WO2013174104A1 - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2013174104A1
WO2013174104A1 PCT/CN2012/084121 CN2012084121W WO2013174104A1 WO 2013174104 A1 WO2013174104 A1 WO 2013174104A1 CN 2012084121 W CN2012084121 W CN 2012084121W WO 2013174104 A1 WO2013174104 A1 WO 2013174104A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
electroluminescent device
light
organic electroluminescent
Prior art date
Application number
PCT/CN2012/084121
Other languages
English (en)
French (fr)
Inventor
杨栋芳
肖田
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013174104A1 publication Critical patent/WO2013174104A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescent device and a method of fabricating the same. Background technique
  • OLED Organic Light-Emitting Device
  • OLED Organic Electroluminescent Device: Organic Light-Emitting Device
  • the structure of the OLED generally includes a substrate 1, an anode layer 2, a cathode layer 10, and an organic functional layer disposed between the anode layer 2 and the cathode layer 10.
  • the organic functional layer generally includes The hole injection layer 3, the hole transport layer 4, the electron blocking layer 5, the light-emitting layer 6, the hole and exciton blocking layer 7, the electron transport layer 8, and the electron injection layer 9.
  • the luminescence mechanism of the OLED is: when a voltage is applied between the anode layer 2 and the cathode layer 10, the holes injected from the side of the anode layer 2 pass through the hole injection layer 3 and the hole transport layer 4 under the driving of the external voltage. Arriving in the light-emitting layer 6, electrons injected from the side of the cathode layer 10 pass through the electron injection layer 9 and the electron transport layer 8 to reach the light-emitting layer 6, and holes and electrons reaching the light-emitting layer 6 are combined to form excitons in the light-emitting layer.
  • the exciton radiation transition emits light to produce a luminescence phenomenon, that is, electroluminescence.
  • the excited electron spin (electron spin) and the ground state electron are paired, it is a singlet exciton (Single), and the light released is so-called fluorescence (Fluorescence);
  • the electron and ground state electron spins are unpaired and parallel, and are triplet excitons (triplets), which emit light called so-called Phosphorescence.
  • the injected holes will More than electrons, such that a large amount of uncomplexed holes are accumulated at the interface, and these holes move toward the cathode layer 10 under the action of an electric field, and excess hole cations are formed in the electron transport layer 8, and such hole cations
  • the presence ultimately leads to a reduction in the lifetime of the OLED.
  • an organic electroluminescent device comprising a substrate, an anode layer, a cathode layer, and an organic functional layer disposed between the anode layer and the cathode layer, the organic functional layer comprising a light emitting a layer, wherein the light-emitting layer is provided with one or more insertion layers, the one or more insertion layers separating the light-emitting layer into two or more sub-light-emitting layers, and the insertion layer has a hole transporting capability smaller than Electronic transmission capability.
  • the hole mobility of the intercalation layer is lower than the hole mobility of the sub-light-emitting layer.
  • the HOMO of the intercalation layer is lower than the HOMO of the sub-luminescent layer, the electron mobility of the intercalation layer is higher than the electron mobility of the sub-luminescent layer, the intercalation layer
  • the triplet energy is equal to or higher than the triplet energy of the sub-luminescent layer, and the singlet energy of the intercalating layer is equal to or higher than the singlet energy of the sub-luminescent layer.
  • the hole mobility of the intercalation layer is 5 times or more lower than the hole mobility of the sub-light emitting layer, preferably 10 times; the electron mobility of the intercalation layer is high.
  • the electron mobility of the sub-light-emitting layer is 5 times or more, preferably 10 times.
  • the interposer layer is provided with one layer, and the interposer layer will be issued Separating the optical layer into a first sub-emissive layer and a second sub-emissive layer, wherein the first sub-emissive layer and the second sub-emissive layer have a thickness ratio of 1:50 - 50:1, the first sub-emitting layer and the first
  • the two sub-luminescent layers are made of the same material.
  • the thickness of the intercalation layer ranges from 1 to 20 nm.
  • the intercalation layer can be made of an organic material or an inorganic material.
  • the organic material from which the intercalation layer is formed is an organic material having a hole blocking property.
  • the intercalation layer is made of an organic material which may include an phenanthroline derivative, an oxazole derivative, a thiazole derivative, an imidazole derivative, a metal quinoline complex, or an anthraquinone.
  • the intercalation layer is made of BCP, Bphen, or TPBI.
  • the sub-light-emitting layer is made of an organic material having an undoped fluorescent light-emitting material composed of a light-emitting material having a hole transporting ability, or a fluorescent dopant and a matrix material.
  • the organic material is doped with a fluorescent material, or is made of an organic material doped with a phosphorescent material composed of a phosphorescent dopant and a host material.
  • the luminescent material having hole transporting ability includes NPB or DPVBI;
  • the fluorescent dopant includes coumarin dye (coumarin 6, C-545T), quinacridone ( a DMQA), or a DCM series;
  • the phosphorescent dopant comprising a metal complex luminescent material based on Ir, Pt, Ru, or Cu;
  • the matrix material comprising a metal complex, a ruthenium derivative, an aromatic diamine compound A triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, or a triarylamine polymer.
  • the metal complex luminescent material based on Ir, Pt, Ru, or Cu includes FIrpic, Fir6, Fir, FIrtaz, Ir(ppy) 3 , Ir(ppy) 2 (acac), PtOEP, (btp) 2 Iracac, Ir (piq) 2 (acac), or (MDQ) 2 Iracac;
  • the matrix material comprises bis(2-mercapto-8-hydroxyquinoline) (p-phenylphenol) aluminum (Balq), 9, 10-di- (2-Naphthyl) anthracene (ADN), TAZ, CBP, MCP, TCTA, or NPB.
  • Another aspect of the present invention provides a method of fabricating an organic electroluminescent device, comprising the steps of fabricating a light-emitting layer, wherein the process of fabricating the light-emitting layer comprises:
  • Steps 2) -3) fabricating a sub-luminescent layer on the intercalation layer; Wherein, the hole mobility of the inserted layer is lower than the hole mobility of the sub-light-emitting layer; if the intercalation layer is used as one layer, then the light-emitting layer is formed; if more than one layer is used for the intercalation layer, Steps 2) -3) are repeated according to the number of layers of the intercalation layer to finally form a light-emitting layer.
  • Embodiments of the present invention can improve the luminous efficiency of an organic electroluminescent device while facilitating the improvement of the lifetime of the organic electroluminescent device. Moreover, since the organic electroluminescent device of the embodiment of the present invention is prepared by using the basic process of the existing OLED, there is no need to add an additional process or use a more expensive material, so that the production cost is not increased. DRAWINGS
  • FIG. 1 is a schematic structural view of an organic electroluminescent device in the prior art
  • FIG. 2 is a schematic structural view of an organic electroluminescent device according to Embodiment 1 of the present invention.
  • Figure 5 is a light language curve of the organic electroluminescent device of Figure 2;
  • FIG. 6 is a schematic structural view of an organic electroluminescent device according to Embodiment 2 of the present invention.
  • FIG. 7 is a flow chart of a method for preparing a light-emitting layer in an organic electroluminescent device according to the present invention.
  • Fig. 8 is a view showing the structure of an energy level of an organic electroluminescence device according to Embodiment 1 of the present invention.
  • An embodiment of the present invention provides an organic electroluminescent device comprising a substrate, an anode layer, a cathode layer, and an organic functional layer disposed between the anode layer and the cathode layer, the organic functional layer including the light emitting layer Floor.
  • One or more insertion layers are disposed in the light-emitting layer, and the one or more insertion layers partition the light-emitting layer into two or more sub-light-emitting layers, and the insertion layer has a capability of transporting holes to less than electrons. .
  • the hole layer has a hole mobility lower than that of the sub-light emitting layer.
  • the HOMO (Highest Occupied Molecular Orbital) of the intercalation layer is lower than the HOMO of the sub-luminescent layer, and the electron mobility of the intercalation layer is higher than the electron mobility of the sub-emitting layer.
  • the triplet energy of the intercalation layer is equal to or higher than the triplet energy of the sub-luminescent layer, and the singlet energy in the intercalation layer is equal to or higher than the singlet energy in the sub-luminescent layer.
  • Another embodiment of the present invention provides a method of fabricating an organic electroluminescent device comprising the steps of fabricating a light-emitting layer.
  • the manufacturing process of the luminescent layer further includes the following steps.
  • the hole mobility of the produced intercalation layer is lower than the hole mobility of the sub-light-emitting layer.
