WO2013172093A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2013172093A1
WO2013172093A1 PCT/JP2013/058002 JP2013058002W WO2013172093A1 WO 2013172093 A1 WO2013172093 A1 WO 2013172093A1 JP 2013058002 W JP2013058002 W JP 2013058002W WO 2013172093 A1 WO2013172093 A1 WO 2013172093A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
antenna
frequency module
frequency
matching
Prior art date
Application number
PCT/JP2013/058002
Other languages
English (en)
French (fr)
Inventor
永井智浩
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013172093A1 publication Critical patent/WO2013172093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to a high frequency module capable of evaluating high frequency characteristics separately from antenna output.
  • impedance matching between connected components is performed in order to suppress useless signal reflection.
  • the characteristics of each element of the wireless device are inspected (evaluated), such as whether this impedance matching is performed accurately.
  • Patent Document 1 describes an inspection method performed on a front-end module used in a wireless device.
  • the front end module described in Patent Document 1 includes an inspection switch, and switches the inspection switch to confirm whether the operation of the front end module is normal.
  • Patent Document 1 since the inspection switch is provided in the inspection circuit, there is a problem that the inspection circuit becomes large and the inspection procedure becomes complicated.
  • the invention described in Patent Document 1 does not consider a method for inspecting the front end module using a variable impedance matching circuit for impedance matching.
  • an object of the present invention is to provide a high-frequency module that has variable impedance matching, can be handled with a simple evaluation circuit, and can be downsized.
  • the present invention relates to a high frequency module provided between an antenna and a transmission / reception circuit having a plurality of connection terminals corresponding to a frequency band of a high frequency signal to be transmitted / received, the antenna being connected between the antenna and the transmission / reception circuit, A switch circuit that connects the antenna to any of the connection terminals and a variable impedance element according to a change, and for each frequency band of a high-frequency signal to be transmitted and received, the variable impedance element is varied to change the antenna and the antenna
  • a matching circuit that performs impedance matching with a transmission / reception circuit; and an evaluation line that is drawn from a connection point of the switch circuit and the matching circuit and is used for evaluation of the impedance matching, and a part of the elements of the matching circuit Is formed on the same semiconductor chip as the switch circuit.
  • the configuration for evaluating the impedance matching is an evaluation line such as an open stub drawn from between the matching circuit and the switch circuit, so that a component such as a switch as in Patent Document 1 is provided. Compared to this, there is no adverse effect of miniaturization by integration.
  • a terminal serving as a connection point of the switch circuit and the matching circuit is formed on the semiconductor chip.
  • This configuration eliminates the need for a lead terminal on the track.
  • the evaluation line preferably has a line length of a quarter wavelength of a high-frequency signal.
  • This configuration can prevent the evaluation line from affecting the characteristics of the high-frequency module when the evaluation line is not used.
  • the high-frequency module includes a substrate in which a plurality of dielectric layers are stacked and an electrode pattern is formed on a predetermined dielectric layer of the dielectric layers, the semiconductor chip is mounted on the substrate, and the variable impedance
  • the element may include a variable capacitance element and an inductor, and the variable capacitance element may be formed on the semiconductor chip.
  • each element can be integrally formed on the substrate layer.
  • variable capacitance element may be a MEMS.
  • variable capacitance element can be reduced in size.
  • the evaluation line is formed by the semiconductor chip and the electrode pattern of the substrate.
  • the evaluation line does not adversely affect the miniaturization of the high frequency module, and the miniaturization of the high frequency module can be realized.
  • the configuration for evaluating the impedance matching is an evaluation line such as an open stub drawn from between the matching circuit and the switch circuit, so that a component such as a switch as in Patent Document 1 is provided. Compared to this, there is no adverse effect of miniaturization by integration.
  • FIG. 1 is a block diagram showing a configuration of a high frequency module according to Embodiment 1.
  • FIG. 6 is a stack diagram of a stacked substrate of a high frequency module according to a second embodiment.
  • the high-frequency module described below is used for communication devices such as mobile phones.
  • the communication device is a communication signal of a plurality of frequency bands, for example, a GSM (registered trademark) 850 communication signal, a GSM (registered trademark) 900 communication signal, a GSM (registered trademark) 1800 communication signal, a GSM (registered trademark) 1900. Transmission / reception of communication signals and transmission / reception of communication signals of a W-CDMA communication system or the like.
  • FIG. 1 is a block diagram illustrating a configuration of the high-frequency module according to the first embodiment.
  • the high frequency module 1 is connected between the antenna 2 and the RFIC 3.
  • the RFIC 3 is an analog signal processing circuit according to the present invention that transmits and receives high-frequency signals in a plurality of frequency bands, and has a plurality of connection terminals corresponding to the frequency bands.
  • the high frequency module 1 includes a matching circuit 11 and a high frequency switch circuit 12.
