WO2013172238A1 - Method for producing thin-film transistor - Google Patents

Method for producing thin-film transistor Download PDF

Info

Publication number
WO2013172238A1
WO2013172238A1 PCT/JP2013/062961 JP2013062961W WO2013172238A1 WO 2013172238 A1 WO2013172238 A1 WO 2013172238A1 JP 2013062961 W JP2013062961 W JP 2013062961W WO 2013172238 A1 WO2013172238 A1 WO 2013172238A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
film transistor
thin film
oxide semiconductor
layer
Prior art date
Application number
PCT/JP2013/062961
Other languages
French (fr)
Japanese (ja)
Inventor
雅司 小野
真宏 高田
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020147031681A priority Critical patent/KR101717336B1/en
Publication of WO2013172238A1 publication Critical patent/WO2013172238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers

Definitions

  • the present invention relates to a method for manufacturing a thin film transistor.
  • TFTs thin film transistors
  • IGZO In—Ga—Zn—O-based oxide semiconductor thin film
  • An oxide semiconductor thin film can be formed at a low temperature, has higher mobility than amorphous silicon, and is transparent to visible light. Therefore, a flexible thin film transistor is formed on a substrate such as a plastic plate or a film. Is possible.
  • Table 1 shows a comparison of field effect mobility and process temperature of various transistor characteristics.
  • a thin film transistor whose active layer is polysilicon can obtain a mobility of about 100 cm 2 / Vs.
  • the process temperature is as high as 450 ° C. or higher, it can be applied only to a substrate having high heat resistance. It cannot be formed and is not suitable for low cost, large area, and flexibility.
  • the thin film transistor whose active layer is amorphous silicon can be formed at a relatively low temperature of about 300 ° C., the selectivity of the substrate is wider than that of polysilicon, but only a mobility of about 1 cm 2 / Vs can be obtained at most. Not suitable for fine display applications.
  • thin film transistors whose organic active layer is organic can be formed at 100 ° C. or lower, and therefore are expected to be applied to flexible display applications using plastic film substrates with low heat resistance.
  • the mobility is only as high as that of amorphous silicon.
  • a high mobility layer containing an oxide of IZO, ITO, GZO, or AZO is disposed on the side close to the gate electrode, and on the side far from the gate electrode.
  • a thin film transistor having an oxide layer containing Zn is disclosed.
  • a thin film transistor using an oxide semiconductor, in particular an oxide semiconductor containing In, Ga, and Zn, as an active layer has a property that a threshold voltage is negatively shifted when irradiated with light having a wavelength shorter than 460 nm. has been reported (see CS Chuang et al., SID 08 DIGEST, P-13).
  • the filter is required to have low characteristic deterioration with respect to light irradiation in a wavelength region smaller than 450 nm. If the optical band gap of the IGZO film is relatively narrow and the region has optical absorption, a threshold shift of the transistor occurs.
  • a threshold shift amount ( ⁇ Vth) for 420 nm light irradiation is set to 1 V or less as an index of stability to light irradiation
  • a stacked TFT satisfying ⁇ Vth ⁇ 1V for 420 nm light irradiation is formed. It is difficult to realize.
  • an IZO system or the like is used as a current path layer, and a high mobility TFT can be realized, but the light irradiation characteristics are not mentioned.
  • CS Chuang et al., SID 08 DIGEST, P-13 evaluated the deterioration of characteristics of conventional IGZO single-film TFT elements with respect to light irradiation. Insufficient characteristics regarding irradiation stability.
  • oxide semiconductor layer of a thin film transistor including an oxide semiconductor layer, a source electrode, a drain electrode, a gate insulating film, and a gate electrode, In (a) Ga (b) Zn (c) O ( d) a first region having a composition represented by (a> 0, b> 0, c> 0, d> 0), and a region farther from the gate electrode than the first region; (E) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), satisfying f / (e + f) ⁇ 0.875, An oxide semiconductor layer forming step of forming a second region having a composition different from that of the first region; A heat treatment step of performing heat treatment at 300 ° C.
  • the composition of the first region is c ⁇ 3/5, b> 0, b ⁇ 3a / 7-3 / 14, b ⁇ 9a / 5 ⁇ 53 / 50, b ⁇ ⁇ 8a / 5 + 33/25, and b ⁇ 91a / 74-17 / 40
  • the method for producing a thin film transistor according to ⁇ 2> or ⁇ 3>, wherein the thin film transistor is in a range satisfying the above (provided that a + b + c 1).
  • the composition of the first region is b ⁇ 17a / 23-28 / 115, b ⁇ 3a / 37, b ⁇ 9a / 5 ⁇ 53 / 50, and b ⁇ 1/5
  • ⁇ 6> The method for manufacturing a thin film transistor according to any one of ⁇ 1> to ⁇ 5>, wherein the composition of the second region satisfies f / (e + f)> 0.25.
  • ⁇ 7> The method for manufacturing a thin film transistor according to any one of ⁇ 1> to ⁇ 6>, wherein the film thickness of the second region is larger than 10 nm and smaller than 70 nm.
  • ⁇ 8> The method for manufacturing a thin film transistor according to any one of ⁇ 1> to ⁇ 7>, wherein the film thickness of the first region is 5 nm or more and less than 10 nm.
  • ⁇ 9> The method for manufacturing a thin film transistor according to any one of ⁇ 1> to ⁇ 8>, wherein the oxide semiconductor layer is amorphous.
  • ⁇ 10> The method for producing a thin film transistor according to ⁇ 1> to ⁇ 9>, wherein a heat treatment temperature in the heat treatment step is 400 ° C. or higher.
  • ⁇ 11> The method for producing a thin film transistor according to ⁇ 1> to ⁇ 10>, wherein a heat treatment temperature in the heat treatment step is 450 ° C. or higher.
  • a method of manufacturing a thin film transistor that can be manufactured is provided.
  • FIG. 1 is a schematic diagram showing a configuration of an example (bottom gate-top contact type) of a thin film transistor according to the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of an example (top gate-bottom contact type) thin film transistor according to the present invention.
  • FIG. 3A is a cross-sectional STEM image showing immediately after the IGZO laminated film is laminated
  • FIG. 3B is a cross-sectional STEM image showing the IGZO laminated film after 600 ° C. annealing.
  • FIG. 4 is a schematic diagram of the light irradiation characteristic evaluation method.
  • FIG. 5 is a diagram showing the moisture content dependency of the Vg-Id characteristics in the annealing atmosphere.
  • FIG. 6 is a graph showing changes in Vg-Id characteristics under light irradiation in Example 1.
  • FIG. 7 is a diagram illustrating the threshold shift amount ⁇ Vth with respect to the irradiation wavelength in the first embodiment.
  • FIG. 8 is a schematic cross-sectional view showing a part of the liquid crystal display device of the embodiment.
  • FIG. 9 is a schematic configuration diagram of electrical wiring of the liquid crystal display device of FIG.
  • FIG. 10 is a schematic cross-sectional view showing a part of the organic EL display device of the embodiment.
  • FIG. 11 is a schematic configuration diagram of electrical wiring of the organic EL display device of FIG.
  • FIG. 12 is a schematic cross-sectional view showing a part of the X-ray sensor array of the embodiment.
  • FIG. 13 is a schematic configuration diagram of electrical wiring of the X-ray sensor array of FIG.
  • FIG. 14 shows the composition range of the first region in the oxide semiconductor layer of the thin film transistor of the present invention and the composition and mobility of the first region in the oxide semiconductor layer of Example and Comparative Example in a ternary phase diagram method.
  • FIG. 14 shows the composition range of the first region in the oxide semiconductor layer of the thin film transistor of the present invention and the composition and mobility of the first region in the oxide semiconductor layer of Example and Comparative Example in a ternary phase diagram method.
  • an In (a) Ga (b) is used as the oxide semiconductor layer of a thin film transistor including an oxide semiconductor layer, a source electrode, a drain electrode, a gate insulating film, and a gate electrode.
  • a first region having a composition represented by Zn (c) O (d) (a> 0, b> 0, c> 0, d> 0), and farther from the gate electrode than the first region In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), f / (e + f) ⁇ 0.
  • Oxidide semiconductor layer forming step Forming a second region satisfying 875 and having a composition different from that of the first region (oxide semiconductor layer forming step); Heat-treating the oxide semiconductor layer at a temperature of 300 ° C. or higher (heat treatment step) in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher.
  • a parasitic conduction path may be formed in addition to the main channel path generated at the interface between the first region and the gate insulating film. .
  • the presence of such parasitic conduction causes a hump effect in the Vg-Id characteristic and deteriorates the On / Off ratio.
  • the first region and the second region are semiconductor layers having different compositions, a situation in which a large number of defect levels exist at the interface between the first and second regions is easy. I can imagine.
  • a defect level due to oxygen defects exists, and such a defect level is an in-gap level formed in a band gap.
  • Such an in-gap level causes photocurrent generation and the accompanying threshold shift, even if light irradiation with energy smaller than the band gap is caused, which also causes photoinstability.
  • the present inventors When forming an IGZO layer as an oxide semiconductor layer, the present inventors have a first region and a second region having a specific composition range (f / (e + f) ⁇ 0.875) from the side close to the gate electrode.
  • the effect of effectively suppressing the hump effect can be obtained by annealing in a specific moist atmosphere, and the threshold shift amount ⁇ Vth for light irradiation with a wavelength of 420 nm is 1V. I found that it would be less.
  • the thin film transistor manufacturing method of the present invention reduces the defects at the interface between the first region and the second region inside the active layer by annealing in a specific wet atmosphere, thereby increasing the high mobility of the stacked thin film transistor.
  • TFT thin film transistor
  • FIGS. 1 and 2 will be specifically described as a representative example, but the present invention can also be applied to the manufacture of TFTs of other forms (structures).
  • the element structure of the TFT of the present invention may be either a so-called bottom gate type structure (also called an inverted staggered structure) or a top gate type structure (also called a staggered structure) based on the position of the gate electrode.
  • the top gate structure is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowermost layer.
  • the bottom-gate structure is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film when the substrate on which the TFT is formed is the lowest layer. .
  • the element structure of the TFT of the present invention is based on a contact portion between an oxide semiconductor layer and a source electrode and a drain electrode (referred to as “source / drain electrodes” as appropriate), which is a so-called top contact type or bottom contact type.
  • the aspect of this may be sufficient.
  • the bottom contact type structure is a form in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes.
  • the top contact type structure is a form in which the active layer is formed before the source / drain electrodes and the upper surface of the active layer is in contact with the source / drain electrodes.
  • the TFT according to the present invention can have various configurations, and may appropriately have a configuration including a protective layer on the active layer and an insulating layer on the substrate.
  • FIG. 1 is a sectional view schematically showing the configuration of a thin film transistor 1 according to the first embodiment of the present invention
  • FIG. 2 is a schematic view showing the configuration of the thin film transistor 2 according to the second embodiment of the present invention.
  • the thin film transistor 1 of the first embodiment shown in FIG. 1 is a bottom gate-top contact type transistor
  • the thin film transistor 2 of the second embodiment shown in FIG. 2 is a top gate-bottom contact type transistor.
  • the arrangement of the gate electrode 16, the source electrode 13, and the drain electrode 14 with respect to the oxide semiconductor layer 12 is different, but the function of each element given the same reference numeral is the same. Similar materials can be applied.
  • the thin film transistors 1 and 2 include a gate electrode 16, a gate insulating film 15, an oxide semiconductor layer 12, a source electrode 13, and a drain electrode 14, and the oxide semiconductor layer 12 includes
  • the first region A1 and the second region A2 are provided from the side closer to the gate electrode 16 in the film thickness direction.
  • the first region A1 and the second region A2 constituting the oxide semiconductor layer 12 are continuously formed, and an insulating layer, an electrode layer, or the like is provided between the first region A1 and the second region A2.
  • Layers other than the oxide semiconductor layer are not interposed, and are formed of an oxide semiconductor film.
  • each component including the substrate on which the TFTs 1 and 2 of the present invention are formed will be described in detail.
  • the substrate 11 for forming the thin film transistor according to the present invention is not particularly limited as long as it has heat resistance of 300 ° C. or higher, and can be appropriately selected according to the purpose. it can.
  • the structure of the substrate 11 may be a single layer structure or a laminated structure.
  • a substrate made of an inorganic material such as glass or YSZ (yttrium stabilized zirconium), a resin having high heat resistance such as polyimide, a resin composite material, or the like can be used.
  • a substrate or the like can be used.
  • the oxide semiconductor layer 12 is referred to as a first region A1 (appropriately referred to as “A1 layer”) and a second region A2 (appropriately referred to as “A2 layer”) from the order close to the gate electrode 16. ), And is disposed to face the gate electrode 16 with the gate insulating film 15 in between.
  • the first region A1 is an IGZO layer having a composition represented by In (a) Ga (b) Zn (c) O (d) (a> 0, b> 0, c> 0, d> 0). is there.
  • the second region A2 located on the side farther than the first region A1 with respect to the gate electrode 16, that is, on the side opposite to the surface in contact with the gate insulating film 15 of the first region A1 is In (e ) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), satisfying f / (e + f) ⁇ 0.875, the first region It is an IGZO layer having a composition different from A1.
  • the conduction channel is formed in the first region A1. Since the carrier mobility is also high in the composition region, a high mobility exceeding 20 cm 2 / Vs is also realized.
  • the film of the first region A1 having the above composition also has a high carrier concentration, it is difficult to obtain sufficiently low off-state current and switching characteristics when the film of the first region A1 is used alone as an active layer. is there.
  • the thickness of the first region A1 is desirably less than 10 nm.
  • the threshold value is greatly shifted to the negative side. there is a possibility. If the thickness of the first region A1 is 10 nm or more, the total carrier concentration in the active layer is in an excessive state, and pinch-off becomes relatively difficult.
  • the thickness of the first region A1 is preferably 5 nm or more from the viewpoint of obtaining uniformity and high mobility of the oxide semiconductor layer 12.
  • the second region A2 of the oxide semiconductor layer 12 is on the side farther than the first region A1 with respect to the gate electrode 16, that is, the surface in contact with the gate insulating film 15 in the first region A1. Located on the opposite side.
  • the second region A2 is represented by In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), and f / (e + f) ⁇
  • the IGZO layer satisfies 0.875 and has a composition different from that of the first region A1.
  • the composition of the second region A2 is f / (e + f)> 0.25. If f / (e + f) ⁇ 0.25 in the second region A2, the carrier concentration in the second region A2 increases, and the effect of carrier movement to the first region A1 becomes significant. There is a possibility that the carrier concentration in the first region A1 becomes excessively high, the off-current increases, and the threshold value is large and takes a negative value.
  • the thickness of the second region A2 is desirably 30 nm or more. If the thickness of the second region A2 is 30 nm or more, a reduction in off-current can be expected more reliably. On the other hand, if the thickness of the second region A2 is 10 nm or less, there is a risk of increasing the off-current or degrading the S value.
  • the thickness of the second region A2 is preferably less than 70 nm. If the thickness of the second region is 70 nm or more, a reduction in off-current can be expected, but the resistance between the source / drain electrode layer and the first region A1 increases, resulting in a decrease in mobility. There is a risk of inviting. Therefore, the thickness of the second region A2 is desirably larger than 10 nm and smaller than 70 nm.
  • the total thickness (total thickness) of the oxide semiconductor layer 12 is preferably about 10 to 200 nm, from the viewpoint of film uniformity and patterning property, and is 35 nm or more and less than 80 nm. Is more preferable.
  • the oxide semiconductor layer 12 (the first region A1 and the second region A2) is preferably amorphous. If the first and second regions A1 and A2 are amorphous films, there is no crystal grain boundary and a highly uniform film can be obtained. Note that whether or not the laminated film composed of the first and second regions A1 and A2 is amorphous can be confirmed by X-ray diffraction measurement. That is, when a clear peak indicating a crystal structure is not detected by X-ray diffraction measurement, it can be determined that the laminated film is amorphous.
  • the carrier concentration of the oxide semiconductor layer 12 can be controlled not only by the composition modulation of the regions A1 and A2, but also by the oxygen partial pressure control during film formation. Specifically, the oxygen concentration can be controlled by controlling the oxygen partial pressure during film formation in the first and second regions A1 and A2. If the oxygen partial pressure at the time of film formation is increased, the carrier concentration can be reduced, and a reduction in off-current can be expected accordingly. On the other hand, if the oxygen partial pressure during film formation is lowered, the carrier concentration can be increased, and accordingly, the field effect mobility can be expected to increase. Further, for example, by performing a treatment of irradiating oxygen radicals or ozone after forming the first region A1, it is possible to promote the oxidation of the film and reduce the amount of oxygen vacancies in the first region A1. .
  • the band gap of the film can be increased by doping Mg.
  • the band gap can be increased while maintaining the band profile of the laminated film, compared to a system in which the composition ratio of only In, Ga, and Zn is controlled. It is.
  • the carrier density in each of the first and second regions A1 and A2 can be arbitrarily controlled by cation doping.
  • a material that tends to be a cation having a relatively large valence eg, Ti, Zr, Hf, Ta, etc.
  • doping a cation having a large valence the number of constituent elements of the oxide semiconductor film increases, which is disadvantageous in terms of simplifying the film formation process and reducing the cost.
  • the source electrode 13 and the drain electrode 14 are not particularly limited in terms of material and structure as long as both have high conductivity.
  • metal such as Al, Mo, Cr, Ta, Ti, Au, Ag, metal oxide such as Al—Nd, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), etc.
  • the source / drain electrodes 13 and 14 can be formed of a conductive film or the like as a single layer or a laminated structure of two or more layers.
  • the film thickness, the patterning property by etching or lift-off method, the conductivity, and the like are each independently 10 nm or more. , 1000 nm or less, preferably 50 nm or more and 100 nm or less.
  • the gate insulating film 15 is a layer that separates the gate electrode 16, the oxide semiconductor 12, and the source / drain electrodes 13, 14, and preferably has high insulating properties.
  • the gate insulating film 15 is composed of an insulating film such as SiO 2 , SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2, or an insulating film containing two or more of these compounds. be able to.
  • the gate insulating film 15 needs to have a sufficient thickness to reduce leakage current and improve voltage resistance. On the other hand, if the thickness is too large, the drive voltage increases.
  • the thickness of the gate insulating film 15 is preferably 10 nm to 10 ⁇ m, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
  • Gate electrode 16 is not particularly limited as long as it has high conductivity.
  • metal such as Al, Mo, Cr, Ta, Ti, Au, Ag, metal oxide such as Al—Nd, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), etc.
  • a gate electrode can be formed using a conductive film or the like as a single layer or a stacked structure of two or more layers.
  • the thickness is preferably 10 nm or more and 1000 nm or less in consideration of the film forming property, the patterning property by etching or lift-off method, and the conductivity. 50 nm or more and 200 nm or less is more preferable.
  • a substrate 11 is prepared, and a layer other than the thin film transistor 1 is formed on the substrate 11 as necessary, and then a gate electrode 16 is formed.
  • the gate electrode 16 is used, for example, from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material. For example, after the electrode film is formed, the gate electrode 16 is formed by patterning into a predetermined shape by etching or a lift-off method. At this time, it is preferable to pattern the gate electrode 16 and the gate wiring simultaneously.
  • the gate insulating film 15 is formed.
  • the gate insulating film 15 is used from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material.
  • the gate insulating film 15 may be patterned into a predetermined shape by photolithography and etching.
  • the oxide semiconductor layer 12 is formed in the order of the first region A1 and the second region A2 at a position facing the gate electrode 16 on the gate insulating film 15.
  • An IGZO layer having a composition in a range satisfying b ⁇ 1/5 is formed.
  • a method for forming the first and second regions A1 and A2 constituting the oxide semiconductor layer 12 is not particularly limited, but it is preferable to form the film by a sputtering method. Since the sputtering method has a high deposition rate and can form a highly uniform film, an oxide semiconductor film with a large area can be formed at low cost.
  • a complex oxide target adjusted in advance to have a desired cation composition may be used, or ternary co-sputtering of In 2 O 3 , Ga 2 O 3 , and ZnO. May be used.
  • the substrate temperature during film formation may be arbitrarily selected according to the substrate, but when a resin flexible substrate is used, the substrate temperature is preferably closer to room temperature in order to prevent deformation of the substrate.
  • the second region A2 having a composition satisfying f / (e + f) ⁇ 0.875 and preferably satisfying f / (e + f)> 0.25 is formed.
  • the film formation in the second region A2 is a method of once stopping the film formation after the film formation in the first region A1, changing the oxygen partial pressure in the film formation chamber and the power applied to the target, and then restarting the film formation. Alternatively, the oxygen partial pressure in the deposition chamber and the power applied to the target may be changed quickly or slowly without stopping the deposition.
  • the target may be a method of changing the input power by using the target used at the time of film formation in the first area A1, or switching the film formation from the first area A1 to the second area A2.
  • a method may be used in which power supply to the target used for film formation in the first region A1 is stopped and power is applied to different targets including In, Ga, and Zn, or the first region A1.
  • a method of additionally applying power to a plurality of targets may be used.
  • the substrate temperature at the time of forming the second region A2 may be arbitrarily selected according to the substrate, but when a resin flexible substrate is used, as in the case of forming the first region A1, The substrate temperature is preferably closer to room temperature.
  • the oxide semiconductor layer 12 is preferably formed continuously without being exposed to the atmosphere.
  • impurities can be prevented from being mixed between the regions A1 and A2, and as a result, more excellent transistor characteristics can be obtained.
  • the manufacturing cost can also be reduced. Note that in this embodiment, when the bottom-gate thin film transistor 1 is manufactured, the oxide semiconductor layer 12 is formed in the order of the first region A1 and the second region A2, and the top-gate type thin film transistor 1 shown in FIG. When the thin film transistor 2 is manufactured, the second region A2 and the first region A1 may be formed in this order.
  • Heat treatment step After forming the first region A1 and the second region A2 as the oxide semiconductor layer 12, the heat treatment step is performed at 300 ° C. in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or more (dew point temperature of 0.8 ° C. or more).
  • the above heat treatment (post-annealing treatment) is performed.
  • the Hump effect can be suppressed as compared with the case where annealing is performed in a dry atmosphere with an absolute humidity of less than 4.8 g / m 3.
  • the wet atmosphere in the heat treatment step is preferably performed at an absolute humidity of 9.5 g / m 3 or more (dew point temperature of 10.7 ° C. or more).
  • the heat treatment temperature is preferably 400 ° C. or higher, and more preferably 450 ° C. or higher.
  • the heat treatment temperature is 400 ° C. or higher, the light irradiation stability can be extremely increased (for example,
  • the heat processing time is 5 minutes or more and 120 minutes or less from a viewpoint of improving light irradiation stability reliably.
  • the heat treatment is performed at a temperature of 600 ° C. or more, cation mutual diffusion occurs between the first region A1 and the second region A2, and the two regions are mixed. In this case, it is difficult to concentrate conductive carriers only in the first region. Therefore, the heat treatment temperature in the heat treatment step is desirably less than 600 ° C. Whether or not cation mutual diffusion occurs in the first region and the second region can be confirmed, for example, by performing analysis by cross-sectional TEM.
  • FIG. 3 (left; FIG. 3 (A)) shows a state immediately after stacking (before annealing) and FIG. 3 (right; FIG. 3 (B)) shows a case where the annealing temperature is 600 ° C. 3A and 3B, it can be confirmed that the laminated structure of the IGZO film maintains the laminated structure to some extent even when annealed at 600 ° C., but the contrast is blurred at the interface of different cation compositions. You can see the situation. This suggests that heterogeneous interdiffusion has begun to occur, and the upper limit temperature in the heat treatment step is desirably 600 ° C. or lower.
  • the oxide semiconductor layer 12 is patterned. Patterning can be performed by photolithography and etching. Specifically, a pattern of the oxide semiconductor layer 12 is formed by forming a resist pattern on the remaining portion by photolithography and etching with an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid. Form. Note that after the oxide semiconductor layer 12 is patterned, the heat treatment step, that is, heat treatment at 300 ° C. or higher may be performed in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher.
  • a metal film for forming the source / drain electrodes 13 and 14 is formed on the oxide semiconductor layer 12.
  • Each of the source electrode 13 and the drain electrode 14 is, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, a chemical method such as CVD or a plasma CVD method, or the like.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
  • the metal film is patterned into a predetermined shape by etching or a lift-off method, and the source electrode 13 and the drain electrode 14 are formed. At this time, it is preferable to pattern the source / drain electrodes 13 and 14 and the wiring (not shown) connected to these electrodes 13 and 14 simultaneously.
  • the thin film transistor 1 illustrated in FIG. 1 can be manufactured.
  • a protective layer as described above may be provided on the active layer. For example, by providing a protective layer that absorbs and reflects light in the ultraviolet region (wavelength 400 nm or less), the stability against light irradiation can be further improved.
  • the thin film transistor manufactured according to the present invention has high light irradiation stability while suppressing the hamp effect, and can be applied to various devices.
  • the display device and the sensor using the thin film transistor manufactured according to the present invention exhibit good characteristics due to low power consumption.
  • the “characteristic” referred to here is a display characteristic in the case of a display device, and a sensitivity characteristic in the case of a sensor.
  • FIG. 8 shows a schematic sectional view of a part of a liquid crystal display device which is an embodiment of a display device including a thin film transistor manufactured according to the present invention
  • FIG. 9 shows a schematic configuration diagram of its electric wiring. Show.
  • the liquid crystal display device 5 of the present embodiment includes a top gate-bottom contact type thin film transistor 2 shown in FIG. 2 and a pixel lower portion on the gate electrode 16 protected by the passivation layer 54 of the thin film transistor 2.
  • a liquid crystal layer 57 sandwiched between the electrode 55 and the opposed upper electrode 56 and an RGB color filter 58 for developing different colors corresponding to each pixel are provided, respectively on the substrate 11 side and the color filter 58 of the TFT 2. It has a configuration including polarizing plates 59a and 59b.
  • the liquid crystal display device 5 of this embodiment includes a plurality of gate wirings 51 that are parallel to each other and data wirings 52 that are parallel to each other and intersect the gate wirings 51.
  • the gate wiring 51 and the data wiring 52 are electrically insulated.
  • the thin film transistor 2 is provided in the vicinity of the intersection between the gate line 51 and the data line 52.
  • the gate electrode 16 of the thin film transistor 2 is connected to the gate wiring 51, and the source electrode 13 of the thin film transistor 2 is connected to the data wiring 52.
  • the drain electrode 14 of the thin film transistor 2 is electrically connected to the pixel lower electrode 55 through a contact hole 19 provided in the gate insulating film 15 (a conductor is embedded in the contact hole 19).
  • the pixel lower electrode 55 and the grounded counter electrode 56 constitute a capacitor 53.
  • the top gate type thin film transistor is provided in the liquid crystal device of this embodiment shown in FIG. 8.
  • the thin film transistor used in the liquid crystal device which is the display device of the present invention is not limited to the top gate type, A bottom-gate thin film transistor may be used.
  • the thin film transistor manufactured according to the present invention has high mobility, high-definition display such as high definition, high-speed response, and high contrast is possible in a liquid crystal display device, which is suitable for a large screen.
  • the active layer (oxide semiconductor layer) 12 is amorphous, variations in device characteristics can be suppressed, and an excellent display quality with a large screen and no unevenness can be realized.
  • the gate voltage can be reduced, and thus the power consumption of the display device can be reduced.
  • the first region A1 and the second region A2 constituting the active layer can be formed using an amorphous film that can be formed at a low temperature (for example, 200 ° C. or less). Therefore, a resin substrate (plastic substrate) can be used as the substrate. Therefore, according to the present invention, it is possible to provide a flexible liquid crystal display device having excellent display quality.
  • FIG. 10 shows a schematic sectional view of a part of an active matrix organic EL display device
  • FIG. A schematic block diagram is shown.
  • driving methods for organic EL display devices There are two types of driving methods for organic EL display devices: a simple matrix method and an active matrix method.
  • the simple matrix method has an advantage that it can be manufactured at low cost.
  • the pixels are emitted by selecting one scanning line at a time, the number of scanning lines and the light emission time per scanning line are inversely proportional. Therefore, it is difficult to increase the definition and increase the screen size.
  • the active matrix method has a high manufacturing cost because a transistor and a capacitor are formed for each pixel.
  • it since there is no problem that the number of scanning lines cannot be increased unlike the simple matrix method, it is suitable for high definition and large screen.
  • a top gate-top contact type thin film transistor is provided as a driving TFT 2a and a switching TFT 2b on a substrate 60 provided with a passivation layer 61a.
  • an organic light emitting element 65 comprising an organic light emitting layer 64 sandwiched between a lower electrode 62 and an upper electrode 63 is provided, and the upper surface is also protected by a passivation layer 61b.
  • the organic EL display device 6 includes a plurality of gate wirings 66 that are parallel to each other, and a data wiring 67 and a driving wiring 68 that are parallel to each other and intersect the gate wiring 66.
  • the gate wiring 66, the data wiring 67, and the driving wiring 68 are electrically insulated.
  • the gate electrode 16 b of the switching thin film transistor 2 b is connected to the gate line 66, and the source electrode 13 b of the switching thin film transistor 2 b is connected to the data line 67.
  • the drain electrode 14b of the switching thin film transistor 2b is connected to the gate electrode 16a of the driving thin film transistor 2a, and the driving thin film transistor 2a is kept on by using the capacitor 69.
  • the source electrode 13 a of the driving thin film transistor 2 a is connected to the driving wiring 68, and the drain electrode 14 a is connected to the organic EL light emitting element 65.
  • the organic EL device of this embodiment shown in FIG. 10 is also provided with the top gate type thin film transistors 2a and 2b.
  • the thin film transistor used in the organic EL device which is the display device of the present invention is a top gate type.
  • a bottom-gate thin film transistor may be used.
  • the thin film transistor manufactured according to the present invention has high mobility, low power consumption and high quality display can be achieved. Further, according to the present invention, the first region A1 and the second region A2 constituting the active layer can be formed using an amorphous film that can be formed at a low temperature (for example, 200 ° C. or less). Therefore, a resin substrate (plastic substrate) can be used as the substrate. Therefore, according to the present invention, a flexible organic EL display device having excellent display quality can be provided.
  • the top electrode 63 may be a top emission type with a transparent electrode, or the bottom electrode 62 and the TFTs 2a and 2b may be a transparent electrode by using a transparent electrode. Good.
  • FIG. 12 shows a schematic cross-sectional view of a part of an X-ray sensor which is an embodiment of the sensor of the present invention
  • FIG. 13 shows a schematic configuration diagram of its electrical wiring.
  • the X-ray sensor 7 of this embodiment includes a thin film transistor 2 and a capacitor 70 formed on a substrate 11, a charge collection electrode 71 formed on the capacitor 70, an X-ray conversion layer 72, and an upper electrode 73.
  • a passivation film 75 is provided on the thin film transistor 2.
  • the capacitor 70 has a structure in which an insulating film 78 is sandwiched between a capacitor lower electrode 76 and a capacitor upper electrode 77.
  • the capacitor upper electrode 77 is connected to one of the source electrode 13 and the drain electrode 14 (the drain electrode 14 in FIG. 12) of the thin film transistor 2 through a contact hole 79 provided in the insulating film 78.
  • the charge collection electrode 71 is provided on the capacitor upper electrode 77 in the capacitor 70 and is in contact with the capacitor upper electrode 77.
  • the X-ray conversion layer 72 is a layer made of amorphous selenium and is provided so as to cover the thin film transistor 2 and the capacitor 70.
  • the upper electrode 73 is provided on the X-ray conversion layer 72 and is in contact with the X-ray conversion layer 72.
  • the X-ray sensor 7 of the present embodiment includes a plurality of gate wirings 81 that are parallel to each other and a plurality of data wirings 82 that are parallel to each other and intersect the gate wiring 81.
  • the gate wiring 81 and the data wiring 82 are electrically insulated.
  • the thin film transistor 2 is provided in the vicinity of the intersection between the gate line 81 and the data line 82.
  • the gate electrode 16 of the thin film transistor 2 is connected to the gate wiring 81, and the source electrode 13 of the thin film transistor 2 is connected to the data wiring 82.
  • the drain electrode 14 of the thin film transistor 2 is connected to the charge collecting electrode 71, and the charge collecting electrode 71 constitutes a capacitor 70 together with the grounded counter electrode 76.
  • X-rays are irradiated from the upper part (upper electrode 73 side) in FIG.
  • the generated charges are accumulated in the capacitor 70 and read out by sequentially scanning the thin film transistor 2.
  • the X-ray sensor of the present invention includes the thin film transistor 2 having a high on-current and excellent reliability, the S / N is high and the sensitivity characteristic is excellent. A range image is obtained.
  • the X-ray digital imaging apparatus of the present invention is suitable not only for still image shooting but also for an X-ray digital imaging apparatus that can perform fluoroscopy with a moving image and still image shooting. Further, when the first region A1 and the second region A2 constituting the active layer in the thin film transistor 2 are amorphous, an image with excellent uniformity can be obtained.
  • the top gate type thin film transistor is provided in the X-ray sensor of this embodiment shown in FIG. 12.
  • the thin film transistor used in the sensor of the present invention is not limited to the top gate type, but the bottom gate type. A thin film transistor may be used.
  • a p-type silicon substrate manufactured by Mitsubishi Materials Corporation
  • a SiO 2 oxide film thickness: 100 nm
  • an oxide semiconductor layer was formed over the p-type silicon substrate.
  • the oxide semiconductor layer was continuously formed between the regions without being exposed to the atmosphere.
  • Sputtering of each region was performed by ternary co-sputtering using an In 2 O 3 target, a Ga 2 O 3 target, and a ZnO target in the regions A1 and A2.
  • the film thickness in each region was adjusted by adjusting the film formation time.
  • the film formation conditions in the first region A1 and the second region are as follows, and sputtering conditions other than the composition of each region are common in the experiments described later.
  • an electrode layer made of Ti (10 nm) / Au (40 nm) was formed on the stacked film (oxide semiconductor layer) by vacuum vapor deposition through a metal mask.
  • a wet atmosphere was injected into the annealing chamber with the annealing temperature set to 400 ° C. (except for Comparative Example 5) and the oxygen partial pressure fixed (20%).
  • the annealing time was 1 hour.
  • a shunt-type humidity generator (SRG-1M-10L (trade name) manufactured by Shinei Technology Co., Ltd.) was used to generate a humid atmosphere.
  • the annealing temperature was 200 ° C.
  • bottom gate type thin film transistors in Examples 1 to 8 and Comparative Examples 1 to 5 having a channel length of 180 ⁇ m and a channel width of 1 mm were obtained.
  • Vg-Id characteristics are measured by fixing the drain voltage (Vd) to 10V, sweeping the gate voltage (Vg) within the range of -30V to + 30V, and measuring the drain current (Id) at each gate voltage (Vg). I went to do it.
  • the mobility is linear mobility from the Vg-Id characteristic in the linear region obtained by sweeping the gate voltage (Vg) in the range of -30V to + 30V with the drain voltage (Vd) fixed at 1V. Was calculated.
  • FIG. 4 shows an outline of TFT characteristic measurement under monochromatic light irradiation. As shown in FIG. 4, each TFT was placed on the probe stage stage 200, and after flowing dry air for 2 hours or more, TFT characteristics were measured under the dry air atmosphere.
  • the irradiation intensity of the monochrome light source is 10 ⁇ W / cm 2 , the wavelength ⁇ is 360 to 700 nm, and the Vg-Id characteristics when the monochrome light is not irradiated are compared with the Vg-Id characteristics when the monochrome light is irradiated. Stability ( ⁇ Vth) was evaluated.
  • the threshold shift amount ⁇ Vth for light irradiation of 420 nm was used as an indicator of the light stability of the TFT. In addition, the said evaluation method is common in subsequent experiment.
  • Table 2 shows a list of absolute humidity (dew point temperature) during annealing, composition of the A2 layer, and TFT characteristics.
  • FIG. 5 shows Vg-Id characteristics in the TFTs of Examples 1 to 4 and Comparative Examples 1 to 4.
  • FIG. 6 shows the IV characteristics during the monochrome light irradiation in the TFT of Example 1
  • FIG. 7 shows the threshold shift amount ⁇ Vth with respect to the irradiation wavelength.
  • the composition of the A2 layer is f / (e + f) ⁇ 0.875, but the annealing process is less than 4.8 g / m 3 in absolute humidity, and Vg as shown in FIG.
  • a hum characteristic in the ⁇ Id characteristic (a bump appears in the IV characteristic) is remarkable, and the current value in the hump region increases during light irradiation, and detailed evaluation cannot be performed.
  • the annealing conditions are the same as in Examples 4, 7, and 8, but the composition of the A2 layer does not satisfy f / (e + f) ⁇ 0.875, and the hump is included in the Vg-Id curve.
  • A1 layer composition dependency of TFT characteristics TFT characteristics when the second region A2 is fixed to the IGZO layer (f / (e + f) 0.75), and the first region A1 is composition-modulated and annealed.
  • Table 3 The thickness of the first region A1 was 5 nm, and the thickness of the second region was 50 nm.
  • the annealing conditions are an absolute humidity of 15.3 g / m 3 , 400 ° C., and 1 hour.
  • the thickness of the first region A1 was 5 nm, and the thickness of the second region was 50 nm.
  • the annealing conditions were such that the absolute humidity was 15.3 g / m 3 and only the annealing temperature was modulated.
  • the mobility and light stability of the TFT were evaluated. The evaluation results are shown in Table 4 below.
  • a display device as an electro-optical device (for example, a liquid crystal display device, an organic EL (Electro-Luminescence) display device, an inorganic EL display device) Etc.) as a driving element.
  • an electro-optical device for example, a liquid crystal display device, an organic EL (Electro-Luminescence) display device, an inorganic EL display device) Etc.
  • the thin film transistor manufactured according to the present invention is a device such as a flexible display that can be manufactured by a low temperature process using a resin substrate, an image sensor such as a CCD (Charge-Coupled Device), a CMOS (Complementary Metal-Oxide Semiconductor), or an X-ray sensor. It is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as MEMS (Micro Electro Mechanical System).
  • the display device and sensor of the present invention using the thin film transistor manufactured according to the present invention exhibit good characteristics due to low power consumption.
  • the “characteristic” referred to here is a display characteristic in the case of a display device, and a sensitivity characteristic in the case of a sensor.

