WO2013175586A1 - 車両用動力伝達装置 - Google Patents

車両用動力伝達装置 Download PDF

Info

Publication number
WO2013175586A1
WO2013175586A1 PCT/JP2012/063178 JP2012063178W WO2013175586A1 WO 2013175586 A1 WO2013175586 A1 WO 2013175586A1 JP 2012063178 W JP2012063178 W JP 2012063178W WO 2013175586 A1 WO2013175586 A1 WO 2013175586A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
torque
shaft
clutch mechanism
output
Prior art date
Application number
PCT/JP2012/063178
Other languages
English (en)
French (fr)
Inventor
博文 中田
羽渕 良司
倫生 吉田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014516566A priority Critical patent/JP5835476B2/ja
Priority to PCT/JP2012/063178 priority patent/WO2013175586A1/ja
Publication of WO2013175586A1 publication Critical patent/WO2013175586A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H37/022Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing the toothed gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/026CVT layouts with particular features of reversing gear, e.g. to achieve compact arrangement

Definitions

  • the present invention relates to a device for transmitting power output from a driving force source of a vehicle, and in particular, includes a transmission path including a continuously variable transmission and another transmission path provided in parallel to the transmission path.
  • the present invention relates to a power transmission device provided.
  • An internal combustion engine generally used as a driving force source of a vehicle has a characteristic that an output torque increases with an increase in the rotational speed.
  • the driving force required for a vehicle is generally large at a low vehicle speed and relatively small at a high vehicle speed. That is, in the vehicle, a torque opposite to the torque based on the output characteristics of the internal combustion engine is required.
  • the efficient operating points of the internal combustion engine are limited. Therefore, a vehicle that uses an internal combustion engine as a driving force source is equipped with a transmission that can change the gear ratio as appropriate. Then, by appropriately setting the gear ratio based on the vehicle running state such as the vehicle speed and the accelerator opening with the transmission, the required driving force is obtained and the internal combustion engine is operated at an efficient operating point. Yes.
  • the internal combustion engine is always operated at an efficient operating point.
  • the rotational speed of the internal combustion engine at an efficient operating point is a rotational speed that can be set by the gear ratio between the two shift speeds, the period from when one shift speed is switched to the other shift speed. In the operating state, the efficiency is lowered. Therefore, recently, a continuously variable transmission capable of continuously changing a gear ratio has been used instead of a stepped transmission.
  • the former belt-type continuously variable transmission has a power transmission belt and a pair of pulleys whose belt winding radius changes in size as the width of a groove around which the belt is wound is changed. Yes.
  • the gear ratio set between the pair of pulleys is changed steplessly by changing the groove width of each pulley to change the winding radius of the belt.
  • the power roller is sandwiched between a pair of disks arranged opposite to each other, and the line connecting the contact points of the power roller with each disk is the axis of rotation center of the disk. Is different from each other in the number of rotations. Then, the larger the tilt angle (tilt angle) of the power roller, the greater the difference in rotational speed between the disks, that is, the gear ratio becomes farther away from “1”.
  • the torque is transmitted using the frictional force between the pulley and the belt or the frictional force between the disk and the power roller. . Since the frictional force is the product of the friction coefficient at the contact point of the two members and the vertical load (or load in the normal direction), the vertical load is increased according to the torque to be transmitted.
  • the vertical load is a load with which the pulley pinches the belt. The load is generated by, for example, a hydraulic actuator integrally formed on the pulley and supplied to the hydraulic actuator.
  • a vehicle requires a large driving force when starting.
  • the driving force required at the time of a steady driving state, that is, cruising is smaller than that at the time of starting. Therefore, it is necessary to increase the vertical load for generating the frictional force when starting. That is, in the belt type continuously variable transmission, the hydraulic pressure for generating the clamping pressure is increased at the time of start. If a hydraulic device that generates a large hydraulic pressure is provided in preparation for a start in a relatively short period of time as a driving state of the vehicle, the drive device and the hydraulic device for the same increase in size and generate a high hydraulic pressure. There is a possibility that fuel consumption will deteriorate.
  • Apparatuses aimed at solving such problems are described in Japanese Patent Application Laid-Open Nos. 2005-308041, 2004-077686, and 2000-130548.
  • the device described in Japanese Patent Application Laid-Open No. 2005-308041 transmits the power output from the engine to the sun gear of the single pinion type planetary gear mechanism constituting the forward / reverse switching mechanism, and the sun gear is converted into a belt type.
  • a clutch connected to an input shaft integrated with a primary pulley of the continuously variable transmission is provided.
  • An input gear is fitted on the outer peripheral side of the input shaft via a one-way clutch, and this input gear is connected to a ring gear in the forward / reverse switching mechanism.
  • the one-way clutch is configured to be engaged when the input shaft rotates at a higher speed than the input gear on the outer peripheral side in the forward rotation direction.
  • An output gear is fitted on the outer peripheral side of the output shaft integral with the secondary pulley via another one-way clutch.
  • An idle gear is disposed between the input gear and the output gear, and the input gear and the output gear mesh with the idle gear. That is, both the input gear and the output gear are configured to rotate in the same direction.
  • the gear ratio (transmission ratio) between these input gears and output gears is slightly smaller than the largest transmission ratio that can be set by a continuously variable transmission comprising the above pulleys and the belt wound around them. Is set.
  • the other one-way clutch is configured to be engaged when the output shaft rotates at a higher speed than the output gear in the forward rotation direction.
  • a friction clutch is provided in parallel with the other one-way clutch.
  • a brake for fixing the carrier in the forward / reverse switching mechanism is provided to set the reverse state.
  • the sun gear and the input shaft are connected by the clutch, and the main transmission path mainly composed of a continuously variable transmission Torque is transmitted through the input shaft, and torque is transmitted when the one-way clutch is engaged with the sub-transmission path mainly composed of the gears.
  • the gear ratio by the gear train is somewhat smaller than the maximum gear ratio of the continuously variable transmission, the output gear rotates at a higher speed than the output shaft.
  • the one-way clutch on the output shaft side is released, and torque is transmitted to the drive wheels through the gear train. That is, the continuously variable transmission is not subjected to a large torque at the start.
  • the device described in Japanese Patent Application Laid-Open No. 2004-077686 includes a single pinion type planetary gear mechanism between an input shaft for transmitting power output from an engine and a primary pulley in a belt type continuously variable transmission.
  • a forward / reverse switching mechanism is provided.
  • the ring gear and the primary pulley in the forward / reverse switching mechanism are connected to rotate integrally, and the input shaft is connected to the sun gear. Accordingly, the sun gear and the ring gear are connected by the clutch to move forward, and the carrier is fixed by the brake to move backward.
  • a gear train having a gear ratio larger than the maximum gear ratio of the continuously variable transmission is provided between the input shaft and the output shaft integrated with the secondary pulley.
  • An input gear constituting the gear train is integrated with the input shaft, and an output gear connected to the input shaft via an idle gear is rotatably fitted to the output shaft.
  • a one-way clutch and a friction clutch are arranged in series between the output gear and the output shaft.
  • the clutch for connecting the input shaft to the primary pulley is released, and the clutch on the output shaft side is engaged, so that the gear train and the one-way clutch from the input shaft and Torque is transmitted to the output shaft through a clutch arranged in series with this.
  • the maximum transmission ratio of the continuously variable transmission is somewhat smaller than the transmission ratio by the gear train, so the secondary pulley and the output shaft integrated with it are larger than before.
  • the one-way clutch is disengaged at a higher rotational speed, more specifically, higher than the output gear. That is, torque is transmitted to the output shaft through the continuously variable transmission.
  • the gear train transmits torque at the time of starting, a large torque at the time of starting is not applied to the continuously variable transmission.
  • Japanese Patent Laid-Open No. 2000-130548 describes a transmission having the same configuration as the device described in Japanese Patent Laid-Open No. 2004-077686. That is, even in the transmission described in Japanese Patent Laid-Open No. 2000-130548, a one-way operation is performed between the output-side gear in the gear train that transmits torque when starting and the output shaft integrated with the secondary pulley. A clutch and a friction clutch are arranged in parallel.
  • a gear train is provided in parallel with the belt-type continuously variable transmission, and is configured to transmit torque for starting mainly through the gear train when starting. Yes.
  • the torque transmission path is switched in order to transmit the torque via the continuously variable transmission, and the switching is performed using a one-way clutch.
  • the torque transmission direction is limited to one direction, whereas when the vehicle actually travels, it is necessary to transmit the torque in either the forward or reverse direction.
  • both the device described in Japanese Patent Application Laid-Open No. 2005-308041 and the device described in Japanese Patent Application Laid-Open No. 2004-077686 include a forward / reverse switching mechanism including a planetary gear mechanism.
  • a forward / reverse switching mechanism including a planetary gear mechanism.
  • the present invention has been made paying attention to the above technical problem, and is a vehicle power transmission device equipped with a continuously variable transmission, and has a maximum gear ratio or a minimum gear ratio that can be set by the continuously variable transmission. It is an object of the present invention to provide a vehicular power transmission device that can set a transmission ratio exceeding that, is easy to downsize, and has excellent durability.
  • the present invention provides a continuously variable transmission that continuously changes a gear ratio between an input shaft to which torque output from a driving force source is input and an output shaft that outputs torque. And a gear train having an intermediate shaft arranged at a position different from the input shaft and the output shaft and setting at least one transmission ratio that cannot be set by the continuously variable transmission, respectively,
  • a vehicle power transmission device provided to transmit torque to and from an output shaft
  • the input element and the output element are rotated in opposite directions by stopping the input element, the output element, and the rotation.
  • a forward / reverse switching mechanism that performs differential action by three rotating elements of the reaction force element is disposed on the same axis as the intermediate shaft, and connects at least any two rotating elements of the three rotating elements.
  • a clutch mechanism and a brake mechanism for stopping the rotation of the reaction force element are provided, the input shaft and the output shaft are connected via the continuously variable transmission, and the continuously variable transmission from the input shaft.
  • a second clutch mechanism for transmitting and interrupting torque is provided in a first torque transmission path that reaches the output shaft via the input shaft, and the input shaft and the output shaft are connected to the gear train and the forward / reverse switching mechanism.
  • a third clutch that transmits and shuts off torque on a second torque transmission path from the input shaft to the input element or a third torque transmission path from the output element to the output shaft.
  • the gear train according to the present invention is configured to set a speed ratio larger than a maximum speed ratio of the continuously variable transmission or a speed ratio smaller than a minimum speed ratio of the continuously variable transmission by the plurality of gears. can do.
  • the continuously variable transmission includes a drive-side member that transmits torque from the input shaft and an output-side member that outputs torque to the output shaft.
  • the second clutch mechanism may be configured to be provided between the input shaft and the driving side member so as to selectively connect the input shaft and the driving side member.
  • the continuously variable transmission includes a drive-side member that transmits torque from the input shaft and an output-side member that outputs torque to the output shaft.
  • the second clutch mechanism may be provided between the output side member and the output shaft so as to selectively connect the output side member and the output shaft.
  • first clutch mechanism and the second clutch mechanism in the present invention can be constituted by friction clutches, respectively.
  • the third clutch mechanism in the present invention can be constituted by a meshing clutch.
  • the gear train according to the present invention is disposed on the same axis as the drive gear, the driven gear disposed on the same axis as the output shaft, and the intermediate shaft.
  • the third clutch mechanism according to the present invention can be configured to perform connection and disconnection between the input shaft and the drive gear.
  • the gear train according to the present invention is disposed on the same axis as the drive gear, the driven gear disposed on the same axis as the output shaft, and the intermediate shaft.
  • a drive-side idle gear that transmits torque between the drive gear and the input element, and a driven side that is arranged on the same axis as the intermediate shaft and transmits torque between the output element and the driven gear It can be constituted by an idle gear.
  • the third clutch mechanism according to the present invention can be configured to perform connection and disconnection between the driven gear and the output shaft.
  • the gear train according to the present invention is disposed on the same axis as the drive gear, the driven gear disposed on the same axis as the output shaft, and the intermediate shaft.
  • a drive-side idle gear that transmits torque between the drive gear and the input element, and a driven side that is arranged on the same axis as the intermediate shaft and transmits torque between the output element and the driven gear It can be constituted by an idle gear.
  • the third clutch mechanism according to the present invention can be configured to perform connection and disconnection between the drive-side idle gear and the input element.
  • the forward / reverse switching mechanism includes a sun gear that is an external gear, a ring gear that is an internal gear disposed concentrically with the sun gear, a first pinion gear that meshes with the sun gear, A double pinion type planetary gear mechanism including a first pinion gear and a second pinion gear meshing with the ring gear and a carrier holding the first pinion gear and the second pinion gear so as to rotate and revolve can be used.
  • the forward / reverse switching mechanism according to the present invention is constituted by the double pinion type planetary gear mechanism as described above, the sun gear is connected to the intermediate shaft and the driven idle gear, and the carrier is connected to the drive side.
  • the ring gear may be connected directly to the idle gear or via the third clutch mechanism, and the ring gear may be stopped from rotating by the brake mechanism.
  • the forward / reverse switching mechanism includes a sun gear that is an external gear, a ring gear that is an internal gear arranged concentrically with the sun gear, a pinion gear that meshes with the sun gear and the ring gear, It can be configured by a single pinion type planetary gear mechanism with a carrier that holds the pinion gear so that it can rotate and revolve.
  • the forward / reverse switching mechanism in the present invention in the present invention is constituted by the single pinion type planetary gear mechanism as described above, the ring gear is connected to the intermediate shaft and the driven idle gear, and the sun gear is The drive side idle gear may be connected directly or via the third clutch mechanism so that the carrier is stopped from rotating by the brake mechanism.
  • the plurality of rotating elements are indicated by straight lines parallel to each other, and the lengths from the intersections with the base lines orthogonal to the straight lines and the positions of the rotating elements at the positions with respect to the base lines It can be configured by a planetary gear mechanism that can represent the respective rotation speeds of the input element, the output element, and the reaction force element by a collinear chart showing the speed.
  • the reaction force element is an element represented by a line located in the center of the collinear diagram
  • the input element is an element represented by one of the left and right lines in the collinear diagram.
  • the output element may be an element represented by one of the left and right lines in the alignment chart.
  • the gear train can transmit power through the forward / reverse switching mechanism between the input shaft and the output shaft.
  • the gear train is connected to the output shaft via the forward / reverse switching mechanism. Connected. That is, the input shaft and the output shaft are connected via the gear train and the forward / reverse switching mechanism.
  • the gear ratio by the gear train is a gear ratio that cannot be set by the continuously variable transmission, and is a gear ratio that is larger than the maximum gear ratio in the continuously variable transmission or smaller than the minimum gear ratio. Therefore, the transmission gear ratio as a whole of the power transmission device can be made wider than the transmission gear ratio that can be set by the continuously variable transmission.
  • the reaction element of the forward / reverse switching mechanism is stopped from rotating and the output element rotates in the opposite direction with respect to the input element. That is, the vehicle can travel backward.
  • torque is transmitted from the output element to the output shaft via the third clutch mechanism, the gear train, and the forward / reverse switching mechanism. Therefore, the gear ratio set as a whole of the power transmission device in that case is a large gear ratio that cannot be set by the continuously variable transmission.
  • Torque is input from the output shaft when the vehicle is decelerating, but a second clutch mechanism is provided between the driven member of the continuously variable transmission and the output shaft to release the second clutch mechanism.
  • the torque input to the continuously variable transmission from the output shaft can be cut off to protect the continuously variable transmission.
  • the continuously variable transmission is controlled so that the gear ratio thereof is close to the gear ratio in the gear train
  • the second clutch mechanism is engaged and the first clutch mechanism is released, so that the input shaft and the output
  • the shaft is connected via a second clutch mechanism and a continuously variable transmission.
  • the gear train is cut off with respect to the input shaft. Therefore, the transmission gear ratio can be appropriately set by the continuously variable transmission.
  • the first clutch mechanism and the second clutch mechanism are constituted by a friction clutch capable of gradually changing the transmission torque capacity, the amount of torque handled by the first clutch mechanism and the second clutch mechanism is gradually changed. Thereby, the change of the torque of an output shaft can be made smooth. As a result, a sense of incongruity caused by a shift shock or a change in driving force can be prevented or suppressed.
  • the gear train and the forward / reverse switching mechanism are either the input shaft or the output shaft. Is also blocked. Therefore, when traveling with torque transmitted by a continuously variable transmission, the gear train is rotated, or torque is input not only from the input element of the forward / reverse switching mechanism but also from the output element, and the difference in rotational speed between the elements. Can be avoided. As a result, power loss can be reduced, durability can be improved, and noise and vibration can be suppressed. And by making the 3rd clutch mechanism into a meshing clutch, the structure as a whole of a power transmission device can be simplified and reduced in size. Further, since the third clutch mechanism is engaged or released in a state where almost no torque is applied, the engagement and release operations are not hindered.
  • the first clutch mechanism, the second clutch mechanism, the third clutch mechanism, and the brake mechanism can be configured by a single mechanism such as a friction type or meshing type clutch or brake. it can. Therefore, the configuration of the entire power transmission device can be simplified and downsized. Further, by configuring the forward / reverse switching mechanism with a single-pinion type or double-pinion type planetary gear mechanism, the axial length of the entire power transmission device can be shortened, and the on-vehicle performance can be improved.
  • FIG. 5 is a collinear chart (speed diagram) collectively showing the rotation states of the rotating elements when the forward / reverse switching mechanism is constituted by a double pinion type planetary gear mechanism. It is a table
  • FIG. 6 is a collinear chart (speed diagram) showing the rotational states of the rotating elements together when the forward / reverse switching mechanism is a single pinion type planetary gear mechanism.