  • the matching circuit 11 is a variable impedance circuit, and performs impedance matching between the antenna 2 and the high-frequency switch circuit 12 according to the frequency band of the high-frequency signal when transmitting and receiving the high-frequency signal. In addition, the matching circuit 11 performs impedance matching between the antenna 2 and the high frequency switch circuit 12 when the impedance of the antenna 2 changes due to some influence even if there is no change in the frequency band of the high frequency signal.
  • the high frequency switch circuit 12 includes a switch element 120.
  • the switch element 120 has a common terminal 12A connected to the matching circuit 11, and a plurality of external connection terminals 121, 122, 123... 12n (hereinafter referred to as external connection terminals 12n) connected to the RFIC3.
  • the switch element 120 includes an SPnT switch that connects the common terminal 12A and the external connection terminal 12n in accordance with the frequency band of communication to be transmitted / received.
  • a MOS-FET is used as the switch.
  • the common terminal 12A is connected to the external antenna 2 through the matching circuit 11.
  • the number of terminals of the external connection terminal 12n can be changed according to the number of frequency bands used for communication.
  • the high-frequency switch circuit 12 includes a transmission-side filter or a reception-side filter (not shown) that allows a frequency band of a high-frequency signal to pass.
  • the transmission side filter or the reception side filter is connected to a predetermined terminal of the external connection terminal 12 n of the switch element 120.
  • the high-frequency module 1 inputs a high-frequency signal output from the RFIC 3 through a transmission-side filter and outputs it to the antenna 2.
  • the high frequency module 1 inputs a high frequency signal received by the antenna 2 through a reception side filter and outputs it to the RFIC 3.
  • the high-frequency switch circuit 12 has a plurality of terminals (not shown) to which a control voltage is applied, and connects one of the external connection terminals 12n and the common terminal 12A by a combination of control voltages applied from the plurality of terminals. .
  • the high-frequency switch circuit 12 is shown as a simple switch, but an FET is provided between the common terminal 12A and each external connection terminal 12n, and the high-frequency switch circuit 12 turns each FET on and off. Thus, any one of the external connection terminals 12n and the common terminal 12A are connected.
  • FIG. 2 is a circuit diagram of the matching circuit 11 provided in the high-frequency module.
  • the matching circuit 11 is an LC circuit composed of inductors L1, L2 and variable capacitance elements (variable impedance elements of the present invention) Cv1, Cv2, Cv3.
  • the matching circuit 11 has an antenna connection terminal Pa connected to the antenna 2 and a common terminal Pc connected to the common terminal 12A of the high-frequency switch circuit 12, and an inductor between the antenna connection terminal Pa and the common terminal Pc.
  • L1 and L2 are connected in series.
  • a variable capacitance element Cv1 is connected between one end of the inductor L1 on the antenna connection terminal Pa side and the ground.
  • a variable capacitance element Cv2 is connected between the connection point of the inductors L1 and L2 and the ground.
  • a variable capacitance element Cv3 is connected between one end of the inductor L2 on the common terminal Pc side and the ground.
  • FIG. 3 is a diagram showing a simple equivalent circuit of variable capacitance elements CV1, Cv2, and Cv3 provided in the matching circuit. Since the variable capacitance elements CV2 and CV3 are configured by the same equivalent circuit as the variable capacitance Cv1, the variable capacitance element CV1 will be described below.
  • the variable capacitance element Cv1 includes MOS-FETs 111, 112, 113, and 114 and capacitors C1, C2, C3, and C4 having fixed capacitances and different capacitances.
  • the FET 111 and the capacitor C1 are connected in series, and the terminal Pcv is connected between the terminal Pcv connected to the signal line between the antenna connection terminal Pa and the common terminal Pc and the ground.
  • FETs 112, 113, and 114 and capacitors C2, C3, and C4 are connected between the terminal Pcv and the ground, respectively.
  • variable capacitance elements Cv2 and Cv3 are also configured by the same equivalent circuit as the variable capacitance Cv1, and the capacitance value is adjusted by controlling the on / off of the FET.
  • On / off of the FETs 111, 112, 113, and 114 is controlled according to the impedance on the antenna side and the frequency of the communication signal. Thereby, the capacitance values of the variable capacitance elements Cv1, Cv2, and Cv3 are adjusted, and the matching circuit 11 performs impedance matching between the antenna 2 and the RFIC 3.
  • the same semiconductor chip as the FET of the high frequency switch circuit 12 is used for the FETs 111, 112, 113, and 114 constituting the variable capacitance elements Cv1, Cv2, and Cv3, and the matching circuit 11 and the high frequency switch circuit 12 are used. And are configured integrally.
  • An open stub (evaluation line of the present invention) 13 is connected to a connection point between the matching circuit 11 and the high-frequency switch circuit 12.
  • the open stub 13 has a length of ⁇ / 4.
  • is the wavelength of the communication frequency, for example, it may be the wavelength of a high frequency signal of 1.8 GHz to 2.1 GHz, or may be the wavelength of a high frequency signal of 800 MHz to 900 MHz, and can be changed as appropriate.
  • the FETs 111, 112, 113, and 114 constituting the variable capacitance elements Cv1, Cv2, and Cv3 are used in the same semiconductor chip as the FET of the high-frequency switch circuit 12, and the matching circuit 11 and the high-frequency switch are used.
  • a terminal serving as a connection point with the circuit 12 is provided in the semiconductor chip.
  • the end of the open stub 13 is connected to a high-frequency evaluation connector (not shown). None is connected to the high frequency evaluation connector during normal use of the wireless device.