Landscapes

  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Provided is a method for producing a thin-film transistor, the method involving an oxide semiconductor layer formation step in which an oxide semiconductor layer is formed from: a first region having a composition represented by In(a)Ga(b)Zn(c)O(d) (wherein a, b, c, d>0); and a second region which is disposed farther away from the gate electrode than the first region and which has a composition that is different from the first region and that is represented by In(e)Ga(f)Zn(g)O(h) (wherein e, f, g, h>0) in which f/(e+f)≤0.875. The method also involves a heat treatment step in which the oxide semiconductor layer is subjected to heat treatment at 300°C or higher in a moist atmosphere having an absolute humidity of 4.8 g/m3 or higher.

Description

薄膜トランジスタの製造方法Thin film transistor manufacturing method
 本発明は、薄膜トランジスタの製造方法に関する。 The present invention relates to a method for manufacturing a thin film transistor.
 近年、In-Ga-Zn-O系(以下、IGZOと称す)の酸化物半導体薄膜を活性層(チャネル層)に用いた薄膜トランジスタ(TFT)の研究開発が盛んである。酸化物半導体薄膜は低温成膜が可能であり、且つアモルファスシリコンよりも高移動度を示し、更に可視光に透明であることから、プラスチック板やフィルム等の基板上にフレキシブルな薄膜トランジスタを形成することが可能である。 In recent years, research and development of thin film transistors (TFTs) using an In—Ga—Zn—O-based (hereinafter referred to as IGZO) oxide semiconductor thin film as an active layer (channel layer) have been actively conducted. An oxide semiconductor thin film can be formed at a low temperature, has higher mobility than amorphous silicon, and is transparent to visible light. Therefore, a flexible thin film transistor is formed on a substrate such as a plastic plate or a film. Is possible.
 ここで、表1に各種トランジスタ特性の電界効果移動度やプロセス温度等を比較したものを示す。 Here, Table 1 shows a comparison of field effect mobility and process temperature of various transistor characteristics.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、活性層がポリシリコンの薄膜トランジスタは100cm/Vs程度の移動度を得ることが可能だが、プロセス温度が450℃以上と非常に高いために、耐熱性が高い基板にしか形成できず、安価、大面積、フレキシブル化には不向きである。また、活性層がアモルファスシリコンの薄膜トランジスタは300℃程度の比較的低温で形成可能なため、基板の選択性はポリシリコンに比べて広いが、せいぜい1cm/Vs程度の移動度しか得られず高精細なディスプレイ用途には不向きである。
 一方、低温成膜という観点では活性層が有機物の薄膜トランジスタは100℃以下での形成が可能なため、耐熱性の低いプラスティックフィルム基板等を用いたフレキシブルディスプレイ用途等への応用が期待されているが、移動度はアモルファスシリコンと同程度の結果しか得られていない。
As shown in Table 1, a thin film transistor whose active layer is polysilicon can obtain a mobility of about 100 cm 2 / Vs. However, since the process temperature is as high as 450 ° C. or higher, it can be applied only to a substrate having high heat resistance. It cannot be formed and is not suitable for low cost, large area, and flexibility. In addition, since the thin film transistor whose active layer is amorphous silicon can be formed at a relatively low temperature of about 300 ° C., the selectivity of the substrate is wider than that of polysilicon, but only a mobility of about 1 cm 2 / Vs can be obtained at most. Not suitable for fine display applications.
On the other hand, from the viewpoint of low-temperature film formation, thin film transistors whose organic active layer is organic can be formed at 100 ° C. or lower, and therefore are expected to be applied to flexible display applications using plastic film substrates with low heat resistance. The mobility is only as high as that of amorphous silicon.
 例えば、特開2010-21555号公報では、活性層として、ゲート電極に近い側に、IZO、ITO、GZO、又はAZOの酸化物を含む高移動度層を配し、ゲート電極から遠い側にはZnを含有する酸化物層を配する薄膜トランジスタが開示されている。
 また、酸化物半導体、中でもIn、GaおよびZnを含む酸化物半導体を活性層として使用した薄膜トランジスタは、460nmより短い波長を有する光が照射されると、閾値電圧が負にシフトする性質を有することが報告されている(C.S. Chuang et al., SID 08 DIGEST, P-13を参照)。
For example, in Japanese Patent Application Laid-Open No. 2010-21555, as an active layer, a high mobility layer containing an oxide of IZO, ITO, GZO, or AZO is disposed on the side close to the gate electrode, and on the side far from the gate electrode. A thin film transistor having an oxide layer containing Zn is disclosed.
A thin film transistor using an oxide semiconductor, in particular an oxide semiconductor containing In, Ga, and Zn, as an active layer has a property that a threshold voltage is negatively shifted when irradiated with light having a wavelength shorter than 460 nm. Has been reported (see CS Chuang et al., SID 08 DIGEST, P-13).
 有機ELや液晶に用いられる青色発光層はλ=450nm程度のピークを持つブロードな発光を示すが、有機EL素子の青色光の発光スペクトルの裾(tail)は420nmまで続いていること、青色カラーフィルタは400nmの光を70%程度は通すことを考慮すると、450nmよりも小さい波長域での光照射に対する特性劣化が低いことが要求される。仮にIGZO膜の光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまう。 The blue light-emitting layer used in organic EL and liquid crystals shows broad light emission with a peak of about λ = 450 nm, but the tail of the emission spectrum of blue light of the organic EL element continues to 420 nm, blue color In consideration of passing about 70% of 400 nm light, the filter is required to have low characteristic deterioration with respect to light irradiation in a wavelength region smaller than 450 nm. If the optical band gap of the IGZO film is relatively narrow and the region has optical absorption, a threshold shift of the transistor occurs.
 一方で、ディスプレイの大型化及び高精細化に伴い、ディスプレイ駆動用の薄膜トランジスタの更なる高移動度化が求められており、アモルファスシリコンや従来のIGZO素子(移動度10cmA/Vs程度)ではカバーできないような高機能ディスプレイも提案されつつある。
 高移動度化を実現する方法の一つとして、酸化物半導体からなる複数の活性層を積層した構造を有するTFTがあるが、このような積層型TFTにおいて、光照射に対する特性劣化を低減する為の保護層等やブロッキング層を活性層上に設けることなく、本質的に光照射安定性を向上させる試みは成されていない。
On the other hand, with the increase in size and definition of displays, there is a demand for higher mobility of thin film transistors for driving the display. Covering with amorphous silicon and conventional IGZO elements (mobility of about 10 cmA 2 / Vs) High-function displays that cannot be performed are being proposed.
As one of the methods for realizing high mobility, there is a TFT having a structure in which a plurality of active layers made of oxide semiconductors are stacked. In such a stacked TFT, in order to reduce deterioration in characteristics due to light irradiation. No attempt has been made to improve the light irradiation stability essentially without providing a protective layer or the like or a blocking layer on the active layer.
 ここで、例えば、光照射に対する安定性の指標として、420nmの光照射に対する閾値シフト量(ΔVth)を1V以下という基準を設けると、420nmの光照射に対するΔVth≦1Vを満たすような積層型TFTを実現することは困難である。
 特開2010-21555号公報では、電流パス層としてIZO系等を用いており高移動度のTFTは実現可能であるが、光照射特性については言及されていない。
 また、C.S. Chuang et al., SID 08 DIGEST, P-13は、従来のIGZO単膜のTFT素子に対して光照射に対する特性劣化を評価したものであるが、上記数値を基準とすると、やはり光照射安定性に関して特性が不十分である。
Here, for example, when a threshold shift amount (ΔVth) for 420 nm light irradiation is set to 1 V or less as an index of stability to light irradiation, a stacked TFT satisfying ΔVth ≦ 1V for 420 nm light irradiation is formed. It is difficult to realize.
In Japanese Patent Laid-Open No. 2010-21555, an IZO system or the like is used as a current path layer, and a high mobility TFT can be realized, but the light irradiation characteristics are not mentioned.
In addition, CS Chuang et al., SID 08 DIGEST, P-13 evaluated the deterioration of characteristics of conventional IGZO single-film TFT elements with respect to light irradiation. Insufficient characteristics regarding irradiation stability.
 また、積層型TFT構造を採用した際には、積層界面には成膜時のダメージ等により光安定性の悪化に寄与する多数の欠陥準位が形成されやすくなることが想定される。また、一般的に積層構造では、活性層の積層によるキャリアの移動が起こることから、オフ電流の増大を招くhump効果が生じやすく、TFTの光安定性及び、オン/オフ特性の劣化を引き起こす。
 このような状況から、積層型TFTにおいて高い光安定性を実現しつつ、hump効果を抑制することは困難である。
In addition, when the stacked TFT structure is adopted, it is assumed that a large number of defect levels that contribute to deterioration of light stability are likely to be formed at the stacked interface due to damage during film formation. In general, in the laminated structure, carriers move due to the lamination of the active layer, so that a hamp effect that causes an increase in off-current is likely to occur, and the light stability and on / off characteristics of the TFT are deteriorated.
Under such circumstances, it is difficult to suppress the hamp effect while realizing high light stability in the stacked TFT.
 本発明は、高い光安定性(λ=420nmの光照射に対してΔVth≦1V)を実現し、且つVg-Id特性におけるhump効果を抑制した積層型薄膜トランジスタを比較的簡単な製造プロセスで製造することができる薄膜トランジスタの製造方法を提供することを目的とする。 The present invention manufactures a stacked thin film transistor that realizes high light stability (ΔVth ≦ 1V with respect to light irradiation at λ = 420 nm) and suppresses the hump effect in the Vg-Id characteristic by a relatively simple manufacturing process. It is an object to provide a method for manufacturing a thin film transistor.
 本発明の態様の例を以下に記載する。
<1> 酸化物半導体層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタの前記酸化物半導体層として、In(a)Ga(b)Zn(c)(d)(a>0,b>0,c>0,d>0)で表される組成を有する第1の領域と、前記第1の領域よりも前記ゲート電極から遠い側に配置され、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、前記第1の領域とは異なる組成を有する第2の領域とを成膜する酸化物半導体層形成工程と、
 前記酸化物半導体層に対し、絶対湿度4.8g/m以上の湿潤雰囲気下において300℃以上の熱処理を行う熱処理工程と、
 を含む薄膜トランジスタの製造方法。
<2> 前記第1の領域の組成は、b≦91a/74-17/40を満たす(但し、a+b+c=1)範囲にある<1>に記載の薄膜トランジスタの製造方法。
<3> 前記熱処理工程を、絶対湿度9.5g/m以上で行う<1>又は<2>に記載の薄膜トランジスタの製造方法。
<4> 前記第1の領域の組成は、
c≦3/5、
b>0、
b≧3a/7-3/14、
b≧9a/5-53/50、
b≦-8a/5+33/25、かつ、
b≦91a/74-17/40
を満たす範囲(但し、a+b+c=1)にある<2>又は<3>に記載の薄膜トランジスタの製造方法。
<5> 前記第1の領域の組成は、
b≦17a/23-28/115、
b≧3a/37、
b≧9a/5-53/50、かつ、
b≦1/5
を満たす範囲にある<4>に記載の薄膜トランジスタの製造方法。
<6> 前記第2の領域の組成は、f/(e+f)>0.25を満たす<1>~<5>のいずれかに記載の薄膜トランジスタの製造方法。
<7> 前記第2の領域の膜厚は、10nmより大きく、70nmより小さい<1>~<6>のいずれかに記載の薄膜トランジスタの製造方法。
<8> 前記第1の領域の膜厚は、5nm以上、10nm未満である<1>~<7>のいずれかに記載の薄膜トランジスタの製造方法。
<9> 前記酸化物半導体層は、非晶質である<1>~<8>のいずれかに記載の薄膜トランジスタの製造方法。
<10> 前記熱処理工程における熱処理温度は400℃以上である<1>~<9>に記載の薄膜トランジスタの製造方法。
<11> 前記熱処理工程における熱処理温度は450℃以上である<1>~<10>に記載の薄膜トランジスタの製造方法。
Examples of embodiments of the present invention are described below.
<1> As the oxide semiconductor layer of a thin film transistor including an oxide semiconductor layer, a source electrode, a drain electrode, a gate insulating film, and a gate electrode, In (a) Ga (b) Zn (c) O ( d) a first region having a composition represented by (a> 0, b> 0, c> 0, d> 0), and a region farther from the gate electrode than the first region; (E) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), satisfying f / (e + f) ≦ 0.875, An oxide semiconductor layer forming step of forming a second region having a composition different from that of the first region;
A heat treatment step of performing heat treatment at 300 ° C. or higher in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher on the oxide semiconductor layer;
A method of manufacturing a thin film transistor including:
<2> The method for producing a thin film transistor according to <1>, wherein the composition of the first region is in a range satisfying b ≦ 91a / 74−17 / 40 (provided that a + b + c = 1).
<3> The method for producing a thin film transistor according to <1> or <2>, wherein the heat treatment step is performed at an absolute humidity of 9.5 g / m 3 or more.
<4> The composition of the first region is
c ≦ 3/5,
b> 0,
b ≧ 3a / 7-3 / 14,
b ≧ 9a / 5−53 / 50,
b ≦ −8a / 5 + 33/25, and
b ≦ 91a / 74-17 / 40
The method for producing a thin film transistor according to <2> or <3>, wherein the thin film transistor is in a range satisfying the above (provided that a + b + c = 1).
<5> The composition of the first region is
b ≦ 17a / 23-28 / 115,
b ≧ 3a / 37,
b ≧ 9a / 5−53 / 50, and
b ≦ 1/5
The manufacturing method of the thin-film transistor as described in <4> in the range which satisfy | fills.
<6> The method for manufacturing a thin film transistor according to any one of <1> to <5>, wherein the composition of the second region satisfies f / (e + f)> 0.25.
<7> The method for manufacturing a thin film transistor according to any one of <1> to <6>, wherein the film thickness of the second region is larger than 10 nm and smaller than 70 nm.
<8> The method for manufacturing a thin film transistor according to any one of <1> to <7>, wherein the film thickness of the first region is 5 nm or more and less than 10 nm.
<9> The method for manufacturing a thin film transistor according to any one of <1> to <8>, wherein the oxide semiconductor layer is amorphous.
<10> The method for producing a thin film transistor according to <1> to <9>, wherein a heat treatment temperature in the heat treatment step is 400 ° C. or higher.
<11> The method for producing a thin film transistor according to <1> to <10>, wherein a heat treatment temperature in the heat treatment step is 450 ° C. or higher.
 本発明によれば、高い光安定性(λ=420nmの光照射に対してΔVth≦1V)を実現し、且つVg-Id特性におけるhump効果を抑制した積層型薄膜トランジスタを比較的簡単な製造プロセスで製造することができる薄膜トランジスタの製造方法が提供される。 According to the present invention, a stacked thin film transistor that achieves high light stability (ΔVth ≦ 1V with respect to light irradiation at λ = 420 nm) and suppresses the hump effect in the Vg-Id characteristic can be obtained by a relatively simple manufacturing process. A method of manufacturing a thin film transistor that can be manufactured is provided.
図1は、本発明に係る薄膜トランジスタの一例(ボトムゲート-トップコンタクト型)の構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of an example (bottom gate-top contact type) of a thin film transistor according to the present invention. 図2は、本発明に係る薄膜トランジスタの一例(トップゲート-ボトムコンタクト型)の構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of an example (top gate-bottom contact type) thin film transistor according to the present invention. 図3(A)は、IGZO積層膜の積層直後を示す断面STEM像であり、図3(B)は、IGZO積層膜の600℃アニール処理後を示す断面STEM像である。FIG. 3A is a cross-sectional STEM image showing immediately after the IGZO laminated film is laminated, and FIG. 3B is a cross-sectional STEM image showing the IGZO laminated film after 600 ° C. annealing. 図4は、光照射特性評価法の概略図である。FIG. 4 is a schematic diagram of the light irradiation characteristic evaluation method. 図5は、Vg-Id特性のアニール雰囲気中の水分含有量依存性を示す図である。FIG. 5 is a diagram showing the moisture content dependency of the Vg-Id characteristics in the annealing atmosphere. 図6は、実施例1における光照射下のVg-Id特性の変化を示す図である。FIG. 6 is a graph showing changes in Vg-Id characteristics under light irradiation in Example 1. FIG. 図7は、実施例1における照射波長に対する閾値シフト量ΔVthを示す図である。FIG. 7 is a diagram illustrating the threshold shift amount ΔVth with respect to the irradiation wavelength in the first embodiment. 図8は、実施形態の液晶表示装置の一部分を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing a part of the liquid crystal display device of the embodiment. 図9は、図8の液晶表示装置の電気配線の概略構成図である。FIG. 9 is a schematic configuration diagram of electrical wiring of the liquid crystal display device of FIG. 図10は、実施形態の有機EL表示装置の一部分を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing a part of the organic EL display device of the embodiment. 図11は、図10の有機EL表示装置の電気配線の概略構成図である。FIG. 11 is a schematic configuration diagram of electrical wiring of the organic EL display device of FIG. 図12は、実施形態のX線センサーアレイの一部分を示す概略断面図である。FIG. 12 is a schematic cross-sectional view showing a part of the X-ray sensor array of the embodiment. 図13は、図12のX線センサーアレイの電気配線の概略構成図である。FIG. 13 is a schematic configuration diagram of electrical wiring of the X-ray sensor array of FIG. 図14は、本発明の薄膜トランジスタの酸化物半導体層における第1の領域の組成範囲並びに及び実施例、比較例の酸化物半導体層における第1の領域の組成及び移動度を3元相図記法で示す図である。FIG. 14 shows the composition range of the first region in the oxide semiconductor layer of the thin film transistor of the present invention and the composition and mobility of the first region in the oxide semiconductor layer of Example and Comparative Example in a ternary phase diagram method. FIG.
 以下、図面を参照しながら、本発明の薄膜トランジスタの製造方法、並びに本発明により製造される薄膜トランジスタを備えた表示装置、センサー及びX線センサー(デジタル撮影装置)について具体的に説明する。なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。 Hereinafter, a method for manufacturing a thin film transistor of the present invention, and a display device, a sensor, and an X-ray sensor (digital imaging device) including the thin film transistor manufactured according to the present invention will be specifically described with reference to the drawings. In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate.
 本発明の薄膜トランジスタの製造方法は、酸化物半導体層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタの前記酸化物半導体層として、In(a)Ga(b)Zn(c)(d)(a>0,b>0,c>0,d>0)で表される組成を有する第1の領域と、前記第1の領域よりも前記ゲート電極から遠い側に配置され、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、前記第1の領域とは異なる組成を有する第2の領域とを成膜すること(酸化物半導体層形成工程)と、
 前記酸化物半導体層に対し、絶対湿度4.8g/m以上の湿潤雰囲気下において300℃以上の熱処理を行うこと(熱処理工程)と、を含む。
In the thin film transistor manufacturing method of the present invention, an In (a) Ga (b) is used as the oxide semiconductor layer of a thin film transistor including an oxide semiconductor layer, a source electrode, a drain electrode, a gate insulating film, and a gate electrode. A first region having a composition represented by Zn (c) O (d) (a> 0, b> 0, c> 0, d> 0), and farther from the gate electrode than the first region In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), f / (e + f) ≦ 0. Forming a second region satisfying 875 and having a composition different from that of the first region (oxide semiconductor layer forming step);
Heat-treating the oxide semiconductor layer at a temperature of 300 ° C. or higher (heat treatment step) in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher.