  • intercalation layer If the intercalation layer is used as one layer, two sub-light-emitting layers are formed; Then, according to the number of layers of the intercalation layer, steps 2) to 3) are repeatedly performed to finally form a light-emitting layer.
  • the organic electroluminescent device comprises a substrate 1, an anode layer 2, a cathode layer 10, and an organic functional layer disposed between the anode layer 2 and the cathode layer 10.
  • the anode layer 2 is disposed on the substrate 1.
  • the organic functional layer includes a hole injection layer 3, a hole transport layer 4, a light-emitting layer 6, a hole and exciton blocking layer 7, an electron transport layer 8, and an electron injection layer 9.
  • An external power source 11 is connected between the anode layer 2 and the cathode layer 10, and the organic electroluminescent device emits light under the drive of an external power source.
  • an insertion layer 12 is disposed in the light-emitting layer, and the insertion layer 12 divides the light-emitting layer into two sub-light-emitting layers, that is, the first sub-light-emitting layer 61 and the second sub-light-emitting layer 62.
  • the first sub-emissive layer 61 is adjacent to the anode layer 2
  • the second sub-emissive layer 62 is adjacent to the cathode layer 10.
  • the insertion layer 12 has a hole blocking property, that is, the insertion layer 12 has a hole transporting ability smaller than that for electrons.
  • the material from which the interposer 12 is formed may be an organic material or an inorganic material.
  • the interposer 12 is composed of a thin layer of an organic material having a thickness ranging, for example, from 1 to 20 nm.
  • the insertion layer may be further selected according to the hole mobility of the insertion layer 12 being lower than the hole mobility of the sub-light-emitting layer (including the first sub-light-emitting layer 61 and the second sub-light-emitting layer 62) in the light-emitting layer.
  • the HOMO (the highest occupied orbital) of the insertion layer is lower than the HOMO of the light-emitting layer;
  • the electron mobility of the insertion layer is higher than the electron mobility of the light-emitting layer, and the triplet energy of the insertion layer is not lower than (equal to or greater than The triplet energy of the luminescent layer, the singlet energy of the intercalation layer is not lower than (equal to or greater than) the singlet energy of the luminescent layer to avoid energy return.
  • the organic material from which the intercalation layer 12 is made can be selected from the following classes of materials: phenanthroline derivatives, cacao 11 derivatives, thiazole derivatives, imidazole derivatives, metal quinoline complexes, or hydrazine derivatives. .
  • materials such as BCP, Bphen, or TPBI may be specifically used.
  • the first sub-light emitting layer 61 and the second sub-light emitting layer 62 may be made of the following materials: (1) using an undoped fluorescent light-emitting organic material (composed of a light-emitting material having a hole transporting ability) In the luminescent material having the hole transporting ability, NPB or DPVBI or the like can be used.
  • the fluorescent dopant may be a coumarin dye (coumarin 6, C-545T), a quinacridone (DMQA), or a DCM series.
  • the daunting dopant can be used as a metal complex luminescent material based on Ir, Pt, Ru, Cu, etc. , ratio: FIrpic, Fir6, FirN4, FIrtaz, Ir(ppy) 3 , Ir(ppy) 2 (acac), PtOEP, (btp) 2 Iracac, Ir(piq) 2 (acac), or (MDQ) 2 Iracac et al.
  • a matrix material in an organic material doped with a fluorescent material and an organic material doped with a phosphorescent material may be used: a metal complex material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound , biphenyldiamine derivative, or triarylamine polymer, etc., specifically applicable: bis(2-mercapto-8-hydroxyquinoline) (p-phenylphenol) aluminum (Balq), 9, 10-di- (2-Naphthyl) anthracene (ADN), TAZ, CBP, MCP, TCTA, or NPB.
  • a metal complex material a metal complex material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound , biphenyldiamine derivative, or triarylamine polymer, etc., specifically applicable: bis(2-mercapto-8-hydroxyquinoline) (p-phenylphenol) aluminum (Balq), 9, 10-di
  • the first sub-emissive layer 61 and the second sub-emissive layer 62 are made of the same material, for example, the crucible is doped with Ir(ppy) 3 using a CBP matrix material.
  • the interposer layer 12 between the first sub-light emitting layer 61 and the second sub-light emitting layer 62 is made of a material different from the above two sub-light emitting layers, thereby the first light emitting layer 61 and the second sub light emitting layer
  • An interface is formed at the junction of 62 with the insertion layer 12.
  • the interface has a monthly carrier barrier, and a part of the carriers are concentrated at the two interfaces to form a carrier recombination zone. Therefore, the position of the interposer 12 in the luminescent layer determines the position at which electron carriers and hole carriers are concentrated in the luminescent layer and the position at which the excitons are generated, and the thickness of the intercalation layer determines the first sub luminescent layer.
  • the number of electron carriers and hole carriers in the second sub-light-emitting layer 62 and the distribution of excitons, that is, the position of the insertion layer 12 in the light-emitting layer and its thickness can adjust the carriers of the two sub-light-emitting layers. With the distribution of excitons.
  • the thickness of the intercalation layer and its position in the luminescent layer can be adjusted in the following manner. First, the position of the insertion layer is fixed in advance in the light-emitting layer, and the thickness thereof is adjusted according to the position thereof, and the thickness in which the luminous efficiency of the organic electroluminescence device is the highest is taken as the thickness optimization value; then, the insertion layer is first set according to the thickness optimization value. The thickness of the insertion layer is adjusted in the light-emitting layer, and the position where the luminous efficiency of the organic electroluminescent device is the highest is taken as the position optimization value; finally, the insertion layer can be designed according to the actual thickness and the optimized value of the position according to actual needs.
  • the position and thickness in the luminescent layer For example, first fix the position of the insertion layer at the position optimization value in the light-emitting layer, then adjust the thickness of the insertion layer in the light-emitting layer (can be set to a continuous thickness value), and test the luminous efficiency of the organic electroluminescent device accordingly. To get the actual needs with the corresponding luminescence The thickness of the inserted layer of efficiency; or, the thickness of the intercalation layer is fixed to the thickness optimization value, and then the position of the intercalation layer in the luminescent layer (which can be set to a continuous position) is adjusted, and the luminescence of the organic electroluminescent device is tested accordingly.
  • the position and thickness of the insertion layer in the light-emitting layer can also be adjusted simultaneously to obtain an actually required insertion layer having a corresponding luminous efficiency.
  • the thickness ratio of the first luminescent layer 61 to the second luminescent layer 62 may range from 1:50 to 50:1.
  • the insertion layer 12 can block the hole carriers, but since the thickness of the insertion layer 12 is thin, a part of the hole carriers can still be Passing through the interposer layer 12 to reach the second sub-emissive layer 62, so that the dispersion area of the hole carriers in the light-emitting layer can be made larger, and the injection of hole carriers and electron carriers tends to be balanced. Conducive to the recombination of electrons and holes, thereby increasing the formation efficiency of excitons and reducing the degree of aggregation of carriers and excitons. Due to the hole blocking property of the interposer layer 12, excessive holes are prevented from entering the electron transport layer 8, and the generation of hole cations is avoided, which ultimately prolongs the life of the organic electroluminescent device.
  • the hole injection layer 3 may be made of a star-shaped triphenylamine compound, a metal complex, or an organic material or polymer doped with a phosphorescent dopant (P), such as may be used.
  • P phosphorescent dopant
  • the hole transport layer 4 may be an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a triarylamine polymer, a metal complex, or a ruthenium.
  • azole polymers such as NPB, TPD, TCTA, BAlq, polyvinyl carbazole or monomers.
  • the organic electroluminescent device of this embodiment is not provided with an electron blocking layer.
  • an electron blocking layer may be provided in practical applications, and the material of the electron blocking layer may be selected in the same range as the material selected for the hole transporting layer 4.
  • the hole and exciton blocking layer 7, the electron transporting layer 8 and the electron injecting layer 9 may each be a metal complex material, an oxadiazole electron transporting material, an imidazole material, or an phenanthroline.
  • Made of derivatives such as: 8-hydroxyquinoline aluminum (Alq3), 8-hydroxyquinoline lithium (Liq), 8-hydroxyquinoline gallium, bis[2-(2-hydroxyphenyl-1) -pyridine] ⁇ , 2-(4-diphenyl)-5-(4-tert-butylbenzene Base) -1,3,4-oxadiazole (PBD), 1, 3, 5-tris( ⁇ -phenyl-2-benzimidazole-2)benzene ( ⁇ ), BCP or Bphen.