  • various measuring instruments such as a network analyzer are connected to the high frequency evaluation connector, and a performance test of the wireless device is performed.
  • the open stub 13 becomes unnecessary.
  • the impedance component of the open stub 13 may affect the communication characteristics during normal use of the wireless device.
  • the length of the open stub 13 according to the present embodiment is ⁇ / 4, the voltage at the connection point of the open stub 13 becomes 0, and the influence of the open stub 13 during communication can be eliminated.
  • the matching circuit 11 and the high-frequency switch circuit 12 are formed on the same semiconductor chip, and the open stub 13 used for evaluation is provided between the matching circuit 11 and the high-frequency switch circuit 12. Provided.
  • the open stub 13 does not cause a reduction in size as compared with a case where an element such as a switch or an IC is provided for evaluation. Thereby, it is possible to realize a miniaturized high-frequency module 1 that can be evaluated.
  • the matching circuit 11 can realize impedance matching in a wider range by using the variable capacitance elements Cv1, Cv2, and Cv3. Note that the number of capacitors C1, C2, C3, and C4 included in the variable capacitance elements Cv1, Cv2, and Cv3 and the respective capacitance values can be changed as appropriate.
  • the high-frequency module according to the second embodiment is integrally formed including a multilayer substrate formed of a dielectric ceramic layer such as low temperature co-fired ceramics (LTCC). Similar to the first embodiment, the high-frequency module according to the second embodiment includes a matching circuit and a high-frequency switch circuit, and the matching circuit and the high-frequency switch circuit are mounted on the uppermost layer of the multilayer substrate.
  • LTCC low temperature co-fired ceramics
  • the high-frequency switch circuit according to the second embodiment is an SPnT switch composed of a MOS-FET as in the first embodiment.
  • the variable capacitance elements Cv1, Cv2, Cv3, Cv4 (see FIG. 2) constituting the matching circuit are constituted by MEMS (Micro Electro Mechanical Systems), and are integrated on the same silicon chip (semiconductor chip of the present invention) as the high frequency switch circuit. Is formed.
  • FIG. 4 is a lamination diagram of the laminated substrate of the high-frequency module according to the second embodiment.
  • the lowermost layer is the first layer
  • the uppermost layer is the seventeenth layer
  • the layer number is increased from the lower layer side, and some layers are omitted.
  • FIG. 4 shows a first layer, a fourth layer, a sixth layer, a seventh layer, an eighth layer, a ninth layer, a tenth layer, a sixteenth layer, and a seventeenth layer. 4 indicate via holes, which serve to conduct the electrode patterns formed on the insulating layers in the stacking direction.
  • the high-frequency module is composed of a laminated substrate having 17 layers.
  • Land electrodes for mounting the high-frequency module on a mother board or the like are formed on the back surface of the first layer of the multilayer substrate, that is, the mounting surface of the high-frequency module itself.
  • Land electrodes corresponding to the input / output port P1 and the second input / output port P2 are also formed on the back surface of the first layer.
  • the first input / output port P1 and the second input / output port P2 are connected to the antenna 2 and the RFIC 3 (see FIG. 1).
  • a ground electrode GND is formed on substantially the entire surface that does not overlap with the lands that become the first input / output port P1 and the second input / output port P2 in the stacking direction.
  • the fifth layer has the same configuration as the fourth layer.
  • the sixth to eighth layers are divided into two regions as viewed from the stacking direction by via holes connected to the ground electrode, and line electrode patterns constituting the inductors L1 and L2 are formed in the first region A101. .
  • a line electrode pattern constituting the open stub 13 is formed in the second region A102. That is, the line electrode patterns of the inductors L1 and L2 and the line electrode pattern of the open stub 13 are formed so as not to overlap each other when viewed from the stacking direction.
  • the isolation characteristics of both can be improved. Further, the isolation characteristics can be further improved by separating the via holes connected to the ground electrode. Further, the line electrode pattern of the inductor L1 and the line electrode pattern of the inductor L2 are formed so as not to overlap each other when viewed from the stacking direction.
  • the line electrode pattern of the open stub 13 is formed wider than the line electrode pattern of the inductors L1 and L2. Further, the open stub 13 is formed to have a length of ⁇ / 4 as in the first embodiment.
  • via holes and electrode patterns having a predetermined shape are formed.
  • the land electrode for mounting the silicon chip 10 on which the matching circuit 11 and the high frequency switch circuit 12 are formed is formed on the surface of the 17th layer, that is, on the component mounting surface of the multilayer substrate constituting the high frequency module.
  • the inductors L1 and L2 and the open stub 13 are configured by the electrode pattern of the multilayer substrate.
  • the matching circuit 11 and the high frequency switch circuit 12 are mounted on a laminated substrate, thereby realizing an integrated high frequency module.
  • the high-frequency module according to the present invention has been specifically described above, the specific configuration and the like of the high-frequency module can be appropriately changed in design, and the functions and effects described in the above-described embodiment are the most arising from the present invention.
  • the preferred actions and effects are merely listed, and the actions and effects according to the present invention are not limited to those described in the above-described embodiments.