 一般的に活性層を積層構造とした積層型薄膜トランジスタの場合、各領域の電子親和力の大小関係により、電子親和力の小さい領域から、電子親和力の大きい領域へキャリアの流入が引き起こされる。そして、ゲート電極に相対的に近い第1の領域へのキャリア流入が起こった場合、第1の領域とゲート絶縁膜の界面に生じるメインチャネルパスの他に寄生伝導パスが形成されることがある。このような寄生伝導の存在はVg-Id特性中のhump効果を招き、On/Off比を悪化させる。また、光照射によって寄生伝導パス中のキャリアが増大したり、あるいは別の層で光励起されたキャリアが寄生伝導パス付近のトラップ準位に捕獲されると、オフ電流の増大やトランジスタにおける電流の立ち上がり電圧のシフトを引き起こし、光不安定性を招く。 In general, in the case of a stacked thin film transistor having an active layer stacked structure, carriers flow into a region having a high electron affinity from a region having a low electron affinity due to the magnitude relationship of the electron affinity of each region. When carrier inflow into the first region relatively close to the gate electrode occurs, a parasitic conduction path may be formed in addition to the main channel path generated at the interface between the first region and the gate insulating film. . The presence of such parasitic conduction causes a hump effect in the Vg-Id characteristic and deteriorates the On / Off ratio. In addition, if the number of carriers in the parasitic conduction path increases due to light irradiation, or the photo-excited carriers in another layer are trapped in the trap level near the parasitic conduction path, the off-current increases and the current rises in the transistor. It causes a voltage shift and leads to light instability.
 また、積層型薄膜トランジスタでは、第1の領域と第2の領域は異なる組成の半導体層であるために、第1と第2の領域の界面には多数の欠陥準位が存在する状況は容易に想像できる。特に酸化物半導体の場合には、酸素欠陥に起因する欠陥準位が存在し、このような欠陥準位はバンドギャップ内に形成されるギャップ内準位である。このようなギャップ内準位はたとえバンドギャップよりも小さいエネルギーの光照射であろうとも、光電流の生成とそれに伴う閾値のシフトを引き起こすことから、やはり光不安定性を招いてしまう。 In the stacked thin film transistor, since the first region and the second region are semiconductor layers having different compositions, a situation in which a large number of defect levels exist at the interface between the first and second regions is easy. I can imagine. In particular, in the case of an oxide semiconductor, a defect level due to oxygen defects exists, and such a defect level is an in-gap level formed in a band gap. Such an in-gap level causes photocurrent generation and the accompanying threshold shift, even if light irradiation with energy smaller than the band gap is caused, which also causes photoinstability.
 本発明者らは、酸化物半導体層としてIGZO層を形成する際、ゲート電極に近い側から第1の領域及び特定の組成範囲(f/(e+f)≦0.875)を有する第2の領域を積層した場合にhump効果が顕著になるが、特定の湿潤雰囲気下でアニールを行うことで、hump効果を効果的に抑制する効果が得られ、波長420nmの光照射に対する閾値シフト量ΔVthが1V未満となることを見出した。
 本発明の薄膜トランジスタの製造方法は、特定の湿潤雰囲気下でアニールすることにより、活性層内部の第1の領域と第2の領域界面の欠陥を低減することで、積層型薄膜トランジスタの高移動度を保持しつつ高い光安定性を付与することが可能である。これは、湿潤雰囲気下に含まれる水分がOH基やHの形態で活性層内部に取り込まれ、活性層内部に存在する界面のダングリングボンドの低減、及び寄生伝導パスの低減に寄与するためであると考えられる。
When forming an IGZO layer as an oxide semiconductor layer, the present inventors have a first region and a second region having a specific composition range (f / (e + f) ≦ 0.875) from the side close to the gate electrode. However, the effect of effectively suppressing the hump effect can be obtained by annealing in a specific moist atmosphere, and the threshold shift amount ΔVth for light irradiation with a wavelength of 420 nm is 1V. I found that it would be less.
The thin film transistor manufacturing method of the present invention reduces the defects at the interface between the first region and the second region inside the active layer by annealing in a specific wet atmosphere, thereby increasing the high mobility of the stacked thin film transistor. It is possible to impart high light stability while maintaining. This is because moisture contained in a humid atmosphere is taken into the active layer in the form of OH groups and H, contributing to the reduction of dangling bonds at the interface existing inside the active layer and the reduction of parasitic conduction paths. It is believed that there is.
薄膜トランジスタ
 まず、本発明により製造される薄膜トランジスタ(適宜「TFT」と記す)について図を参照して説明する。なお、代表例として図1及び図2に示すTFTについて具体的に説明するが、本発明は他の形態(構造)のTFTの製造にも適用することができる。
First, a thin film transistor (referred to as “TFT” as appropriate) manufactured according to the present invention will be described with reference to the drawings. Note that the TFT shown in FIGS. 1 and 2 will be specifically described as a representative example, but the present invention can also be applied to the manufacture of TFTs of other forms (structures).
 本発明のTFTの素子構造は、ゲート電極の位置に基づいた、いわゆるボトムゲート型構造(逆スタガ構造とも呼ばれる)及びトップゲート型構造(スタガ構造とも呼ばれる)のいずれの態様であってもよい。トップゲート型構造とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に活性層が形成された形態である。ボトムゲート型構造とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に活性層が形成された形態である。
 また、本発明のTFTの素子構造は、酸化物半導体層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型及びボトムコンタクト型のいずれの態様であってもよい。ボトムコンタクト型構造とは、ソース・ドレイン電極が活性層よりも先に形成されて活性層の下面がソース・ドレイン電極に接触する形態である。トップコンタクト型構造とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
 なお、本発明に係るTFTは、上記以外にも、様々な構成をとることが可能であり、適宜、活性層上に保護層や基板上に絶縁層等を備える構成であってもよい。
The element structure of the TFT of the present invention may be either a so-called bottom gate type structure (also called an inverted staggered structure) or a top gate type structure (also called a staggered structure) based on the position of the gate electrode. The top gate structure is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowermost layer. . The bottom-gate structure is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film when the substrate on which the TFT is formed is the lowest layer. .
The element structure of the TFT of the present invention is based on a contact portion between an oxide semiconductor layer and a source electrode and a drain electrode (referred to as “source / drain electrodes” as appropriate), which is a so-called top contact type or bottom contact type. The aspect of this may be sufficient. The bottom contact type structure is a form in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes. The top contact type structure is a form in which the active layer is formed before the source / drain electrodes and the upper surface of the active layer is in contact with the source / drain electrodes.
In addition to the above, the TFT according to the present invention can have various configurations, and may appropriately have a configuration including a protective layer on the active layer and an insulating layer on the substrate.
 図1は本発明の第1の実施形態の薄膜トランジスタ1、図2は本発明の第2の実施形態の薄膜トランジスタ2の構成をそれぞれ模式的に示す断面図である。図1、図2の各薄膜トランジスタ1,2において、共通の要素には同一の符号を付している。
 図1に示す第1の実施形態の薄膜トランジスタ1は、ボトムゲート-トップコンタクト型のトランジスタであり、図2に示す第2の実施形態の薄膜トランジスタ2は、トップゲート-ボトムコンタクト型のトランジスタである。図1、図2に示す実施形態は、酸化物半導体層12に対するゲート電極16、ソース電極13及びドレイン電極14の配置が異なるが、同一符号を付与されている各要素の機能は同一であり、同様の材料を適用することができる。
FIG. 1 is a sectional view schematically showing the configuration of a thin film transistor 1 according to the first embodiment of the present invention, and FIG. 2 is a schematic view showing the configuration of the thin film transistor 2 according to the second embodiment of the present invention. In each thin- film transistor 1 and 2 of FIG. 1 and FIG. 2, the same code | symbol is attached | subjected to the common element.
The thin film transistor 1 of the first embodiment shown in FIG. 1 is a bottom gate-top contact type transistor, and the thin film transistor 2 of the second embodiment shown in FIG. 2 is a top gate-bottom contact type transistor. In the embodiment shown in FIGS. 1 and 2, the arrangement of the gate electrode 16, the source electrode 13, and the drain electrode 14 with respect to the oxide semiconductor layer 12 is different, but the function of each element given the same reference numeral is the same. Similar materials can be applied.
 本発明の実施形態に係る薄膜トランジスタ1,2は、ゲート電極16と、ゲート絶縁膜15と、酸化物半導体層12と、ソース電極13と、ドレイン電極14とを有し、酸化物半導体層12は、膜厚方向にゲート電極16に近い側から第1の領域A1と第2の領域A2を備えている。酸化物半導体層12を構成する第1の領域A1と第2の領域A2は連続成膜されており、第1の領域A1及び第2の領域A2の間には、絶縁層、電極層等の酸化物半導体層以外の層は介在せず、酸化物半導体膜から構成されている。
 以下、本発明のTFT1,2が形成される基板も含め、各構成要素について詳述する。
The thin film transistors 1 and 2 according to the embodiment of the present invention include a gate electrode 16, a gate insulating film 15, an oxide semiconductor layer 12, a source electrode 13, and a drain electrode 14, and the oxide semiconductor layer 12 includes The first region A1 and the second region A2 are provided from the side closer to the gate electrode 16 in the film thickness direction. The first region A1 and the second region A2 constituting the oxide semiconductor layer 12 are continuously formed, and an insulating layer, an electrode layer, or the like is provided between the first region A1 and the second region A2. Layers other than the oxide semiconductor layer are not interposed, and are formed of an oxide semiconductor film.
Hereinafter, each component including the substrate on which the TFTs 1 and 2 of the present invention are formed will be described in detail.
(基板)
 本発明により薄膜トランジスタを形成するための基板11としては、300℃以上の耐熱性を有するものであれば、形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板11の構造は単層構造であってもよいし、積層構造であってもよい。
 例えば、ガラスやYSZ(イットリウム安定化ジルコニウム)等の無機材料、ポリイミド等の高い耐熱性を有する樹脂や樹脂複合材料等からなる基板を用いることができる。
(substrate)
The substrate 11 for forming the thin film transistor according to the present invention is not particularly limited as long as it has heat resistance of 300 ° C. or higher, and can be appropriately selected according to the purpose. it can. The structure of the substrate 11 may be a single layer structure or a laminated structure.
For example, a substrate made of an inorganic material such as glass or YSZ (yttrium stabilized zirconium), a resin having high heat resistance such as polyimide, a resin composite material, or the like can be used.
 また、シリコン基板、ステンレス基板又はステンレスと異種金属とを積層した金属多層基板、アルミニウム基板又は表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板等を用いることができる。 Also, a silicon substrate, a stainless steel substrate, a metal multilayer substrate in which stainless steel and a dissimilar metal are laminated, an aluminum substrate, or an aluminum with an oxide film whose surface insulation is improved by subjecting the surface to an oxidation treatment (for example, anodization treatment). A substrate or the like can be used.
酸化物半導体層
 酸化物半導体層12は、ゲート電極16に近い順から第1の領域A1(適宜、「A1層」と記す。)と第2の領域A2(適宜、「A2層」と記す。)とを含み、ゲート絶縁膜15を介してゲート電極16に対向配置されている。第1の領域A1は、In(a)Ga(b)Zn(c)(d)(a>0、b>0、c>0、d>0)で表される組成を有するIGZO層である。一方、ゲート電極16に対して第1の領域A1よりも遠い側、すなわち、第1の領域A1のゲート絶縁膜15に接する面とは反対側に位置する第2の領域A2は、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、第1の領域A1とは異なる組成を有するIGZO層である。
Oxide Semiconductor Layer The oxide semiconductor layer 12 is referred to as a first region A1 (appropriately referred to as “A1 layer”) and a second region A2 (appropriately referred to as “A2 layer”) from the order close to the gate electrode 16. ), And is disposed to face the gate electrode 16 with the gate insulating film 15 in between. The first region A1 is an IGZO layer having a composition represented by In (a) Ga (b) Zn (c) O (d) (a> 0, b> 0, c> 0, d> 0). is there. On the other hand, the second region A2 located on the side farther than the first region A1 with respect to the gate electrode 16, that is, on the side opposite to the surface in contact with the gate insulating film 15 of the first region A1, is In (e ) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), satisfying f / (e + f) ≦ 0.875, the first region It is an IGZO layer having a composition different from A1.
第1の領域
 第1の領域A1は、b≦91a/74-17/40(但しa+b+c=1)を満たすことが望ましく、c≦3/5、b>0、b≧3a/7-3/14、b≧9a/5-53/50、b≦-8a/5+33/25、かつ、b≦91a/74-17/40(但しa+b+c=1)の組成範囲にあることがより望ましい。このような組成領域にあると、第1の領域A1は第2の領域A2に比べて電子親和力が大きいために、伝導チャネルは第1の領域A1に形成される。上記組成領域ではキャリア移動度も大きいために、20cm/Vs超の高い移動度も実現される。
First Region The first region A1 preferably satisfies b ≦ 91a / 74−17 / 40 (where a + b + c = 1), c ≦ 3/5, b> 0, b ≧ 3a / 7-3 / 14, b ≧ 9a / 5−53 / 50, b ≦ −8a / 5 + 33/25, and b ≦ 91a / 74−17 / 40 (where a + b + c = 1) are more desirable. In such a composition region, since the first region A1 has a higher electron affinity than the second region A2, the conduction channel is formed in the first region A1. Since the carrier mobility is also high in the composition region, a high mobility exceeding 20 cm 2 / Vs is also realized.
 なお、上記組成を有する第1の領域A1の膜はキャリア濃度も高いため、第1の領域A1の膜を単独で活性層とした場合には十分低いオフ電流やスイッチング特性を得ることは困難である。 Since the film of the first region A1 having the above composition also has a high carrier concentration, it is difficult to obtain sufficiently low off-state current and switching characteristics when the film of the first region A1 is used alone as an active layer. is there.
 また、第1の領域A1は、b≦17a/23-28/115、b≧3a/37、b≧9a/5-53/50、かつ、b≦1/5(但しa+b+c=1)であることが望ましい。第1の領域A1の組成が当該組成範囲内にあれば、30cm/Vs超の電界効果移動度を実現することができる。 The first region A1 is b ≦ 17a / 23−28 / 115, b ≧ 3a / 37, b ≧ 9a / 5−53 / 50, and b ≦ 1/5 (where a + b + c = 1). It is desirable. If the composition of the first region A1 is within the composition range, a field-effect mobility of more than 30 cm 2 / Vs can be realized.
 第1の領域A1の厚みは10nm未満であることが望ましい。第1の領域A1は高移動度化を実現しやすい極めてIn-richなIGZO膜を用いることが好ましいが、このような高移動度膜はキャリア濃度が高いために閾値が大きくマイナス側にシフトする可能性がある。第1の領域A1の厚みが10nm以上であると活性層におけるトータルのキャリア濃度が過剰な状態となっており、ピンチオフが比較的難しくなる。
 一方、第1の領域A1の厚みは、酸化物半導体層12の均一性及び高い移動度を得る観点から5nm以上である事が好ましい。
The thickness of the first region A1 is desirably less than 10 nm. In the first region A1, it is preferable to use an extremely in-rich IGZO film that can easily achieve high mobility. However, since such a high mobility film has a high carrier concentration, the threshold value is greatly shifted to the negative side. there is a possibility. If the thickness of the first region A1 is 10 nm or more, the total carrier concentration in the active layer is in an excessive state, and pinch-off becomes relatively difficult.
On the other hand, the thickness of the first region A1 is preferably 5 nm or more from the viewpoint of obtaining uniformity and high mobility of the oxide semiconductor layer 12.
第2の領域
 酸化物半導体層12の第2の領域A2は、ゲート電極16に対して第1の領域A1よりも遠い側、すなわち、第1の領域A1のゲート絶縁膜15に接する面とは反対側に位置する。第2の領域A2は、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、第1の領域A1とは組成が異なるIGZO層である。
Second Region The second region A2 of the oxide semiconductor layer 12 is on the side farther than the first region A1 with respect to the gate electrode 16, that is, the surface in contact with the gate insulating film 15 in the first region A1. Located on the opposite side. The second region A2 is represented by In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), and f / (e + f) ≦ The IGZO layer satisfies 0.875 and has a composition different from that of the first region A1.
 第2の領域A2の組成はf/(e+f)>0.25であることが望ましい。第2の領域A2においてf/(e+f)≦0.25であると、第2の領域A2におけるキャリア濃度が高くなり、第1の領域A1へのキャリア移動の効果が顕著になることから、第1の領域A1のキャリア濃度が過剰に高くなり、オフ電流の増加や閾値が大きくマイナス値を取る恐れがある。 It is desirable that the composition of the second region A2 is f / (e + f)> 0.25. If f / (e + f) ≦ 0.25 in the second region A2, the carrier concentration in the second region A2 increases, and the effect of carrier movement to the first region A1 becomes significant. There is a possibility that the carrier concentration in the first region A1 becomes excessively high, the off-current increases, and the threshold value is large and takes a negative value.
 第2の領域A2の厚みは30nm以上であることが望ましい。第2の領域A2の厚みが30nm以上であると、オフ電流の低減をより確実に期待できる。一方で、第2の領域A2の厚みが10nm以下であると、オフ電流の増大や、S値の劣化を引き起こす恐れがある。また、第2の領域A2の厚みは70nm未満であることが望ましい。第2の領域の厚みが70nm以上であると、オフ電流の低減は期待できるものの、ソース・ドレイン電極層と第1の領域A1間の抵抗が増大することになり、結果的に移動度の低下を招く恐れがある。従って、第2の領域A2の厚みは、10nmより大きく、70nmより小さいことが望ましい。 The thickness of the second region A2 is desirably 30 nm or more. If the thickness of the second region A2 is 30 nm or more, a reduction in off-current can be expected more reliably. On the other hand, if the thickness of the second region A2 is 10 nm or less, there is a risk of increasing the off-current or degrading the S value. The thickness of the second region A2 is preferably less than 70 nm. If the thickness of the second region is 70 nm or more, a reduction in off-current can be expected, but the resistance between the source / drain electrode layer and the first region A1 increases, resulting in a decrease in mobility. There is a risk of inviting. Therefore, the thickness of the second region A2 is desirably larger than 10 nm and smaller than 70 nm.
酸化物半導体層全体
 酸化物半導体層12全体の膜厚(総膜厚)は、膜の均一性、パターニング性の観点から、10~200nm程度であることが好ましく、35nm以上かつ80nm未満であることがより好ましい。
Overall thickness of oxide semiconductor layer The total thickness (total thickness) of the oxide semiconductor layer 12 is preferably about 10 to 200 nm, from the viewpoint of film uniformity and patterning property, and is 35 nm or more and less than 80 nm. Is more preferable.
 酸化物半導体層12(第1の領域A1、第2の領域A2)は非晶質であることが望ましい。第1、第2の領域A1,A2が非晶質膜であれば、結晶粒界が存在せず、均一性の高い膜が得られる。
 なお、第1、第2の領域A1,A2から成る積層膜が非晶質であるかどうかは、X線回折測定により確認することができる。すなわち、X線回折測定により、結晶構造を示す明確なピークが検出されなかった場合は、その積層膜は非晶質であると判断することができる。
The oxide semiconductor layer 12 (the first region A1 and the second region A2) is preferably amorphous. If the first and second regions A1 and A2 are amorphous films, there is no crystal grain boundary and a highly uniform film can be obtained.
Note that whether or not the laminated film composed of the first and second regions A1 and A2 is amorphous can be confirmed by X-ray diffraction measurement. That is, when a clear peak indicating a crystal structure is not detected by X-ray diffraction measurement, it can be determined that the laminated film is amorphous.