  • the substrate 1 is supported by an electrode layer and an organic functional film layer. It has good light transmission properties in the visible light region and a certain ability to penetrate water vapor and oxygen, and has good surface flatness, and can generally be used.
  • the anode layer 2 serves as a connection layer for the forward voltage of the organic electroluminescent device, and has good conductivity, visible light transparency, and a high work function.
  • the anode layer is usually made of an inorganic metal oxide (for example, indium tin oxide ITO, oxidized ZnO, etc.), an organic conductive polymer (for example, PEDOT: PSS, PANI, etc.) or a high work function metal material (such as gold, copper, Made of silver, platinum, etc.).
  • the cathode layer 10 serves as a connection layer for the negative voltage of the organic electroluminescent device, and has good electrical conductivity and a low work function.
  • the cathode layer is usually made of a low work function metal material such as lithium, magnesium, calcium, barium, aluminum, indium, or the like, or an alloy of the above metals with copper, gold, or silver; or a thin layer of buffer insulation. Layers (such as LiF, CsC0 3, etc.) and the above metals or alloys.
  • the materials and thicknesses of the layers in a specific organic electroluminescent device of this embodiment are as follows: Glass/ITO/2-TNATA (10 ⁇ ) / NPB (30 ⁇ ) / CBP: Ir(ppy) 3 (10 ⁇ /Bphen ( 4 ⁇ ) /CBP: Ir(ppy) 3 ( 20 ⁇ ) /BPhen ( 40 ⁇ ) /LiF (0.5 ⁇ ) /A1 (200 ⁇ ).
  • the substrate 1 is made of glass (Glass); the anode layer 2 is made of indium tin oxide (ITO); the hole injection layer 3 is made of 2-TNATA, and the thickness is 10 nm; the hole transport layer 4 ⁇ is made of NPB and has a thickness of 30 nm; the first sub-luminescent layer 61 is made of CBP: Ir(ppy) 3 and has a thickness of 10 nm; the intercalation layer 12 is made of Bphen and has a thickness of 4 nm; the second sub-luminescent layer 62 ⁇ is made of CBP: Ir(ppy) 3 and has a thickness of 20 nm; the hole and exciton blocking layer 7 also serves as an electron transport layer 8 and is made of Bphen with a thickness of 40 nm; the electron injection layer 9 is made of LiF.
  • the thickness is 0.5 nm; the cathode layer 10 is made of A1 and has a thickness of 200 nm.
  • FIG. 8 is a schematic diagram showing the energy levels of the organic electroluminescent device of the present embodiment.
  • the interface between the first sub-emissive layer 61 and the interposer 12 and the interposer 12 and the second sub-emissive layer 62 has a significant carrier barrier, and a part of the carriers are blocked at the two interfaces.
  • a carrier recombination zone is formed.
  • the mobility of hole carriers is greater than the mobility of electrons, but in this embodiment, since the insertion layer 12 has a smaller ability to transport hole carriers than to electron carriers, The insertion layer 12 has a certain hole carrier blocking property, so that the hole current is carried.
  • Sub- and electron carrier injection is more balanced, reducing the degree of carrier and exciton aggregation, reducing carrier-exciton quenching due to aggregation, increasing the probability of carrier recombination;
  • the migration of hole carriers and electron carriers in the light-emitting layer, hole carriers and electron carriers can be recombined in the first sub-light-emitting layer or the second sub-light-emitting layer, increasing the carrier recombination
  • the probability of the sub- thereby correspondingly increasing the photon generated by the exciton to emit light, improves the luminous efficiency of the organic electroluminescent device; meanwhile, since the excitons are dispersed in the two sub-luminescent layers, the triplet exciton-triple is reduced The state exciton is quenched, which further improves the luminous efficiency of the organic electroluminescent device.
  • the preparation method thereof may include the following steps.
  • the substrate is sequentially washed in a cleaning agent, an ethanol solution, an acetone solution, and deionized water, and then dried.
  • the substrate 1 was first ultrasonically cleaned with a cleaning agent, an acetone solution, and deionized water, and washed and dried with dry nitrogen.
  • the substrate is placed in a vacuum evaporation chamber for preparation of the anode layer or cathode layer or other treatment.
  • the substrate 1 is transferred to a vacuum evaporation chamber having a set pressure value of 2 ⁇ 10 4 Pa, and an indium tin oxide (ITO) film is formed on the substrate 1, that is, an organic electro-deposition is formed on the substrate 1.
  • ITO indium tin oxide
  • the sheet resistance of the ITO film was 25 ⁇ / ⁇ .
  • step S1) and the step S2) may be completed in advance to form a corresponding substrate with an anode layer or a cathode layer to facilitate direct utilization in the subsequent processing.
  • a substrate having an anode layer or a cathode layer is placed in a vacuum chamber for associated pretreatment.
  • the substrate 1 after the anode layer 2 is formed is placed in an ultraviolet treatment device for ultraviolet light treatment for 25 minutes to improve the surface cleanliness of the anode layer 2, to improve surface characteristics; or to perform plasma treatment to improve
  • the work function of the anode layer improves the flatness of the surface of the anode layer.
  • a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, and a hole are sequentially prepared according to an anode layer or a cathode layer (top type or bottom type) which is first formed on the substrate 1.
  • an exciton blocking layer, an electron transporting layer, an electron injecting layer, or sequentially preparing an electron injecting layer, electron transfer The transport layer, the hole and exciton blocking layer, the light emitting layer, the electron blocking layer, the hole transport layer, and the hole injection layer.
  • An example of the manufacturing process of the light emitting layer includes:
  • the treated substrate is placed in a vacuum chamber, and after evacuation to 2 x 10 4 Pa in the vacuum chamber, vapor deposition of the organic functional layer is performed.
  • the evaporation order is as follows:
  • the hole injection layer 3 is made of 2-TNATA material, the thickness is 10 nm, and the evaporation rate is 0.08 nm/s;
  • the hole transport layer 4, which is made of NPB material, has a thickness of 30 nm and an evaporation rate of 0.08 nm/s;
  • the first sub-light-emitting layer 61 is made of a matrix material CBP, and the dopant is Ir(ppy) 3 Made to a thickness of 10 nm, an evaporation rate of 0.08 nm/s, a doping ratio of 6%;
  • an intercalation layer 12 which is made of Bphen material, having a thickness of 4 nm and an evaporation rate of 0.04 nm/s;
  • Layer 7 also serves as the electron transport layer 8, which is made of BPhen material and has a thickness of 40 nm and an evaporation rate of 0.08 nm/s.
  • the electron injection layer 9 is made of LiF material and has a thickness of 0.5 nm. The rate is 0.02 nm/s.
  • the substrate is placed under high vacuum to prepare a cathode layer or an anode layer.
  • vapor deposition of the cathode layer 10 was finally carried out under a high vacuum condition of 5 x 10 4 Pa.
  • the cathode layer 10 is made of a metal A1 material having a thickness of 200 nm and an evaporation rate of 1.5 nm/s.
  • each functional layer constituting the organic electroluminescent device involved in the above steps S2) - step S5) are monitored by a film thickness meter disposed in the vicinity of the substrate 1.
  • the prepared organic electroluminescent device is transferred to a hand-operated box for packaging, and the hand-operated box is an inert gas atmosphere.
  • the prepared organic electroluminescent device is transferred to a hand-operated box for encapsulation, and the hand-operated box is an inert gas atmosphere, which in this embodiment is a nitrogen atmosphere.
  • FIG. 3 is a graph showing the current density-voltage-luminance characteristic of the organic electroluminescent device of the present embodiment.
  • the highest luminance of the organic electroluminescent device in this embodiment is achieved. 60000 cd/m 2 , which is greatly improved compared with the brightness of the organic electroluminescent device in the prior art;
  • FIG. 4 is a current density-current efficiency curve of the organic electroluminescent device.
  • the organic electricity in this embodiment The efficiency of the electroluminescent device reached 52 cd/A, which was 2.3 times higher than that of the prior art organic electroluminescent device.
  • This prior art organic electroluminescent device does not form an intervening layer in embodiments of the present invention.
  • FIG. 5 is an illuminating spectrum of an organic electroluminescent device.
  • the organic electroluminescent device of the present embodiment still maintains a good color purity, and the intercalation layer provided in the luminescent layer does not affect the organic electric device.
  • the illuminating illuminant of the illuminating device i.e., the same color as the original electroluminescent device).
  • an insertion layer is provided in the light-emitting layer, and on the basis of ensuring the light-emitting spectrum of the organic electroluminescent device, the brightness of the organic electroluminescent device can be greatly improved, and the organic electroluminescence can be made. The luminous efficiency of the device is greatly improved.