  • a power transmission device is a device for transmitting power output from a driving force source such as an engine or a motor to driving wheels and has a speed change function. That is, it is a device generally called a transmission or a transaxle.
  • the device targeted in the present invention is a power transmission device having a continuously variable transmission and a gear train having a predetermined gear ratio (gear ratio) arranged in parallel with each other between an input shaft and an output shaft.
  • the continuously variable transmission may be a conventionally known belt-type continuously variable transmission or toroidal continuously variable transmission.
  • the belt type continuously variable transmission is suitable for a power transmission device mounted on an FF vehicle (front engine / front drive vehicle).
  • the toroidal continuously variable transmission is suitable for a power transmission device mounted on an FR vehicle (front engine / rear drive vehicle).
  • the gear train may be any gear that can transmit torque from the input shaft to the output shaft.
  • a gear ratio that cannot be set by the continuously variable transmission is set by the gear train. . Therefore, the gear train is configured by meshing a plurality of gears.
  • the gear ratio (ratio of the number of teeth) can be set so that a gear ratio larger than the maximum gear ratio in the continuously variable transmission or smaller than the minimum gear ratio can be set.
  • the gear train may be configured so that a gear ratio larger than the maximum gear ratio of the continuously variable transmission can be set.
  • the gear train In order to reduce the rotational speed of the driving force source during traveling and to reduce fuel consumption, it is preferable that the gear train be configured so that a gear ratio smaller than the minimum gear ratio in the continuously variable transmission can be set.
  • FIG. 1 A specific example of such a power transmission device is shown in FIG.
  • the example shown here is an example configured to be suitable for an FF vehicle, and therefore, a belt-type continuously variable transmission is adopted as the continuously variable transmission 1.
  • the driving force source is constituted by an internal combustion engine (E / G; engine) 2 such as a gasoline engine or a diesel engine.
  • the torque converter 3 with a lock-up clutch is connected to the output shaft (crankshaft) of the engine 2.
  • the torque converter 3 has a configuration that has been widely known in the past. Specifically, a turbine runner 6 is disposed so as to face a pump impeller 5 integrated with the front cover 4. A stator 7 is disposed between the pump impeller 5 and the turbine runner 6 through a one-way clutch (not shown). A lockup clutch 8 that rotates integrally with the turbine runner 6 is disposed to face the inner surface of the front cover 4. The lockup clutch 8 is engaged / released according to the pressure difference between both sides of the lockup clutch 8.
  • the lock-up clutch 8 is brought into an engaged state in which the torque is transmitted by contacting the inner surface of the front cover 4, and on the contrary, a released state in which the torque transmission is interrupted away from the inner surface of the front cover 4. It is configured.
  • An input shaft 9 is connected to the turbine runner 6.
  • the continuously variable transmission 1 includes a primary pulley 10 that is a driving member, a secondary pulley 11 that is a driven member, and a belt 12 that is wound around the primary pulley 10 and the secondary pulley 11. And.
  • the primary pulley 10 and the secondary pulley 11 are configured such that the winding radius of the belt 12 changes to a large or small value by changing the width of the groove around which the belt 12 is wound. That is, the gear ratio is continuously changed by changing the groove widths of the primary pulley 10 and the secondary pulley 11 around which the belt 12 is wound.
  • the primary pulley 10 is disposed on the same axis as the input shaft 9 and on the opposite side of the engine 2 with the torque converter 3 interposed therebetween. That is, the primary shaft 13 integrated with the primary pulley 10 is connected to the input shaft 9 via the second clutch mechanism C2 described later. Further, the secondary pulley 11 is arranged so that the rotation center axis thereof is parallel to the rotation center axis of the primary pulley 10.
  • the secondary pulley 11 includes a secondary shaft 14 provided along the rotation center axis.
  • An output shaft 15 is disposed on the same axis as the secondary shaft 14, and the secondary shaft 14 and the output shaft 15 are integrally connected. Therefore, the output shaft 15 is parallel to the input shaft 9 described above.
  • a third clutch mechanism C3 and a second clutch mechanism C2 are provided between the input shaft 9 and the primary shaft 13 described above. That is, the third clutch mechanism C3 and the second clutch mechanism C2 are arranged on the input shaft 9 from the side close to the engine 2 and the torque converter 3.
  • the third clutch mechanism C3 is a mechanism for selectively connecting the input shaft 9 and a drive gear 18 of a gear train 16 described later.
  • the second clutch mechanism C2 is a mechanism for selectively connecting the input shaft 9 and the primary shaft 13.
  • the second clutch mechanism C2 only needs to be capable of selectively transmitting and interrupting torque between the input shaft 9 and the primary shaft 13.
  • it may be either a friction clutch or a meshing clutch, but it is preferably constituted by a wet or dry friction clutch in which the transmission torque capacity gradually increases or decreases according to the engagement force.
  • a gear train 16 composed of a plurality of parallel gears is provided in parallel with the continuously variable transmission 1.
  • the gear train 16 is configured as a speed reduction mechanism that sets a speed ratio larger than the maximum speed ratio in the continuously variable transmission 1 or a speed increase mechanism that sets a speed ratio smaller than the minimum speed ratio in the continuously variable transmission 1.
  • the gear train 16 is configured as a speed reduction mechanism when torque is transmitted from the input shaft 9 toward the output shaft 15.
  • a drive gear arranged on the same axis as the input shaft 9, an idle gear for making the rotation directions of the input shaft 9 and the output shaft 15 the same, and torque from the drive gear via the idle gear Is provided with a driven gear.
  • a counter shaft 17 corresponding to the intermediate shaft in the present invention is disposed at a position different from the input shaft 9 and the output shaft 15 and in parallel with the input shaft 9 and the output shaft 15.
  • a drive gear 18 is disposed on the input shaft 9 so as to be able to rotate relative to the input shaft 9.
  • a counter driven gear 19 meshed with the drive gear 18 is disposed so as to be rotatable relative to the counter shaft 17 and is integrally connected to a carrier 27 which is an input element in a forward / reverse switching mechanism 22 described later. Yes.
  • a sun gear 23 that is an output element in a forward / reverse switching mechanism 22 described later is attached to and integrated with the counter shaft 17, and a counter drive gear 20 is attached and integrated with the counter shaft 17.
  • a driven gear 21 meshing with the counter drive gear 20 is attached to and integrated with the output shaft 15. Therefore, the counter driven gear 19 corresponds to the drive-side idle gear in the present invention, and the counter drive gear 20 corresponds to the driven-side idle gear in the present invention.
  • the counter driven gear 19 has a diameter larger than that of the drive gear 18 and is configured to generate a deceleration action when torque is transmitted from the drive gear 18 to the counter driven gear 19. Therefore, the gear ratio (gear ratio) of the gear train 16 is a gear ratio obtained by multiplying the gear ratio between the drive gear 18 and the counter driven gear 19 and the gear ratio between the counter drive gear 20 and the driven gear 21. It becomes.
  • the gear train 16 shown in FIG. 1 is configured such that the value of the gear ratio is larger than the maximum gear ratio in the continuously variable transmission 1.
  • the forward / reverse switching mechanism 22 is arranged on the same axis as the counter shaft 17 in the gear train 16.
  • the forward / reverse switching mechanism 22 has a forward state in which the torque transmitted from the input shaft 9 is transmitted without changing its direction, and a reverse state in which the torque transmitted from the input shaft 9 is transmitted in a reverse direction. It is a mechanism for switching.
  • the forward / reverse switching mechanism 22 is constituted by a so-called differential mechanism in which the three rotating elements have a differential action.
  • differential mechanisms of this type have been known in the past, and any differential mechanism can be employed in the present invention.
  • the forward / reverse switching mechanism 22 is configured by a double pinion type planetary gear mechanism.
  • the double pinion type planetary gear mechanism includes a sun gear 23 that is an external gear, a ring gear 24 that is an internal gear arranged concentrically with the sun gear 23, a first pinion gear 25 that meshes with the sun gear 23, A second pinion gear 26 meshed with the first pinion gear 25 and the ring gear 24, and a carrier 27 holding the first pinion gear 25 and the second pinion gear 26 so as to rotate and revolve are provided.
  • the counter driven gear 19 of the gear train 16 is integrally connected to the carrier 27 so that torque is transmitted from the input shaft 9 via the drive gear 18. Therefore, the carrier 27 is an input element of the forward / reverse switching mechanism 22.
  • a brake mechanism B that selectively stops the rotation of the ring gear 24 is provided. Accordingly, the ring gear 24 is a reaction force element of the forward / reverse switching mechanism 22.
  • the brake mechanism B is provided between the ring gear 24 and a fixed portion 28 such as a casing, and can be constituted by a friction brake such as a multi-plate brake or a meshing brake.
  • the counter shaft 17 and the counter drive gear 20 of the gear train 16 are integrally connected to the sun gear 23, and the torque is transmitted to the output shaft 15 via the driven gear 21. Therefore, the sun gear 23 is an output element of the forward / reverse switching mechanism 22.
  • a first clutch mechanism C1 is provided between the sun gear 23 and the carrier 27 for connecting the sun gear 23 and the carrier 27 and rotating the entire planetary gear mechanism integrally.
  • the first clutch mechanism C1 is a clutch that can be referred to as a forward clutch, and is for setting a forward traveling state.
  • the first clutch mechanism C1 may be any mechanism that can selectively transmit and shut off torque.
  • it may be either a friction clutch or a meshing clutch, but it is preferably constituted by a wet or dry friction clutch in which the transmission torque capacity gradually increases or decreases according to the engagement force.
  • the first clutch mechanism C1 is preferably configured to directly transmit the torque of the input shaft 9 to the carrier 27 as an input element.
  • the first clutch mechanism C1 connects the at least two rotating elements of the three rotating elements in the planetary gear mechanism constituting the forward / reverse switching mechanism 16 so as to integrate the entire planetary gear mechanism. It suffices to be configured.
  • a “forward clutch” described in JP 2010-276159 A or JP 2010-216613 A In this way, the sun gear and the ring gear can be connected.
  • the carrier and the ring gear can be connected.
  • all the three rotating elements may be connected to each other so that the entire planetary gear mechanism is integrated.
  • the drive gear 18 is connected to the input shaft 9, and a third clutch mechanism C3 for releasing the connection is provided. Therefore, the first clutch mechanism C1 is provided on the output shaft 15 side of the gear train 16 and the third clutch mechanism C3 is provided on the input shaft 9 side of the gear train 16.
  • the first clutch mechanism C1 may be a friction clutch
  • the third clutch mechanism C3 may be configured to switch between two states of engagement and disengagement. That is, the third clutch mechanism C3 does not need to take a value between 0 and the maximum value of the transmission torque capacity. Therefore, the third clutch mechanism C3 can be configured by a meshing clutch such as a dog clutch or a synchronizer.
  • the third clutch mechanism C3 is configured by a synchronizer. That is, the third clutch mechanism C3 fits the drive gear 18 to the input shaft 9 by fitting the sleeve 29 to the spline formed on the boss portion of the drive gear 18 and the spline formed on the hub of the input shaft 9. It is comprised so that it may connect.
  • the planetary gear mechanism constituting the forward / reverse switching mechanism 22 as described above can be represented by a collinear diagram (velocity diagram).
  • An example of an alignment chart representing the forward / reverse switching mechanism 22 shown in FIG. 1 is shown in FIG.
  • the sun gear 23, the ring gear 24, and the carrier 27 are represented by straight lines parallel to each other.
  • a straight line indicating the sun gear 23 and a straight line indicating the carrier 27 are located at both left and right ends, and a straight line indicating the ring gear 24 which is a reaction force element is arranged at the center thereof.
  • the distance between the straight line indicating the sun gear 23 and the straight line indicating the carrier 27 is “1”
  • the distance between the straight line indicating the sun gear 23 and the straight line indicating the ring gear 24 is the number of teeth of the carrier 27 and the teeth of the ring gear 24. It is set to a value corresponding to the ratio to the number (that is, gear ratio).
  • the distance from the intersection of each straight line with the base line L0d indicates the number of rotations of each rotation element.
  • the position with respect to the base line L0d indicates the rotation direction of each rotation element. Therefore, when the first clutch mechanism C1 is engaged, the entire forward / reverse switching mechanism 22 rotates as a whole, so that the rotational speed of each rotating element is indicated by a straight line Lfd.
  • the ring gear 24 is fixed by the brake mechanism B
  • the rotation speed and the rotation direction of each rotation element are as indicated by a straight line Lrd. That is, the sun gear 23 rotates in the opposite direction with respect to the carrier 27.
  • the example shown in FIG. 1 is an example configured to be suitable for an FF vehicle as described above. Accordingly, the torque is output from the output shaft 15 to the front differential 30 which is a final reduction gear. That is, an output gear 31 is attached to the output shaft 15, and a large-diameter gear 32 that meshes with the output gear 31 is attached to the reduction gear shaft 33. A small diameter gear 34 is attached to the reduction gear shaft 33, and the small diameter gear 34 meshes with the ring gear 35 of the front differential 30.
  • the front differential 30 is configured to transmit torque transmitted through the ring gear 35 from the left and right drive shafts 36 to drive wheels (not shown).
  • the power transmission device transmits torque from the input shaft 9 to the output shaft 15 via the torque transmission path provided with the gear train 16 when starting in the forward direction and traveling backward.
  • control is performed so that torque is transmitted from the input shaft 9 to the output shaft 15 via a torque transmission path provided with the continuously variable transmission 1.
  • a drive position (drive range) is selected by a shift device (not shown)
  • the first clutch mechanism C1 and the third clutch mechanism C3 are engaged, and the second clutch mechanism C2 and the brake mechanism B are released.
  • FIG. 3 shows a table showing such engagement and disengagement states.
  • “ON” indicates engagement
  • OFF” indicates release.
  • “ON” in parentheses indicates that the engagement state is transitively.
  • the torque output from the engine 2 can be obtained from the input shaft 9, the third clutch. It is transmitted to the output shaft 15 via C3, the gear train 16, and the forward / reverse switching mechanism 22. That is, since the drive gear 18 in the gear train 16 is connected to the input shaft 9 by the third clutch mechanism C3, the torque of the input shaft 9 is transferred from the driven gear 21 to the carrier of the forward / reverse switching mechanism 15 via the counter driven gear 19. 27. At the same time, it is transmitted to the sun gear 23 via the first clutch mechanism C1.
  • the forward / reverse switching mechanism 22 is integrated with the entire forward / reverse switching mechanism 22 because the two rotating elements of the sun gear 23 and the carrier 27 are connected by the first clutch mechanism C1. Therefore, the forward / reverse switching mechanism 22 transmits the torque input from the carrier 27 as it is from the sun gear 23 to the output shaft 15 via the counter drive gear 20 without causing an increase / decrease action.
  • the torque transmitted to the output shaft 15 is transmitted from the output gear 31 to the left and right drive wheels via the reduction gear train and the front differential 30, and the vehicle starts.
  • the continuously variable transmission 1 is always connected to the output shaft 15. Therefore, the torque input to the forward / reverse switching mechanism 22 is also transmitted to the secondary pulley 11 of the continuously variable transmission 1 via the counter drive gear 20 and the driven gear 21.
  • the second clutch mechanism C2 is in a released state, and is separated so that torque is not transmitted between the continuously variable transmission 1 and the input shaft 9. Therefore, no torque is transmitted between the input shaft 9 and the output shaft 15 via the continuously variable transmission 1, and a so-called interlock state is not obtained.
  • the gear train 16 functions as a speed reduction mechanism, so that the gear ratio between the input shaft 9 and the output shaft 15 is larger than the maximum gear ratio that can be set by the continuously variable transmission 1.
  • a large driving force can be obtained for the vehicle.
  • a large torque is not applied to the continuously variable transmission 1 at the time of starting, it is not necessary to increase the hydraulic pressure for setting the transmission torque capacity. Therefore, consumption of power for generating high-pressure hydraulic pressure can be reduced, fuel efficiency can be improved, and durability of the continuously variable transmission 1 can be improved.
  • the first clutch mechanism C1 When the vehicle speed is increased to a predetermined vehicle speed after starting, the first clutch mechanism C1 is released with the gear ratio of the continuously variable transmission 1 set to a maximum value or a gear ratio close thereto. .
  • the second clutch mechanism C2 is engaged.
  • the forward / reverse switching mechanism 22 is in a state of so-called free rotation because the first clutch mechanism C1 is further released while the brake mechanism B is released.
  • the connection between the output shaft 15 and the gear train 16 is released.
  • the primary pulley 10 is connected to the input shaft 9 by the second clutch mechanism C2. Therefore, the input shaft 9 and the output shaft 15 are coupled so as to transmit torque via the continuously variable transmission 1. Therefore, the engine speed can be set to a speed with good fuel consumption by gradually decreasing the speed ratio of the continuously variable transmission 1 or changing the speed ratio according to the vehicle speed and the accelerator opening.
  • the gear ratio by the gear train 16 is greater than the maximum gear ratio of the continuously variable transmission 1. Since it is large, the gear ratio or the driving force changes. Therefore, when the first clutch mechanism C1 is released and the second clutch mechanism C2 is engaged, the first clutch mechanism C1 and the second clutch mechanism C2 are controlled to slip and engage. That is, by gradually increasing the engagement pressure of the second clutch mechanism C2, the transmission torque capacity is gradually increased. At the same time, the transmission torque capacity is gradually reduced by gradually reducing the engagement pressure of the first clutch mechanism C1.
  • This control is conventionally known as clutch-to-clutch control.
  • the third clutch mechanism C3 is released. That is, the gear train 16 is also disconnected from the input shaft 9. In that case, torque from the secondary pulley 11 is transmitted to the sun gear 23 in the forward / reverse switching mechanism 22 via the driven gear 21 and the counter drive gear 20.
  • the ring gear 24 and the carrier 27 can be freely rotated, the rotational speed difference between the respective rotating elements constituting the forward / reverse switching mechanism 22 is reduced. Therefore, it is possible to suppress power loss and durability reduction, or noise or vibration in the forward / reverse switching mechanism 22.
  • the third clutch mechanism C3 when the third clutch mechanism C3 is released, the first clutch mechanism C1 has already been released, so that torque is not applied to the counter driven gear 19 and the drive gear 18. Therefore, even if the third clutch mechanism C3 is constituted by a meshing clutch, the third clutch mechanism C3 can be released during traveling. In other words, by configuring the power transmission device according to the present invention as described above, the third clutch mechanism C3 can be configured by a meshing clutch.
  • the gear ratio in this case is a gear ratio obtained by multiplying the gear ratio by the gear train 16 and the gear ratio by the planetary gear mechanism constituting the forward / reverse switching mechanism 22. Then, torque is transmitted from the output gear 31 to the left and right drive wheels via the reduction gear train and the front differential 30, and the vehicle travels backward.
  • the second clutch mechanism C2 is disengaged and is separated so that torque transmission does not occur between the continuously variable transmission 1 and the input shaft 9. Therefore, no torque is transmitted between the input shaft 9 and the output shaft 15 via the continuously variable transmission 1, and a so-called interlock state is not obtained.
  • each clutch mechanism can have a single configuration such as a friction clutch or a meshing clutch. Therefore, it is possible to simplify the overall configuration of the power transmission device by reducing the number of necessary components. Further, the power transmission device can be reduced in size.
  • the second clutch mechanism C2 is provided on the input shaft 9. Therefore, the torque applied to the second clutch mechanism C2 from the input shaft 9 side during forward traveling is a torque that is not subjected to the speed increasing / decreasing action except for the torque converter 3. In other words, in the driving state, torque that is equal to or higher than the torque at the input shaft 9 is not applied to the second clutch mechanism C2. Therefore, the torque capacity of the second clutch mechanism C2 is small compared to the case where the second clutch mechanism C2 is provided on the output shaft 15 or the counter shaft 17 that may apply a large torque to the second clutch mechanism C2. It can be a small clutch.