Abstract

 アンテナ(2)とRFIC(3)との間に設けられる高周波モジュール(1)において、アンテナ(2)とRFIC(3)との間に接続され、送受する高周波信号の周波数帯に応じて、アンテナ(2)をRFIC(3)の接続端子の何れかに接続する高周波スイッチ回路(12)と、可変インピーダンス素子を有し、送受する高周波信号の周波数帯毎に、可変インピーダンス素子を可変してアンテナ(2)とRFIC(3)とのインピーダンス整合を行う整合回路(11)と、高周波スイッチ回路(12)及び整合回路(11)の接続点から引き出され、インピーダンス整合の評価に用いられるオープンスタブ(13)とを備える。整合回路(11)の一部の素子は、高周波スイッチ回路(12)と同一の半導体チップ上に形成されている。これにより、評価が可能であって、かつ、小型化を実現できる高周波モジュールを提供する。

Description

高周波モジュール
 本発明は、アンテナ出力とは別に高周波特性の評価可能な高周波モジュールに関するものである。
 携帯電話機等の無線機器が備えるフロントエンドモジュール及びアンテナ等の部品同士の接続において、信号の無駄な反射を抑えるために、接続される部品間のインピーダンス整合が行われる。無線機器の製造時又は保守時では、このインピーダンス整合が精度よく行われているかなど、無線機器の各素子の特性が検査(評価)される。
 特許文献1には、無線機器に用いられるフロントエンドモジュールに対して行う検査方法について記載されている。特許文献1に記載のフロントエンドモジュールは検査用スイッチを備え、検査用スイッチを切り替えて、フロントエンドモジュールールの動作が正常であるかを確認している。
特表2012-501614号公報
 しかしながら、特許文献1では、検査用の回路に検査用スイッチが設けられているために、検査用の回路が大規模になるとともに、検査手順が煩雑になるという問題点があった。また、アンテナとフロントエンドモジュールとのインピーダンス整合を行う場合、特許文献1に記載の発明では、インピーダンス整合に可変インピーダンス整合回路を用いたフロントエンドモジュールの検査の方法について考慮がなされていなかった。
 そこで、本発明の目的は、可変インピーダンス整合を備え、簡易な評価回路で対応可能であって、かつ、小型化を実現できる高周波モジュールを提供することにある。
 本発明は、アンテナと、送受する高周波信号の周波数帯に応じた接続端子を複数有する送受信回路との間に設けられる高周波モジュールにおいて、前記アンテナと前記送受信回路との間に接続され、アンテナのインピーダンス変化に応じて、前記アンテナを前記接続端子の何れかに接続するスイッチ回路と、可変インピーダンス素子を有し、送受する高周波信号の周波数帯毎に、前記可変インピーダンス素子を可変して前記アンテナと前記送受信回路とのインピーダンス整合を行う整合回路と、前記スイッチ回路及び前記整合回路の接続点から引き出され、前記インピーダンス整合の評価に用いられる評価用線路と、を備え、前記整合回路の一部の素子は、前記スイッチ回路と同一の半導体チップ上に形成されていることを特徴する。
 この構成では、整合回路の一部とスイッチ回路とを一体化できる。また、インピーダンス整合を評価するための構成を、整合回路とスイッチ回路との間から引き出したオープンスタブのような評価用線路とすることで、特許文献1のようなスイッチ等の部品を設ける場合と比べて、一体化による小型化の弊害とならない。
 前記スイッチ回路及び前記整合回路の接続点となる端子は前記半導体チップ上に形成されている構成が好ましい。
 この構成では、線路上に引き出し用端子が不要となる。
 前記評価用線路は、高周波信号の1/4波長の線路長を有している、構成が好ましい。
 この構成では、評価用線路の不使用時に、評価用線路が高周波モジュールの特性に影響を及ぼすことを防止できる。
 前記高周波モジュールは、複数の誘電体層が積層され、前記誘電体層のうちの所定の誘電体層に電極パターンが形成された基板を備え、前記半導体チップは前記基板に実装され、前記可変インピーダンス素子は、可変容量素子及びインダクタを有し、前記可変容量素子は、前記半導体チップに形成されている構成でもよい。
 この構成では、各素子を基板層に一体に形成することができる。
 前記可変容量素子はMEMSである構成でもよい。
 この構成では、可変容量素子の小型化を実現できる。