  • the difference between this embodiment and the embodiment 1 is that: in the embodiment, two insertion layers, namely a first insertion layer 121 and a second insertion layer 122, are disposed in the light-emitting layer, and the two insertion layers divide the light-emitting layer into three The sub-light emitting layers, that is, the first sub-light emitting layer 61, the second sub-light emitting layer 62, and the third sub-light emitting layer 63. Close to the anode layer 2 is a first luminescent layer 61, and adjacent to the cathode layer 10 is a third luminescent layer region 63. Between the first sub-emitting layer 61 and the third luminescent layer region 63 is a second sub-emitting layer, such as Figure 6 shows.
  • the driving voltage of the organic electroluminescent device may be increased, and the thickness of each of the insertion layers may be correspondingly reduced to achieve adjustment of carriers and The effect of exciton distribution improves the efficiency and service life of organic electroluminescent devices.
  • N insertion layers may be disposed (the value of N is set to be 1 ⁇ ⁇ ⁇ 100), so as to separate the luminescent layer into a plurality of sub-layers.
  • the luminescent layer, the position of the plurality of intervening layers in the luminescent layer can be optimized and positionally optimized according to the method in Embodiment 1, and combined with the specific materials and structures used in other functional layers of the organic electroluminescent device. It is set that as the number of intercalation layers increases, electron carriers and hole carriers are more evenly distributed in the luminescent layer to improve the efficiency and use of the organic electroluminescent device. Life expectancy.

Abstract

一种有机电致发光器件,包括衬底(1)、阳极层(2)、阴极层(10)以及设置在阳极层(2)和阴极层(10)之间的有机功能层。有机功能层包括发光层(6),发光层(6)中设置有插入层(12),插入层(12)将发光层(6)分隔为多个子发光层(61、62),插入层(12)对空穴的传输能力小于对电子的传输能力。插入层(12)的空穴迁移率低于子发光层(61、62)的空穴迁移率。该有机电致发光器件发光效率高,使用寿命长。

Description

有机电致发光器件及其制备方法 技术领域
本发明涉及一种有机电致发光器件及其制备方法。 背景技术
OLED (有机电致发光器件: Organic Light-Emitting Device )是一种利用 有机固态半导体作为发光材料的发光器件, 由于其具有制备工艺简单、 成本 低、 功耗低、 发光亮度高、 工作温度适应范围广等优点, 因而有着广阔的应 用前景。
如图 1所示, 现有技术中, OLED的结构通常包括衬底 1、 阳极层 2、 阴 极层 10以及设置在阳极层 2和阴极层 10之间的有机功能层, 该有机功能层 通常包括空穴注入层 3、 空穴传输层 4、 电子阻挡层 5、 发光层 6、 空穴与激 子阻挡层 7、 电子传输层 8、 以及电子注入层 9。
OLED的发光机理为: 当电压施加于阳极层 2和阴极层 10之间时,在外 界电压的驱动下, 由阳极层 2一侧注入的空穴通过空穴注入层 3和空穴传输 层 4到达发光层 6中,由阴极层 10—侧注入的电子通过电子注入层 9和电子 传输层 8到达发光层 6中, 到达发光层 6中的空穴和电子在发光层中复合形 成激子, 激子辐射跃迁发光而产生发光现象, 即电致发光。 在此过程中, 若 激发态电子自旋( Electron Spin )和基态电子成对,则为单重态激子( Singlet ) , 其所释放的光为所谓的荧光(Fluorescence ); 反之, 若激发态电子和基态电 子自旋不成对且平行, 则为三重态激子(Triplet ) , 其所释放的光为所谓的 碑光 ( Phosphorescence ) 。
1987年美国 Kodak公司邓青云 (C.W. Tang)博士等人设计了 OLED以后, 研究人员纷纷致力于充分利用三重态激子和单重态激子得到高效率 OLED。 但是, 由于空穴载流子和电子载流子的传输不是理想的, 可能存在两种载流 子的不平衡注入; 注入的载流子也不能保证能够百分之百的复合发光, 同时 载流子复合形成的激子甚至可能发生淬灭, 这些都使得 OLED的实际发光效 率较低。 同时, 由于空穴的迁移率要高于电子的迁移率, 所以注入的空穴会 多于电子, 这样在交界面处堆积了大量未复合的空穴, 这些空穴在电场的作 用下向阴极层 10移动,在电子传输层 8内形成多余的空穴阳离子,这种空穴 阳离子的存在最终导致 OLED的使用寿命降低。
有研究表明, 影响 OLED寿命的因素很多, 如设置在阳极层 2和阴极层 10之间的多个有机功能层的层间组合、多个有机功能层互相之间的界面以及 构成功能层的材料等。 这些因素均能影响 OLED的寿命。 为解决这个问题, 目前一般是在 OLED结构中使用双基质材料, 或者使用高效率、 长寿命的材 料, 或者通过改进 OLED封装方法的方式来提高 OLED的寿命,但是这些方 式在提高 OLED寿命的同时,也使 OLED的结构和工艺变得复杂, 同时还提 高了对材料以及制备设备的要求, 导致生产成本相应的增加。 发明内容 光器件以及制备方法, 该有机电致发光器件能在不改变原有制作工艺或变更 制作材料的情况下, 提高 OLED的发光效率高, 并延长其使用寿命。
根据本发明的一个方面提供了一种有机电致发光器件, 包括衬底、 阳极 层、 阴极层、 以及设置在所述阳极层和阴极层之间的有机功能层, 所述有机 功能层包括发光层, 其中, 所述发光层中设置有一个或以上插入层, 所述一 个或以上的插入层将发光层分隔为两个或多个子发光层, 所述插入层对空穴 的传输能力小于对电子的传输能力。
对于该有机电致发光器件, 例如, 所述插入层的空穴迁移率低于所述子 发光层的空穴迁移率。
对于该有机电致发光器件, 例如, 所述插入层的 HOMO低于所述子发 光层的 HOMO, 所述插入层的电子迁移率高于所述子发光层的电子迁移率, 所述插入层的三重态能量等于或高于子发光层的三重态能量, 所述插入层的 单重态能量等于或高于子发光层的单重态能量。
对于该有机电致发光器件, 例如, 所述插入层的空穴迁移率比所述子发 光层的空穴迁移率低 5倍或以上,优选为 10倍; 所述插入层的电子迁移率高 于所述子发光层的电子迁移率 5倍或以上, 优选为 10倍。
对于该有机电致发光器件, 例如, 所述插入层釆用一层, 该插入层将发 光层分隔为第一子发光层和第二子发光层, 所述第一子发光层和第二子发光 层的厚度比为 1 : 50 - 50: 1 , 所述第一子发光层和第二子发光层釆用相同的 材料制成。
对于该有机电致发光器件, 例如, 所述插入层的厚度范围为 1 ~ 20nm。 对于该有机电致发光器件, 例如, 所述插入层可釆用有机材料或无机材 料制成。