  • the third clutch mechanism C3 is provided on the input shaft 9 between the input shaft 9 and the drive gear 18 of the gear train 16.
  • the gear train 16 and the forward / reverse switching mechanism 22 are connected to the third clutch mechanism C3. It functions as a deceleration mechanism on the output side. Therefore, the torque increased by the gear train 16 is not applied to the third clutch mechanism C3. Therefore, the torque capacity of the third clutch mechanism C3 is small compared to the case where the third clutch mechanism C3 is provided on the output shaft 15 or the counter shaft 17 that may apply a large torque to the third clutch mechanism C3. It can be a small clutch.
  • the power transmission device includes the continuously variable transmission 1 when torque is transmitted from the input shaft 9 to the output shaft 15 via a torque transmission path including the gear train 16 and the forward / reverse switching mechanism 22.
  • the torque transmission path is disconnected from the input shaft 9 or the output shaft 15.
  • the second clutch mechanism C2 and the third clutch mechanism C3 are not necessarily provided at the positions shown in FIG. Therefore, the second clutch mechanism C2 and the third clutch mechanism C3 can be provided at appropriate positions within a range that does not impair their original functions.
  • the power transmission device shown in FIG. 4 has the same configuration as that of the example shown in FIG. 1 except that the third clutch mechanism C3 is arranged on the same axis as the output shaft 15 in the configuration shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 4 will be described, and the same reference numerals as those in FIG.
  • the third clutch mechanism C3 is a meshing clutch as described above, and is disposed on the same axis as the output shaft 15 or the secondary shaft 14 in the example shown in FIG.
  • the third clutch mechanism C3 in the example shown in FIG. 4 is configured to selectively transmit and block torque between the driven gear 21 of the gear train 16 and the output shaft 15.
  • the drive gear 18 of the gear train 16 is attached so as to rotate integrally with the input shaft 9. ing.
  • the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are connected only through the second clutch mechanism C2.
  • the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the brake mechanism B are used when starting in the forward direction and during forward travel. And during reverse travel, they are engaged or released as shown in FIG.
  • torque transmission via the torque transmission path mainly including the gear train 16 and the forward / reverse switching mechanism 22 and the continuously variable transmission 1 are mainly used. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the second clutch mechanism C2 is arranged on the so-called input side of the continuously variable transmission 1, similarly to the configuration of the power transmission device shown in FIG. Therefore, as in the case of the power transmission device shown in FIG. 1 described above, when traveling forward with the power of the engine 2, a torque greater than the torque transmitted from the engine 2 to the input shaft 9 is applied to the second clutch mechanism. It doesn't run on C2. Therefore, also in the configuration shown in FIG. 4, the second clutch mechanism C2 can be downsized.
  • the third clutch mechanism C3 is disposed on the same axis as the output shaft 15 as described above. Therefore, the torque transmitted from the engine 2 to the input shaft 9 is decelerated by the gear train 16 and the forward / reverse switching mechanism 22 and is transmitted to the rotating member on the driven gear 21 side in the third clutch mechanism C3.
  • the third clutch mechanism C3 in the configuration shown in FIG. 1 is arranged on the same axis as the countershaft 17 of the gear train 16 corresponding to the intermediate shaft in the present invention.
  • the configuration is the same as the example shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 5 will be described, and the same reference numerals as those in FIG.
  • the third clutch mechanism C3 is a meshing clutch as described above.
  • the third clutch mechanism C3 is disposed on the same axis as the countershaft 17 in the gear train 16 together with the forward / reverse switching mechanism 22.
  • the third clutch mechanism C3 in the example shown in FIG. 5 transmits and blocks torque between the counter driven gear 19 that is one of the idle gears in the gear train 16 and the carrier 27 of the forward / reverse switching mechanism 22. It is configured to perform selectively.
  • the drive gear 18 of the gear train 16 is attached so as to rotate integrally with the input shaft 9. ing. Further, the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are connected only through the second clutch mechanism C2.
  • the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the brake mechanism B are used for starting in the forward direction and for traveling forward. And during reverse travel, they are engaged or released as shown in FIG.
  • torque transmission via the torque transmission path mainly including the gear train 16 and the forward / reverse switching mechanism 22 and the continuously variable transmission 1 are mainly used. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the second clutch mechanism C2 is arranged on the so-called input side of the continuously variable transmission 1, similarly to the configuration of the power transmission device shown in FIG. Therefore, as in the case of the power transmission device shown in FIG. 1 described above, when traveling forward with the power of the engine 2, a torque greater than the torque transmitted from the engine 2 to the input shaft 9 is applied to the second clutch mechanism. It doesn't run on C2. Therefore, also in the configuration shown in FIG. 5, the second clutch mechanism C2 can be downsized.
  • the third clutch mechanism C3 is arranged on the same axis as the countershaft 17 of the gear train 16 as described above. Therefore, the gear pair of the drive gear 18 and the counter driven gear 19 in the gear train 16 is configured as a speed reduction mechanism in the case of transmitting torque from the input shaft 9 to the counter shaft 17, thereby allowing the engine 2 to the input shaft 9. The transmitted torque is decelerated between the drive gear 18 and the counter driven gear 19 in the gear train 16 and is transmitted to the rotating member on the counter shaft 17 side in the third clutch mechanism C3.
  • the rotation member of the counter driven gear 19 and the rotation member on the carrier 27 side in the third clutch mechanism C3 are compared.
  • the rotational speed difference between them becomes small. In other words, the rotational speed difference between the input side rotating member and the output side rotating member in the third clutch mechanism C3 is reduced. Therefore, engagement control in the third clutch mechanism C3 can be easily performed. Further, the durability of the third clutch mechanism C3 can be improved.
  • the power transmission device shown in FIG. 6 has the same configuration as that of the example shown in FIG. 1 except that the second clutch mechanism C2 is arranged on the same axis as the output shaft 15 in the configuration shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 6 will be described, and the same reference numerals as those in FIG.
  • the second clutch mechanism C2 in the present invention is a clutch that transmits and interrupts torque through a torque transmission path from the input shaft 9 to the output shaft 15 via the continuously variable transmission 1.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the same axis as the output shaft 15, and selects transmission and interruption of torque between the secondary shaft 14 and the output shaft 15 of the continuously variable transmission 1. Is configured to perform automatically.
  • the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are directly connected to each other as the arrangement of the second clutch mechanism C2 is changed as described above with respect to the configuration shown in FIG.
  • the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the brake mechanism B are used when starting in the forward direction and during forward travel. And during reverse travel, they are engaged or released as shown in FIG.
  • torque transmission via the torque transmission path mainly including the gear train 16 and the forward / reverse switching mechanism 22 and the continuously variable transmission 1 are mainly used. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the third clutch mechanism C3 is connected to the input shaft 9 and the drive gear 18 of the gear train 16 on the input shaft 9 as in the configuration of the power transmission device shown in FIG. Between. Therefore, the torque increased by the gear train 16 is not applied to the third clutch mechanism C3 as in the case of the power transmission device shown in FIG. Therefore, the size of the third clutch mechanism C3 can also be reduced in the configuration shown in FIG.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the so-called output side of the continuously variable transmission 1. Therefore, when the vehicle is decelerated while the input shaft 9 and the output shaft 15 are connected via the gear train 16 and the forward / reverse switching mechanism 22, the continuously variable transmission 1 is moved to the output shaft 15 by the second clutch mechanism C2. It can be blocked. As a result, it is possible to avoid an excessive torque from acting on the continuously variable transmission 1 and improve the durability of the continuously variable transmission 1. That is, when the vehicle is decelerated with the first clutch mechanism C1 and the third clutch mechanism C3 engaged, torque based on the traveling inertia force of the vehicle acts on the output shaft 15.
  • the second clutch mechanism C2 is in a released state and is disconnected. Therefore, so-called reverse input torque at the time of deceleration is not applied to the continuously variable transmission 1. Therefore, it is possible to reduce the torque that unnecessarily acts on the continuously variable transmission 1 and to suppress unnecessary rotation. As a result, the durability of the continuously variable transmission 1 can be improved.
  • the second clutch mechanism C2 and the third clutch mechanism C3 in the configuration shown in FIG. 1 are arranged on the same axis as the output shaft 15 together with the forward / reverse switching mechanism 22;
  • the configuration is the same as the example shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 7 will be described, and the same reference numerals as those in FIG.
  • the second clutch mechanism C2 is arranged on the same axis as the output shaft 15 and has the secondary shaft 14 of the continuously variable transmission 1 as in the configuration of the power transmission device shown in FIG. And the output shaft 15 are configured to selectively transmit and block torque.
  • the third clutch mechanism C3 is disposed on the same axis as the output shaft 15 or the secondary shaft 14 in the same manner as the configuration of the power transmission device shown in FIG. 4 described above, and the driven gear 21 and the output shaft 15 of the gear train 16 are arranged. Is configured to selectively transmit and block torque.
  • the drive gear 18 of the gear train 16 is integrated with the input shaft 9 as the arrangement of the second clutch mechanism C2 and the third clutch mechanism C3 is changed as described above with respect to the configuration shown in FIG. It is attached to rotate. Further, the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are directly connected.
  • the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the brake mechanism B are used when starting in the forward direction and during forward travel. And during reverse travel, they are engaged or released as shown in FIG.
  • torque transmission via the torque transmission path mainly including the gear train 16 and the forward / reverse switching mechanism 22 and the continuously variable transmission 1 are mainly used. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the third clutch mechanism C3 is connected to the driven gear 21 and the output shaft 15 of the gear train 16 on the output shaft 15 in the same manner as the configuration of the power transmission device shown in FIG. It is provided between. Therefore, as in the case of the power transmission device shown in FIG. 4 described above, the rotational speed difference between the input side rotation member and the output side rotation member in the third clutch mechanism C3 is reduced. Therefore, also in the configuration shown in FIG. 7, the engagement control in the third clutch mechanism C3 can be easily performed. Further, the durability of the third clutch mechanism C3 can be improved.
  • the second clutch mechanism C2 is arranged on the so-called output side of the continuously variable transmission 1, similarly to the configuration of the power transmission device shown in FIG. Therefore, as in the case of the power transmission device shown in FIG. 6 described above, when the vehicle is decelerated while the input shaft 9 and the output shaft 15 are connected via the gear train 16 and the forward / reverse switching mechanism 22, The continuously variable transmission 1 can be disconnected from the output shaft 15 by the two-clutch mechanism C2. Therefore, in the configuration shown in FIG. 7 as well, it is possible to avoid an excessive torque from acting on continuously variable transmission 1 and to improve durability of continuously variable transmission 1.
  • the second clutch mechanism C ⁇ b> 2 is arranged on the same axis as the output shaft 15 in the configuration shown in FIG. 1, and the third clutch mechanism C ⁇ b> 3 together with the forward / reverse switching mechanism 22
  • the counter shaft 17 is arranged on the same axis.
  • the rest of the configuration is the same as the example shown in FIG. Therefore, only the parts different from FIG. 1 in the configuration of FIG. 8 will be described, and the same reference numerals as those in FIG.
  • the second clutch mechanism C2 is arranged on the same axis as the output shaft 15 in the same manner as the power transmission device shown in FIGS. Torque is transmitted and interrupted between the secondary shaft 14 and the output shaft 15 selectively.
  • the third clutch mechanism C3 is disposed on the same axis as the countershaft 17 of the gear train 16 in the same manner as the configuration of the power transmission device shown in FIG. Torque is selectively transmitted to and cut off from the carrier 27 of the mechanism 22.
  • the drive gear 18 of the gear train 16 is integrated with the input shaft 9 as the arrangement of the second clutch mechanism C2 and the third clutch mechanism C3 is changed as described above with respect to the configuration shown in FIG. It is attached to rotate. Further, the input shaft 9 and the primary shaft 13 of the continuously variable transmission 1 are directly connected.
  • the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the brake mechanism B are used for starting in the forward direction and for traveling forward. And during reverse travel, they are engaged or released as shown in FIG.
  • torque transmission via the torque transmission path mainly including the gear train 16 and the forward / reverse switching mechanism 22 and the continuously variable transmission 1 are mainly used. Torque is transmitted through the torque transmission path. And it is made to act similarly to the power transmission device shown in FIG. 1, and the same effect can be acquired.
  • the second clutch mechanism C2 is arranged on the so-called output side of the continuously variable transmission 1, similarly to the configuration of the power transmission device shown in FIGS. Accordingly, as in the case of the power transmission device shown in FIGS. 6 and 7 described above, the vehicle is decelerated while the input shaft 9 and the output shaft 15 are connected via the gear train 16 and the forward / reverse switching mechanism 22. In addition, the continuously variable transmission 1 can be disconnected from the output shaft 15 by the second clutch mechanism C2. Therefore, also in the configuration shown in FIG. 8, it is possible to avoid an excessive torque from acting on continuously variable transmission 1 and to improve durability of continuously variable transmission 1.
  • the third clutch mechanism C3 is arranged on the same axis as the counter shaft 17 of the gear train 16 as in the configuration of the power transmission device shown in FIG. Accordingly, as in the case of the power transmission device shown in FIG. 5 described above, the torque is transmitted from the input shaft 9 to the counter shaft 17 through the gear pair of the drive gear 18 and the counter driven gear 19 in the gear train 16.
  • the rotational speed difference between the input side rotation member and the output side rotation member in the third clutch mechanism C3 is reduced. Therefore, engagement control in the third clutch mechanism C3 can be easily performed. Further, the durability of the third clutch mechanism C3 can be improved.
  • the third clutch mechanism C3 When the third clutch mechanism C3 is arranged on the countershaft 17 as in the configuration shown in FIG. 8 and the configuration shown in FIG. 5, the counter drive gear 20 is connected to the countershaft 17, instead of being configured to release the connection, the third clutch mechanism C3 may be configured to connect the counter driven gear 19 to the counter shaft 17 and to release the connection. Alternatively, the third clutch mechanism C3 may be configured such that the counter driven gear 19 and the counter drive gear 20 are connected together, connected to the counter shaft 17, and the connection is released.
  • the forward / reverse switching mechanism 22 can be constituted by a single pinion type planetary gear mechanism in place of the above-described double pinion type planetary gear mechanism.
  • An example is shown in FIG.
  • the forward / reverse switching mechanism 22 in the present invention is configured using a single pinion type planetary gear mechanism 37
  • the sun gear 38 is an input element
  • the carrier 39 is a reaction force element
  • the ring gear 40 is an output element.
  • the carrier 39 is provided with a brake mechanism B that selectively stops the rotation of the carrier 39.
  • the counter driven gear 19 of the gear train 16 is connected to the sun gear 38
  • the counter shaft 17 is connected to the ring gear 40.
  • a first clutch mechanism C1 that selectively connects the sun gear 38 and the ring gear 40 is provided.
  • FIG. 10 shows an example of a collinear diagram (velocity diagram) representing the forward / reverse switching mechanism 22 configured by the single pinion type planetary gear mechanism 37 as described above.
  • the sun gear 38, the carrier 39, and the ring gear 40 are represented by straight lines parallel to each other.
  • a straight line indicating the sun gear 38 and a straight line indicating the ring gear 40 are located at both left and right ends, and a straight line indicating the carrier 39 which is a reaction force element is arranged at the center thereof.
  • the distance between the straight line indicating the sun gear 38 and the straight line indicating the ring gear 24 is “1”
  • the distance between the straight line indicating the carrier 39 and the straight line indicating the ring gear 40 is the number of teeth of the sun gear 38 and the teeth of the carrier 39. It is set to a value corresponding to the ratio to the number (that is, gear ratio).
  • the distance from the intersection of each straight line with the base line L0s indicates the number of rotations of each rotation element.
  • the position with respect to the base line L0s indicates the rotation direction of each rotation element.
  • the planetary gear mechanism 37 that is, the entire forward / reverse switching mechanism 22 rotates as a whole, so that the rotational speed of each rotating element is indicated by a straight line Lfs. .
  • the carrier 39 is fixed by the brake mechanism B, the rotation speed and the rotation direction of each rotating element are indicated by a straight line Lrs. That is, the ring gear 40 rotates in the opposite direction with respect to the sun gear 38.
  • the forward / reverse switching mechanism 22 is configured by the single pinion type planetary gear mechanism 37
  • the forward / backward switching mechanism 22 configured by the double pinion type planetary gear mechanism 37 is caused to function in the same manner. Can do.
  • the apparatus can be simplified by using the single pinion type planetary gear mechanism 37 instead of the double pinion type planetary gear mechanism.
  • the entire forward / reverse switching mechanism 22 is integrated by connecting at least two rotating elements in the forward / reverse switching mechanism 22 with the first clutch mechanism C1. Rotate.
  • the gear train 16 can transmit power between the input shaft 9 and the output shaft 15 via the forward / reverse switching mechanism 22.
  • the second clutch mechanism C2 is released and the third clutch mechanism C3 is engaged, whereby the continuously variable transmission 1 is disconnected from the output shaft 15 and the gear train 16 is moved forward and backward. It is connected to the output shaft 15 via That is, the input shaft 9 and the output shaft 15 are connected via the gear train 16 and the forward / reverse switching mechanism 22.
  • the gear ratio by the gear train 16 is a gear ratio that cannot be set by the continuously variable transmission 1. That is, the speed ratio is larger than the maximum speed ratio in the continuously variable transmission 1 or smaller than the minimum speed ratio. Therefore, the gear ratio width as a whole of the power transmission device can be made wider than the gear ratio width that can be set by the continuously variable transmission 1.
  • the gear ratio set as a whole of the power transmission device in that case is a large gear ratio that cannot be set by the continuously variable transmission 1. That is, the speed ratio width as a whole of the power transmission device can be widened even during reverse travel.
  • the positions of the first clutch mechanism C1, the second clutch mechanism C2, the third clutch mechanism C3, and the gears in the axial direction can be determined as appropriate in design.
  • the positions of adjacent constituent members among the constituent members in the specific examples described above can be interchanged in the axial direction.
  • gear ratio by the gear train 16 is made larger than the maximum gear ratio in the continuously variable transmission 1. It is only necessary that the ratio is set by the gear train 16. Therefore, the gear ratio by the gear train 16 may be made smaller than the minimum gear ratio in the continuously variable transmission 1. If comprised in this way, when driving
  • gear train 16 having one gear ratio gear train 16 having one gear ratio (gear ratio)
  • gear train in the present invention has two or more gear ratios (gear ratios).
  • gear train that can select and set the gear ratios.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

 駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記中間軸と同一軸線上に配置され、前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至る第1トルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されるとともに、前記入力軸から前記入力要素に至る第2トルク伝達経路もしくは前記出力要素から前記出力軸に至る第3トルク伝達経路に、トルクの伝達と遮断とを行う第3クラッチ機構が設けられている。

Description

車両用動力伝達装置
 この発明は、車両の駆動力源から出力された動力を伝達するための装置に関し、特に無段変速機を含む伝動経路と、その伝動経路に対して並列に設けられた他の伝動経路とを備えている動力伝達装置に関するものである。
 車両の駆動力源として一般に用いられている内燃機関は、回転数の増大に応じて出力トルクが大きくなる特性を有している。これに対して、車両に要求される駆動力は、低車速で大きく、高車速で相対的に小さいのが一般的である。すなわち、車両においては、内燃機関の出力特性に基づくトルクとは反対のトルクが要求される。また、内燃機関の効率の良い運転点は限られている。そのため、内燃機関を駆動力源とする車両では、変速比を適宜に変化させることのできる変速機が搭載されている。そして、その変速機で車速やアクセル開度などの車両の走行状態に基づいて変速比を適宜に設定することにより、必要とする駆動力を得るとともに内燃機関を効率の良い運転点で運転している。ただし、変速段毎に段階的に変速比を設定する有段変速機のように、変速機で設定する変速比に段差がある場合は、内燃機関を常に効率の良い運転点で運転することはできない。すなわち、効率の良い運転点における内燃機関の回転数が、2つの変速段の間の変速比で設定できる回転数であった場合には、一方の変速段から他方の変速段に切り替わるまでの間の運転状態では効率が低下してしまう。そこで最近では、有段変速機に替えて、変速比を連続的に変化させることが可能な無段変速機が使用されるようになってきている。
 車両用の無段変速機としては、ベルト式無段変速機とトロイダル型無段変速機とが広く知られている。前者のベルト式無段変速機は、動力伝達用のベルトと、そのベルトを巻き掛ける溝の幅を変化させることに伴ってベルトの巻き掛け半径が大小に変化する一対のプーリとを有している。そして、それぞれのプーリの溝幅を変化させてベルトの巻き掛け半径を変化させることにより、それら一対のプーリの間で設定する変速比を無段階に変化させるように構成されている。また、後者のトロイダル型無段変速機は、向かい合わせて配置されている一対のディスクの間にパワーローラを挟み込み、そのパワーローラの各ディスクに対する接触点を結んだ線が、ディスクの回転中心軸線に対して傾斜することにより、各ディスク同士の回転数に差が生じる構成となっている。そして、パワーローラの傾斜角度(傾転角度)が大きいほど、ディスク同士の回転数の差すなわち変速比が「1」から離れるように構成されている。
 これらの無段変速機では、変速比を連続的に変化させるために、プーリとベルトとの間の摩擦力、あるいはディスクとパワーローラとの間の摩擦力を利用してトルクを伝達している。摩擦力は、2つの部材の接触箇所における摩擦係数と垂直荷重(もしくは法線方向の荷重)との積であるから、伝達するべきトルクに応じて垂直荷重を大きくすることになる。その垂直荷重は車両用のベルト式無段変速機では、プーリがベルトを挟み付ける荷重である。そしてその荷重は、例えばプーリに油圧アクチュエータを一体に形成し、その油圧アクチュエータに供給する油圧によって発生させている。
 一方、車両においては発進時に大きい駆動力が要求される。これに対して定常的な走行状態すなわち巡航時に要求される駆動力は発進時に比較して小さい。そのため、上記の摩擦力を発生させるための垂直荷重は発進時に大きくする必要がある。すなわち、ベルト式無段変速機では、挟圧力を発生させるための油圧を発進時に高くすることになる。車両の駆動状態として比較的短時間である発進時に備えて、大きい油圧を発生させる油圧機器を設けるとすれば、駆動装置やそのための油圧装置が大型化し、また高油圧を発生させることに伴って燃費が悪化してしまう可能性がある。
 このような課題を解消することを目的とした装置が、特開2005-308041号公報、特開2004-076876号公報、および特開2000-130548号公報などに記載されている。これらのうち特開2005-308041号公報に記載された装置は、前後進切替機構を構成しているシングルピニオン型遊星歯車機構のサンギヤに、エンジンが出力した動力が伝達され、そのサンギヤをベルト式無段変速機のプライマリープーリと一体の入力軸に連結するクラッチが設けられている。その入力軸の外周側にワンウェイクラッチを介して入力ギヤが嵌合されており、この入力ギヤが前後進切替機構におけるリングギヤに連結されている。なお、ワンウェイクラッチは、前進回転方向で入力軸がその外周側の入力ギヤよりも高速で回転する場合に係合するように構成されている。また、セカンダリープーリと一体の出力軸の外周側には、他のワンウェイクラッチを介して出力ギヤが嵌合されている。そして、上記の入力ギヤと出力ギヤとの間にアイドルギヤが配置され、入力ギヤと出力ギヤとがこのアイドルギヤに噛み合っている。すなわち、入力ギヤと出力ギヤとが共に同方向に回転するように構成されている。これら入力ギヤと出力ギヤとのギヤ比(変速比)は、上記の各プーリとこれらに巻き掛けられたベルトとからなる無段変速機で設定できる最も大きい変速比よりも僅かに小さい変速比に設定されている。そして、上記の他のワンウェイクラッチは、前進回転方向で、出力軸が出力ギヤよりも高速で回転する場合に係合するように構成されている。また、上記の他のワンウェイクラッチと並列に摩擦式のクラッチが設けられている。さらに、後進状態を設定するために、前後進切替機構におけるキャリアを固定するブレーキが設けられている。
 したがって、上記の特開2005-308041号公報に記載された装置では、例えば前進走行するために発進する場合、サンギヤと入力軸とがクラッチによって連結され、無段変速機を主体とする主変速経路に入力軸を介してトルクが伝達され、上記の各ギヤを主体とする副変速経路にワンウェイクラッチが係合することによりトルクが伝達される。その場合、ギヤ列による変速比が無段変速機の最大変速比より幾分小さいので、出力ギヤが出力軸よりも高速で回転する。その結果、出力軸側のワンウェイクラッチが解放状態になり、トルクはギヤ列を介して駆動輪に伝達される。すなわち、無段変速機には発進時の大きいトルクが掛からない。そして発進後に、車速が増大するにつれて無段変速機の変速比を次第に小さくすると、セカンダリープーリと一体の出力軸の回転数がその外周側に設けられている出力ギヤの回転数に達し、変速比の低下によってその回転数が更に増大する。その結果、出力軸側のワンウェイクラッチが係合状態になり、駆動輪には無段変速機を介してトルクが伝達される。なお、その場合、入力軸側のワンウェイクラッチは解放状態になるので、インターロック状態は生じない。 
 また、特開2004-076876号公報に記載された装置は、エンジンが出力した動力を伝達する入力軸と、ベルト式無段変速機におけるプライマリープーリとの間に、シングルピニオン型遊星歯車機構からなる前後進切替機構が設けられている。そして、その前後進切替機構におけるリングギヤとプライマリープーリとが一体となって回転するように連結され、またサンギヤに入力軸が連結されている。したがって、サンギヤとリングギヤとをクラッチによって連結することにより前進状態となり、キャリアをブレーキによって固定することにより後進状態となる。さらに、入力軸と、セカンダリープーリに一体化されている出力軸との間には、無段変速機による最大変速比よりも大きい変速比のギヤ列が設けられている。そのギヤ列を構成している入力ギヤが入力軸に一体化され、またその入力軸にアイドルギヤを介して連結されている出力ギヤが、出力軸に回転可能に嵌合させられている。そして、出力ギヤと出力軸との間に、ワンウェイクラッチと摩擦クラッチとが直列に配列されている。
 したがって、前進状態で発進する場合、入力軸をプライマリープーリに連結するためのクラッチを解放しておき、また出力軸側のクラッチを係合させておくことにより、入力軸からギヤ列およびワンウェイクラッチならびにこれと直列に配列されているクラッチを介して出力軸にトルクが伝達される。その状態から入力軸とプライマリープーリとをクラッチによって連結すると、無段変速機の最大変速比がギヤ列による変速比よりも幾分小さいことから、セカンダリープーリおよびこれと一体の出力軸が従前より大きい回転数、より具体的には出力ギヤより高回転数になってワンウェイクラッチが解放状態になる。すなわち、トルクは無段変速機を介して出力軸に伝達される。このように、発進時はギヤ列がトルクの伝達を行うので、無段変速機には発進時の大きいトルクが掛かることがない。
 そして、特開2000-130548号公報には、上述した特開2004-076876号公報に記載されている装置と同様の構成の変速装置が記載されている。すなわち、この特開2000-130548号公報に記載された変速装置においても、発進時にトルクを伝達するギヤ列における出力側のギヤと、セカンダリープーリに一体化されている出力軸との間に、ワンウェイクラッチと摩擦クラッチとが並列に配列されている。
 これらいずれの公報に記載された装置においても、ベルト式無段変速機と並列にギヤ列が設けられ、主として発進時にそのギヤ列を介して、発進のためのトルクを伝達するように構成されている。そして、前進走行状態では無段変速機を介してトルクを伝達させるために、トルクの伝達経路を切り替えており、その切り替えをワンウェイクラッチを使用して行うように構成されている。しかしながら、ワンウェイクラッチはトルクの伝達方向が一方向に限られるのに対して、車両が実際に走行する際には、正逆いずれの方向にもトルクを伝達する必要がある。また、トルクの伝達経路の構成によってはワンウェイクラッチを機能させないようにする必要もある。そのため、上述した各公報に記載されているように、ワンウェイクラッチと摩擦クラッチとを併用する必要がある。したがって、上述した各公報に記載されている構成では、発進時の大きいトルクが無段変速機に作用することを回避もしくは抑制できるとしても、装置の全体としての構成が大型化し、車載性が損なわれてしまう可能性がある。
 また、特開2005-308041号公報に記載された装置および特開2004-076876号公報に記載された装置は、いずれも遊星歯車機構からなる前後進切替機構を備えている。前者の特開2005-308041号公報に記載された構成では、ベルト式無段変速機によってトルクを伝達して走行している場合、そのサンギヤにはエンジンからのトルクが伝達され、またリングギヤにはギヤ列からのトルクが伝達される。そのため、サンギヤ、ピニオンギヤ、およびリングギヤの間に大きな回転数差が生じ、これが動力の損失や潤滑油の劣化、あるいは騒音や振動の原因になる可能性がある。また、後者の特開2004-076876号公報に記載された構成では、ギヤ列がトルクを伝達して走行している場合に、前後進切替機構を構成している遊星歯車機構のサンギヤにエンジンからのトルクが伝達され、かつリングギヤには出力軸側から無段変速機を介してトルクが伝達される。その結果、上記の特開2005-308041号公報に記載された装置と同様に、サンギヤ、ピニオンギヤ、およびリングギヤの間に大きな回転数差が生じ、これが動力の損失や潤滑油の劣化、あるいは騒音や振動の原因になる可能性がある。
 この発明は上記の技術的課題に着目してなされたものであり、無段変速機を備えた車両用動力伝達装置であって、無段変速機で設定可能な最大変速比もしくは最小変速比を超える変速比を設定でき、しかも小型化が容易でかつ耐久性に優れた車両用動力伝達装置を提供することを目的とするものである。
 上記の目的を達成するために、この発明は、駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、それぞれ、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記中間軸と同一軸線上に配置され、前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至る第1トルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されるとともに、前記入力軸から前記入力要素に至る第2トルク伝達経路もしくは前記出力要素から前記出力軸に至る第3トルク伝達経路に、トルクの伝達と遮断とを行う第3クラッチ機構が設けられていることを特徴とするものである。
 また、この発明における前記ギヤ列は、前記複数のギヤによって、前記無段変速機の最大変速比より大きい変速比、もしくは前記無段変速機の最小変速比より小さい変速比を設定するように構成することができる。
 また、この発明における前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有しており、その場合、この発明における前記第2クラッチ機構は、前記入力軸と前記駆動側部材との間に設けられてこれら入力軸と駆動側部材とを選択的に連結するように構成することができる。
 また、この発明における前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有しており、その場合、この発明における前記第2クラッチ機構は、前記出力側部材と前記出力軸との間に設けられてこれら出力側部材と出力軸とを選択的に連結するように構成することができる。
 また、この発明における前記第1クラッチ機構と前記第2クラッチ機構とは、それぞれ、摩擦クラッチによって構成することができる。
 また、この発明における前記第3クラッチ機構は、噛み合い式のクラッチによって構成することができる。
 また、この発明における前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとによって構成することができる。その場合、この発明における前記第3クラッチ機構は、前記入力軸と前記駆動ギヤとの間の連結および遮断を行うように構成することができる。
 また、この発明における前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとによって構成することができる。その場合、この発明における前記第3クラッチ機構は、前記従動ギヤと前記出力軸との間の連結および遮断を行うように構成することができる。
 また、この発明における前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとによって構成することができる。その場合、この発明における前記第3クラッチ機構は、前記駆動側アイドルギヤと前記入力要素との間の連結および遮断を行うように構成することができる。
 また、この発明における前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤに噛み合っている第1ピニオンギヤと、その第1ピニオンギヤおよび前記リングギヤに噛み合っている第2ピニオンギヤと、これら第1ピニオンギヤおよび第2ピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたダブルピニオン型遊星歯車機構によって構成することができる。
 また、この発明における前記前後進切替機構は、上記のようにダブルピニオン型遊星歯車機構によって構成される場合、前記サンギヤが前記中間軸および前記従動側アイドルギヤに連結され、前記キャリアが前記駆動側アイドルギヤに直接もしくは前記第3クラッチ機構を介して連結され、前記リングギヤが前記ブレーキ機構によって回転が止められるように構成することができる。
 また、この発明における前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤおよび前記リングギヤに噛み合っているピニオンギヤと、そのピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたシングルピニオン型遊星歯車機構によって構成することができ
 また、この発明におけるこの発明における前記前後進切替機構は、上記のようにシングルピニオン型遊星歯車機構によって構成される場合、前記リングギヤが前記中間軸および前記従動側アイドルギヤに連結され、前記サンギヤが前記駆動側アイドルギヤに直接もしくは前記第3クラッチ機構を介して連結され、前記キャリアが前記ブレーキ機構によって回転が止められるように構成することができる。
 そして、この発明における前記前後進切替機構は、複数の回転要素を互いに平行な直線で示し、かつ前記直線に直交する基線との交点からの長さおよび前記基線に対する位置で前記各回転要素の回転速度を示す共線図によって、前記入力要素、前記出力要素、および前記反力要素のそれぞれの回転速度を表すことのできる遊星歯車機構によって構成することができる。その場合、前記反力要素は、前記共線図における中央に位置する線で表される要素であり、前記入力要素は、前記共線図における左右いずれか一方の線で表される要素であり、さらに前記出力要素は、前記共線図における左右いずれか一方の線で表される要素であってよい。