 酸化物半導体層12のキャリア濃度の制御は各領域A1,A2の組成変調によって行うほか、成膜時の酸素分圧制御によっても行うことができる。
 酸素濃度の制御は、具体的には第1、第2の領域A1,A2における成膜時の酸素分圧をそれぞれ制御することによって行うことができる。成膜時の酸素分圧を高めれば、キャリア濃度を低減させることができ、それに伴ってオフ電流の低減が期待できる。一方、成膜時の酸素分圧を低くすれば、キャリア濃度を増大させることができ、それに伴って電界効果移動度の増大が期待できる。また、例えば第1の領域A1の成膜後に酸素ラジカルやオゾンを照射する処理を施すことによっても膜の酸化を促進し、第1の領域A1中の酸素欠損量を低減させることが可能である。
The carrier concentration of the oxide semiconductor layer 12 can be controlled not only by the composition modulation of the regions A1 and A2, but also by the oxygen partial pressure control during film formation.
Specifically, the oxygen concentration can be controlled by controlling the oxygen partial pressure during film formation in the first and second regions A1 and A2. If the oxygen partial pressure at the time of film formation is increased, the carrier concentration can be reduced, and a reduction in off-current can be expected accordingly. On the other hand, if the oxygen partial pressure during film formation is lowered, the carrier concentration can be increased, and accordingly, the field effect mobility can be expected to increase. Further, for example, by performing a treatment of irradiating oxygen radicals or ozone after forming the first region A1, it is possible to promote the oxidation of the film and reduce the amount of oxygen vacancies in the first region A1. .
 また、第1、第2の領域A1,A2からなる酸化物半導体層12のZnの一部を、よりバンドギャップの広がる元素イオンをドーピングすることによって、光学バンドギャップ増大に伴う光照射安定性を付与することができる。具体的には、Mgをドーピングすることにより膜のバンドギャップを大きくすることが可能である。例えば、A1層、A2層の各領域にMgをドープすることで、In、Ga、Znのみの組成比を制御した系に比べて、積層膜のバンドプロファイルを保ったままバンドギャップの増大が可能である。 Further, by doping a part of Zn of the oxide semiconductor layer 12 composed of the first and second regions A1 and A2 with element ions having a wider band gap, the light irradiation stability accompanying the increase of the optical band gap can be improved. Can be granted. Specifically, the band gap of the film can be increased by doping Mg. For example, by doping Mg in each region of the A1 layer and A2 layer, the band gap can be increased while maintaining the band profile of the laminated film, compared to a system in which the composition ratio of only In, Ga, and Zn is controlled. It is.
 有機ELに用いられる青色発光層はλ=450nm程度にピークを持つブロードな発光を示すことから、仮にIGZO膜の光学バンドギャップが比較的狭く、その領域に光学吸収を持つ場合には、トランジスタの閾値シフトが起こってしまう。従って、特に有機EL駆動用に用いられる薄膜トランジスタとしては、チャネル層に用いる材料のバンドギャップが、より大きいことが好ましい。 Since the blue light-emitting layer used in organic EL exhibits broad light emission having a peak at about λ = 450 nm, if the optical band gap of the IGZO film is relatively narrow and the region has optical absorption, A threshold shift occurs. Therefore, it is preferable that the material used for the channel layer has a larger band gap, particularly for a thin film transistor used for driving an organic EL.
 また、第1、第2の各領域A1,A2のキャリア密度はカチオンドーピングによっても任意に制御することができる。キャリア密度を増やしたい際には、相対的に価数の大きなカチオンになりやすい材料(例えばTi、Zr、Hf、Ta等)をドーピングすればよい。但し、価数の大きいカチオンをドーピングする場合は、酸化物半導体膜の構成元素数が増えるため、成膜プロセスの単純化、低コスト化の面で不利であることから、酸素濃度(酸素欠損量)により、キャリア密度を制御することが好ましい。 Also, the carrier density in each of the first and second regions A1 and A2 can be arbitrarily controlled by cation doping. In order to increase the carrier density, a material that tends to be a cation having a relatively large valence (eg, Ti, Zr, Hf, Ta, etc.) may be doped. However, when doping a cation having a large valence, the number of constituent elements of the oxide semiconductor film increases, which is disadvantageous in terms of simplifying the film formation process and reducing the cost. ) To control the carrier density.
ソース・ドレイン電極
 ソース電極13及びドレイン電極14は、いずれも高い導電性を有するものであれば材料及び構造に関して特に制限ない。例えばAl、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al-Nd、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物の導電膜等を、単層又は2層以上の積層構造としてソース・ドレイン電極13,14を形成することができる。
Source / Drain Electrode The source electrode 13 and the drain electrode 14 are not particularly limited in terms of material and structure as long as both have high conductivity. For example, metal such as Al, Mo, Cr, Ta, Ti, Au, Ag, metal oxide such as Al—Nd, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), etc. The source / drain electrodes 13 and 14 can be formed of a conductive film or the like as a single layer or a laminated structure of two or more layers.
 ソース電極13及びドレイン電極14を、上記金属又は金属酸化物により構成する場合、成膜性、エッチングやリフトオフ法によるパターンニング性及び導電性等を考慮すると、その厚みは各々独立して、10nm以上、1000nm以下とすることが好ましく、50nm以上、100nm以下とすることがより好ましい。 In the case where the source electrode 13 and the drain electrode 14 are made of the above metal or metal oxide, the film thickness, the patterning property by etching or lift-off method, the conductivity, and the like are each independently 10 nm or more. , 1000 nm or less, preferably 50 nm or more and 100 nm or less.
ゲート絶縁膜
 ゲート絶縁膜15は、ゲート電極16と、酸化物半導体12、ソース・ドレイン電極13,14とを絶縁した状態に離間する層であり、高い絶縁性を有するものが好ましい。例えばSiO、SiNx、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を二種以上含む絶縁膜等からゲート絶縁膜15を構成することができる。
Gate Insulating Film The gate insulating film 15 is a layer that separates the gate electrode 16, the oxide semiconductor 12, and the source / drain electrodes 13, 14, and preferably has high insulating properties. For example, the gate insulating film 15 is composed of an insulating film such as SiO 2 , SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2, or an insulating film containing two or more of these compounds. be able to.
 なお、ゲート絶縁膜15はリーク電流の低下及び電圧耐性の向上のために十分な厚みを有する必要がある一方、厚みが大きすぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜15の厚みは、材質にもよるが、10nm~10μmが好ましく、50nm~1000nmがより好ましく、100nm~400nmが特に好ましい。 Note that the gate insulating film 15 needs to have a sufficient thickness to reduce leakage current and improve voltage resistance. On the other hand, if the thickness is too large, the drive voltage increases. Although depending on the material, the thickness of the gate insulating film 15 is preferably 10 nm to 10 μm, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
ゲート電極
 ゲート電極16としては、高い導電性を有するものであれば特に制限ない。例えばAl、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al-Nd、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物の導電膜等を、単層又は2層以上の積層構造としてゲート電極を形成することができる。
Gate electrode The gate electrode 16 is not particularly limited as long as it has high conductivity. For example, metal such as Al, Mo, Cr, Ta, Ti, Au, Ag, metal oxide such as Al—Nd, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), etc. A gate electrode can be formed using a conductive film or the like as a single layer or a stacked structure of two or more layers.
 ゲート電極16を、上記金属又は金属酸化物により構成する場合、成膜性、エッチングやリフトオフ法によるパターンニング性及び導電性等を考慮すると、その厚みは、10nm以上かつ1000nm以下とすることが好ましく、50nm以上かつ200nm以下とすることがより好ましい。 When the gate electrode 16 is composed of the metal or metal oxide, the thickness is preferably 10 nm or more and 1000 nm or less in consideration of the film forming property, the patterning property by etching or lift-off method, and the conductivity. 50 nm or more and 200 nm or less is more preferable.
薄膜トランジスタの製造方法
 次に、図1に示すボトムゲート-トップコンタクト型の薄膜トランジスタ1の製造方法について説明する。なお、各部の構成材料、厚みなどは前記した通りであり、重複記載を避けるため以下の説明では省略する。
Manufacturing Method of Thin Film Transistor Next, a manufacturing method of the bottom gate-top contact type thin film transistor 1 shown in FIG. 1 will be described. In addition, the constituent material of each part, thickness, etc. are as above-mentioned, and in order to avoid duplication description, it abbreviate | omits in the following description.
ゲート電極の形成
 まず、基板11を用意し、必要に応じて基板11上に薄膜トランジスタ1以外の層を形成した後、ゲート電極16を形成する。
 ゲート電極16は、例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から、使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。例えば、電極膜を成膜後、エッチング又はリフトオフ法により所定の形状にパターンニングし、ゲート電極16を形成する。この際、ゲート電極16及びゲート配線を同時にパターンニングすることが好ましい。
Formation of Gate Electrode First, a substrate 11 is prepared, and a layer other than the thin film transistor 1 is formed on the substrate 11 as necessary, and then a gate electrode 16 is formed.
The gate electrode 16 is used, for example, from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. The film may be formed according to a method appropriately selected in consideration of suitability with the material. For example, after the electrode film is formed, the gate electrode 16 is formed by patterning into a predetermined shape by etching or a lift-off method. At this time, it is preferable to pattern the gate electrode 16 and the gate wiring simultaneously.
ゲート絶縁膜の形成
 ゲート電極16を形成した後、ゲート絶縁膜15を形成する。
 ゲート絶縁膜15は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から、使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。例えば、ゲート絶縁膜15はフォトリソグラフィー及びエッチングによって所定の形状にパターンニングしてもよい。
Formation of Gate Insulating Film After forming the gate electrode 16, the gate insulating film 15 is formed.
The gate insulating film 15 is used from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, or a chemical method such as CVD or plasma CVD method. The film may be formed according to a method appropriately selected in consideration of suitability with the material. For example, the gate insulating film 15 may be patterned into a predetermined shape by photolithography and etching.
酸化物半導体層の形成
 次いで、ゲート絶縁膜15上のゲート電極16と対向する位置に、酸化物半導体層12として、第1の領域A1、第2の領域A2の順に成膜する。
Formation of Oxide Semiconductor Layer Next, the oxide semiconductor layer 12 is formed in the order of the first region A1 and the second region A2 at a position facing the gate electrode 16 on the gate insulating film 15.
第1の領域の成膜
 酸化物半導体層12の第1の領域としては、In(a)Ga(b)Zn(c)(d)(a>0,b>0,c>0,d>0)で表され、好ましくは、c≦3/5、b>0、b≧3a/7-3/14、b≧9a/5-53/50、b≦-8a/5+33/25、かつ、b≦91a/74-17/40(但し、a+b+c=1)を満たす範囲、さらに好ましくは、b≦17a/23-28/115、b≧3a/37、b≧9a/5-53/50、かつ、b≦1/5を満たす範囲の組成を有するIGZO層を成膜する。
Film Formation of First Region As a first region of the oxide semiconductor layer 12, In (a) Ga (b) Zn (c) O (d) (a> 0, b> 0, c> 0, d > 0), preferably c ≦ 3/5, b> 0, b ≧ 3a / 7-3 / 14, b ≧ 9a / 5−53 / 50, b ≦ −8a / 5 + 33/25, and , B ≦ 91a / 74−17 / 40 (where a + b + c = 1), more preferably b ≦ 17a / 23−28 / 115, b ≧ 3a / 37, b ≧ 9a / 5−53 / 50 An IGZO layer having a composition in a range satisfying b ≦ 1/5 is formed.
 酸化物半導体層12を構成する第1、第2の領域A1,A2を成膜する方法は特に限定されないが、スパッタリング法によって成膜することが望ましい。スパッタリング法は成膜レートが速く、また、均一性の高い膜が形成可能であるため、低コスト且つ大面積の酸化物半導体膜を成膜することができる。スパッタリングによって第1の領域を成膜する際、所望のカチオン組成になるように予め調整した複合酸化物ターゲットを用いても良いし、In、Ga、ZnOの3元共スパッタを用いても良い。
 成膜中の基板温度は基板に応じて任意に選択してもよいが、樹脂製のフレキシブル基板を用いる場合には、基板の変形等を防ぐため基板温度はより室温に近いことが好ましい。
A method for forming the first and second regions A1 and A2 constituting the oxide semiconductor layer 12 is not particularly limited, but it is preferable to form the film by a sputtering method. Since the sputtering method has a high deposition rate and can form a highly uniform film, an oxide semiconductor film with a large area can be formed at low cost. When the first region is formed by sputtering, a complex oxide target adjusted in advance to have a desired cation composition may be used, or ternary co-sputtering of In 2 O 3 , Ga 2 O 3 , and ZnO. May be used.
The substrate temperature during film formation may be arbitrarily selected according to the substrate, but when a resin flexible substrate is used, the substrate temperature is preferably closer to room temperature in order to prevent deformation of the substrate.
第2の領域の成膜
 第1の領域A1の成膜に続き、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、好ましくはf/(e+f)>0.25を満たす範囲の組成を有する第2の領域A2を成膜する。
 第2の領域A2の成膜は、第1の領域A1の成膜後、一旦成膜を停止し、成膜室内の酸素分圧およびターゲットにかける電力を変更した後、成膜を再開する方法であってもよいし、成膜を停止せず成膜室内の酸素分圧およびターゲットにかける電力を速やかにまたは緩やかに変更する方法であってもよい。
 また、ターゲットは、第1の領域A1の成膜時に用いたターゲットをそのまま用い、投入電力を変化させる手法であってもよいし、第1の領域A1から第2の領域A2に成膜を切り替える際に、第1の領域A1の成膜に用いたターゲットへの電力投入を停止し、In、Ga、Znを含む異なるターゲットに電力印加を行う手法であってもよいし、第1の領域A1の成膜に用いたターゲットに加えて、更に複数のターゲットに追加で電力印加を行う手法であってもよい。
 第2の領域A2を成膜する際の基板温度は基板に応じて任意に選択してもよいが、樹脂製のフレキシブル基板を用いる場合には、第1の領域A1の成膜時と同様、基板温度はより室温に近いことが好ましい。
Deposition of the second region Following the formation of the first region A1, In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0 The second region A2 having a composition satisfying f / (e + f) ≦ 0.875 and preferably satisfying f / (e + f)> 0.25 is formed.
The film formation in the second region A2 is a method of once stopping the film formation after the film formation in the first region A1, changing the oxygen partial pressure in the film formation chamber and the power applied to the target, and then restarting the film formation. Alternatively, the oxygen partial pressure in the deposition chamber and the power applied to the target may be changed quickly or slowly without stopping the deposition.
Further, the target may be a method of changing the input power by using the target used at the time of film formation in the first area A1, or switching the film formation from the first area A1 to the second area A2. At this time, a method may be used in which power supply to the target used for film formation in the first region A1 is stopped and power is applied to different targets including In, Ga, and Zn, or the first region A1. In addition to the target used for the film formation, a method of additionally applying power to a plurality of targets may be used.
The substrate temperature at the time of forming the second region A2 may be arbitrarily selected according to the substrate, but when a resin flexible substrate is used, as in the case of forming the first region A1, The substrate temperature is preferably closer to room temperature.
 各領域A1,A2をスパッタ法によって成膜する際、酸化物半導体層12は大気中に暴露されることなく連続して成膜されることが好ましい。酸化物半導体層12を大気に曝させずに成膜することにより、各領域A1,A2の間の不純物の混入を防ぐことができ、結果として、より優れたトランジスタ特性を得ることができる。また、成膜工程数を削減できるため、製造コストも低減できる。
 なお、本実施形態においては、ボトムゲート型の薄膜トランジスタ1の製造時には、酸化物半導体層12は、第1の領域A1、第2の領域A2の順に成膜し、図2に示すトップゲート型の薄膜トランジスタ2の製造時には第2の領域A2、第1の領域A1の順に成膜すればよい。
When the regions A1 and A2 are formed by sputtering, the oxide semiconductor layer 12 is preferably formed continuously without being exposed to the atmosphere. When the oxide semiconductor layer 12 is formed without being exposed to the air, impurities can be prevented from being mixed between the regions A1 and A2, and as a result, more excellent transistor characteristics can be obtained. In addition, since the number of film forming steps can be reduced, the manufacturing cost can also be reduced.
Note that in this embodiment, when the bottom-gate thin film transistor 1 is manufactured, the oxide semiconductor layer 12 is formed in the order of the first region A1 and the second region A2, and the top-gate type thin film transistor 1 shown in FIG. When the thin film transistor 2 is manufactured, the second region A2 and the first region A1 may be formed in this order.
熱処理工程
 酸化物半導体層12として第1の領域A1及び第2の領域A2を成膜した後、絶対湿度4.8g/m以上(露点温度0.8℃以上)の湿潤雰囲気下において300℃以上の熱処理(ポストアニール処理)を行う。
 このような湿潤雰囲気で熱処理を行うことで、絶対湿度4.8g/m未満の乾燥雰囲気下でのアニールを行った場合と比較してHump効果を抑制でき、結果として界面の寄生伝導パスから生じる光照射に対する不安定性を抑制出来る。光安定性を高める観点から、熱処理工程の湿潤雰囲気は、絶対湿度9.5g/m以上(露点温度10.7℃以上)で行うことが好ましい。
Heat treatment step After forming the first region A1 and the second region A2 as the oxide semiconductor layer 12, the heat treatment step is performed at 300 ° C. in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or more (dew point temperature of 0.8 ° C. or more). The above heat treatment (post-annealing treatment) is performed.
By performing heat treatment in such a humid atmosphere, the Hump effect can be suppressed as compared with the case where annealing is performed in a dry atmosphere with an absolute humidity of less than 4.8 g / m 3. Instability to the generated light irradiation can be suppressed. From the viewpoint of enhancing light stability, the wet atmosphere in the heat treatment step is preferably performed at an absolute humidity of 9.5 g / m 3 or more (dew point temperature of 10.7 ° C. or more).
 また、熱処理温度は400℃以上であることが好ましく、450℃以上であることがより好ましい。熱処理温度が400℃以上であると、光照射安定性を極めて高くすることが可能である(例えば420nmの光照射に対して|ΔVth|≦0.1V)。
 また、熱処理時間は、光照射安定性を確実に高める観点から、5分以上120分以下であることが好ましい。
 一方、熱処理工程において600℃以上の温度で処理した場合、第1の領域A1と第2の領域A2の間でカチオンの相互拡散が起こり、2つの領域が交じりあってしまう。この場合には第1の領域だけに伝導キャリアを集中させることが難しくなる。従って、熱処理工程での熱処理温度は600℃未満であることが望ましい。第1の領域と第2の領域でのカチオンの相互拡散が起こっているかどうかは、例えば断面TEMによる分析を行うことで確認できる。
Further, the heat treatment temperature is preferably 400 ° C. or higher, and more preferably 450 ° C. or higher. When the heat treatment temperature is 400 ° C. or higher, the light irradiation stability can be extremely increased (for example, | ΔVth | ≦ 0.1 V for light irradiation of 420 nm).
Moreover, it is preferable that the heat processing time is 5 minutes or more and 120 minutes or less from a viewpoint of improving light irradiation stability reliably.
On the other hand, when the heat treatment is performed at a temperature of 600 ° C. or more, cation mutual diffusion occurs between the first region A1 and the second region A2, and the two regions are mixed. In this case, it is difficult to concentrate conductive carriers only in the first region. Therefore, the heat treatment temperature in the heat treatment step is desirably less than 600 ° C. Whether or not cation mutual diffusion occurs in the first region and the second region can be confirmed, for example, by performing analysis by cross-sectional TEM.