对于该有机电致发光器件, 例如, 所述制作插入层的有机材料釆用具有 空穴阻挡性能的有机材料。 优选插入层釆用有机材料制成, 该有机材料可包 括邻菲罗林衍生物、 噁唑衍生物、 噻唑衍生物、 咪唑衍生物、 金属喹啉络合 物、 或蒽的 生物。 优选所述插入层釆用 BCP、 Bphen、 或 TPBI制成。
对于该有机电致发光器件, 例如, 所述子发光层由具有空穴传输能力的 发光材料组成无掺杂的荧光发光的有机材料制成, 或釆用由荧光掺杂剂与基 质材料组成的掺杂荧光材料的有机材料制成, 或釆用由磷光掺杂剂与基质材 料组成的掺杂磷光材料的有机材料制成。
对于该有机电致发光器件, 例如, 所述具有空穴传输能力的发光材料包 括 NPB或 DPVBI; 所述荧光掺杂剂包括香豆素染料( coumarin 6、 C-545T ) 、 喹吖啶酮(DMQA ) 、 或 DCM系列; 所述磷光掺杂剂包括基于 Ir、 Pt、 Ru、 或 Cu的金属配合物发光材料; 所述基质材料包括金属配合物、 蒽的衍生物、 芳香族二胺类化合物、 三苯胺化合物、 芳香族三胺类化合物、 联苯二胺衍生 物、 或三芳胺聚合物。
所述基于 Ir、 Pt、 Ru、 或 Cu的金属配合物发光材料包括 FIrpic、 Fir6、 Fir 、 FIrtaz、 Ir(ppy)3、 Ir(ppy)2(acac)、 PtOEP、 (btp)2Iracac、 Ir(piq)2(acac)、 或 (MDQ)2Iracac; 所述基质材料包括双( 2-曱基 -8-羟基喹啉 ) (对苯基苯酚 ) 铝(Balq ) 、 9, 10-二- ( 2-萘基) 蒽(ADN ) 、 TAZ、 CBP、 MCP、 TCTA、 或 NPB。
本发明的另一个方面提供了一种有机电致发光器件的制备方法, 包括制 作发光层的步骤, 其中, 所述发光层的制作过程包括:
1 )制作子发光层;
2 )在所述子发光层上制作插入层;
3 )在所述插入层上制作子发光层; 其中, 所制作的插入层的空穴迁移率低于所述子发光层的空穴迁移率; 如果插入层釆用为一层,则至此形成发光层;如果插入层釆用一层以上, 则根据插入层的层数, 重复进行步骤 2 ) -3 ) , 最终形成发光层。
本发明的实施例能够提高有机电致发光器件的发光效率, 同时有利于提 高有机电致发光器件的寿命。 而且, 由于本发明实施例的有机电致发光器件 是釆用现有的 OLED的基本工艺来进行制备, 无需增加额外的工艺或者釆用 更为昂贵的材料, 因而不会增加生产成本。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中有机电致发光器件的结构示意图;
图 2为本发明实施例 1中有机电致发光器件的结构示意图;
图 3为本发明实施例 1中有机电致发光器件的电流密度-电压-亮度特 性曲线;
图 4 为本发明与现有技术中有机电致发光器件的电流密度 -电流效率曲 线;
图 5为图 2中有机电致发光器件的光语曲线;
图 6为本发明实施例 2中有机电致发光器件的结构示意图;
图 7为本发明中有机电致发光器件中发光层制备方法流程图;
图 8为本发明实施例 1中有机电致发光器件的能级结构示意图。
附图标记
1 - 底, 2 -阳极层, 3 -空穴注入层,
4 _空穴传输层, 5 _电子阻挡层, 6 -发光层,
7 -空穴与激子阻挡层, 8 -电子传输层, 9 -电子注入层,
10-阴极层, 11 -外加电源, 12 -插入层,
61 -第一子发光层, 62 -第二子发光层, 63 -第三子发光层,
121 -第一插入层, 122 -第二插入层。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的"第一" "第二 "以及类似的词语并不表示任何顺序、 数量或 者重要性, 而只是用来区分不同的组成部分。 同样, "一个 "或者 "一"等类似 词语也不表示数量限制, 而是表示存在至少一个。 "连接"或者"相连"等类似 的词语并非限定于物理的或者机械的连接, 而是可以包括电性的连接, 不管 是直接的还是间接的。
本发明的一个实施例提供了一种有机电致发光器件, 包括衬底、 阳极层、 阴极层、 以及设置在所述阳极层和阴极层之间的有机功能层, 所述有机功能 层包括发光层。 所述发光层中设置有一个或以上插入层, 所述一个或以上的 插入层将发光层分隔为两个或多个子发光层, 所述插入层对空穴的传输能力 小于对电子的传输能力。
例如, 所述插入层的空穴迁移率低于所述子发光层的空穴迁移率。
又例如,所述插入层的 HOMO (Highest Occupied Molecular Orbital ,最高 已占轨道)低于所述子发光层的 HOMO, 所述插入层的电子迁移率高于所述 子发光层的电子迁移率, 所述插入层的三重态能量等于或高于子发光层的三 重态能量,所述插入层中的单重态能量等于或高于子发光层中的单重态能量。
本发明的另一个实施例提供了一种有机电致发光器件的制备方法, 包括 制作发光层的步骤。 所述发光层的制作过程又包括如下步骤。
1 )制作子发光层;
2 )在所述子发光层上制作插入层;
3 )在所述插入层上制作子发光层;
所制作的插入层的空穴迁移率低于所述子发光层的空穴迁移率。
如果插入层釆用为一层, 则形成两个子发光层; 如果插入层釆用一层以 上, 则根据插入层的层数, 重复进行步骤 2 ) -3 ) , 最终形成发光层。
实施例 1 :
如图 2所示, 本实施例中, 该有机电致发光器件包括衬底 1、 阳极层 2、 阴极层 10、 以及设置在阳极层 2和阴极层 10之间的有机功能层。 阳极层 2 设置在衬底 1上。 本实施例中, 所述有机功能层包括空穴注入层 3、 空穴传 输层 4、 发光层 6、 空穴与激子阻挡层 7、 电子传输层 8和电子注入层 9。 在 阳极层 2和阴极层 10之间连接有外加电源 11 , 有机电致发光器件在外加电 源的驱动下发光。
本实施例中, 所述发光层中设置有一个插入层 12, 所述插入层 12将发 光层分隔为两个子发光层, 即第一子发光层 61和第二子发光层 62。 靠近阳 极层 2的为第一子发光层 61 , 靠近阴极层 10的为第二子发光层 62。
插入层 12具有空穴阻挡性能, 即所述插入层 12对空穴的传输能力小于 对电子的传输能力。
制作插入层 12的材料可以是有机材料, 也可以是无机材料。
在本实施例中,插入层 12由一层较薄的有机材料构成,其厚度范围例如 为 1 ~ 20nm。
优选地,插入层进一步的选用依据可以是:插入层 12的空穴迁移率低于 发光层中子发光层(包括第一子发光层 61和第二子发光层 62 ) 的空穴迁移 率, 且所述插入层的 HOMO (最高已占轨道)低于发光层的 HOMO; 所述 插入层的电子迁移率高于发光层的电子迁移率, 插入层的三重态能量不低于 (等于或大于)发光层的三重态能量, 插入层的单重态能量不低于 (等于或 大于)发光层的单重态能量, 以避免能量回传。
制作插入层 12的有机材料可以在以下类别的材料中进行选用:邻菲罗林 衍生物, 噁11坐衍生物, 噻唑衍生物, 咪唑衍生物, 金属喹啉络合物, 或蒽的 衍生物。 一些示例中, 具体可釆用 BCP、 Bphen、 或 TPBI等材料。
第一子发光层 61和第二子发光层 62可以釆用以下几种材料制成: ( 1 )釆用无掺杂的荧光发光的有机材料(由具有空穴传输能力的发光材 料组成)制成, 所述具有空穴传输能力的发光材料可以釆用 NPB或 DPVBI 等。
( 2 )釆用掺杂荧光材料的有机材料 (由荧光掺杂剂与基质材料组成)制 成, 所述荧光掺杂剂可以釆用香豆素染料(coumarin 6、 C-545T ) 、 喹吖啶 酮 ( DMQA ) 、 或 DCM系列等。
( 3 )釆用掺杂磷光材料的有机材料 (由磷光掺杂剂与基质材料组成 )制 成, 所述碑光掺杂剂可以釆用基于 Ir、 Pt、 Ru、 Cu等金属配合物发光材料, 比^口: FIrpic、 Fir6、 FirN4、 FIrtaz、 Ir(ppy)3、 Ir(ppy)2(acac)、 PtOEP、 (btp)2Iracac、 Ir(piq)2(acac)、 或 (MDQ)2Iracac等。
掺杂荧光材料的有机材料和掺杂磷光材料的有机材料中的基质材料可以 釆用: 金属配合物材料、 蒽的衍生物、 芳香族二胺类化合物、 三苯胺化合物、 芳香族三胺类化合物、 联苯二胺衍生物、 或三芳胺聚合物等, 具体可釆用: 双(2-曱基 -8-羟基喹啉) (对苯基苯酚)铝 (Balq ) 、 9, 10-二- ( 2-萘基) 蒽 (ADN ) 、 TAZ、 CBP、 MCP、 TCTA、 或 NPB等。
在本实施例中, 第一子发光层 61、 第二子发光层 62釆用相同的材料制 成, 比如都釆用 CBP基质材料掺杂 Ir(ppy)3制成。
由于处于第一子发光层 61和第二子发光层 62之间的插入层 12釆用与上 述两个子发光层性质不相同的材料制成,从而在第一发光层 61和第二子发光 层 62与插入层 12的交界处形成界面。 该界面处具有 月显的载流子势垒, 一部分载流子被聚集在这两个界面处, 形成载流子复合区。 因此, 插入层 12 在发光层中的位置决定了电子载流子和空穴载流子在发光层中聚集的位置以 及激子产生的位置,而插入层的厚度则决定了第一子发光层 61与第二子发光 层 62中电子载流子与空穴载流子的数量以及激子的分布, 即插入层 12在发 光层中的位置及其厚度能调节两个子发光层的载流子与激子的分布。