 したがって、この発明によれば、前後進切替機構における少なくとも2つの回転要素を第1クラッチ機構によって連結することにより、前後進切替機構の全体が一体となって回転する。その結果、入力軸と出力軸との間でギヤ列が前後進切替機構を介して動力伝達可能な状態になる。その状態で第2クラッチ機構を解放させ、かつ第3クラッチ機構を係合させることにより、出力軸に対して無段変速機が遮断され、かつギヤ列が前後進切替機構を介して出力軸に連結される。すなわち、入力軸と出力軸とがギヤ列および前後進切替機構を介して連結される。そのギヤ列による変速比は、無段変速機で設定することのできない変速比であって、無段変速機での最大変速比より大きい変速比、もしくは最小変速比より小さい変速比である。そのため、動力伝達装置の全体としての変速比幅を、無段変速機で設定することのできる変速比幅よりも広くすることができる。
 また、第1クラッチ機構に替えてブレーキ機構を係合させれば、前後進切替機構の反力要素の回転が止められて出力要素が入力要素に対して反対方向に回転する。すなわち、後進走行することができる。その場合、トルクは、第3クラッチ機構、ギヤ列、および前後進切替機構を介して、出力要素から出力軸に伝達される。したがって、その場合に動力伝達装置の全体として設定される変速比は、無段変速機では設定することのできない大きい変速比となる。
 また、車両の減速時には出力軸側からトルクが入力されるが、第2クラッチ機構を無段変速機の従動側部材と出力軸との間に設けてその第2クラッチ機構を解放しておくことにより、出力軸から無段変速機に入力するトルクを遮断して無段変速機を保護することができる。
 また、無段変速機をその変速比がギヤ列での変速比に近くなるように制御した状態で第2クラッチ機構を係合するとともに、第1クラッチ機構を解放させれば、入力軸と出力軸とが第2クラッチ機構および無段変速機を介して連結される。そして、ギヤ列は入力軸に対して遮断される。したがって、無段変速機によって適宜に変速比を設定することができる。その場合、第1クラッチ機構および第2クラッチ機構が伝達トルク容量を次第に変化させることのできる摩擦クラッチによって構成されていれば、第1クラッチ機構および第2クラッチ機構で受け持つトルクの量を次第に変化させることにより、出力軸のトルクの変化を滑らかにすることができる。その結果、変速ショックや駆動力の変化に起因する違和感を防止もしくは抑制することができる。
 上記のように第2クラッチ機構が係合され、かつ第1クラッチ機構が解放された状態で、第3クラッチ機構を解放すれば、ギヤ列および前後進切替機構は、入力軸および出力軸のいずれに対しても遮断された状態となる。そのため、無段変速機によってトルクを伝達して走行している場合にギヤ列を連れ回したり、前後進切替機構の入力要素だけでなく出力要素からもトルクが入力されて各要素の回転数差が大きくなるなどの事態を回避することができる。その結果、動力の損失を低減できるだけでなく、耐久性を向上させ、また騒音や振動を抑制することができる。そして、その第3クラッチ機構を噛み合い式のクラッチとすることにより、動力伝達装置の全体としての構成を簡素化および小型化することができる。また、第3クラッチ機構は、トルクが殆ど掛かっていない状態で係合あるいは解放されることになるので、その係合および解放の動作に支障が生じることはない。
 そして、この発明によれば、第1クラッチ機構、第2クラッチ機構、ならびに第3クラッチ機構、およびブレーキ機構を、摩擦式あるいは噛み合い式のクラッチやブレーキなど、それぞれ単一の機構によって構成することができる。そのため、動力伝達装置の全体としての構成を簡素化および小型化することができる。また、前後進切替機構をシングルピニオン型あるいはダブルピニオン型の遊星歯車機構によって構成することにより、動力伝達装置の全体としての軸長を短くし、車載性を向上させることができる。
この発明に係る車両用動力伝達装置の一例を説明するためのスケルトン図である。 前後進切替機構をダブルピニオン型の遊星歯車機構で構成した場合の各回転要素の回転状態をまとめて示す共線図(速度線図)である。 各クラッチ機構およびブレーキ機構の動作状態をまとめて示す図表である。 この発明の第2の具体例を説明するためのスケルトン図である。 この発明の第3の具体例を説明するためのスケルトン図である。 この発明の第4の具体例を説明するためのスケルトン図である。 この発明の第5の具体例を説明するためのスケルトン図である。 この発明の第6の具体例を説明するためのスケルトン図である。 シングルピニオン型の遊星歯車機構からなる前後進切替機構の例を示すスケルトン図である。 前後進切替機構をシングルピニオン型の遊星歯車機構で構成した場合の各回転要素の回転状態をまとめて示す共線図(速度線図)である。
 次に、この発明を具体例を参照して説明する。この発明に係る動力伝達装置は、エンジンやモータなどの駆動力源が出力した動力を駆動輪に伝達するための装置であって、変速機能のある装置である。すなわち、一般にはトランスミッションあるいはトランスアクスルと称されている装置である。特に、この発明で対象とする装置は、入力軸と出力軸との間に互いに並列に配列された無段変速機と所定の変速比(ギヤ比)のギヤ列とを有する動力伝達装置である。その無段変速機は、従来知られているベルト式の無段変速機やトロイダル型無段変速機であってよい。ベルト式無段変速機は、FF車(フロントエンジン・フロントドライブ車)に搭載する動力伝達装置に適している。トロイダル型無段変速機は、FR車(フロントエンジン・リヤドライブ車)に搭載する動力伝達装置に適している。また、ギヤ列は、要は、入力軸から出力軸にトルクを伝達できるギヤであればよいが、この発明では、無段変速機では設定できない変速比をギヤ列で設定する構成となっている。したがって、ギヤ列は、複数のギヤを噛み合わせて構成されている。そしてそのギヤ比(歯数の比)が、無段変速機での最大変速比より大きい変速比あるいは最小変速比より小さい変速比を設定できるように構成されている。なお、車両が発進する際の大きいトルクが無段変速機に掛からないようにするためには、ギヤ列は無段変速機での最大変速比より大きい変速比を設定できるように構成することが好ましい。また、走行中における駆動力源の回転数を低くして燃費を低下させるためには、ギヤ列は無段変速機での最小変速比より小さい変速比を設定できるように構成することが好ましい。
 そのような動力伝達装置の具体例を図1に示してある。ここに示す例はFF車に適するように構成した例であり、したがって無段変速機1としてベルト式の無段変速機が採用されている。また、駆動力源は、ガソリンエンジンやディーゼルエンジンなどの内燃機関(E/G;エンジン)2によって構成されている。
 エンジン2の出力軸(クランク軸)にロックアップクラッチ付のトルクコンバータ3が連結されている。このトルクコンバータ3は従来広く知られている構成のものである。具体的には、フロントカバー4と一体のポンプインペラー5に対向してタービンランナー6が配置されている。また、これらポンプインペラー5とタービンランナー6との間に、図示しない一方向クラッチを介して保持されたステータ7が配置されている。また、タービンランナー6と一体となって回転するロックアップクラッチ8がフロントカバー4の内面に対向して配置されている。そして、そのロックアップクラッチ8を挟んだ両側の圧力差に応じてロックアップクラッチ8が係合・解放動作するようになっている。すなわち、ロックアップクラッチ8がフロントカバー4の内面に接触してトルクを伝達する係合状態になり、また反対に、フロントカバー4の内面から離れてトルクの伝達を遮断する解放状態になるように構成されている。そして、そのタービンランナー6に入力軸9が連結されている。
 無段変速機1は、従来知られているように、駆動側部材であるプライマリープーリ10と、従動側部材であるセカンダリープーリ11と、これらプライマリープーリ10およびセカンダリープーリ11に巻き掛けられたベルト12とを備えている。そして、プライマリープーリ10およびセカンダリープーリ11は、ベルト12が巻き掛けられている溝の幅を大小に変化させることにより、ベルト12の巻き掛け半径が大小に変化するように構成されている。すなわち、ベルト12が巻き掛けられているプライマリープーリ10およびセカンダリープーリ11の溝幅を変化させて変速比を無段階に変更するように構成されている。
 プライマリープーリ10は入力軸9と同一軸線上で、上記のトルクコンバータ3を挟んでエンジン2とは反対側に配置されている。すなわち、プライマリープーリ10と一体のプライマリーシャフト13が、後述する第2クラッチ機構C2を介して入力軸9に連結されている。また、セカンダリープーリ11は、その回転中心軸線が上記のプライマリープーリ10の回転中心軸線と平行になるように配置されている。そしてセカンダリープーリ11は、その回転中心軸線に沿うように設けられたセカンダリーシャフト14を備えている。そのセカンダリーシャフト14と同一軸線上に出力軸15が配置されており、それらセカンダリーシャフト14と出力軸15とが一体に連結されている。したがって出力軸15は、前述した入力軸9と平行になっている。
 前述の入力軸9とプライマリーシャフト13との間に、第3クラッチ機構C3および第2クラッチ機構C2が設けられている。すなわち、入力軸9上でエンジン2およびトルクコンバータ3に近い側から、第3クラッチ機構C3、第2クラッチ機構C2が配置されている。第3クラッチ機構C3は、入力軸9と後述するギヤ列16の駆動ギヤ18とを選択的に連結するための機構である。そして、第2クラッチ機構C2は、入力軸9とプライマリーシャフト13とを選択的に連結するための機構である。この第2クラッチ機構C2は、要は、入力軸9とプライマリーシャフト13との間におけるトルクの伝達および遮断を選択的に行うことができるものであればよい。例えば摩擦クラッチや噛み合いクラッチのいずれであってもよいが、係合力に応じて伝達トルク容量が次第に増大もしくは減少する湿式もしくは乾式の摩擦クラッチによって構成されていることが好ましい。
 この発明に係る動力伝達装置では、上記の無段変速機1と並列に、複数の平行ギヤにより構成されるギヤ列16が設けられている。このギヤ列16は、無段変速機1での最大変速比より大きい変速比を設定する減速機構、もしくは、無段変速機1での最小変速比より小さい変速比を設定する増速機構として構成されている。この図1に示す例では、ギヤ列16は、入力軸9から出力軸15に向けてトルクを伝達する場合の減速機構として構成されている。そして、入力軸9と同一軸線上に配置された駆動ギヤと、入力軸9と出力軸15との回転方向を同一にするためのアイドルギヤと、そのアイドルギヤを介して上記の駆動ギヤからトルクが伝達される従動ギヤとが設けられている。
 具体的には、入力軸9および出力軸15とは異なる位置に、かつ入力軸9および出力軸15に対して平行に、この発明における中間軸に相当するカウンタシャフト17が配置されている。そして、入力軸9上に、その入力軸9に対して相対回転できるように駆動ギヤ18が配置されている。その駆動ギヤ18に噛み合っているカウンタドリブンギヤ19が、カウンタシャフト17に対して相対回転できるように配置されているとともに、後述する前後進切替機構22における入力要素であるキャリア27に一体に連結されている。また、カウンタシャフト17には、後述する前後進切替機構22における出力要素であるサンギヤ23が取り付けられて一体化されているとともに、カウンタドライブギヤ20が取り付けられて一体化されている。そして、そのカウンタドライブギヤ20に噛み合っている従動ギヤ21が、出力軸15に取り付けられて一体化されている。したがって、上記のカウンタドリブンギヤ19が、この発明における駆動側アイドルギヤに相当し、カウンタドライブギヤ20が、この発明における従動側アイドルギヤに相当している。
 上記のカウンタドリブンギヤ19は、駆動ギヤ18よりも大径であって、駆動ギヤ18からカウンタドリブンギヤ19に向けてトルクを伝達する場合には減速作用が生じるように構成されている。したがって、ギヤ列16の変速比(ギヤ比)は、上記の駆動ギヤ18とカウンタドリブンギヤ19との間の変速比と、カウンタドライブギヤ20と従動ギヤ21との間の変速比を乗算した変速比となる。図1に示すギヤ列16は、その変速比の値が無段変速機1での最大変速比より大きくなるように構成されている。
 そして、この発明に係る動力伝達装置では、上記のギヤ列16におけるカウンタシャフト17と同一軸線上に、前後進切替機構22が配置されている。この前後進切替機構22は、入力軸9から伝達されたトルクをその方向を変えずに伝達する前進状態と、入力軸9から伝達されたトルクをその方向を反転して伝達する後進状態とに切り替えるための機構である。この発明では、3つの回転要素が互いに差動作用をなすいわゆる差動機構によって前後進切替機構22が構成されている。この種の差動機構は、従来種々知られており、この発明ではいずれの差動機構も採用することができる。図1に示す例では、ダブルピニオン型の遊星歯車機構によって前後進切替機構22が構成されている。
 ダブルピニオン型の遊星歯車機構は、外歯歯車であるサンギヤ23と、そのサンギヤ23と同心円上に配置された内歯歯車であるリングギヤ24と、サンギヤ23に噛み合っている第1ピニオンギヤ25と、その第1ピニオンギヤ25およびリングギヤ24に噛み合っている第2ピニオンギヤ26と、これら第1ピニオンギヤ25および第2ピニオンギヤ26を自転かつ公転可能に保持しているキャリア27とを備えている。
 キャリア27には、ギヤ列16のカウンタドリブンギヤ19が一体に連結されていて、入力軸9側から駆動ギヤ18を介してトルクが伝達されるように構成されている。したがってキャリア27が、前後進切替機構22の入力要素となっている。また、リングギヤ24の回転を選択的に止めるブレーキ機構Bが設けられている。したがってリングギヤ24が、前後進切替機構22の反力要素となっている。このブレーキ機構Bは、リングギヤ24とケーシングなどの固定部28との間に設けられており、多板ブレーキなどの摩擦式ブレーキや噛み合い式のブレーキによって構成することができる。また、サンギヤ23にギヤ列16のカウンタシャフト17およびカウンタドライブギヤ20が一体に連結されていて、従動ギヤ21を介して出力軸15にトルクを伝達するように構成されている。したがってサンギヤ23が、前後進切替機構22の出力要素となっている。
 また、サンギヤ23とキャリア27との間に、これらサンギヤ23とキャリア27とを連結して遊星歯車機構の全体を一体回転させるための第1クラッチ機構C1が設けられている。この第1クラッチ機構C1は前進走行状態を設定するためのものであって、フォワードクラッチと称することのできるクラッチである。この第1クラッチ機構C1は、要は、トルクの伝達および遮断を選択的に行うことができるものであればよい。例えば摩擦クラッチや噛み合いクラッチのいずれであってもよいが、係合力に応じて伝達トルク容量が次第に増大もしくは減少する湿式もしくは乾式の摩擦クラッチによって構成されていることが好ましい。また、第1クラッチ機構C1は、入力軸9のトルクを入力要素であるキャリア27に直接伝達するように構成されていることが好ましい。
 要は、第1クラッチ機構C1は、前後進切替機構16を構成している遊星歯車機構における3つの回転要素のうちの少なくとも2つの回転要素を連結して遊星歯車機構の全体を一体化させるように構成されていればよい。この図1に示す例のようなサンギヤ23とキャリア27とを連結する構成の他に、例えば、特開2010-276159号公報や特開2010-216613号公報に記載されている「フォワードクラッチ」のように、サンギヤとリングギヤとを連結するように構成することもできる。あるいは、特開2005-337360号公報に記載されている「フォワードクラッチ」のように、キャリアとリングギヤとを連結するように構成することもできる。また、3つの回転要素の全てを相互に連結して遊星歯車機構の全体を一体化させるように構成することもできる。
 そして、この図1に示す例では、駆動ギヤ18を入力軸9に連結し、またその連結を解くための第3クラッチ機構C3が設けられている。したがって、ギヤ列16の出力軸15側に、上記の第1クラッチ機構C1が設けられ、かつギヤ列16の入力軸9側に、この第3クラッチ機構C3が設けられている。ここで、第1クラッチ機構C1が摩擦式のクラッチであってよいことから、この第3クラッチ機構C3は係合と解放との2つの状態に切り替わる構成のものであればよい。すなわち、第3クラッチ機構C3は、伝達トルク容量が0と最大値との間の値を取る必要がない。そのため、第3クラッチ機構C3は、ドグクラッチやシンクロナイザーなどの噛み合い式のクラッチによって構成することができる。図1には、シンクロナイザーによって第3クラッチ機構C3を構成した例を示してある。すなわち、第3クラッチ機構C3は、駆動ギヤ18のボス部に形成されたスプラインと、入力軸9のハブに形成したスプラインとにスリーブ29を嵌合させることにより、駆動ギヤ18を入力軸9に連結するように構成されている。