 前記評価用線路は、前記半導体チップと前記基板の前記電極パターンにより形成されている構成が好ましい。
 この構成では、評価用線路が高周波モジュールの小型化の弊害とならず、高周波モジュールの小型化を実現できる。
 本発明によれば、整合回路の一部とスイッチ回路とを一体化できる。また、インピーダンス整合を評価するための構成を、整合回路とスイッチ回路との間から引き出したオープンスタブのような評価用線路とすることで、特許文献1のようなスイッチ等の部品を設ける場合と比べて、一体化による小型化の弊害とならない。
実施形態1に係る高周波モジュールの構成を示すブロック図。 高周波モジュールが備える整合回路の回路図。 整合回路が備える可変容量素子の簡易等価回路を示す図。 実施形態2に係る高周波モジュールの積層基板の積層図。
 以下、本発明に係る高周波モジュールの好適な実施の形態について図面を参照して説明する。以下に説明する高周波モジュールは、通信機器、例えば、携帯電話機等に用いられる。通信機器は、複数の周波数帯の通信信号、例えば、GSM(登録商標)850の通信信号、GSM(登録商標)900の通信信号、GSM(登録商標)1800の通信信号、GSM(登録商標)1900の通信信号の送受信、及びW-CDMA通信システム等の通信信号の送受信を行う。
(実施形態1)
 図1は、実施形態1に係る高周波モジュールの構成を示すブロック図である。高周波モジュール1は、アンテナ2とRFIC3との間に接続されている。RFIC3は、前記した複数の周波数帯の高周波信号を送受する本発明に係るアナログ信号処理回路であり、周波数帯に応じた複数の接続端子を有している。
 高周波モジュール1は、整合回路11と高周波スイッチ回路12とを備える。
 整合回路11は、可変インピーダンス回路であって、高周波信号の送受の際に、高周波信号の周波数帯に応じてアンテナ2と高周波スイッチ回路12とのインピーダンス整合を行う。また、整合回路11は、高周波信号の周波数帯に変動がなくても、何らかの影響によりアンテナ2のインピーダンスが変化したときに、アンテナ2と高周波スイッチ回路12とのインピーダンス整合を行う。
 高周波スイッチ回路12はスイッチ素子120を備えている。スイッチ素子120は、整合回路11に接続された共通端子12Aと、RFIC3に接続された複数の外部接続端子121,122,123…12n(以下、外部接続端子12nという。)を有している。スイッチ素子120は、送受する通信の周波数帯に応じて共通端子12Aと外部接続端子12nとを接続するSPnTスイッチを含み、当該スイッチには、例えばMOS-FETが用いられている。
 共通端子12Aは整合回路11を介して外部のアンテナ2に接続されている。外部接続端子12nの端子数は、通信に使用する周波数帯の数に応じて変更可能である。高周波スイッチ回路12は、スイッチ素子120の他に、高周波信号の周波数帯域を通過させる送信側フィルタ又は受信側フィルタ(不図示)を有していている。送信側フィルタ又は受信側フィルタは、スイッチ素子120の外部接続端子12nの所定端子に接続されている。高周波モジュール1は、RFIC3が出力した高周波信号を、送信側フィルタを介して入力し、アンテナ2へ出力する。また、高周波モジュール1は、アンテナ2が受信した高周波信号を、受信側フィルタを介して入力し、RFIC3へ出力する。
 高周波スイッチ回路12は、制御電圧が印加される不図示の端子を複数有しており、複数の端子から印加される制御電圧の組み合わせにより、外部接続端子12nの何れかと共通端子12Aとを接続する。図1では、高周波スイッチ回路12は簡易的なスイッチで示しているが、共通端子12Aと各外部接続端子12nとの間にはFETが設けられていて、高周波スイッチ回路12は、各FETをオンオフすることで、各外部接続端子12nの何れかと共通端子12Aとを接続する。
 図2は高周波モジュールが備える整合回路11の回路図である。
 整合回路11は、インダクタL1,L2と可変容量素子(本発明の可変インピーダンス素子)Cv1,Cv2,Cv3とで構成されたLC回路である。整合回路11は、アンテナ2に接続されるアンテナ接続端子Paと、高周波スイッチ回路12の共通端子12Aに接続される共通端子Pcとを有し、アンテナ接続端子Paと共通端子Pcとの間にインダクタL1,L2が直列接続されている。アンテナ接続端子Pa側のインダクタL1の一端とグランドとの間には可変容量素子Cv1が接続されている。インダクタL1,L2の接続点とグランドとの間には可変容量素子Cv2が接続されている。さらに、共通端子Pc側のインダクタL2の一端とグランドとの間には可変容量素子Cv3が接続されている。
