領域については、音速算出部62が算出した音速に基づいて、再度、画像生成部24が画像を生成し、全体の超音波画像を生成すればよい。
 また、上記の各実施形態の超音波検査装置は、図示を省略した制御部に付属したメモリに格納された信号処理プログラムによって制御される。すなわち、制御部によってメモリから信号処理プログラムが読み出され、該信号処理プログラムに従って、領域が設定され、設定された領域に対して順次、画質判定を行って音速を決定する機能が実行される。
 なお、超音波検査装置の信号処理プログラムは、このように制御部に付属のメモリに格納されるものに限定されず、該信号処理プログラムを、例えば、CD-ROMなど、本超音波検査装置に着脱可能に構成されるメモリ媒体(リムーバブル媒体)に記録しておき、リムーバブル媒体に対応するインターフェイスを介して本装置に読み込むように構成してもよい。
 以上、本発明の超音波検査装置、超音波検査装置の信号処理方法およびプログラムについて詳細に説明したが、本発明は、以上の例には限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはもちろんである。
  10、100 超音波検査装置
  12  超音波プローブ
  14  送信部
  16  受信部
  18  A/D変換部
  20  素子データ記憶部
  24  画像生成部
  26  表示制御部
  28  表示部
  30  制御部
  32  操作部
  34  格納部
  36  振動子アレイ
  38  整相加算部
  40  検波処理部
  42  DSC
  44  画像作成部
  46  画像メモリ
  50  領域設定部
  52、52a 音速決定部
  54  音速記憶部
  56  素子データ取得部
  58、58a 音速取得部
  60、60a 画質判定部
  62  音速算出部
  64  初期音速記憶部

Claims (21)