 図3は、Ga/(In+Ga)=0.75のIGZO膜とGa/(In+Ga)=0.25のIGZO膜を合計で5層積層した積層膜の断面STEM(走査透過型電子顕微鏡)像であり、同図(左;図3(A))は、積層直後(アニール処理前)、同図(右;図3(B))はアニール温度が600℃で処理したものを示す。図3(A)及び(B)から、IGZO膜の積層構造において、600℃でアニール処理されてもある程度積層構造を維持していることが確認できるものの、異なるカチオン組成の界面で、コントラストがぼけている様子が見て取れる。これは異相の相互拡散が起こり始めていることを示唆しており、熱処理工程における上限温度は600℃以下であることが望ましい。 FIG. 3 is a cross-sectional STEM (scanning transmission electron microscope) image of a laminated film in which a total of five IGZO films of Ga / (In + Ga) = 0.75 and IGZO films of Ga / (In + Ga) = 0.25 are laminated. FIG. 3 (left; FIG. 3 (A)) shows a state immediately after stacking (before annealing) and FIG. 3 (right; FIG. 3 (B)) shows a case where the annealing temperature is 600 ° C. 3A and 3B, it can be confirmed that the laminated structure of the IGZO film maintains the laminated structure to some extent even when annealed at 600 ° C., but the contrast is blurred at the interface of different cation compositions. You can see the situation. This suggests that heterogeneous interdiffusion has begun to occur, and the upper limit temperature in the heat treatment step is desirably 600 ° C. or lower.
 熱処理後、酸化物半導体層12をパターンニングする。パターンニングはフォトリソグラフィーおよびエッチングにより行うことができる。具体的には、残存させる部分にフォトリソグラフィーによりレジストパターンを形成し、塩酸、硝酸、希硫酸、または燐酸、硝酸および酢酸の混合液等の酸溶液によりエッチングすることにより酸化物半導体層12のパターンを形成する。
 なお、酸化物半導体層12のパターニング後に、前記熱処理工程、すなわち、絶対湿度4.8g/m以上の湿潤雰囲気下において300℃以上の熱処理を行ってもよい。
After the heat treatment, the oxide semiconductor layer 12 is patterned. Patterning can be performed by photolithography and etching. Specifically, a pattern of the oxide semiconductor layer 12 is formed by forming a resist pattern on the remaining portion by photolithography and etching with an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid. Form.
Note that after the oxide semiconductor layer 12 is patterned, the heat treatment step, that is, heat treatment at 300 ° C. or higher may be performed in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher.
ソース・ドレイン電極の形成
 次に、酸化物半導体層12の上にソース・ドレイン電極13,14を形成するための金属膜を形成する。
 ソース電極13及びドレイン電極14はいずれも、例えば印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から、使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
 例えば金属膜をエッチング又はリフトオフ法により所定の形状にパターンニングし、ソース電極13及びドレイン電極14を形成する。この際、ソース・ドレイン電極13,14と、これらの電極13,14に接続する配線(不図示)を同時にパターンニングすることが好ましい。
 以上の手順により、図1に示す薄膜トランジスタ1を作製することができる。
Formation of Source / Drain Electrode Next, a metal film for forming the source / drain electrodes 13 and 14 is formed on the oxide semiconductor layer 12.
Each of the source electrode 13 and the drain electrode 14 is, for example, a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, a chemical method such as CVD or a plasma CVD method, or the like. The film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
For example, the metal film is patterned into a predetermined shape by etching or a lift-off method, and the source electrode 13 and the drain electrode 14 are formed. At this time, it is preferable to pattern the source / drain electrodes 13 and 14 and the wiring (not shown) connected to these electrodes 13 and 14 simultaneously.
Through the above procedure, the thin film transistor 1 illustrated in FIG. 1 can be manufactured.
 本発明の薄膜トランジスタの製造方法を用いることで、光照射に対する特性劣化を低減するための保護層等を活性層上に用いることなく、高い移動度と、高い光照射安定性が得られるが、もちろん活性層に上記の様な保護層を設けてもよい。例えば紫外領域(波長400nm以下)の光を吸収、反射するような保護層を設けることで、更に光照射に対する安定性を向上させることが可能である。 By using the method of manufacturing a thin film transistor of the present invention, high mobility and high light irradiation stability can be obtained without using a protective layer or the like on the active layer for reducing characteristic deterioration against light irradiation. A protective layer as described above may be provided on the active layer. For example, by providing a protective layer that absorbs and reflects light in the ultraviolet region (wavelength 400 nm or less), the stability against light irradiation can be further improved.
 本発明により製造される薄膜トランジスタは、hump効果を抑制しつつ、高い光照射安定性を有するものであり、種々のデバイスに適用することができる。本発明により製造される薄膜トランジスタを用いた表示装置及びセンサーは、いずれも低い消費電力により良好な特性を示す。なお、ここで言う「特性」とは、表示装置の場合には表示特性、センサーの場合には感度特性である。 The thin film transistor manufactured according to the present invention has high light irradiation stability while suppressing the hamp effect, and can be applied to various devices. The display device and the sensor using the thin film transistor manufactured according to the present invention exhibit good characteristics due to low power consumption. The “characteristic” referred to here is a display characteristic in the case of a display device, and a sensitivity characteristic in the case of a sensor.
液晶表示装置
 図8に、本発明により製造される薄膜トランジスタを備えた表示装置の一実施形態である液晶表示装置について、その一部分の概略断面図を示し、図9にその電気配線の概略構成図を示す。
FIG. 8 shows a schematic sectional view of a part of a liquid crystal display device which is an embodiment of a display device including a thin film transistor manufactured according to the present invention, and FIG. 9 shows a schematic configuration diagram of its electric wiring. Show.
 図8に示すように、本実施形態の液晶表示装置5は、図2に示したトップゲート-ボトムコンタクト型の薄膜トランジスタ2と、薄膜トランジスタ2のパッシベーション層54で保護されたゲート電極16上に画素下部電極55及びその対向上部電極56で挟まれた液晶層57と、各画素に対応させて異なる色を発色させるためのRGBカラーフィルタ58とを備え、TFT2の基板11側及びカラーフィルタ58上にそれぞれ偏光板59a、59bを備えた構成を有する。 As shown in FIG. 8, the liquid crystal display device 5 of the present embodiment includes a top gate-bottom contact type thin film transistor 2 shown in FIG. 2 and a pixel lower portion on the gate electrode 16 protected by the passivation layer 54 of the thin film transistor 2. A liquid crystal layer 57 sandwiched between the electrode 55 and the opposed upper electrode 56 and an RGB color filter 58 for developing different colors corresponding to each pixel are provided, respectively on the substrate 11 side and the color filter 58 of the TFT 2. It has a configuration including polarizing plates 59a and 59b.
 また、図9に示すように、本実施形態の液晶表示装置5は、互いに平行な複数のゲート配線51と、該ゲート配線51と交差する、互いに平行なデータ配線52とを備えている。ここでゲート配線51とデータ配線52は電気的に絶縁されている。ゲート配線51とデータ配線52との交差部付近に、薄膜トランジスタ2が備えられている。 Further, as shown in FIG. 9, the liquid crystal display device 5 of this embodiment includes a plurality of gate wirings 51 that are parallel to each other and data wirings 52 that are parallel to each other and intersect the gate wirings 51. Here, the gate wiring 51 and the data wiring 52 are electrically insulated. The thin film transistor 2 is provided in the vicinity of the intersection between the gate line 51 and the data line 52.
 薄膜トランジスタ2のゲート電極16はゲート配線51に接続されており、薄膜トランジスタ2のソース電極13はデータ配線52に接続されている。また、薄膜トランジスタ2のドレイン電極14はゲート絶縁膜15に設けられたコンタクトホール19を介して(コンタクトホール19に導電体が埋め込まれて)画素下部電極55に電気的に接続されている。この画素下部電極55は、接地された対向電極56とともにコンデンサ53を構成している。 The gate electrode 16 of the thin film transistor 2 is connected to the gate wiring 51, and the source electrode 13 of the thin film transistor 2 is connected to the data wiring 52. The drain electrode 14 of the thin film transistor 2 is electrically connected to the pixel lower electrode 55 through a contact hole 19 provided in the gate insulating film 15 (a conductor is embedded in the contact hole 19). The pixel lower electrode 55 and the grounded counter electrode 56 constitute a capacitor 53.
 図8に示した本実施形態の液晶装置においては、トップゲート型の薄膜トランジスタを備えるものとしたが、本発明の表示装置である液晶装置において用いられる薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。 In the liquid crystal device of this embodiment shown in FIG. 8, the top gate type thin film transistor is provided. However, the thin film transistor used in the liquid crystal device which is the display device of the present invention is not limited to the top gate type, A bottom-gate thin film transistor may be used.
 本発明により製造される薄膜トランジスタは高い移動度を有するため、液晶表示装置において高精細、高速応答、高コントラスト等の高品位表示が可能となり、大画面化にも適している。また、特に活性層(酸化物半導体層)12が非晶質である場合には素子特性のバラツキを抑えることができ、大画面でムラのない優れた表示品位が実現される。しかも特性シフトが少ないため、ゲート電圧を低減でき、ひいては表示装置の消費電力を低減できる。
 また、本発明によると、活性層を構成する第1の領域A1及び第2の領域A2は、低温(例えば200℃以下)での成膜が可能な非晶質膜を用いて形成することができるため、基板としては樹脂基板(プラスチック基板)を用いることができる。従って、本発明によれば、表示品質に優れ、フレキシブルな液晶表示装置を提供することもできる。
Since the thin film transistor manufactured according to the present invention has high mobility, high-definition display such as high definition, high-speed response, and high contrast is possible in a liquid crystal display device, which is suitable for a large screen. In particular, when the active layer (oxide semiconductor layer) 12 is amorphous, variations in device characteristics can be suppressed, and an excellent display quality with a large screen and no unevenness can be realized. In addition, since the characteristic shift is small, the gate voltage can be reduced, and thus the power consumption of the display device can be reduced.
Further, according to the present invention, the first region A1 and the second region A2 constituting the active layer can be formed using an amorphous film that can be formed at a low temperature (for example, 200 ° C. or less). Therefore, a resin substrate (plastic substrate) can be used as the substrate. Therefore, according to the present invention, it is possible to provide a flexible liquid crystal display device having excellent display quality.
有機EL表示装置
 本発明により製造されるTFTを備えた表示装置の一実施形態として、アクティブマトリックス方式の有機EL表示装置について、図10にその一部分の概略断面図を示し、図11に電気配線の概略構成図を示す。
 有機EL表示装置の駆動方式には、単純マトリックス方式とアクティブマトリックス方式の2種類がある。単純マトリックス方式は低コストで作製できるメリットがあるが、走査線を1本ずつ選択して画素を発光させることから、走査線数と走査線あたりの発光時間は反比例する。そのため高精細化、大画面化が困難となっている。アクティブマトリックス方式は画素ごとにトランジスタやキャパシタを形成するため製造コストが高くなるが、単純マトリックス方式のように走査線数を増やせないという問題はないため高精細化、大画面化に適している。
Organic EL Display Device As an embodiment of a display device including a TFT manufactured according to the present invention, FIG. 10 shows a schematic sectional view of a part of an active matrix organic EL display device, and FIG. A schematic block diagram is shown.
There are two types of driving methods for organic EL display devices: a simple matrix method and an active matrix method. The simple matrix method has an advantage that it can be manufactured at low cost. However, since the pixels are emitted by selecting one scanning line at a time, the number of scanning lines and the light emission time per scanning line are inversely proportional. Therefore, it is difficult to increase the definition and increase the screen size. The active matrix method has a high manufacturing cost because a transistor and a capacitor are formed for each pixel. However, since there is no problem that the number of scanning lines cannot be increased unlike the simple matrix method, it is suitable for high definition and large screen.
 本実施形態のアクティブマトリックス方式の有機EL表示装置6では、トップゲート-トップコンタクト型の薄膜トランジスタが、パッシベーション層61aを備えた基板60上に、駆動用TFT2a及びスイッチング用TFT2bとしてそれぞれ備えられている。薄膜トランジスタ2a,2b上には下部電極62及び上部電極63に挟まれた有機発光層64からなる有機発光素子65を備え、上面もパッシベーション層61bにより保護された構成となっている。 In the active matrix type organic EL display device 6 of the present embodiment, a top gate-top contact type thin film transistor is provided as a driving TFT 2a and a switching TFT 2b on a substrate 60 provided with a passivation layer 61a. On the thin film transistors 2a and 2b, an organic light emitting element 65 comprising an organic light emitting layer 64 sandwiched between a lower electrode 62 and an upper electrode 63 is provided, and the upper surface is also protected by a passivation layer 61b.
 また、図11に示すように、本実施形態の有機EL表示装置6は、互いに平行な複数のゲート配線66と、該ゲート配線66と交差する、互いに平行なデータ配線67及び駆動配線68とを備えている。ここでゲート配線66とデータ配線67、駆動配線68とは電気的に絶縁されている。スイッチング用薄膜トランジスタ2bのゲート電極16bは、ゲート配線66に接続されており、スイッチング用薄膜トランジスタ2bのソース電極13bはデータ配線67に接続されている。また、スイッチング用薄膜トランジスタ2bのドレイン電極14bは駆動用薄膜トランジスタ2aのゲート電極16aに接続されるとともに、コンデンサ69を用いることで駆動用薄膜トランジスタ2aをオン状態に保つ。駆動用薄膜トランジスタ2aのソース電極13aは駆動配線68に接続され、ドレイン電極14aは有機EL発光素子65に接続される。 As shown in FIG. 11, the organic EL display device 6 according to the present embodiment includes a plurality of gate wirings 66 that are parallel to each other, and a data wiring 67 and a driving wiring 68 that are parallel to each other and intersect the gate wiring 66. I have. Here, the gate wiring 66, the data wiring 67, and the driving wiring 68 are electrically insulated. The gate electrode 16 b of the switching thin film transistor 2 b is connected to the gate line 66, and the source electrode 13 b of the switching thin film transistor 2 b is connected to the data line 67. The drain electrode 14b of the switching thin film transistor 2b is connected to the gate electrode 16a of the driving thin film transistor 2a, and the driving thin film transistor 2a is kept on by using the capacitor 69. The source electrode 13 a of the driving thin film transistor 2 a is connected to the driving wiring 68, and the drain electrode 14 a is connected to the organic EL light emitting element 65.
 図10に示した本実施形態の有機EL装置においても、トップゲート型の薄膜トランジスタ2a,2bを備えるものとしたが、本発明の表示装置である有機EL装置において用いられる薄膜トランジスタは、トップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。 The organic EL device of this embodiment shown in FIG. 10 is also provided with the top gate type thin film transistors 2a and 2b. However, the thin film transistor used in the organic EL device which is the display device of the present invention is a top gate type. Without limitation, a bottom-gate thin film transistor may be used.
 本発明により製造される薄膜トランジスタは高い移動度を有するため、低消費電力で且つ高品位な表示が可能となる。また、本発明によると、活性層を構成する第1の領域A1及び第2の領域A2は、低温(例えば200℃以下)での成膜が可能な非晶質膜を用いて形成することができるため、基板として樹脂基板(プラスチック基板)を用いることができる。従って、本発明によれば、表示品質に優れフレキシブルな有機EL表示装置を提供することができる。 Since the thin film transistor manufactured according to the present invention has high mobility, low power consumption and high quality display can be achieved. Further, according to the present invention, the first region A1 and the second region A2 constituting the active layer can be formed using an amorphous film that can be formed at a low temperature (for example, 200 ° C. or less). Therefore, a resin substrate (plastic substrate) can be used as the substrate. Therefore, according to the present invention, a flexible organic EL display device having excellent display quality can be provided.
 なお、図10に示した有機EL表示装置において、上部電極63を透明電極としてトップエミッション型としてもよいし、下部電極62及びTFT2a,2bの各電極を透明電極とすることによりボトムエミッション型としてもよい。 In the organic EL display device shown in FIG. 10, the top electrode 63 may be a top emission type with a transparent electrode, or the bottom electrode 62 and the TFTs 2a and 2b may be a transparent electrode by using a transparent electrode. Good.
X線センサー
 図12に、本発明のセンサーの一実施形態であるX線センサーについて、その一部分の概略断面図を示し、図13にその電気配線の概略構成図を示す。
 本実施形態のX線センサー7は基板11上に形成された薄膜トランジスタ2及びキャパシタ70と、キャパシタ70上に形成された電荷収集用電極71と、X線変換層72と、上部電極73とを備える。薄膜トランジスタ2上にはパッシベーション膜75が設けられている。
X-Ray Sensor FIG. 12 shows a schematic cross-sectional view of a part of an X-ray sensor which is an embodiment of the sensor of the present invention, and FIG. 13 shows a schematic configuration diagram of its electrical wiring.
The X-ray sensor 7 of this embodiment includes a thin film transistor 2 and a capacitor 70 formed on a substrate 11, a charge collection electrode 71 formed on the capacitor 70, an X-ray conversion layer 72, and an upper electrode 73. . A passivation film 75 is provided on the thin film transistor 2.
 キャパシタ70はキャパシタ用下部電極76とキャパシタ用上部電極77とで絶縁膜78を挟んだ構造となっている。キャパシタ用上部電極77は絶縁膜78に設けられたコンタクトホール79を介し、薄膜トランジスタ2のソース電極13及びドレイン電極14のいずれか一方(図12においてはドレイン電極14)と接続されている。 The capacitor 70 has a structure in which an insulating film 78 is sandwiched between a capacitor lower electrode 76 and a capacitor upper electrode 77. The capacitor upper electrode 77 is connected to one of the source electrode 13 and the drain electrode 14 (the drain electrode 14 in FIG. 12) of the thin film transistor 2 through a contact hole 79 provided in the insulating film 78.
 電荷収集用電極71は、キャパシタ70におけるキャパシタ用上部電極77上に設けられており、キャパシタ用上部電極77に接している。X線変換層72はアモルファスセレンからなる層であり、薄膜トランジスタ2及びキャパシタ70を覆うように設けられている。上部電極73はX線変換層72上に設けられており、X線変換層72に接している。 The charge collection electrode 71 is provided on the capacitor upper electrode 77 in the capacitor 70 and is in contact with the capacitor upper electrode 77. The X-ray conversion layer 72 is a layer made of amorphous selenium and is provided so as to cover the thin film transistor 2 and the capacitor 70. The upper electrode 73 is provided on the X-ray conversion layer 72 and is in contact with the X-ray conversion layer 72.
 図13に示すように、本実施形態のX線センサー7は、互いに平行な複数のゲート配線81と、ゲート配線81と交差する、互いに平行な複数のデータ配線82とを備えている。ここでゲート配線81とデータ配線82は電気的に絶縁されている。ゲート配線81とデータ配線82との交差部付近に、薄膜トランジスタ2が備えられている。 As shown in FIG. 13, the X-ray sensor 7 of the present embodiment includes a plurality of gate wirings 81 that are parallel to each other and a plurality of data wirings 82 that are parallel to each other and intersect the gate wiring 81. Here, the gate wiring 81 and the data wiring 82 are electrically insulated. The thin film transistor 2 is provided in the vicinity of the intersection between the gate line 81 and the data line 82.
 薄膜トランジスタ2のゲート電極16は、ゲート配線81に接続されており、薄膜トランジスタ2のソース電極13はデータ配線82に接続されている。また、薄膜トランジスタ2のドレイン電極14は電荷収集用電極71に接続されており、さらにこの電荷収集用電極71は、接地された対向電極76とともにキャパシタ70を構成している。 The gate electrode 16 of the thin film transistor 2 is connected to the gate wiring 81, and the source electrode 13 of the thin film transistor 2 is connected to the data wiring 82. The drain electrode 14 of the thin film transistor 2 is connected to the charge collecting electrode 71, and the charge collecting electrode 71 constitutes a capacitor 70 together with the grounded counter electrode 76.