 図3は整合回路が備える可変容量素子CV1,Cv2,Cv3の簡易等価回路を示す図である。可変容量素子CV2,CV3は、可変容量Cv1と同じ等価回路で構成されるため、以下では、可変容量素子CV1について説明する。
 可変容量素子Cv1は、MOS-FET111,112,113,114と、固定容量で、それぞれが異なる容量のキャパシタC1,C2,C3,C4とを備えている。詳しくは、FET111とキャパシタC1とが直列接続され、端子Pcvがアンテナ接続端子Pa及び共通端子Pc間の信号ラインに接続される端子Pcvとグランドとの間に接続されている。同様に、FET112,113,114とキャパシタC2,C3,C4とがそれぞれ、端子Pcvとグランドとの間に接続されている。そして、FET111,112,113,114をオンオフ制御することで、キャパシタC1,C2,C3,C4の何れかと端子Pcvとの接続を調整できる。可変容量素子Cv2,Cv3も可変容量Cv1と同じ等価回路で構成され、FETをオンオフ制御することで、容量値が調整される。アンテナ側のインピーダンスと通信信号の周波数に応じて、FET111,112,113,114のオンオフが制御される。これにより、可変容量素子Cv1,Cv2,Cv3それぞれは容量値が調整され、整合回路11は、アンテナ2とRFIC3とのインピーダンス整合を行う。
 本実施形態では、可変容量素子Cv1,Cv2,Cv3を構成するFET111,112,113,114は、高周波スイッチ回路12のFETと同一の半導体チップが用いられていて、整合回路11と高周波スイッチ回路12とが一体に構成されている。
 整合回路11と高周波スイッチ回路12との接続点には、オープンスタブ(本発明の評価用線路)13が接続されている。オープンスタブ13はλ/4の長さを有している。λは通信周波数の波長であり、例えば、1.8GHz~2.1GHzの高周波信号の波長としてもよいし、800MHz~900MHzの高周波信号の波長としてもよく、適宜変更可能である。
 ここで、上述のように可変容量素子Cv1,Cv2,Cv3を構成するFET111,112,113,114は、高周波スイッチ回路12のFETと同一の半導体チップで用いられており、整合回路11と高周波スイッチ回路12との接続点となる端子は当該半導体チップに設けられる。
 オープンスタブ13の端部は、不図示の高周波評価用コネクタに接続されている。無線機器の通常使用時において、高周波評価用コネクタには何も接続されない。無線機器の製造時又は保守時に行われる無線性能評価を行う場合に、高周波評価用コネクタにネットワークアナライザ等各種測定器が接続され、無線機器の性能テストなどが行われる。
 したがって、無線機器の通常使用時では測定用端子には何も接続されず、オープンスタブ13は不要となる。このため、無線機器の通常使用時ではオープンスタブ13のインピーダンス成分が通信の特性に影響を及ぼすおそれがある。しかし、本実施形態に係るオープンスタブ13は長さをλ/4としているため、オープンスタブ13の接続点での電圧が0となり、通信時におけるオープンスタブ13の影響をなくすことができる。
 以上説明したように、本実施形態では、整合回路11と高周波スイッチ回路12とを同じ半導体チップに形成し、かつ、整合回路11と高周波スイッチ回路12との間に、評価に用いるオープンスタブ13を設けている。オープンスタブ13は、スイッチやIC等の素子を評価用に設けた場合と比べて小型化の弊害とならない。これにより、評価可能であって、かつ、小型化の高周波モジュール1を実現することができる。
 なお、整合回路11は、可変容量素子Cv1,Cv2,Cv3を用いることで、より多様な範囲でのインピーダンス整合を実現できる。なお、可変容量素子Cv1,Cv2,Cv3が備えるキャパシタC1,C2,C3,C4の数、及びそれぞれの容量値は適宜変更可能である。
(実施形態2)
 実施形態2に係る高周波モジュールは、低温焼成セラミックス(LTCC[Low Temperature Co-fired Ceramics])のような誘電体セラミック層により形成された積層基板を含んで一体形成されている。実施形態2に係る高周波モジュールは、実施形態1と同様、整合回路及び高周波スイッチ回路を備え、積層基板の最上層に、整合回路及び高周波スイッチ回路が実装されている。