 なお、上記のような前後進切替機構22を構成している遊星歯車機構は、共線図(速度線図)によって表すことができる。図1に示す前後進切替機構22を表す共線図の例を図2に示してある。図2において、サンギヤ23、リングギヤ24、およびキャリア27が互いに平行な直線で表されている。それら各直線のうち、サンギヤ23を示す直線とキャリア27を示す直線とが左右の両端に位置し、それらの中央に反力要素であるリングギヤ24を示す直線が配置される。また、サンギヤ23を示す直線とキャリア27を示す直線との間隔を「1」とした場合、サンギヤ23を示す直線とリングギヤ24を示す直線との間隔が、キャリア27の歯数とリングギヤ24の歯数との比(すなわちギヤ比)に相当する値に設定される。そして、各直線の基線L0dとの交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0dに対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、前後進切替機構22の全体が一体となって回転するので、各回転要素の回転数は直線Lfdで示すようになる。これに対して、ブレーキ機構Bによってリングギヤ24を固定した場合には、各回転要素の回転数および回転方向は直線Lrdで示すようになる。すなわち、サンギヤ23がキャリア27に対して反対方向に回転する。
 この図1に示す例は、前述したようにFF車に適するように構成した例である。したがって出力軸15から終減速機であるフロントデファレンシャル30にトルクを出力するように構成されている。すなわち、出力軸15に出力ギヤ31が取り付けられ、この出力ギヤ31に噛み合っている大径ギヤ32が減速ギヤシャフト33に取り付けられている。この減速ギヤシャフト33には小径ギヤ34が取り付けられており、この小径ギヤ34がフロントデファレンシャル30のリングギヤ35に噛み合っている。そして、フロントデファレンシャル30はそのリングギヤ35を介して伝達されたトルクを左右のドライブシャフト36から駆動輪(図示せず)に伝達するように構成されている。
 この発明に係る上記の動力伝達装置は、前進方向に発進する場合および後進走行する場合に、ギヤ列16を備えたトルク伝達経路を経由して入力軸9から出力軸15にトルクを伝達し、ある程度車速が増大した状態で前進走行する場合に、無段変速機1を備えたトルク伝達経路を経由して入力軸9から出力軸15にトルクを伝達するように制御される。例えば、図示しないシフト装置によってドライブポジション(ドライブレンジ)が選択されると、第1クラッチ機構C1と第3クラッチ機構C3とが係合させられ、また第2クラッチ機構C2とブレーキ機構Bとが解放させられる。図3にはこのような係合および解放の状態を表にまとめて示してある。なお、図3で「ON」は係合していることを示し、「OFF」は解放していることを示す。また、括弧を付した「ON」は過渡的に係合状態になることを示している。
 前進方向への発進時に、各クラッチ機構C1,C2,C3、およびブレーキ機構Bをこの図3に示す表のように設定することにより、エンジン2が出力したトルクは、入力軸9、第3クラッチC3、ギヤ列16、および前後進切替機構22を介して、出力軸15に伝達される。すなわち、ギヤ列16における駆動ギヤ18が第3クラッチ機構C3によって入力軸9に連結されているので、入力軸9のトルクは、従動ギヤ21からカウンタドリブンギヤ19を介して前後進切替機構15のキャリア27に伝達される。それとともに、第1クラッチ機構C1を介してサンギヤ23に伝達される。前進時には、前後進切替機構22は、サンギヤ23およびキャリア27の2つの回転要素が第1クラッチ機構C1によって連結されているので、前後進切替機構22の全体が一体化されている。したがって、前後進切替機構22は増減速作用を生じずに、キャリア27から入力されたトルクをそのままサンギヤ23からカウンタドライブギヤ20を介して出力軸15に伝達する。
 そして、出力軸15に伝達されたトルクが出力ギヤ31から減速ギヤ列およびフロントデファレンシャル30を介して左右の駆動輪に伝達され、車両が発進する。なお、無段変速機1は、出力軸15に常時連結されている。そのため、前後進切替機構22に入力されたトルクは、カウンタドライブギヤ20および従動ギヤ21を介して無段変速機1のセカンダリープーリ11にも伝達される。ただし、発進時には、第2クラッチ機構C2が解放状態になっていて、無段変速機1と入力軸9との間ではトルクの伝達が生じないように切り離されている。したがって、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達は生じず、いわゆるインターロック状態となることはない。
 このように発進時には、ギヤ列16および前後進切替機構22を経由して入力軸9から出力軸15にトルクが伝達される。そしてギヤ列16が減速機構として機能することにより、入力軸9と出力軸15との間の変速比は、無段変速機1で設定できる最大変速比よりも大きい変速比となる。その結果、車両としては大きい駆動力を得ることができる。また、無段変速機1には発進時の大きいトルクが掛からないので、伝達トルク容量を設定する油圧を高くする必要がない。そのため、高圧の油圧を発生させるための動力の消費が少なくなって燃費を改善することができ、また無段変速機1の耐久性を向上させることができる。
 発進後、予め決められている所定の車速にまで増速した際には、無段変速機1の変速比を最大値もしくはそれに近い変速比に設定した状態で、第1クラッチ機構C1を解放させる。それとともに、第2クラッチ機構C2を係合させる。前後進切替機構22は、ブレーキ機構Bが解放されている状態で、更に第1クラッチ機構C1が解放されるので、いわゆる自由回転する状態になる。その結果、出力軸15とギヤ列16との連結が解かれる。これに対して、プライマリープーリ10が第2クラッチ機構C2によって入力軸9に連結される。そのため、入力軸9と出力軸15とは無段変速機1を経由してトルクを伝達するように連結される。したがって、無段変速機1による変速比を徐々に減少させ、あるいは車速とアクセル開度とに応じて変化させることにより、エンジン回転数を燃費の良い回転数に設定することができる。
 上記のようにしてギヤ列16を経由するトルクの伝達状態から無段変速機1を経由するトルクの伝達状態に切り替える場合、ギヤ列16による変速比が無段変速機1の最大変速比よりも大きいため、変速比あるいは駆動力が変化することになる。したがって、第1クラッチ機構C1を解放し、かつ第2クラッチ機構C2を係合させる場合、過渡的にそれら第1クラッチ機構C1および第2クラッチ機構C2を滑り係合させるように制御する。すなわち、第2クラッチ機構C2の係合圧を徐々に増大させることにより、その伝達トルク容量を次第に増大させる。これに併せて、第1クラッチ機構C1の係合圧を徐々に低下させることにより、その伝達トルク容量を次第に減少させる。この制御は、従来クラッチ・ツウ・クラッチ制御として知られている制御である。このように第1クラッチ機構C1および第2クラッチ機構C2をそれぞれ制御することにより、出力軸15のトルクが滑らかに変化して変速ショックや違和感が生じることを回避もしくは抑制することができる。
 第1クラッチ機構C1が解放され、かつ第2クラッチ機構C2が完全に係合されて、無段変速機1を経由したトルクの伝達が安定的に行われる状態になった後に、第3クラッチ機構C3が解放される。すなわち、ギヤ列16が入力軸9に対しても切り離される。その場合、前後進切替機構22におけるサンギヤ23には、従動ギヤ21およびカウンタドライブギヤ20を介してセカンダリープーリ11からのトルクが伝達される。しかしながら、リングギヤ24およびキャリア27が自由に回転できる状態になるため、前後進切替機構22を構成している各回転要素同士の間の回転数差が小さくなる。そのため、前後進切替機構22での動力損失や耐久性の低下、あるいは騒音もしくは振動を抑制することができる。なお、第3クラッチ機構C3を解放させる場合、既に第1クラッチ機構C1が解放されていることから、カウンタドリブンギヤ19および駆動ギヤ18にはトルクが掛かっていない。そのため、第3クラッチ機構C3が噛み合い式のクラッチによって構成されていても、走行中にその第3クラッチ機構C3を解放させることができる。言い換えれば、この発明に係る動力伝達装置は、上述したように構成することにより、第3クラッチ機構C3を噛み合い式のクラッチによって構成することができる。
 一方、後進走行する場合には、図3に示すように、第1クラッチ機構C1および第2クラッチ機構C2を解放するとともに、第3クラッチ機構C3およびブレーキ機構Bを係合させる。この場合、前後進切替機構22においては、リングギヤ24がブレーキ機構Bによって固定された状態で、キャリア27に駆動ギヤ18およびカウンタドリブンギヤ19を経由してエンジン2からのトルクが入力される。そのため、サンギヤ23がキャリア27に対して反対方向に回転する。したがって、前進走行の際の発進時と同様に、ギヤ列16および前後進切替機構22を経由して、入力軸9から出力軸15にトルクが伝達される。そしてこの場合は、出力軸15が後進走行する方向に回転する。また、この場合の変速比は、ギヤ列16による変速比と、前後進切替機構22を構成している遊星歯車機構による変速比とを乗算した変速比となる。そして、出力ギヤ31から減速ギヤ列およびフロントデファレンシャル30を介して左右の駆動輪にトルクが伝達され、車両が後進走行する。なお、第2クラッチ機構C2が解放されていて、無段変速機1と入力軸9との間ではトルクの伝達が生じないように切り離されている。したがって、入力軸9と出力軸15との間で無段変速機1を経由したトルクの伝達は生じず、いわゆるインターロック状態となることはない。
 上述したように、この発明に係る上記の動力伝達装置によれば、前進方向への発進時や後進走行する場合、無段変速機1では設定することのできない大きい変速比を設定できる。そのため、発進加速性を向上させることができ、また後進走行時にゆっくりとした走行を行うことができる。また、これらの場合に無段変速機1は走行のためのトルクの伝達には関与しないので、無段変速機1でのベルト挟圧力を高くする必要がない。そのため、挟圧力を発生させるための動力の消費を少なくして動力損失を低減できる。また、無段変速機1の耐久性を向上させることができる。さらに、この発明に係る動力伝達装置では、各クラッチ機構を摩擦クラッチや噛み合いクラッチなどの単一の構成のものとすることができる。そのため、必要とする構成部品を少なくして、動力伝達装置の全体としての構成を簡素化することができる。また動力伝達装置を小型化することができる。
 また、上述の図1に示す構成の動力伝達装置では、第2クラッチ機構C2が入力軸9上に設けられている。そのため、前進走行中に入力軸9側から第2クラッチ機構C2に掛かるトルクは、トルクコンバータ3以外では増減速作用を受けていないトルクになる。すなわち、駆動状態においては、入力軸9におけるトルク以上のトルクが第2クラッチ機構C2に掛かることがない。したがって、第2クラッチ機構C2に大きなトルクが掛かる可能性がある出力軸15上やカウンタシャフト17上に第2クラッチ機構C2を設けた場合と比較して、第2クラッチ機構C2をトルク容量が小さい小型のクラッチとすることができる。
 同様に、上述の図1に示す構成の動力伝達装置では、第3クラッチ機構C3が、入力軸9上で、その入力軸9とギヤ列16の駆動ギヤ18との間に設けられている。そして、その第3クラッチ機構C3が、ギヤ列16および前後進切替機構22を介して出力軸15側にトルクを伝達する場合に、ギヤ列16および前後進切替機構22は第3クラッチ機構C3の出力側で減速機構として機能することになる。したがって、第3クラッチ機構C3にはギヤ列16で増大させられたトルクが掛かることがない。そのため、第3クラッチ機構C3に大きなトルクが掛かる可能性がある出力軸15上やカウンタシャフト17上に第3クラッチ機構C3を設けた場合と比較して、第3クラッチ機構C3をトルク容量が小さい小型のクラッチとすることができる。
 この発明に係る動力伝達装置は、ギヤ列16および前後進切替機構22を備えたトルク伝達経路を介して入力軸9から出力軸15にトルクを伝達する場合に、無段変速機1を備えたトルク伝達経路が入力軸9もしくは出力軸15から切り離される。また反対に、無段変速機1を備えたトルク伝達経路を介して入力軸9と出力軸15との間でトルクを伝達する場合には、ギヤ列16および前後進切替機構22を備えたトルク伝達経路が入力軸9もしくは出力軸15から切り離される。そのため、第2クラッチ機構C2および第3クラッチ機構C3は、必ずしも上述した図1に示す位置に設けられている必要はない。したがって、第2クラッチ機構C2および第3クラッチ機構C3は、それぞれの本来の機能を損なわない範囲で適宜な位置に設けることができる。以下、その他の構成例を図4から図8に示して説明する。
 図4に示す動力伝達装置は、図1に示す構成のうち第3クラッチ機構C3が出力軸15と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図4の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図4に図1と同じ符号を付けてその説明を省略する。
 第3クラッチ機構C3は、前述したように噛み合い式のクラッチであり、この図4に示す例では、出力軸15もしくはセカンダリーシャフト14と同一軸線上に配置されている。そして、この図4に示す例における第3クラッチ機構C3は、ギヤ列16の従動ギヤ21と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図1に示す構成に対して第3クラッチ機構C3の配置が上記のように変更されたことに伴って、ギヤ列16の駆動ギヤ18が入力軸9に一体となって回転するように取り付けられている。また、入力軸9と無段変速機1のプライマリーシャフト13とが、第2クラッチ機構C2のみを介して連結されている。
 この図4に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、第3クラッチ機構C3、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列16および前後進切替機構22を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図4に示す構成では、前述の図1に示す動力伝達装置の構成と同様に、第2クラッチ機構C2が無段変速機1のいわゆる入力側に配置されている。したがって、前述の図1に示す動力伝達装置の場合と同様に、エンジン2の動力で前進走行している場合には、エンジン2から入力軸9に伝達されたトルク以上のトルクが第2クラッチ機構C2に掛かることがない。そのため、この図4に示す構成においても、第2クラッチ機構C2の小型化を図ることができる。
 そして、この図4に示す構成では、上記のように第3クラッチ機構C3が、出力軸15と同一軸線上に配置されている。したがって、エンジン2から入力軸9に伝達されたトルクは、ギヤ列16および前後進切替機構22で減速されて第3クラッチ機構C3における従動ギヤ21側の回転部材に伝達される。その結果、第3クラッチ機構C3にエンジン2からのトルクがそのままの回転数で伝達される場合と比較して、第3クラッチ機構C3における従動ギヤ21側の回転部材と出力軸15側の回転部材との間の回転数差が小さくなる。言い換えると、第3クラッチ機構C3における入力側の回転部材と出力側の回転部材との間の回転数差が小さくなる。そのため、第3クラッチ機構C3における係合制御を容易に行うことができる。また、第3クラッチ機構C3の耐久性を向上させることができる。
 図5に示す動力伝達装置は、図1に示す構成のうち第3クラッチ機構C3が、この発明における中間軸に相当しているギヤ列16のカウンタシャフト17と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図5の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図5に図1と同じ符号を付けてその説明を省略する。
 第3クラッチ機構C3は、前述したように噛み合い式のクラッチであり、この図5に示す例では、前後進切替機構22と共に、ギヤ列16におけるカウンタシャフト17と同一軸線上に配置されている。そして、この図5に示す例における第3クラッチ機構C3は、ギヤ列16におけるアイドルギヤの1つであるカウンタドリブンギヤ19と、前後進切替機構22のキャリア27との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図1に示す構成に対して第3クラッチ機構C3の配置が上記のように変更されたことに伴って、ギヤ列16の駆動ギヤ18が入力軸9に一体となって回転するように取り付けられている。また、入力軸9と無段変速機1のプライマリーシャフト13とが、第2クラッチ機構C2のみを介して連結されている。