 本構成のX線センサー7において、X線は図12中、上部(上部電極73側)から照射され、X線変換層72で電子-正孔対を生成する。このX線変換層72に上部電極73によって高電界を印加しておくことにより、生成した電荷はキャパシタ70に蓄積され、薄膜トランジスタ2を順次走査することによって読み出される。 In the X-ray sensor 7 of this configuration, X-rays are irradiated from the upper part (upper electrode 73 side) in FIG. By applying a high electric field to the X-ray conversion layer 72 by the upper electrode 73, the generated charges are accumulated in the capacitor 70 and read out by sequentially scanning the thin film transistor 2.
 本発明のX線センサーは、オン電流が高く、信頼性に優れた薄膜トランジスタ2を備えるため、S/Nが高く、感度特性に優れているため、X線デジタル撮影装置に用いた場合に広ダイナミックレンジの画像が得られる。
 特に本発明のX線デジタル撮影装置は、静止画撮影のみ可能なものではなく、動画による透視と静止画の撮影が1台で行えるX線デジタル撮影装置に用いるのが好適である。さらに薄膜トランジスタ2における活性層を構成する第1の領域A1及び第2の領域A2が非晶質である場合には均一性に優れた画像が得られる。
Since the X-ray sensor of the present invention includes the thin film transistor 2 having a high on-current and excellent reliability, the S / N is high and the sensitivity characteristic is excellent. A range image is obtained.
In particular, the X-ray digital imaging apparatus of the present invention is suitable not only for still image shooting but also for an X-ray digital imaging apparatus that can perform fluoroscopy with a moving image and still image shooting. Further, when the first region A1 and the second region A2 constituting the active layer in the thin film transistor 2 are amorphous, an image with excellent uniformity can be obtained.
 なお、図12に示した本実施形態のX線センサーにおいては、トップゲート型の薄膜トランジスタを備えるものとしたが、本発明のセンサーにおいて用いられる薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。 In the X-ray sensor of this embodiment shown in FIG. 12, the top gate type thin film transistor is provided. However, the thin film transistor used in the sensor of the present invention is not limited to the top gate type, but the bottom gate type. A thin film transistor may be used.
 以下に実験例を説明するが、本発明はこれら実施例により何ら限定されるものではない。
 本発明者らは、特定の組成の酸化物半導体を積層することと特定の熱処理によって、hump効果を抑制しつつ、高い光照射安定性(|ΔVth|≦1V(420nmの光照射に対して))を両立できることを以下の実験により検証した。
Experimental examples are described below, but the present invention is not limited to these examples.
The inventors of the present invention have a high light irradiation stability (| ΔVth | ≦ 1 V (with respect to light irradiation at 420 nm) while suppressing the hump effect by stacking an oxide semiconductor having a specific composition and a specific heat treatment. ) Was verified by the following experiment.
TFT特性のアニール雰囲気中の水分含有量依存性
 薄膜トランジスタの活性層として特定の組成の酸化物半導体膜を積層し、湿潤雰囲気下でのアニール処理を行うことで高移動度と高い光安定性が得られることを検証した。
 まず、実施例1~8及び比較例1~5として以下の様なボトムゲート-トップコンタクト型の薄膜トランジスタを作製した。
Dependence of moisture content in annealing atmosphere on TFT characteristics High oxide mobility and high light stability can be obtained by laminating an oxide semiconductor film with a specific composition as the active layer of a thin film transistor and annealing it in a humid atmosphere. It was verified that
First, as Examples 1 to 8 and Comparative Examples 1 to 5, the following bottom gate-top contact type thin film transistors were manufactured.
 基板として、SiOの酸化膜(厚み:100nm)が表面上に形成され、高濃度ドープされたp型シリコン基板(三菱マテリアル社製)を用いた。 As the substrate, a p-type silicon substrate (manufactured by Mitsubishi Materials Corporation) on which a SiO 2 oxide film (thickness: 100 nm) was formed on the surface and highly doped was used.
 次いで、p型シリコン基板上に酸化物半導体層を形成した。
 酸化物半導体層を構成する第1の領域A1として、In(a)Ga(b)Zn(c)(d)(a=37/60,b=3/60,c=20/60,d>0)を5nmの厚みでスパッタ成膜した。
 A1層を上記組成に固定した状態で、A2層としてIn(e)Ga(f)Zn(g)(h)(f/(e+f)=0.75,e>0,f>0,g>0,h>0)で表されるIGZO層を50nmの厚みでスパッタ成膜した。
 酸化物半導体層は各領域間で大気中に暴露することなく連続して成膜を行った。各領域のスパッタは、A1、A2の領域においてはInターゲット、Gaターゲット、ZnOターゲットを用いた3元共スパッタを用いて行った。各領域の膜厚調整は成膜時間の調整にて行った。
 第1の領域A1及び第2の領域における成膜条件は以下の通りであり、各領域の組成以外のスパッタ条件は後述の実験においても共通である。
Next, an oxide semiconductor layer was formed over the p-type silicon substrate.
As the first region A1 included in the oxide semiconductor layer, In (a) Ga (b) Zn (c) O (d) (a = 37/60, b = 3/60, c = 20/60, d > 0) was sputtered with a thickness of 5 nm.
In the state where the A1 layer is fixed to the above composition, as the A2 layer, In (e) Ga (f) Zn (g) O (h) (f / (e + f) = 0.75, e> 0, f> 0, g > 0, h> 0), an IGZO layer having a thickness of 50 nm was formed by sputtering.
The oxide semiconductor layer was continuously formed between the regions without being exposed to the atmosphere. Sputtering of each region was performed by ternary co-sputtering using an In 2 O 3 target, a Ga 2 O 3 target, and a ZnO target in the regions A1 and A2. The film thickness in each region was adjusted by adjusting the film formation time.
The film formation conditions in the first region A1 and the second region are as follows, and sputtering conditions other than the composition of each region are common in the experiments described later.
第1の領域A1のスパッタ条件
 到達真空度:6×10-6Pa
 成膜圧力:4.4×10-1Pa
 成膜温度:室温
 酸素分圧/アルゴン分圧:0.067
Sputtering conditions for the first region A1 Ultimate vacuum: 6 × 10 −6 Pa
Deposition pressure: 4.4 × 10 −1 Pa
Deposition temperature: Room temperature Oxygen partial pressure / Argon partial pressure: 0.067
第2の領域A2のスパッタ条件
 到達真空度:6×10-6Pa
 成膜圧力:4.4×10-1Pa
 成膜温度:室温
 酸素分圧/アルゴン分圧:0.033
Sputtering conditions for the second region A2 Ultimate vacuum: 6 × 10 −6 Pa
Deposition pressure: 4.4 × 10 −1 Pa
Deposition temperature: room temperature Oxygen partial pressure / Argon partial pressure: 0.033
 スパッタによる酸化物半導体層の積層後、メタルマスクを介した真空蒸着法により、Ti(10nm)/Au(40nm)から成る電極層を積層膜(酸化物半導体層)上に形成した。 After stacking the oxide semiconductor layer by sputtering, an electrode layer made of Ti (10 nm) / Au (40 nm) was formed on the stacked film (oxide semiconductor layer) by vacuum vapor deposition through a metal mask.
 電極層形成後、アニール温度は400℃とし(比較例5を除く)、酸素分圧は固定(20%)した状態で、湿潤雰囲気をアニールチャンバー中に注入した。アニール時間は1時間とした。湿潤雰囲気の発生には分流型湿度発生装置(神栄テクノロジー株式会社製SRG-1M-10L(商品名))を用いた。なお、比較例5では、アニール温度を200℃とした。 After forming the electrode layer, a wet atmosphere was injected into the annealing chamber with the annealing temperature set to 400 ° C. (except for Comparative Example 5) and the oxygen partial pressure fixed (20%). The annealing time was 1 hour. A shunt-type humidity generator (SRG-1M-10L (trade name) manufactured by Shinei Technology Co., Ltd.) was used to generate a humid atmosphere. In Comparative Example 5, the annealing temperature was 200 ° C.
 以上により、チャネル長180μm、チャネル幅1mmの実施例1~8及び比較例1~5におけるボトムゲート型薄膜トランジスを得た。 Thus, bottom gate type thin film transistors in Examples 1 to 8 and Comparative Examples 1 to 5 having a channel length of 180 μm and a channel width of 1 mm were obtained.
移動度
 作製した上記実施例1~8及び比較例1~5のTFTについて、半導体パラメータ・アナライザー4156C(商品名;アジレントテクノロジー社製)を用い、トランジスタ特性(Vg-Id特性)および移動度μの測定を行った。
 Vg-Id特性の測定は、ドレイン電圧(Vd)を10Vに固定し、ゲート電圧(Vg)を-30V~+30Vの範囲内で掃引し、各ゲート電圧(Vg)におけるドレイン電流(Id)を測定することにて行った。オフ電流は、Vg-Id特性においてVg=0Vにおける電流値で定義した。
 また、移動度は、ドレイン電圧(Vd)を1Vに固定した状態でゲート電圧(Vg)を-30V~+30Vの範囲内で掃引して得た、線形領域でのVg-Id特性から線形移動度を算出した。
Mobility With respect to the TFTs of Examples 1 to 8 and Comparative Examples 1 to 5 thus manufactured, a semiconductor parameter analyzer 4156C (trade name; manufactured by Agilent Technologies) was used, and transistor characteristics (Vg-Id characteristics) and mobility μ were measured. Measurements were made.
Vg-Id characteristics are measured by fixing the drain voltage (Vd) to 10V, sweeping the gate voltage (Vg) within the range of -30V to + 30V, and measuring the drain current (Id) at each gate voltage (Vg). I went to do it. The off-current was defined as a current value at Vg = 0 V in the Vg-Id characteristic.
The mobility is linear mobility from the Vg-Id characteristic in the linear region obtained by sweeping the gate voltage (Vg) in the range of -30V to + 30V with the drain voltage (Vd) fixed at 1V. Was calculated.
光照射安定性
 作製したTFTはVg-Id特性を評価した後、波長可変のモノクロ光を照射することで、光照射に対するTFT特性の安定性を評価した。モノクロ光照射下におけるTFT特性測定の概略を図4に示す。図4に示すように、プローブステージ台200に各TFTを置き、乾燥大気を2時間以上流した後、当該乾燥大気雰囲気下にてTFT特性を測定した。モノクロ光源の照射強度は10μW/cm、波長λの範囲を360~700nmとし、モノクロ光非照射時のVg-Id特性と、モノクロ光照射時のVg-Id特性を比較することで、光照射安定性(ΔVth)を評価した。モノクロ光照射下におけるTFT特性の測定条件は、Vds=10Vに固定し、Vg=-15~15Vの範囲でゲート電圧を掃引して測定した。なお、以下で特に言及している場合を除き、全ての測定は、モノクロ光を10分照射した後に行っている。420nmの光照射に対する閾値のシフト量ΔVthをTFTの光安定性の指標とした。なお、上記評価方法は以降の実験において共通である。
Light Irradiation Stability After evaluating the Vg-Id characteristics of the fabricated TFT, the stability of the TFT characteristics against light irradiation was evaluated by irradiating monochromatic light with a variable wavelength. FIG. 4 shows an outline of TFT characteristic measurement under monochromatic light irradiation. As shown in FIG. 4, each TFT was placed on the probe stage stage 200, and after flowing dry air for 2 hours or more, TFT characteristics were measured under the dry air atmosphere. The irradiation intensity of the monochrome light source is 10 μW / cm 2 , the wavelength λ is 360 to 700 nm, and the Vg-Id characteristics when the monochrome light is not irradiated are compared with the Vg-Id characteristics when the monochrome light is irradiated. Stability (ΔVth) was evaluated. The measurement conditions of the TFT characteristics under monochrome light irradiation were fixed by Vds = 10 V and measured by sweeping the gate voltage in the range of Vg = −15 to 15V. Unless otherwise specified below, all measurements are performed after irradiating with monochromatic light for 10 minutes. The threshold shift amount ΔVth for light irradiation of 420 nm was used as an indicator of the light stability of the TFT. In addition, the said evaluation method is common in subsequent experiment.
 アニール時の絶対湿度(露点温度)、A2層の組成、TFT特性の一覧を表2に示す。
 また、実施例1~4及び比較例1~4のTFTにおけるVg-Id特性を図5に示す。
 また、実施例1のTFTにおけるモノクロ光照射時のI-V特性を図6に、照射波長に対する閾値シフト量ΔVthを図7に示す。
Table 2 shows a list of absolute humidity (dew point temperature) during annealing, composition of the A2 layer, and TFT characteristics.
FIG. 5 shows Vg-Id characteristics in the TFTs of Examples 1 to 4 and Comparative Examples 1 to 4.
In addition, FIG. 6 shows the IV characteristics during the monochrome light irradiation in the TFT of Example 1, and FIG. 7 shows the threshold shift amount ΔVth with respect to the irradiation wavelength.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~8では、A2層の組成がf/(e+f)≦0.875であり、アニール工程が絶対湿度4.8g/m以上(露点温度:0.8℃以上)の場合には、高い移動度と高い光安定性を両立できることが分かる。 In Examples 1 to 8, when the composition of the A2 layer is f / (e + f) ≦ 0.875, and the annealing step is 4.8 g / m 3 or more in absolute humidity (dew point temperature: 0.8 ° C. or more) It can be seen that both high mobility and high light stability can be achieved.
 一方、比較例1の場合には、A2層の組成がf/(e+f)≦0.875であるが、アニール工程が絶対湿度4.8g/m未満であり、図5に示すようにVg-Id特性におけるhump特性(I-V特性中にコブが表れる)が顕著であり、光照射時にはhump領域の電流値が増大してしまい、詳細な評価ができなかった。
 また、比較例2、3では、実施例4、7、8とアニール条件は同じであるが、A2層の組成がf/(e+f)≦0.875を満たさず、Vg-Idカーブ中にhump効果が現れ、光安定性の評価ができなかった。また、閾値が大きくマイナスシフトしており、オフ電流値(Vg=0VでのId値)が実施例に比べて悪化していることがわかる。
 上記結果からA2層がf/(e+f)≦0.875であり、絶対湿度4.8g/m以上でのアニール(400℃)によってhump効果を抑制しつつ高い光安定性を実現できることがわかる。また比較例5はアニール温度が200℃の場合であるが、この場合には組成の条件を満たしているが十分な光安定性が得られていない事が分かる。
On the other hand, in the case of Comparative Example 1, the composition of the A2 layer is f / (e + f) ≦ 0.875, but the annealing process is less than 4.8 g / m 3 in absolute humidity, and Vg as shown in FIG. A hum characteristic in the −Id characteristic (a bump appears in the IV characteristic) is remarkable, and the current value in the hump region increases during light irradiation, and detailed evaluation cannot be performed.
In Comparative Examples 2 and 3, the annealing conditions are the same as in Examples 4, 7, and 8, but the composition of the A2 layer does not satisfy f / (e + f) ≦ 0.875, and the hump is included in the Vg-Id curve. The effect appeared and the photostability could not be evaluated. Further, it can be seen that the threshold value is greatly shifted minus, and the off-current value (Id value at Vg = 0 V) is worse than that in the example.
From the above results, it is understood that the A2 layer has f / (e + f) ≦ 0.875, and high light stability can be realized while suppressing the hump effect by annealing (400 ° C.) at an absolute humidity of 4.8 g / m 3 or more. . In Comparative Example 5, the annealing temperature is 200 ° C. In this case, it can be seen that the composition conditions are satisfied but sufficient light stability is not obtained.
 また、表2に示すように、アニール雰囲気において湿度を高めた実施例1~3の場合(それぞれ相対湿度88%、70%、55%に相当)、420nm(光照射エネルギーhν=2.95eV)での結果は他の実施例とほぼ同等であるが、400nm(光照射エネルギーhν=3.10eV)の場合には他の実施例に比べて光安定性が向上した。このことから湿度を高めた場合には、酸化物半導体においてより効果的に深いギャップ内準位を低減させることが可能であるとがわかる。 As shown in Table 2, in Examples 1 to 3 where the humidity was increased in the annealing atmosphere (corresponding to relative humidity of 88%, 70% and 55%, respectively), 420 nm (light irradiation energy hν = 2.95 eV). The results in are almost the same as those in the other examples, but the light stability is improved in the case of 400 nm (light irradiation energy hν = 3.10 eV) compared to the other examples. From this, it can be seen that when the humidity is increased, the deep gap level can be more effectively reduced in the oxide semiconductor.
TFT特性のA1層組成依存性
 第2の領域A2をIGZO層(f/(e+f)=0.75)に固定し、第1の領域A1を組成変調してアニール処理を施した場合のTFT特性を表3にまとめた。第1の領域A1の厚みは5nmとし、第2の領域の厚みは50nmとした。
 アニール条件は絶対湿度15.3g/m、400℃、1時間である。
A1 layer composition dependency of TFT characteristics TFT characteristics when the second region A2 is fixed to the IGZO layer (f / (e + f) = 0.75), and the first region A1 is composition-modulated and annealed. Are summarized in Table 3. The thickness of the first region A1 was 5 nm, and the thickness of the second region was 50 nm.
The annealing conditions are an absolute humidity of 15.3 g / m 3 , 400 ° C., and 1 hour.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、実施例9~20ではA1層の組成が異なるものの、光安定性の差は小さく、TFT特性、特に光安定性に対するA1層の組成依存性は小さいことが分かる。
 実施例及び比較例で作製したTFTに関し、第1の領域A1の組成範囲を3元相図記法により図14に示した。
As shown in Table 3 above, in Examples 9 to 20, although the composition of the A1 layer is different, the difference in light stability is small, and it is understood that the dependency of the composition of the A1 layer on the TFT characteristics, particularly light stability, is small.
Regarding the TFTs manufactured in Examples and Comparative Examples, the composition range of the first region A1 is shown in FIG. 14 by the ternary phase diagram method.
湿潤雰囲気下におけるTFT特性のアニール温度依存性
 A1層組成はIn:Ga:Zn=37/60:3/60:20/60、A2層組成はf/(e+f)=0.75とした。第1の領域A1の厚みは5nmとし、第2の領域の厚みは50nmとした。
 アニール条件は絶対湿度を15.3g/mとし、アニール温度だけを変調した。TFTの移動度及び光安定性を評価した。評価結果を以下表4に示す。
Annealing temperature dependence of TFT characteristics in a humid atmosphere The A1 layer composition was In: Ga: Zn = 37/60: 3/60: 20/60, and the A2 layer composition was f / (e + f) = 0.75. The thickness of the first region A1 was 5 nm, and the thickness of the second region was 50 nm.
The annealing conditions were such that the absolute humidity was 15.3 g / m 3 and only the annealing temperature was modulated. The mobility and light stability of the TFT were evaluated. The evaluation results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、同じ湿潤雰囲気下でのアニールでもアニール温度を400℃以上とした場合には420nmの光照射でのΔVthを-0.1Vよりも小さく抑制することが可能であり、極めて光安定なTFT素子を実現可能である。 From Table 4, it is possible to suppress ΔVth with light irradiation of 420 nm to be smaller than −0.1 V even when annealing in the same wet atmosphere is performed at 400 ° C. or higher, which is extremely light stable. A TFT element can be realized.
 以上において説明した本発明により製造される薄膜トランジスタの用途は特に限定されるものではないが、例えば電気光学装置としての表示装置(例えば液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等)における駆動素子として好適である。 Although the use of the thin film transistor manufactured by the present invention described above is not particularly limited, for example, a display device as an electro-optical device (for example, a liquid crystal display device, an organic EL (Electro-Luminescence) display device, an inorganic EL display device) Etc.) as a driving element.
 さらに、本発明により製造される薄膜トランジスタは、樹脂基板を用いた低温プロセスで作製可能なフレキシブルディスプレイ等のデバイス、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサー、X線センサー等の各種センサー、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として、好適に用いられるものである。 Furthermore, the thin film transistor manufactured according to the present invention is a device such as a flexible display that can be manufactured by a low temperature process using a resin substrate, an image sensor such as a CCD (Charge-Coupled Device), a CMOS (Complementary Metal-Oxide Semiconductor), or an X-ray sensor. It is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as MEMS (Micro Electro Mechanical System).
 本発明により製造される薄膜トランジスタを用いた本発明の表示装置およびセンサーは、いずれも低い消費電力により良好な特性を示す。なお、ここで言う「特性」とは、表示装置の場合には表示特性、センサーの場合には感度特性である。 The display device and sensor of the present invention using the thin film transistor manufactured according to the present invention exhibit good characteristics due to low power consumption. The “characteristic” referred to here is a display characteristic in the case of a display device, and a sensitivity characteristic in the case of a sensor.
 日本国特許出願2012-110773号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2012-110773 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (11)