 実施形態2に係る高周波スイッチ回路は、実施形態1と同様、MOS-FETより構成されるSPnTスイッチである。整合回路を構成する可変容量素子Cv1,Cv2,Cv3,Cv4(図2参照)はMEMS(Micro Electro Mechanical Systems)により構成され、高周波スイッチ回路と同一のシリコンチップ(本発明の半導体チップ)上に一体形成されている。
 図4は、実施形態2に係る高周波モジュールの積層基板の積層図である。図4では、最下層を第1層として最上層を第17層とし、下層側から層番号が増加する態様で記載しており、一部の層を省略している。具体的には、図4では、第1層、第4層、第6層、第7層、第8層、第9層、第10層、第16層及び第17層を示している。また、図4の各層に記載されている○印はビアホールを示し、各絶縁層上に形成された電極パターン同士を積層方向に導通する機能を果たす。
 高周波モジュールは、図4に示すように17層からなる積層基板からなる。積層基板の第1層の裏面、すなわち高周波モジュール自体の実装面には、当該高周波モジュールをマザーボード等に実装するためのランド電極が形成されている。入出力ポートP1及び第2入出力ポートP2に対応するランド電極も当該第1層の裏面に形成されている。第1入出力ポートP1及び第2入出力ポートP2は、アンテナ2及びRFIC3(図1参照)に接続される。
 第1層の表面には、第1入出力ポートP1及び第2入出力ポートP2となるランドと積層方向から見て重ならない、略全面にグランド電極GNDが形成されている。
 第4層には、ビアホールのみが形成されている。第5層は、図示しないが第4層と同じ構成である。
 第6層~第8層は、グランド電極に接続されたビアホールによって積層方向から見て二つの領域に区分され、第1領域A101にはインダクタL1,L2を構成するライン電極パターンが形成されている。また、第2領域A102にはオープンスタブ13を構成するライン電極パターンが形成されている。すなわち、インダクタL1,L2のライン電極パターンとオープンスタブ13のライン電極パターンとは、積層方向から見て重なり合わないように形成されている。このように、第1領域A101と第2領域A102とに分離して、オープンスタブ13とインダクタL1,L2とを配置することで、両者のアイソレーション特性を向上することができる。また、グランド電極に接続されたビアホールで分離することで、アイソレーション特性をさらに向上することができる。さらに、インダクタL1のライン電極パターンとインダクタL2のライン電極パターンとも、積層方向から見て重なり合わないように形成されている。
 また、オープンスタブ13のライン電極パターンは、インダクタL1,L2のライン電極パターンよりも幅広く形成されている。また、オープンスタブ13は、実施形態1と同様に、λ/4の長さとなるよう形成されている。
 第9層及び第10層には、ビアホールのみが形成されている。
 不図示の第11層から第15層には、ビアホールや所定形状の電極パターンが形成されている。
 第16層にはビアホールと引き回し電極パターンのみが形成されている。
 第17層の表面、すなわち高周波モジュールを構成する積層基板の部品実装面には、整合回路11及び高周波スイッチ回路12が形成されたシリコンチップ10を実装するランド電極が形成されている。
 このように、本実施形態の構成を用いることで、インダクタL1,L2、オープンスタブ13を積層基板の電極パターンにより構成される。整合回路11及び高周波スイッチ回路12は、積層基板上に実装されることで、一体化された高周波モジュールを実現できる。
 以上、本発明に係る高周波モジュールについて具体的に説明したが、高周波モジュールの具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。
1-高周波モジュール
2-アンテナ
3-RFIC
11-整合回路
12-高周波スイッチ回路
120-スイッチ素子
12A-共通端子
121,122,,,12n-外部接続端子
13-オープンスタブ(評価用線路)
Cv-可変容量素子(可変インピーダンス素子)
L1,L2-インダクタ
Pa-アンテナ接続端子
Pc-共通端子