  1.  超音波ビームを用いて検査対象物を検査する超音波検査装置であって、
     前記検査対象物内に複数の領域を設定する領域設定部と、
     前記領域の音速を算出する音速算出部と、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得部と、
     前記音速取得部が取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定部と、を備え、
     前記音速取得部が、前記注目領域から所定の範囲内にある少なくとも1つの前記領域における音速に基づいて予備音速を取得するものであり、
     前記画質判定部の判定結果が良の場合には、前記音速取得部が取得した予備音速を前記注目領域の音速として採用し、判定結果が否の場合には、前記音速算出部によって前記注目領域の音速を算出することを特徴とする超音波検査装置。
  2.  前記音速取得部は、前記注目領域から時間的および/または空間的に所定の範囲内にある少なくとも1つの前記領域における音速に基づいて予備音速を取得する請求項1に記載の超音波検査装置。
  3.  前記空間的に所定の範囲内の領域とは、同一画像上で前記注目領域に近接する領域である請求項2に記載の超音波検査装置。
  4.  前記空間的に所定の範囲内の領域とは、画像を複数の部分画像に領域分割したときの同一部分画像内の領域である請求項2または3に記載の超音波検査装置。
  5.  前記時間的に所定の範囲内の領域とは、所定フレーム前の画像における前記注目領域に対応する領域である請求項2~4のいずれか1項に記載の超音波検査装置。
  6.  前記時間的に所定の範囲内の領域とは、複数の所定フレーム前の画像に所定の処理を行って得られた少なくとも1つの画像における前記注目領域に対応する領域か、あるいは、前記複数の所定フレーム前の画像のうち少なくとも1つの画像における前記注目領域に対応する領域であり、前記領域における音速とは、前記複数の所定フレーム前の音速に所定の処理を行って得られた音速である請求項2~5のいずれか1項に記載の超音波検査装置。
  7.  前記所定の処理とは、前記複数の所定フレーム前の音速の平均値あるいは中央値のいずれかを求める処理である、請求項6に記載の超音波検査装置。
  8.  超音波ビームを用いて検査対象物を検査する超音波検査装置であって、
     前記検査対象物内に複数の領域を設定する領域設定部と、
     前記領域の音速を算出する音速算出部と、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得部と、
     予め設定された初期音速を記憶する初期音速記憶部と、
     前記音速取得部が取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定部と、を備え、
     前記音速取得部が、前記初期音速記憶部に記憶されている前記初期音速を予備音速として取得するものであり、
     各前記領域において、前記画質判定部の判定結果が良の場合には、前記音速取得部が取得した予備音速を該領域の音速として採用し、判定結果が否の場合には、前記音速算出部によって該領域の音速を算出することを特徴とする超音波検査装置。
  9.  前記初期音速記憶部は、複数の前記初期音速を記憶しておき、操作部からの入力に基づいて、前記画質判定部による画質判定に使用する前記初期音速を選択する請求項8に記載の超音波検査装置。
  10.  前記初期音速記憶部に記憶される前記初期音速は、生体内の音速に近い値である請求項8または9に記載の超音波検査装置
  11.  前記生体内の音速に近い値は、1400~1700m/sの間の値である請求項10に記載の超音波検査装置。
  12.  前記生体内の音速に近い値は、1450~1550m/sの間の値である請求項11に記載の超音波検査装置。
  13.  前記画質判定部の判定結果に基づいて、前記初期音速記憶部に記憶される前記初期音速を再設定する請求項8~12のいずれか1項に記載の超音波検査装置。
  14.  前記画質判定部は、予備音速に基づいて生成した前記注目領域の画像のシャープネス、輝度、コントラスト、周波数のいずれかに基づいて画質判定を行う請求項1~13のいずれか1項に記載の超音波検査装置。
  15.  前記画質判定部は、予備音速に基づいて生成した前記注目領域の画像と、前回画像の同一領域の画像とを比較して画質判定を行う請求項1~14のいずれか1項に記載の超音波検査装置。
  16.  前記画質判定部は、予備音速に基づいて生成した前記注目領域の整相加算後の受信データに基づいて生成した基準データと、整相加算前の受信データとの類似性を評価して画質判定を行う請求項1~15のいずれか1項に記載の超音波検査装置。
  17.  振動子アレイの各素子が超音波エコーを受信して出力する素子データを記憶する素子データ記憶部を有する請求項1~16のいずれか1項に記載の超音波検査装置。
  18.  超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理方法であって、
     前記検査対象物内に複数の領域を設定する領域設定ステップと、
     前記領域の音速を算出する音速算出ステップと、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、
     前記音速取得ステップが取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定ステップと、を備え、
     前記音速取得ステップが、前記注目領域から所定の範囲内にある少なくとも1つの前記領域における音速に基づいて予備音速を取得するものであり、
     前記画質判定ステップの判定結果が良の場合には、前記音速取得ステップが取得した予備音速を前記注目領域の音速として採用し、判定結果が否の場合には、前記音速算出ステップによって前記注目領域の音速を算出することを特徴とする超音波検査装置の信号処理方法。
  19.  超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理をコンピュータに実行させるプログラムであって、
     前記検査対象物内に複数の領域を設定する領域設定ステップと、
     前記領域の音速を算出する音速算出ステップと、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、
     前記音速取得ステップが取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定ステップと、を備え、
     前記音速取得ステップが、前記注目領域から所定の範囲内にある少なくとも1つの前記領域における音速に基づいて予備音速を取得するものであり、
     前記画質判定ステップの判定結果が良の場合には、前記音速取得ステップが取得した予備音速を前記注目領域の音速として採用し、判定結果が否の場合には、前記音速算出ステップによって前記注目領域の音速を算出することを特徴とする超音波検査装置の信号処理プログラム。
  20.  超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理方法であって、
     前記検査対象物内に複数の領域を設定する領域設定ステップと、
     前記領域の音速を算出する音速算出ステップと、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、
     前記音速取得ステップが取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定ステップと、を備え、
     前記音速取得ステップが、予め設定された初期音速を予備音速として取得するものであり、
     各前記領域において、前記画質判定ステップの判定結果が良の場合には、前記音速取得ステップが取得した予備音速を該領域の音速として採用し、判定結果が否の場合には、前記音速算出ステップによって該領域の音速を算出することを特徴とする超音波検査装置の信号処理方法。
  21.  超音波ビームを用いて検査対象物を検査する超音波検査装置の信号処理をコンピュータに実行させるプログラムであって、
     前記検査対象物内に複数の領域を設定する領域設定ステップと、
     前記領域の音速を算出する音速算出ステップと、
     複数の前記領域の1つを注目領域とし、前記注目領域の予備音速を取得する音速取得ステップと、
     前記音速取得ステップが取得した予備音速に基づいた場合の前記注目領域の画質を判定する画質判定ステップと、を備え、
     前記音速取得ステップが、予め設定された初期音速を予備音速として取得するものであり、
     各前記領域において、前記画質判定ステップの判定結果が良の場合には、前記音速取得ステップが取得した予備音速を該領域の音速として採用し、判定結果が否の場合には、前記音速算出ステップによって該領域の音速を算出することを特徴とする超音波検査装置の信号処理プログラム。
PCT/JP2013/075913 2012-09-27 2013-09-25 超音波検査装置、超音波検査装置の信号処理方法およびプログラム WO2014050889A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380050328.8A CN104661598A (zh) 2012-09-27 2013-09-25 超声波检查装置、超声波检查装置的信号处理方法及程序
US14/670,108 US10792014B2 (en) 2012-09-27 2015-03-26 Ultrasound inspection apparatus, signal processing method for ultrasound inspection apparatus, and recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-214132 2012-09-27
JP2012214132A JP5829198B2 (ja) 2012-09-27 2012-09-27 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2012216181A JP5836241B2 (ja) 2012-09-28 2012-09-28 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2012-216181 2012-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/670,108 Continuation US10792014B2 (en) 2012-09-27 2015-03-26 Ultrasound inspection apparatus, signal processing method for ultrasound inspection apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2014050889A1 true WO2014050889A1 (ja) 2014-04-03

Family

ID=50388284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075913 WO2014050889A1 (ja) 2012-09-27 2013-09-25 超音波検査装置、超音波検査装置の信号処理方法およびプログラム