  1.  酸化物半導体層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタの前記酸化物半導体層として、In(a)Ga(b)Zn(c)(d)(a>0,b>0,c>0,d>0)で表される組成を有する第1の領域と、前記第1の領域よりも前記ゲート電極から遠い側に配置され、In(e)Ga(f)Zn(g)(h)(e>0,f>0,g>0,h>0)で表され、f/(e+f)≦0.875を満たし、前記第1の領域とは異なる組成を有する第2の領域とを成膜する酸化物半導体層形成工程と、
     前記酸化物半導体層に対し、絶対湿度4.8g/m以上の湿潤雰囲気下において300℃以上の熱処理を行う熱処理工程と、
     を含む薄膜トランジスタの製造方法。
    As the oxide semiconductor layer of a thin film transistor including an oxide semiconductor layer, a source electrode, a drain electrode, a gate insulating film, and a gate electrode, In (a) Ga (b) Zn (c) O (d) ( a first region having a composition represented by a> 0, b> 0, c> 0, d> 0), a region farther from the gate electrode than the first region, and In (e) Ga (f) Zn (g) O (h) (e> 0, f> 0, g> 0, h> 0), f / (e + f) ≦ 0.875, An oxide semiconductor layer forming step of forming a second region having a composition different from
    A heat treatment step of performing heat treatment at 300 ° C. or higher in a humid atmosphere with an absolute humidity of 4.8 g / m 3 or higher on the oxide semiconductor layer;
    A method of manufacturing a thin film transistor including:
  2.  前記第1の領域の組成は、b≦91a/74-17/40を満たす(但し、a+b+c=1)範囲にある請求項1に記載の薄膜トランジスタの製造方法。 2. The method of manufacturing a thin film transistor according to claim 1, wherein the composition of the first region is in a range satisfying b ≦ 91a / 74−17 / 40 (where a + b + c = 1).
  3.  前記熱処理工程を、絶対湿度9.5g/m以上で行う請求項1又は請求項2に記載の薄膜トランジスタの製造方法。 The method of manufacturing a thin film transistor according to claim 1 or 2, wherein the heat treatment step is performed at an absolute humidity of 9.5 g / m 3 or more.
  4.  前記第1の領域の組成は、
    c≦3/5、
    b>0、
    b≧3a/7-3/14、
    b≧9a/5-53/50、
    b≦-8a/5+33/25、かつ、
    b≦91a/74-17/40
    を満たす範囲(但し、a+b+c=1)にある請求項2又は請求項3に記載の薄膜トランジスタの製造方法。
    The composition of the first region is:
    c ≦ 3/5,
    b> 0,
    b ≧ 3a / 7-3 / 14,
    b ≧ 9a / 5−53 / 50,
    b ≦ −8a / 5 + 33/25, and
    b ≦ 91a / 74-17 / 40
    4. The method for manufacturing a thin film transistor according to claim 2, wherein the method is in a range satisfying (where a + b + c = 1). 5.
  5.  前記第1の領域の組成は、
    b≦17a/23-28/115、
    b≧3a/37、
    b≧9a/5-53/50、かつ、
    b≦1/5
    を満たす範囲にある請求項4に記載の薄膜トランジスタの製造方法。
    The composition of the first region is:
    b ≦ 17a / 23-28 / 115,
    b ≧ 3a / 37,
    b ≧ 9a / 5−53 / 50, and
    b ≦ 1/5
    The manufacturing method of the thin-film transistor of Claim 4 which exists in the range which satisfy | fills.
  6.  前記第2の領域の組成は、f/(e+f)>0.25を満たす請求項1~請求項5のいずれか1項に記載の薄膜トランジスタの製造方法。 6. The method of manufacturing a thin film transistor according to claim 1, wherein the composition of the second region satisfies f / (e + f)> 0.25.
  7.  前記第2の領域の膜厚は、10nmより大きく、70nmより小さい請求項1~請求項6のいずれか1項に記載の薄膜トランジスタの製造方法。 The method for manufacturing a thin film transistor according to any one of claims 1 to 6, wherein the film thickness of the second region is larger than 10 nm and smaller than 70 nm.
  8.  前記第1の領域の膜厚は、5nm以上、10nm未満である請求項1~請求項7のいずれか1項に記載の薄膜トランジスタの製造方法。 The method of manufacturing a thin film transistor according to any one of claims 1 to 7, wherein the film thickness of the first region is not less than 5 nm and less than 10 nm.
  9.  前記酸化物半導体層は、非晶質である請求項1~請求項8のいずれか1項に記載の薄膜トランジスタの製造方法。 The method for manufacturing a thin film transistor according to any one of claims 1 to 8, wherein the oxide semiconductor layer is amorphous.
  10.  前記熱処理工程における熱処理温度は400℃以上である請求項1~請求項9に記載の薄膜トランジスタの製造方法。 10. The method of manufacturing a thin film transistor according to claim 1, wherein a heat treatment temperature in the heat treatment step is 400 ° C. or higher.
  11.  前記熱処理工程における熱処理温度は450℃以上である請求項1~請求項10に記載の薄膜トランジスタの製造方法。 11. The method of manufacturing a thin film transistor according to claim 1, wherein a heat treatment temperature in the heat treatment step is 450 ° C. or higher.
PCT/JP2013/062961 2012-05-14 2013-05-08 Method for producing thin-film transistor WO2013172238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020147031681A KR101717336B1 (en) 2012-05-14 2013-05-08 Method for producing thin-film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110773 2012-05-14
JP2012110773A JP5901420B2 (en) 2012-05-14 2012-05-14 Thin film transistor manufacturing method