在有机电致发光器件的设计过程中, 可以通过以下方式来调节插入层的 厚度以及其在发光层中的位置。 首先, 在发光层中预先固定插入层的位置, 根据其位置来调节其厚度, 取其中使有机电致发光器件发光效率最高的厚度 为厚度优化值; 然后, 根据厚度优化值先设定插入层的厚度, 调节插入层在 发光层中的位置, 取其中使有机电致发光器件发光效率最高的位置为位置优 化值; 最后, 可以根据实际需要, 根据厚度优化值和位置优化值来设计插入 层在发光层中的位置和厚度。 比如, 先将插入层的位置固定在发光层中的位 置优化值处, 然后调节插入层在发光层中的厚度(可以设置为连续厚度值), 并相应测试有机电致发光器件的发光效率, 以得到实际需要的具有相应发光 效率的插入层的厚度; 或者, 先将插入层的厚度固定设为厚度优化值, 然后 调节插入层在发光层中的位置(可以设置为连续位置) , 并相应测试有机电 致发光器件的发光效率, 以得到实际需要的具有相应发光效率的插入层在发 光层中的位置; 当然, 也可以同时调节插入层在发光层中的位置和厚度, 以 得到实际需要的具有相应发光效率的插入层在发光层中的位置及其厚度。 本 实施例中, 第一发光层 61与第二发光层 62的厚度比范围可以为 1 : 50 - 50: 1。
在所述发光层中, 当空穴到达插入层 12的位置时, 插入层 12能对空穴 载流子起一定阻挡作用,但是由于插入层 12的厚度很薄,一部分空穴载流子 仍旧能穿过插入层 12而到达第二子发光层 62, 从而可使空穴载流子在发光 层的分散面积变得更大,同时使得空穴载流子和电子载流子的注入趋于平衡, 有利于电子和空穴的复合, 从而提高激子的形成效率, 并使载流子、 激子聚 集程度降低。 由于插入层 12具有的空穴阻挡性能,避免了过多的空穴进入电 子传输层 8, 避免了空穴阳离子的产生, 最终延长了有机电致发光器件的寿 命。
在本实施例中, 空穴注入层 3可以釆用星形的三苯胺化合物、 金属配合 物、 或者是有磷光掺杂剂 (P )掺杂的有机材料或聚合物制成, 比如可釆用: 三 _[4_ ( 5-苯基 -2-噻吩基) 苯]胺、 4,4,4,,-三 [2-萘基(苯基)氨基]三苯胺 ( 2-TNATA )、或者 4, 4,,4,,-三-( 3-曱基苯基苯胺基)三苯胺( m- MTDATA )、 酞箐铜 ( CuPc ) 、 或 Pedot:Pss。
在本实施例中, 空穴传输层 4可以釆用芳香族二胺类化合物、 三苯胺化 合物、 芳香族三胺类化合物、 联苯二胺衍生物、 三芳胺聚合物、 金属配合物、 或者咔唑类聚合物制成, 比如可釆用: NPB、 TPD、 TCTA、 BAlq、 聚乙烯 咔唑或者其单体。 本实施例中的有机电致发光器件没有设置电子阻挡层, 当 然, 在实际应用中也可以设置电子阻挡层, 而且, 电子阻挡层的材料选用与 空穴传输层 4选用材料的范围可以一致。
在本实施例中, 空穴与激子阻挡层 7、 电子传输层 8和电子注入层 9均 可以釆用金属配合物材料、 噁二唑类电子传输材料、 咪唑类材料、 或邻菲罗 林衍生物制成, 比如可釆用: 8-羟基喹啉铝 ( Alq3 ) 、 8-羟基喹啉锂 ( Liq ) 、 8-羟基喹啉镓、 双 [2-(2-羟基苯基 -1)-吡啶]铍、 2- ( 4-二苯基) -5- ( 4-叔丁苯 基) -1 , 3 , 4-噁二唑( PBD )、 1 , 3 , 5-三( Ν-苯基 -2-笨并咪唑 -2 )苯( ΤΡΒΙ ) 、 BCP或 Bphen。
此外, 衬底 1为电极层和有机功能薄膜层的依托, 它在可见光区域有着 良好的透光性能以及一定的防水汽和氧气渗透的能力, 并具有较好的表面平 整性, 一般可以釆用玻璃、 或柔性基片、 或 TFT背板等制成。 如果选用柔性 基片, 可釆用聚酯类, 聚酞亚胺化合物中的一种材料或者较薄的金属制成。
阳极层 2作为有机电致发光器件正向电压的连接层, 具有较好的导电性 能、 可见光透明性以及较高的功函数。 阳极层通常釆用无机金属氧化物(比 如, 氧化铟锡 ITO, 氧化辞 ZnO等) 、 有机导电聚合物 (比如, PEDOT: PSS, PANI等)或高功函数金属材料(比如: 金、 铜、 银、 铂等)制成。
阴极层 10作为有机电致发光器件负向电压的连接层,具有较好的导电性 能和较低的功函数。 阴极层通常釆用低功函数金属材料, 比如: 锂、 镁、 钙、 锶、 铝、 铟等或上述金属与铜、 金、 银的合金制成; 或者釆用一层很薄的緩 冲绝缘层(如 LiF、 CsC03等)和上述金属或合金制成。
本实施例的一个具体的有机电致发光器件中各层的制备材料及厚度如 下: Glass/ITO/2-TNATA ( 10匪) /NPB ( 30匪) /CBP: Ir(ppy)3 ( 10匪) /Bphen ( 4匪) /CBP: Ir(ppy)3 ( 20匪) /BPhen ( 40匪) /LiF ( 0.5匪) /A1 ( 200匪) 。 即, 衬底 1釆用玻璃(Glass )制成; 阳极层 2釆用氧化铟锡(ITO )制成; 空穴注入层 3釆用 2-TNATA制成, 厚度为 10nm; 空穴传输层 4釆用 NPB 制成,厚度为 30nm;第一子发光层 61釆用 CBP: Ir(ppy)3制成,厚度为 10nm; 插入层 12釆用 Bphen制成,厚度为 4nm;第二子发光层 62釆用 CBP: Ir(ppy)3 制成, 厚度为 20nm; 空穴与激子阻挡层 7兼做电子传输层 8釆用 Bphen制 成, 厚度为 40nm; 电子注入层 9釆用 LiF制成, 厚度为 0.5nm; 阴极层 10 釆用 A1制成, 厚度为 200nm。
如图 8所示是本实施例中有机电致发光器件的能级示意图。 在本实施例 中, 第一子发光层 61与插入层 12以及插入层 12与第二子发光层 62的界面 有很明显的载流子势垒, 一部分载流子被阻挡在这两个界面处, 形成载流子 复合区。 一般情况下, 空穴载流子的迁移率大于电子的迁移率, 但是本实施 例中由于插入层 12对空穴载流子的传输能力小于对电子载流子的传输能力, 因此,相对而言,插入层 12具有一定的空穴载流子阻挡性能,使得空穴载流 子和电子载流子的注入更平衡, 减少了载流子、 激子聚集的程度, 能减少由 于聚集产生的载流子 -激子淬灭, 增加了载流子的复合机率; 随着空穴载流子 和电子载流子在发光层中的迁移, 空穴载流子和电子载流子可在第一子发光 层或第二子发光层发生复合, 增加了载流子复合产生激子的几率, 从而相应 的增加了由激子产生光子从而发光, 提高了有机电致发光器件的发光效率; 同时, 由于激子分散在两个子发光层中, 因此降低了三重态激子 -三重态激子 淬灭, 这也进一步提高了有机电致发光器件的发光效率。
在本实施例中, 如图 7所示, 针对上述有机电致发光器件, 其制备方法 可以包括如下步骤。
S1 )将衬底依次在清洗剂、 乙醇溶液、 丙酮溶液和去离子水中进行清洗, 然后对其进行干燥。
在本实施例中, 先利用清洗剂、 丙酮溶液和去离子水对衬底 1进行超声 清洗, 清洗后用干燥氮气将之吹干。
52 )将衬底置于真空蒸发室中,进行阳极层或阴极层的制备或其他处理。 在本实施例中, 即将衬底 1传送到设定压力值为 2xl04Pa的真空蒸发室 中, 在衬底 1上形成氧化铟锡(ITO )薄膜, 即在衬底 1上形成有机电致发 光器件中的阳极层 2。 ITO薄膜的方块电阻为 25Ω/口。
当然, 在实际生产过程中, 为了提高生产效率, 可以将步骤 S1 )和步骤 S2 )提前完成, 形成相应的带有阳极层或阴极层的衬底, 以方便后续加工过 程中直接利用。
53 )将具有阳极层或阴极层的衬底置于真空室中, 进行相关的预处理。 在本实施例中, 即将形成阳极层 2后的衬底 1置于紫外线处理装置中进 行紫外光处理 25分钟, 以提高阳极层 2表面的洁净度, 改善表面特性; 或者 进行等离子处理, 以提高阳极层的功函数、 改善阳极层表面的平整度。
S4 )在处理后的阳极层或阴极层上制备有机功能层: 按照有机电致发光 器件的结构, 分别制备空穴注入层、 空穴传输层、 电子阻挡层、 发光层、 空 穴与激子阻挡层、 电子传输层、 电子注入层。
在该步骤中, 根据衬底 1上先制作的是阳极层或者阴极层(顶射型或底 射型) , 依次制备空穴注入层、 空穴传输层、 电子阻挡层、 发光层、 空穴与 激子阻挡层、 电子传输层、 电子注入层, 或者依次制备电子注入层、 电子传 输层、 空穴与激子阻挡层、 发光层、 电子阻挡层、 空穴传输层、 空穴注入层。 所述发光层的制作过程的一个示例包括:
1 )制作第一子发光层 61 ;
2 )在所述第一子发光层 61上制作插入层 12;
3 )在所述插入层 12上制作第二子发光层 62;
最终形成发光层。