Claims (6)

  1.  アンテナと、送受する高周波信号の周波数帯に応じた接続端子を複数有する送受信回路との間に設けられる高周波モジュールにおいて、
     前記アンテナと前記送受信回路との間に接続され、送受する高周波信号の周波数帯に応じて、前記アンテナを前記接続端子の何れかに接続するスイッチ回路と、
     可変インピーダンス素子を有し、アンテナのインピーダンス変化に応じて、前記可変インピーダンス素子を可変して前記アンテナと前記送受信回路とのインピーダンス整合を行う整合回路と、
     前記スイッチ回路及び前記整合回路の接続点から引き出され、前記インピーダンス整合の評価に用いられる評価用線路と、
     を備え、
     前記整合回路の一部の素子は、前記スイッチ回路と同一の半導体チップ上に形成されている、
     高周波モジュール。
  2.  前記スイッチ回路及び前記整合回路の接続点となる端子は前記半導体チップ上に形成されている、請求項1に記載の高周波モジュール。
  3.  前記評価用線路は、高周波信号の1/4波長の線路長を有している、
     請求項1又は2に記載の高周波モジュール。
  4.  複数の誘電体層が積層され、前記誘電体層のうちの所定の誘電体層に電極パターンが形成された基板を備え、
     前記半導体チップは前記基板に実装され、
     前記可変インピーダンス素子は、可変容量素子及びインダクタを有し、
     前記可変容量素子は、前記半導体チップに形成されている、
     請求項1から3の何れかに記載の高周波モジュール。
  5.  前記可変容量素子はMEMSである、
     請求項4に記載の高周波モジュール。
  6.  前記評価用線路は、前記半導体チップと前記基板の前記電極パターンにより形成されている、
     請求項4又は5に記載の高周波モジュール。
PCT/JP2013/058002 2012-05-17 2013-03-21 高周波モジュール WO2013172093A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-112934 2012-05-17
JP2012112934 2012-05-17

Publications (1)

Publication Number Publication Date
WO2013172093A1 true WO2013172093A1 (ja) 2013-11-21

Family

ID=49583513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058002 WO2013172093A1 (ja) 2012-05-17 2013-03-21 高周波モジュール

Country Status (1)

Country Link
WO (1) WO2013172093A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306108A (zh) * 2017-12-18 2018-07-20 南京濠暻通讯科技有限公司 一种用于dvb-t天线的伺服控制装置及控制方法
EP3879286A1 (en) * 2020-03-10 2021-09-15 Infineon Technologies AG Semiconductor die and method for testing an electronic circuit formed in a semiconductor die

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519150A (ja) * 2001-01-26 2004-06-24 エリクソン インコーポレイテッド 適応アンテナ最適化ネットワーク
JP2008078187A (ja) * 2006-09-19 2008-04-03 Mitsubishi Electric Corp ミリ波rfプローブパッド
JP2010517355A (ja) * 2007-01-18 2010-05-20 エヌエックスピー ビー ヴィ Memsキャパシタ回路及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519150A (ja) * 2001-01-26 2004-06-24 エリクソン インコーポレイテッド 適応アンテナ最適化ネットワーク
JP2008078187A (ja) * 2006-09-19 2008-04-03 Mitsubishi Electric Corp ミリ波rfプローブパッド
JP2010517355A (ja) * 2007-01-18 2010-05-20 エヌエックスピー ビー ヴィ Memsキャパシタ回路及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306108A (zh) * 2017-12-18 2018-07-20 南京濠暻通讯科技有限公司 一种用于dvb-t天线的伺服控制装置及控制方法
EP3879286A1 (en) * 2020-03-10 2021-09-15 Infineon Technologies AG Semiconductor die and method for testing an electronic circuit formed in a semiconductor die

Similar Documents

Publication Publication Date Title
KR100643412B1 (ko) 프론트 엔드 모듈
JP5316544B2 (ja) 高周波回路、高周波部品、及びマルチバンド通信装置
US7612634B2 (en) High frequency module utilizing a plurality of parallel signal paths
KR100983017B1 (ko) 복합 고주파 부품 및 이동체 통신 장치
KR101271108B1 (ko) 듀플렉서 모듈
US8736335B2 (en) Front-end module having low insertion loss
JP5187361B2 (ja) 高周波モジュール
JP2016527705A (ja) ベクトルインダクタのための装置および方法
JP2012080246A (ja) 分波装置
US11463050B2 (en) Radio frequency circuit and communication apparatus
US20170302317A1 (en) High frequency front-end circuit and communication device
US7848727B2 (en) Integrated radio frequency module
WO2012014643A1 (ja) 高周波モジュール
US9941859B2 (en) Ladder-type filter, duplexer, and module
KR20090080092A (ko) 고주파 스위칭 회로
JP2017208656A (ja) スイッチモジュール及び高周波モジュール
JP5041285B2 (ja) 高周波部品
US7816997B2 (en) Antenna multiplexer with a Pi-network circuit and use of a Pi-network
WO2013172093A1 (ja) 高周波モジュール
US10348268B2 (en) Demultiplexing circuit
US8766727B2 (en) Power amplification circuit
US7965989B2 (en) High frequency module
US11075658B2 (en) Multilayer substrate, filter, multiplexer, radio-frequency front-end circuit, and communication device
JP2005333675A (ja) モジュール
US7795992B2 (en) Electrical circuit comprising a differential signal path and component with such a circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791703

Country of ref document: EP

Kind code of ref document: A1