 この図5に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、第3クラッチ機構C3、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列16および前後進切替機構22を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図5に示す構成では、前述の図1に示す動力伝達装置の構成と同様に、第2クラッチ機構C2が無段変速機1のいわゆる入力側に配置されている。したがって、前述の図1に示す動力伝達装置の場合と同様に、エンジン2の動力で前進走行している場合には、エンジン2から入力軸9に伝達されたトルク以上のトルクが第2クラッチ機構C2に掛かることがない。そのため、この図5に示す構成においても、第2クラッチ機構C2の小型化を図ることができる。
 そして、この図5に示す構成では、上記のように第3クラッチ機構C3が、ギヤ列16のカウンタシャフト17と同一軸線上に配置されている。したがって、ギヤ列16における駆動ギヤ18とカウンタドリブンギヤ19とのギヤ対を、入力軸9からカウンタシャフト17に向けてトルクを伝達する場合の減速機構として構成することにより、エンジン2から入力軸9に伝達されたトルクは、ギヤ列16における駆動ギヤ18とカウンタドリブンギヤ19との間で減速されて、第3クラッチ機構C3におけるカウンタシャフト17側の回転部材に伝達される。その結果、第3クラッチ機構C3にエンジン2からのトルクがそのままの回転数で伝達される場合と比較して、第3クラッチ機構C3におけるカウンタドリブンギヤ19の回転部材とキャリア27側の回転部材との間の回転数差が小さくなる。言い換えると、第3クラッチ機構C3における入力側回転部材と出力側回転部材との間の回転数差が小さくなる。そのため、第3クラッチ機構C3における係合制御を容易に行うことができる。また、第3クラッチ機構C3の耐久性を向上させることができる。
 図6に示す動力伝達装置は、図1に示す構成のうち第2クラッチ機構C2が出力軸15と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図6の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図6に図1と同じ符号を付けてその説明を省略する。
 この発明における第2クラッチ機構C2は、入力軸9から無段変速機1を経由して出力軸15に至るトルク伝達経路でトルクの伝達と遮断とを行うクラッチである。この図6に示す例では、第2クラッチ機構C2は、出力軸15と同一軸線上に配置され、無段変速機1のセカンダリーシャフト14と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図1に示す構成に対して第2クラッチ機構C2の配置が上記のように変更されたことに伴って、入力軸9と無段変速機1のプライマリーシャフト13とが直接連結されている。
 この図6に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、第3クラッチ機構C3、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列16および前後進切替機構22を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図6に示す構成では、前述の図1に示す動力伝達装置の構成と同様に、第3クラッチ機構C3が、入力軸9上で、その入力軸9とギヤ列16の駆動ギヤ18との間に設けられている。したがって、前述の図1に示す動力伝達装置の場合と同様に、第3クラッチ機構C3にはギヤ列16で増大させられたトルクが掛かることがない。そのため、この図6に示す構成においても、第3クラッチ機構C3の小型化を図ることができる。
 そして、この図6に示す構成では、第2クラッチ機構C2が無段変速機1のいわゆる出力側に配置されている。そのため、ギヤ列16および前後進切替機構22を介して入力軸9と出力軸15とが連結されている状態で減速する場合に、第2クラッチ機構C2によって無段変速機1を出力軸15に対して遮断することができる。その結果、無段変速機1に過大なトルクが作用することを回避し、無段変速機1の耐久性を向上させることができる。すなわち、第1クラッチ機構C1および第3クラッチ機構C3を係合させた状態で減速する場合、車両の走行慣性力に基づくトルクが出力軸15に作用する。その場合、出力軸15と無段変速機1のセカンダリーシャフト14との間は、第2クラッチ機構C2が解放状態になっていて遮断されている。したがって、減速時のいわゆる逆入力トルクが無段変速機1に掛かることがない。そのため、無段変速機1に不必要に作用するトルクを低減し、かつ不必要な回転を抑制することができる。その結果、無段変速機1の耐久性を向上させることができる。
 図7に示す動力伝達装置は、図1に示す構成のうち第2クラッチ機構C2および第3クラッチ機構C3が、前後進切替機構22と共に出力軸15と同一軸線上に配置され、その他は図1に示す例と同様に構成されている。したがって、この図7の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図7に図1と同じ符号を付けてその説明を省略する。
 この図7に示す例では、第2クラッチ機構C2は、上記の図6に示す動力伝達装置の構成と同様に、出力軸15と同一軸線上に配置され、無段変速機1のセカンダリーシャフト14と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。また、第3クラッチ機構C3は、前述の図4に示す動力伝達装置の構成と同様に、出力軸15もしくはセカンダリーシャフト14と同一軸線上に配置され、ギヤ列16の従動ギヤ21と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。図1に示す構成に対して第2クラッチ機構C2および第3クラッチ機構C3の配置が上記のように変更されたことに伴って、ギヤ列16の駆動ギヤ18が入力軸9に一体となって回転するように取り付けられている。また、入力軸9と無段変速機1のプライマリーシャフト13とが直接連結されている。
 この図7に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、第3クラッチ機構C3、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列16および前後進切替機構22を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図7に示す構成では、前述の図4に示す動力伝達装置の構成と同様に、第3クラッチ機構C3が、出力軸15上で、ギヤ列16の従動ギヤ21と出力軸15との間に設けられている。したがって、前述の図4に示す動力伝達装置の場合と同様に、第3クラッチ機構C3における入力側の回転部材と出力側の回転部材との間の回転数差が小さくなる。そのため、この図7に示す構成においても、第3クラッチ機構C3における係合制御を容易に行うことができる。また、第3クラッチ機構C3の耐久性を向上させることができる。
 そして、この図7に示す構成では、上記の図6に示す動力伝達装置の構成と同様に、第2クラッチ機構C2が無段変速機1のいわゆる出力側に配置されている。したがって、上記の図6に示す動力伝達装置の場合と同様に、ギヤ列16および前後進切替機構22を介して入力軸9と出力軸15とが連結されている状態で減速する場合に、第2クラッチ機構C2によって無段変速機1を出力軸15に対して遮断することができる。そのため、この図7に示す構成においても、無段変速機1に過大なトルクが作用することを回避し、無段変速機1の耐久性を向上させることができる。
 図8に示す動力伝達装置は、図1に示す構成のうち第2クラッチ機構C2が出力軸15と同一軸線上に配置され、第3クラッチ機構C3が、前後進切替機構22と共にギヤ列16のカウンタシャフト17と同一軸線上に配置されている。そして、その他は図1に示す例と同様に構成されている。したがって、この図8の構成のうち図1と異なる部分のみ説明し、図1と同様の構成の部分には図8に図1と同じ符号を付けてその説明を省略する。
 この図8に示す例では、第2クラッチ機構C2は、上記の図6,図7に示す動力伝達装置の構成と同様に、出力軸15と同一軸線上に配置され、無段変速機1のセカンダリーシャフト14と出力軸15との間におけるトルクの伝達および遮断を選択的に行うように構成されている。また、第3クラッチ機構C3は、前述の図5に示す動力伝達装置の構成と同様に、ギヤ列16のカウンタシャフト17と同一軸線上に配置され、ギヤ列16のカウンタドリブンギヤ19と前後進切替機構22のキャリア27との間におけるトルクの伝達および遮断を選択的に行う構成されている。図1に示す構成に対して第2クラッチ機構C2および第3クラッチ機構C3の配置が上記のように変更されたことに伴って、ギヤ列16の駆動ギヤ18が入力軸9に一体となって回転するように取り付けられている。また、入力軸9と無段変速機1のプライマリーシャフト13とが直接連結されている。
 この図8に示すように構成された動力伝達装置においても、第1クラッチ機構C1、第2クラッチ機構C2、第3クラッチ機構C3、およびブレーキ機構Bは、前進方向への発進時、前進走行時、および後進走行時に、それぞれ、前述の図3に示すように係合もしくは解放させられる。そして、前述の図1に示す動力伝達装置の場合と同様にして、ギヤ列16および前後進切替機構22を主体とするトルク伝達経路を介したトルクの伝達、および無段変速機1を主体とするトルク伝達経路を介したトルクの伝達が行われる。そして、図1に示す動力伝達装置と同様に作用させ、また同様の効果を得ることができる。
 また、この図8に示す構成では、上記の図6,図7に示す動力伝達装置の構成と同様に、第2クラッチ機構C2が無段変速機1のいわゆる出力側に配置されている。したがって、上記の図6,図7に示す動力伝達装置の場合と同様に、ギヤ列16および前後進切替機構22を介して入力軸9と出力軸15とが連結されている状態で減速する場合に、第2クラッチ機構C2によって無段変速機1を出力軸15に対して遮断することができる。そのため、この図8に示す構成においても、無段変速機1に過大なトルクが作用することを回避し、無段変速機1の耐久性を向上させることができる。
 そして、この図8に示す構成では、前述の図5に示す動力伝達装置の構成と同様に、第3クラッチ機構C3がギヤ列16のカウンタシャフト17と同一軸線上に配置されている。したがって、前述の図5に示す動力伝達装置の場合と同様に、ギヤ列16における駆動ギヤ18とカウンタドリブンギヤ19とのギヤ対を、入力軸9からカウンタシャフト17に向けてトルクを伝達する場合の減速機構として構成することにより、第3クラッチ機構C3における入力側の回転部材と出力側の回転部材との間の回転数差が小さくなる。そのため、第3クラッチ機構C3における係合制御を容易に行うことができる。また、第3クラッチ機構C3の耐久性を向上させることができる。
 なお、この図8に示す構成および前述の図5に示す構成のように、第3クラッチ機構C3をカウンタシャフト17上に配置する場合、カウンタドライブギヤ20をカウンタシャフト17に対して連結し、またその連結を解除するように構成する替わりに、カウンタドリブンギヤ19をカウンタシャフト17に対して連結し、またその連結を解除するように、第3クラッチ機構C3を構成してもよい。あるいは、カウンタドリブンギヤ19とカウンタドライブギヤ20とを一体に連結しておき、これをカウンタシャフト17に対して連結し、またその連結を解くように、第3クラッチ機構C3を構成してもよい。
 この発明に係る動力伝達装置は、前後進切替機構22を、上述したダブルピニオン型の遊星歯車機構に替えて、シングルピニオン型の遊星歯車機構によって構成することもできる。その例を図9に記載してある。この発明における前後進切替機構22をシングルピニオン型の遊星歯車機構37を使用して構成する場合、サンギヤ38が入力要素とされ、キャリア39が反力要素とされ、そしてリングギヤ40が出力要素とされている。したがってキャリア39に、そのキャリア39の回転を選択的に止めるブレーキ機構Bが設けられている。また、サンギヤ38にギヤ列16のカウンタドリブンギヤ19が連結され、リングギヤ40にカウンタシャフト17が連結されている。そして、サンギヤ38とリングギヤ40との間に、それらサンギヤ38とリングギヤ40とを選択的に連結する第1クラッチ機構C1が設けられている。
 上記のようにシングルピニオン型の遊星歯車機構37で構成した前後進切替機構22を表す共線図(速度線図)の例を図10に示してある。図10において、サンギヤ38、キャリア39、およびリングギヤ40が互いに平行な直線で表されている。それら各直線のうち、サンギヤ38を示す直線とリングギヤ40を示す直線とが左右の両端に位置し、それらの中央に反力要素であるキャリア39を示す直線が配置される。また、サンギヤ38を示す直線とリングギヤ24を示す直線との間隔を「1」とした場合、キャリア39を示す直線とリングギヤ40を示す直線との間隔が、サンギヤ38の歯数とキャリア39の歯数との比(すなわちギヤ比)に相当する値に設定される。そして、各直線の基線L0sとの交点からの距離が、それぞれの回転要素の回転数を示している。また基線L0sに対する位置が、それぞれの回転要素の回転方向を示している。したがって、第1クラッチ機構C1を係合させた場合は、遊星歯車機構37すなわち前後進切替機構22の全体が一体となって回転するので、各回転要素の回転数は直線Lfsで示すようになる。これに対して、ブレーキ機構Bによってキャリア39を固定した場合には、各回転要素の回転数および回転方向は直線Lrsで示すようになる。すなわち、リングギヤ40がサンギヤ38に対して反対方向に回転する。
 このように、前後進切替機構22をシングルピニオン型の遊星歯車機構37で構成した場合であっても、前述したダブルピニオン型の遊星歯車機構で構成した前後進切替機構22と同様に機能させることができる。また、ダブルピニオン型の遊星歯車機構に替えてシングルピニオン型の遊星歯車機構37を使用することにより、装置を簡素化することができる。
 以上のように、この発明に係る動力伝達装置によれば、前後進切替機構22における少なくとも2つの回転要素を第1クラッチ機構C1によって連結することにより、前後進切替機構22の全体が一体となって回転する。その結果、入力軸9と出力軸15との間でギヤ列16が前後進切替機構22を介して動力伝達可能な状態になる。その状態で第2クラッチ機構C2を解放させ、かつ第3クラッチ機構C3を係合させることにより、出力軸15に対して無段変速機1が遮断され、かつギヤ列16が前後進切替機構22を介して出力軸15に連結される。すなわち、入力軸9と出力軸15とが、ギヤ列16および前後進切替機構22を介して連結される。その場合、ギヤ列16による変速比は、無段変速機1で設定することのできない変速比である。すなわち、無段変速機1での最大変速比より大きい変速比、もしくは最小変速比より小さい変速比である。そのため、動力伝達装置の全体としての変速比幅を、無段変速機1で設定することのできる変速比幅よりも広くすることができる。
 また、第1クラッチ機構1に替えてブレーキ機構Bを係合させることにより、前後進切替機構22における反力要素の回転が止められ、その結果、前後進切替機構22における出力要素が入力要素に対して反対方向に回転する。すなわち、車両を後進走行させることができる。その場合、トルクは、ギヤ列16および前後進切替機構22を介して前後進切替機構22の出力要素から出力軸15に伝達される。したがって、その場合に動力伝達装置の全体として設定される変速比は、無段変速機1では設定することのできない大きい変速比となる。すなわち、後進走行時においても、動力伝達装置の全体としての変速比幅を広くすることができる。
 なお、上述した第1クラッチ機構C1、第2クラッチ機構C2、ならびに第3クラッチ機構C3、および各ギヤのそれぞれの軸線方向での位置は、設計上適宜に決めることができる。例えば、上述した各具体例における構成部材のうち隣接する構成部材同士の位置を軸線方向で相互に入れ替えることもできる。
 また、上述した各具体例は、ギヤ列16による変速比を無段変速機1での最大変速比より大きくした例であるが、この発明は、要は、無段変速機1で設定できない変速比をギヤ列16によって設定するように構成されていればよい。したがって、ギヤ列16による変速比を無段変速機1での最小変速比よりも小さくしてもよい。このように構成すれば、エンジン2を低負荷で運転して走行する場合に、エンジン回転数を無段変速機1で変速比を設定する場合よりも低回転数にすることができる。その結果、車両の燃費を更に向上させることができる。
 また、上述した各具体例では、1つの変速比(ギヤ比)を有するギヤ列16を用いた構成を示しているが、この発明におけるギヤ列は、2つ以上の変速比(ギヤ比)を有し、それらの変速比を選択して設定できるギヤ列であってもよい。