在本实施例中,将处理后的衬底置于真空室中,真空室抽真空至 2x l04Pa 后, 进行有机功能层的蒸镀。 按照本实施例中有机电致发光器件的结构, 蒸 镀顺序依次如下: 空穴注入层 3 ,其釆用 2-TNATA材料制成,厚度为 10 nm, 蒸镀速率为 0.08nm/s; 空穴传输层 4, 其釆用 NPB材料制成, 厚度为 30 nm, 蒸镀速率为 0.08nm/s; 第一子发光层 61 , 其釆用基质材料 CBP, 掺杂剂为 Ir(ppy)3制成, 厚度为 10 nm, 蒸镀速率为 0.08nm/s, 掺杂比例为 6%; 插入 层 12, 其釆用 Bphen材料制成, 厚度为 4nm, 蒸镀速率为 0.04nm/s; 第二子 发光层 62, 其釆用基质材料 CBP, 掺杂剂 Ir(ppy)3制成, 厚度为 20nm, 蒸镀 速率为 0.08nm/s, 掺杂比例为 6%; 空穴与激子阻挡层 7兼做电子传输层 8, 其釆用 BPhen材料制成,厚度为 40nm,蒸镀速率为 0.08nm/s; 电子注入层 9, 其釆用 LiF材料制成, 厚度为 0.5nm, 蒸镀速率为 0.02nm/s。
55 )有机功能层制备结束后, 将衬底置于高真空度条件下制备阴极层或 阳极层。
在本实施例中, 最后在 5 x l04Pa的高真空度条件下进行阴极层 10的蒸 镀。 阴极层 10釆用金属 A1材料制成, 厚度为 200 nm, 蒸镀速率为 1.5nm/s。
上述步骤 S2 ) -步骤 S5 ) 中涉及到的构成有机电致发光器件中各功能层 的蒸镀速率及厚度由设置在衬底 1附近的膜厚仪进行监测。
56 )将制备好的有机电致发光器件传送到手操箱进行封装, 手操箱为惰 性气体氛围。
接着, 将制备好的有机电致发光器件传送到手操箱进行封装, 手操箱为 惰性气体氛围, 在本实施例中为氮气氛围。
S7 )测试 OLED的光电性能。
图 3所示为本实施例中有机电致发光器件的电流密度 -电压 -亮度特性曲 线, 从图 3 中可知, 本实施例中有机电致发光器件的最高亮度达到了 60000cd/m2, 相比现有技术中有机电致发光器件的亮度有大幅提高; 图 4为 有机电致发光器件的电流密度-电流效率曲线,从图 4中可知, 本实施例中有 机电致发光器件的效率达到了 52cd/A, 比现有技术中有机电致发光器件的效 率提高了 2.3倍。 该现有技术中有机电致发光器件没有形成本发明实施例中 的插入层。
图 5为有机电致发光器件的发光光谱图, 从图 5中可知, 本实施例中有 机电致发光器件仍保持了较好的色纯度, 在发光层中设置的插入层并没有影 响有机电致发光器件的发光光语 (即与原有机电致发光器件的颜色相同) 。
综合上述三个图可知, 在发光层中设置插入层, 在保证有机电致发光器 件的发光光谱的基础上, 可以使有机电致发光器件的亮度得到极大的提升, 而且使有机电致发光器件的发光效率大大提高。
实施例 2:
本实施例与实施例 1的区别在于: 本实施例中发光层中设置有两个插入 层, 即第一插入层 121和第二插入层 122, 所述两个插入层将发光层划分为 三个子发光层, 即第一子发光层 61、 第二子发光层 62和第三子发光层 63。 靠近阳极层 2的为第一发光层 61 , 靠近阴极层 10的为第三发光层区 63 , 处 于第一子发光层 61和第三发光层区 63之间的是第二子发光层,如图 6所示。
在本实施例中, 由于发光层中的插入层的数量增加后, 可能会使有机电 致发光器件的驱动电压增加, 在设计时可以相应地减少各个插入层的厚度来 达到调节载流子与激子分布的效果, 提高有机电致发光器件的效率与使用寿 命。
本实施例中的其他结构以及使用都与实施例 1相同, 这里不再赘述。 应该理解的是, 在发光层中设置插入层的结构, 不仅适用于实施例 1、 2 中的底发射型有机电致发光器件,同样也适用于顶发射型有机电致发光器件。
同时应该理解的是, 本发明实施例的有机电致发光器件的发光层中可以 设置 N个插入层(设定 N的取值范围为 1≤Ν < 100 ) , 以便将发光层分隔为 多个子发光层, 多个插入层在发光层中的位置可根据实施例 1中的方法通过 实验得到优化位置和优化厚度, 同时结合该有机电致发光器件中其他功能层 釆用的具体材料和结构来设定, 随着插入层的增多, 电子载流子和空穴载流 子在发光层中会得到更均衡地分布, 以提高有机电致发光器件的效率与使用 寿命。
从实施例 1、 2可知,通过在有机电致发光器件的发光层中插入具有空穴 阻挡性能的插入层, 调节了载流子在有机电致发光器件中的传输和分布, 也 平衡了电子和空穴的注入, 使得发光层中形成多个空穴载流子和电子载流子 的复合区, 提高了激子的复合比例, 从而提高了发光效率; 同时, 减少了电 子传输层内多余的空穴阳离子的出现,有利于提高有机电致发光器件的寿命。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1. 一种有机电致发光器件, 包括衬底、 阳极层、 阴极层、 以及设置在所 述阳极层和阴极层之间的有机功能层, 所述有机功能层包括发光层, 其中, 所述发光层中设置有插入层, 所述插入层将发光层分隔为多个子发光层, 所 述插入层对空穴的传输能力小于对电子的传输能力。
2. 根据权利要求 1所述的有机电致发光器件, 其中, 所述插入层的空穴 迁移率低于所述子发光层的空穴迁移率。
3. 根据权利要求 1或 2所述的有机电致发光器件, 其中, 所述插入层的 HOMO低于所述子发光层的 HOMO, 所述插入层的电子迁移率高于所述子 发光层的电子迁移率, 所述插入层的三重态能量等于或高于子发光层的三重 态能量, 所述插入层的单重态能量等于或高于子发光层的单重态能量。
4. 根据权利要求 1-3任一所述的有机电致发光器件, 其中, 所述插入层 的空穴迁移率比所述子发光层的空穴迁移率低 5倍或以上, 所述插入层的电 子迁移率高于所述子发光层的电子迁移率 5倍或以上。
5. 根据权利要求 1-4任一所述的有机电致发光器件, 其中, 所述插入层 釆用一层, 该插入层将发光层分隔为第一子发光层和第二子发光层。
6根据权利要求 5所述的有机电致发光器件, 其中, 所述第一子发光层 和第二子发光层的厚度比为 1 : 50 - 50: 1 , 所述第一子发光层和第二子发光 层釆用相同的材料制成。
7. 根据权利要求 1 - 6之一所述的有机电致发光器件, 其中, 所述插入 层釆用有机材料或无机材料制成, 所述插入层的厚度范围为 l ~ 20nm。
8. 根据权利要求 7所述的有机电致发光器件, 其中, 所述制作插入层的 有机材料包括邻菲罗林衍生物、 噁唑衍生物、 噻唑衍生物、 咪唑衍生物、 金 属喹啉络合物、 或蒽的 生物。
9. 根据权利要求 8 所述的有机电致发光器件, 其中, 所述插入层釆用 BCP、 Bphen、 或 TPBI制成。
10. 根据权利要求 1-9任一所述的有机电致发光器件, 其中, 所述子发 光层由具有空穴传输能力的发光材料组成无掺杂的荧光发光的有机材料制 成, 或釆用由荧光掺杂剂与基质材料组成的掺杂荧光材料的有机材料制成, 或釆用由磷光掺杂剂与基质材料组成的掺杂磷光材料的有机材料制成。
11.根据权利要求 10所述的有机电致发光器件, 其中, 所述具有空穴传 输能力的发光材料包括 NPB或 DPVBI; 所述荧光掺杂剂包括香豆素染料、 喹吖啶酮、 或 DCM系列; 所述碑光掺杂剂包括基于 Ir、 Pt、 Ru、 或 Cu的金 属配合物发光材料; 所述基质材料包括金属配合物、 蒽的衍生物、 芳香族二 胺类化合物、 三苯胺化合物、 芳香族三胺类化合物、 联苯二胺衍生物、 或三 芳胺聚合物。
12. 根据权利要求 11所述的有机电致发光器件, 其中, 所述基于 Ir、 Pt、 Ru、 或 Cu的金属配合物发光材料包括 FIrpic、 Fir6、 FirN4、 FIrtaz、 Ir(ppy)3, Ir(ppy)2(acac)、 PtOEP、 (btp)2Iracac、 Ir(piq)2(acac)、 或 (MDQ)2Iracac; 所述基 质材料包括双(2-曱基 -8-羟基喹啉) (对苯基苯酚)铝(Balq ) 、 9, 10-二- ( 2-萘基) 蒽 (ADN ) 、 TAZ、 CBP、 MCP、 TCTA、 或 NPB。
13. 一种有机电致发光器件的制备方法, 包括制作发光层的步骤, 其中, 所述发光层的制作过程包括:
1 )制作子发光层;
2 )在所述子发光层上制作插入层;
3 )在所述插入层上制作子发光层;
其中, 所制作的插入层的空穴迁移率低于所述子发光层的空穴迁移率; 如果插入层釆用为一层,则至此形成发光层;如果插入层釆用一层以上, 则根据插入层的层数, 重复进行步骤 2 ) -3 ) , 最终形成发光层。
PCT/CN2012/084121 2012-05-25 2012-11-06 有机电致发光器件及其制备方法 WO2013174104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101670321A CN102709481A (zh) 2012-05-25 2012-05-25 一种有机电致发光器件及其制备方法
CN201210167032.1 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013174104A1 true WO2013174104A1 (zh) 2013-11-28

Family

ID=46902117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084121 WO2013174104A1 (zh) 2012-05-25 2012-11-06 有机电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN102709481A (zh)