Publications (1)

Publication Number Publication Date
WO2013172238A1 true WO2013172238A1 (en) 2013-11-21

Family

ID=49583645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062961 WO2013172238A1 (en) 2012-05-14 2013-05-08 Method for producing thin-film transistor

Country Status (4)

Country Link
JP (1) JP5901420B2 (en)
KR (1) KR101717336B1 (en)
TW (1) TWI585986B (en)
WO (1) WO2013172238A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290656B2 (en) 2014-05-30 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor film electrical characteristic change of which is inhibited
US12009432B2 (en) 2021-03-05 2024-06-11 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021812A1 (en) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 Photoelectric conversion element, imaging device, and method for producing photoelectric conversion element
KR102187129B1 (en) * 2019-07-23 2020-12-04 연세대학교 산학협력단 Heterogeneous Oxide Thin Film Transistor with Adjustable Oxygen Partial Pressure and Method for Fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075281A1 (en) * 2007-12-13 2009-06-18 Idemitsu Kosan Co., Ltd. Field effect transistor using oxide semiconductor and method for manufacturing the same
JP2010205798A (en) * 2009-02-27 2010-09-16 Japan Science & Technology Agency Method of manufacturing thin-film transistor
JP2012059860A (en) * 2010-09-08 2012-03-22 Fujifilm Corp Thin film transistor and method of manufacturing the same, and device with thin film transistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121478B2 (en) * 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト Optical sensor element, imaging device, electronic device, and memory element
JP4571221B1 (en) * 2009-06-22 2010-10-27 富士フイルム株式会社 IGZO-based oxide material and method for producing IGZO-based oxide material
JP5483704B2 (en) * 2010-03-03 2014-05-07 富士フイルム株式会社 IGZO amorphous oxide semiconductor film manufacturing method and field effect transistor manufacturing method using the same
JP5679417B2 (en) * 2010-08-25 2015-03-04 富士フイルム株式会社 Manufacturing method of oxide semiconductor thin film, oxide semiconductor thin film manufactured by the manufacturing method, thin film transistor, and device including thin film transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075281A1 (en) * 2007-12-13 2009-06-18 Idemitsu Kosan Co., Ltd. Field effect transistor using oxide semiconductor and method for manufacturing the same
JP2010205798A (en) * 2009-02-27 2010-09-16 Japan Science & Technology Agency Method of manufacturing thin-film transistor
JP2012059860A (en) * 2010-09-08 2012-03-22 Fujifilm Corp Thin film transistor and method of manufacturing the same, and device with thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290656B2 (en) 2014-05-30 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor film electrical characteristic change of which is inhibited
US12009432B2 (en) 2021-03-05 2024-06-11 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device

Also Published As

Publication number Publication date
KR101717336B1 (en) 2017-03-16
TWI585986B (en) 2017-06-01
JP5901420B2 (en) 2016-04-13
JP2013239532A (en) 2013-11-28
KR20140143844A (en) 2014-12-17
TW201349512A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5052693B1 (en) Thin film transistor and manufacturing method thereof, display device, image sensor, X-ray sensor, and X-ray digital imaging device
JP4982620B1 (en) Manufacturing method of field effect transistor, field effect transistor, display device, image sensor, and X-ray sensor
JP5657433B2 (en) Thin film transistor manufacturing method, thin film transistor, display device, sensor, and X-ray digital imaging device
JP5679933B2 (en) Thin film transistor and manufacturing method thereof, display device, image sensor, X-ray sensor, and X-ray digital imaging device
JP5626978B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
JP5497417B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
TWI580048B (en) Method for producing field-effect transistor
JP5995504B2 (en) FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME, DISPLAY DEVICE, IMAGE SENSOR, AND X-RAY SENSOR
WO2013172237A1 (en) Thin-film transistor, method for producing same, display device, image sensor, x-ray sensor, and x-ray digital imaging device
WO2013172238A1 (en) Method for producing thin-film transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031681

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790634

Country of ref document: EP

Kind code of ref document: A1