Claims (14)

  1.  駆動力源が出力したトルクが入力される入力軸とトルクを出力する出力軸との間に、変速比を連続的に変化させる無段変速機と、前記入力軸および前記出力軸とは異なる位置に配置された中間軸を有し前記無段変速機で設定できない少なくとも1つの変速比を設定するギヤ列とが、それぞれ、前記入力軸と前記出力軸との間でトルクを伝達できるように設けられた車両用動力伝達装置において、
     入力要素、出力要素、および回転が止められることにより前記入力要素と前記出力要素とを互いに反対方向に回転させる反力要素の3つの回転要素によって差動作用を行う前後進切替機構が、前記中間軸と同一軸線上に配置され、
     前記3つの回転要素の少なくともいずれか2つの回転要素を連結する第1クラッチ機構と、前記反力要素の回転を止めるブレーキ機構とが設けられ、
     前記入力軸と前記出力軸とが前記無段変速機を介して連結されるとともに、前記入力軸から前記無段変速機を経由して前記出力軸に至る第1トルク伝達経路に、トルクの伝達と遮断とを行う第2クラッチ機構が設けられ、
     前記入力軸と前記出力軸とが前記ギヤ列および前記前後進切替機構を介して連結されるとともに、前記入力軸から前記入力要素に至る第2トルク伝達経路もしくは前記出力要素から前記出力軸に至る第3トルク伝達経路に、トルクの伝達と遮断とを行う第3クラッチ機構が設けられている
    ことを特徴とする車両用動力伝達装置。
  2.  前記ギヤ列は、前記複数のギヤによって、前記無段変速機の最大変速比より大きい変速比、もしくは前記無段変速機の最小変速比より小さい変速比を設定するように構成されていることを特徴とする請求項1に記載の車両用動力伝達装置。
  3.  前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有し、
     前記第2クラッチ機構は、前記入力軸と前記駆動側部材との間に設けられてこれら入力軸と駆動側部材とを選択的に連結するように構成されていることを特徴とする請求項1または2に記載の車両用動力伝達装置。
  4.  前記無段変速機は、前記入力軸からトルクが伝達される駆動側部材と前記出力軸にトルクを出力する出力側部材とを有し、
     前記第2クラッチ機構は、前記出力側部材と前記出力軸との間に設けられてこれら出力側部材と出力軸とを選択的に連結するように構成されていることを特徴とする請求項1または2に記載の車両用動力伝達装置。
  5.  前記第1クラッチ機構と前記第2クラッチ機構とは、それぞれ、摩擦クラッチによって構成されていることを特徴とする請求項1から4のいずれかに記載の車両用動力伝達装置。
  6.  前記第3クラッチ機構は、噛み合い式のクラッチによって構成されていることを特徴とする請求項1から5のいずれかに記載の車両用動力伝達装置。
  7.  前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとを含み、
     前記第3クラッチ機構は、前記入力軸と前記駆動ギヤとの間の連結および遮断を行うように構成されている
    ことを特徴とする請求項1から6のいずれかに記載の車両用動力伝達装置。
  8.  前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとを含み、
     前記第3クラッチ機構は、前記従動ギヤと前記出力軸との間の連結および遮断を行うように構成されている
    ことを特徴とする請求項1から6のいずれかに記載の車両用動力伝達装置。
  9.  前記ギヤ列は、前記入力軸と同一軸線上に配置された駆動ギヤと、前記出力軸と同一軸線上に配置された従動ギヤと、前記中間軸と同一軸線上に配置されて前記駆動ギヤと前記入力要素との間でトルクを伝達する駆動側アイドルギヤと、前記中間軸と同一軸線上に配置されて前記出力要素と前記従動ギヤとの間でトルクを伝達する従動側アイドルギヤとを含み、
     前記第3クラッチ機構は、前記駆動側アイドルギヤと前記入力要素とを連結し、またその連結を解除するように構成されている
    ことを特徴とする請求項1から6のいずれかに記載の車両用動力伝達装置。
  10.  前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤに噛み合っている第1ピニオンギヤと、その第1ピニオンギヤおよび前記リングギヤに噛み合っている第2ピニオンギヤと、これら第1ピニオンギヤおよび第2ピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたダブルピニオン型遊星歯車機構を含むことを特徴とする請求項1から9のいずれかに記載の車両用動力伝達装置。
  11.  前記サンギヤは、前記中間軸および前記従動側アイドルギヤに連結され、
     前記キャリアは、前記駆動側アイドルギヤに直接もしくは前記第3クラッチ機構を介して連結され、
     前記リングギヤは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項10に記載の車両用動力伝達装置。
  12.  前記前後進切替機構は、外歯歯車であるサンギヤと、そのサンギヤと同心円上に配置された内歯歯車であるリングギヤと、前記サンギヤおよび前記リングギヤに噛み合っているピニオンギヤと、そのピニオンギヤを自転かつ公転可能に保持しているキャリアとを備えたシングルピニオン型遊星歯車機構を含むことを特徴とする請求項1から9のいずれかに記載の車両用動力伝達装置。
  13.  前記リングギヤは、前記中間軸および前記従動側アイドルギヤに連結され、
     前記サンギヤは、前記駆動側アイドルギヤに直接もしくは前記第3クラッチ機構を介して連結され、
     前記キャリアは、前記ブレーキ機構によって回転が止められるように構成されている
    ことを特徴とする請求項12に記載の車両用動力伝達装置。
  14.  前記前後進切替機構は、複数の回転要素を互いに平行な直線で示し、かつ前記直線に直交する基線との交点からの長さおよび前記基線に対する位置で前記各回転要素の回転速度を示す共線図によって、前記入力要素、前記出力要素、および前記反力要素のそれぞれの回転速度を表すことのできる遊星歯車機構を含み、
     前記反力要素は、前記共線図における中央に位置する線で表される要素であり、前記入力要素は、前記共線図における左右いずれか一方の線で表される要素であり、さらに前記出力要素は、前記共線図における左右いずれか一方の線で表される要素である
    ことを特徴とする請求項1から13のいずれかに記載の車両用動力伝達装置。
PCT/JP2012/063178 2012-05-23 2012-05-23 車両用動力伝達装置 WO2013175586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014516566A JP5835476B2 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置
PCT/JP2012/063178 WO2013175586A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063178 WO2013175586A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置

Publications (1)

Publication Number Publication Date
WO2013175586A1 true WO2013175586A1 (ja) 2013-11-28

Family

ID=49623317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063178 WO2013175586A1 (ja) 2012-05-23 2012-05-23 車両用動力伝達装置

Country Status (2)

Country Link
JP (1) JP5835476B2 (ja)
WO (1) WO2013175586A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234960A (ja) * 1990-02-13 1991-10-18 Nissan Motor Co Ltd 複合変速機の制御装置
JP2002005259A (ja) * 2000-06-16 2002-01-09 Toyota Motor Corp 無段変速機
JP2002048213A (ja) * 2000-08-01 2002-02-15 Toyota Motor Corp 無段変速機構を備えた変速機
JP2004176890A (ja) * 2002-11-29 2004-06-24 Equos Research Co Ltd 無限変速機
JP2008144904A (ja) * 2006-12-12 2008-06-26 Nissan Motor Co Ltd パワースプリット型無段変速装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234960A (ja) * 1990-02-13 1991-10-18 Nissan Motor Co Ltd 複合変速機の制御装置
JP2002005259A (ja) * 2000-06-16 2002-01-09 Toyota Motor Corp 無段変速機
JP2002048213A (ja) * 2000-08-01 2002-02-15 Toyota Motor Corp 無段変速機構を備えた変速機
JP2004176890A (ja) * 2002-11-29 2004-06-24 Equos Research Co Ltd 無限変速機
JP2008144904A (ja) * 2006-12-12 2008-06-26 Nissan Motor Co Ltd パワースプリット型無段変速装置

Also Published As

Publication number Publication date
JP5835476B2 (ja) 2015-12-24
JPWO2013175586A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5765485B2 (ja) 車両用動力伝達装置
JP5800088B2 (ja) 車両用動力伝達装置
WO2013175582A1 (ja) 車両用動力伝達装置
JP5861778B2 (ja) 車両用動力伝達装置
JP5835477B2 (ja) 車両用動力伝達装置
JP5832002B2 (ja) 無段変速機
JP5447739B1 (ja) 車両の制御装置
JP5655995B1 (ja) 車両用変速機の制御装置
JP5861777B2 (ja) 車両用動力伝達装置
JP2002048213A (ja) 無段変速機構を備えた変速機
JP5595598B2 (ja) 無段変速機
JP5835476B2 (ja) 車両用動力伝達装置
JP2008002550A (ja) 動力伝達装置
WO2014147779A1 (ja) 自動変速機の制御装置
JP6072715B2 (ja) 無段変速機
JP2002122207A (ja) 変速機
JP2004245329A (ja) 動力伝達装置
JP2013072503A (ja) 無段変速機
JP2017211013A (ja) 動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877460

Country of ref document: EP

Kind code of ref document: A1