WO (1) WO2013174104A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584720A (zh) * 2019-02-15 2020-08-25 三星显示有限公司 有机发光装置及包括所述有机发光装置的电子设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709481A (zh) * 2012-05-25 2012-10-03 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法
CN104051631A (zh) * 2013-03-11 2014-09-17 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103367656A (zh) * 2013-07-25 2013-10-23 北京博如德工程技术研究有限公司 可动手组装的小分子有机电致发光教具
CN103715370B (zh) * 2013-12-26 2017-08-08 合肥京东方光电科技有限公司 微胶囊的制备方法
CN104900815A (zh) * 2015-05-26 2015-09-09 京东方科技集团股份有限公司 双层掺杂磷光发光器件及其制备方法
CN106024844B (zh) 2016-07-27 2019-01-22 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示装置
CN106252523B (zh) * 2016-09-30 2018-02-09 福州大学 一种提高有机发光器件发光效率的新型结构
CN106978177B (zh) * 2017-05-16 2022-06-14 杭州诺贝尔陶瓷有限公司 一种红色长余辉发光材料及其生产方法
CN110098340B (zh) * 2019-04-17 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种有机电致发光器件及显示装置
CN113097402B (zh) * 2021-04-12 2024-04-16 京东方科技集团股份有限公司 有机电致发光器件及其制备方法和显示面板
CN115132931A (zh) * 2022-06-28 2022-09-30 武汉华星光电半导体显示技术有限公司 一种oled器件及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313553A (ja) * 2001-04-06 2002-10-25 Kansai Tlo Kk 高速動作有機el素子
CN1729724A (zh) * 2002-12-26 2006-02-01 株式会社半导体能源研究所 有机发光元件
CN1910961A (zh) * 2004-03-24 2007-02-07 出光兴产株式会社 有机电致发光元件以及显示装置
CN102709481A (zh) * 2012-05-25 2012-10-03 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774200B1 (ko) * 2006-04-13 2007-11-08 엘지전자 주식회사 유기 el 소자 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313553A (ja) * 2001-04-06 2002-10-25 Kansai Tlo Kk 高速動作有機el素子
CN1729724A (zh) * 2002-12-26 2006-02-01 株式会社半导体能源研究所 有机发光元件
CN1910961A (zh) * 2004-03-24 2007-02-07 出光兴产株式会社 有机电致发光元件以及显示装置
CN102709481A (zh) * 2012-05-25 2012-10-03 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584720A (zh) * 2019-02-15 2020-08-25 三星显示有限公司 有机发光装置及包括所述有机发光装置的电子设备
JP2020136256A (ja) * 2019-02-15 2020-08-31 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光素子、及びそれを含んだ電子装置
EP3706185A1 (en) * 2019-02-15 2020-09-09 Samsung Display Co., Ltd. Organic light-emitting device and electronic apparatus including the same
US11600795B2 (en) 2019-02-15 2023-03-07 Samsung Display Co., Ltd. Organic light-emitting device and electronic apparatus including the same
JP7266441B2 (ja) 2019-02-15 2023-04-28 三星ディスプレイ株式會社 有機発光素子、及びそれを含んだ電子装置

Also Published As

Publication number Publication date
CN102709481A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102694131B (zh) 一种有机电致发光器件及其制备方法以及显示装置
WO2013174104A1 (zh) 有机电致发光器件及其制备方法
EP3370273B1 (en) Organic electrophosphorescence devices
JP5231188B2 (ja) 有機エレクトロルミネッセンス装置
EP3499598B1 (en) Organic light-emitting diode and preparation method thereof, and display device
KR101003267B1 (ko) 유기발광소자 및 이의 제조 방법
KR100690348B1 (ko) 유기 전기 소자
CN102651454B (zh) 一种电致发光器件、显示装置和电致发光器件制备方法
CN102414856A (zh) 发射辐射的装置
KR101973287B1 (ko) 복합체를 포함하는 정공 수송층을 구비하는 유기 발광 소자
CN110492007B (zh) 一种吖啶化合物及其在机电致发光器件中的应用
CN108832008B (zh) 激基复合物在有机发光二极管中的应用
CN102214798B (zh) 一种白光有机电致发光器件及其制备方法
WO2014019295A1 (zh) 白色有机电致发光器件及其制造方法
CN104282839A (zh) 有机电致发光器件及其制备方法、显示装置
KR20150077587A (ko) 유기 전계 발광 소자
Gao et al. Highly efficient white organic light-emitting diodes with controllable excitons behavior by a mixed interlayer between fluorescence blue and phosphorescence yellow-emitting layers
CN106008574B (zh) 一种用作有机电致磷光器件主体材料和热致延迟荧光材料的多功能化三芳基硼衍生物
CN114050221A (zh) 一种基于多元界面激基复合物的有机电致发光器件
CN113066935A (zh) 一种双激基复合物为主体的白色有机电致发光器件
Li et al. Efficient white organic light-emitting device based on a thin layer of hole-transporting host with rubrene dopant
CN104183713A (zh) 顶发射有机电致发光器件及其制备方法
Seo et al. Phosphorescent organic light-emitting diodes with simplified device architecture
CN112661708A (zh) 一种单层掺杂电子传输层绿光磷光器件及其制备方法与应用
CN115020602A (zh) 发光器件及其制备方法以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12877596

Country of ref document: EP

Kind code of ref document: A1