Country Status (3)

Country Link
US (1) US10792014B2 (ja)
CN (1) CN104661598A (ja)
WO (1) WO2014050889A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118732A (ko) * 2014-04-15 2015-10-23 삼성전자주식회사 초음파 장치 및 그 제어 방법
US10905402B2 (en) * 2016-07-27 2021-02-02 Canon Medical Systems Corporation Diagnostic guidance systems and methods
KR20210107096A (ko) * 2018-12-27 2021-08-31 엑소 이미징, 인크. 초음파 이미징에 있어서 감소된 비용, 사이즈, 및 전력으로 이미지 품질을 유지하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119481A (ja) * 2008-11-18 2010-06-03 Aloka Co Ltd 超音波診断装置
JP2011072566A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 超音波診断装置及びその信号処理方法
JP2012010943A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 超音波診断装置及び超音波診断方法
JP2012157387A (ja) * 2011-01-28 2012-08-23 Toshiba Corp 超音波診断装置及び画像生成制御プログラム
JP2012161569A (ja) * 2011-02-09 2012-08-30 Fujifilm Corp 超音波診断装置および超音波画像生成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1974672B9 (en) * 2007-03-28 2014-04-16 Kabushiki Kaisha Toshiba Ultrasonic imaging apparatus and ultrasonic velocity optimization method
JP5371344B2 (ja) * 2007-09-18 2013-12-18 富士フイルム株式会社 超音波診断方法及び装置
JP2010099452A (ja) * 2008-09-25 2010-05-06 Fujifilm Corp 超音波診断装置及び超音波診断方法
JP5174604B2 (ja) * 2008-09-30 2013-04-03 富士フイルム株式会社 超音波信号処理装置及び方法
US8235900B2 (en) * 2009-03-23 2012-08-07 Imsonic Medical, Inc. Method and apparatus for an automatic ultrasound imaging system
KR101121289B1 (ko) * 2009-08-25 2012-03-23 삼성메디슨 주식회사 영상 파라미터를 설정하는 초음파 시스템 및 방법
US8647276B2 (en) * 2009-09-04 2014-02-11 Hitachi Medical Corporation Ultrasonic diagnostic device
JP5389722B2 (ja) 2009-09-30 2014-01-15 富士フイルム株式会社 超音波診断装置及びその作動方法
KR101188593B1 (ko) * 2009-12-15 2012-10-05 삼성메디슨 주식회사 복수의 3차원 초음파 영상을 제공하는 초음파 시스템 및 방법
KR101109189B1 (ko) * 2010-01-29 2012-01-30 삼성전기주식회사 초음파 진단 장치 및 초음파 영상 처리 방법
JP5481261B2 (ja) * 2010-04-06 2014-04-23 株式会社東芝 超音波診断装置及び多重検出プログラム
KR101138571B1 (ko) * 2010-07-13 2012-05-10 삼성전기주식회사 초음파 음속 추정 장치 및 방법
US20120203109A1 (en) 2011-02-09 2012-08-09 Fujifilm Corporation Ultrasound diagnostic apparatus and ultrasound image producing method
JP5281107B2 (ja) * 2011-03-25 2013-09-04 富士フイルム株式会社 超音波診断装置および超音波画像生成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119481A (ja) * 2008-11-18 2010-06-03 Aloka Co Ltd 超音波診断装置
JP2011072566A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 超音波診断装置及びその信号処理方法
JP2012010943A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 超音波診断装置及び超音波診断方法
JP2012157387A (ja) * 2011-01-28 2012-08-23 Toshiba Corp 超音波診断装置及び画像生成制御プログラム
JP2012161569A (ja) * 2011-02-09 2012-08-30 Fujifilm Corp 超音波診断装置および超音波画像生成方法

Also Published As

Publication number Publication date
US10792014B2 (en) 2020-10-06
US20150201909A1 (en) 2015-07-23
CN104661598A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5404141B2 (ja) 超音波装置及びその制御方法
US11439368B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
JP5719098B2 (ja) 超音波診断装置
JP5946427B2 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
US10231711B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
US20160007971A1 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP2009061086A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP5663552B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2012010943A (ja) 超音波診断装置及び超音波診断方法
JP5829198B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
WO2014050889A1 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP5836241B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
US10788459B2 (en) Ultrasound diagnostic apparatus, ultrasound image generation method, and recording medium
WO2013176112A1 (ja) 超音波画像生成方法および超音波画像診断装置
US10912538B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
US11051789B2 (en) Ultrasound image diagnostic apparatus
JP5851345B2 (ja) 超音波診断装置およびデータ処理方法
JP5346987B2 (ja) 超音波診断装置
JP5917388B2 (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム
JP2012192075A (ja) 超音波診断装置および超音波画像生成方法
JP2014124231A (ja) 超音波検査装置、超音波検査装置の信号処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842403

Country of ref document: EP

Kind code of ref document: A1