WO2013171924A1 - Multichannel dc-dc converter - Google Patents

Multichannel dc-dc converter Download PDF

Info

Publication number
WO2013171924A1
WO2013171924A1 PCT/JP2012/079322 JP2012079322W WO2013171924A1 WO 2013171924 A1 WO2013171924 A1 WO 2013171924A1 JP 2012079322 W JP2012079322 W JP 2012079322W WO 2013171924 A1 WO2013171924 A1 WO 2013171924A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
input terminal
converter
inductor
channel
Prior art date
Application number
PCT/JP2012/079322
Other languages
French (fr)
Japanese (ja)
Inventor
野間隆嗣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014515456A priority Critical patent/JP5880697B2/en
Priority to CN201290001130.1U priority patent/CN204244072U/en
Publication of WO2013171924A1 publication Critical patent/WO2013171924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a DC-DC converter equipped with a switching element, and more particularly to a multi-channel type DC-DC converter.
  • an object of the present invention is to provide a multi-channel DC-DC converter that suppresses the voltage fluctuation when a plurality of control ICs are mounted.
  • a multi-channel DC-DC converter according to the present invention is provided on a multilayer substrate including a magnetic material, a first inductor and a second inductor formed inside the multilayer substrate, and a component mounting surface of the multilayer substrate. And a first control IC and a second control IC connected to the first inductor and the second inductor, respectively.
  • the multi-channel DC-DC converter according to the present invention includes an input terminal provided on a mounting surface of the multilayer substrate facing the component mounting surface, a power input terminal of the first control IC, and the second And the power input terminal of the first control IC and the power input terminal of the second control IC are connected via an internal wiring of the magnetic body. It is characterized by being.
  • the power supply input terminals of the control ICs are connected via the internal wiring of the magnetic material, so that a parasitic inductor exists between the power supply input terminals. Therefore, the power supply input terminals of each control IC are separated by a high resistance at high frequencies due to the parasitic inductor, so that voltage fluctuation is suppressed.
  • first output terminal provided on the mounting surface and the output terminal of the first control IC are the second output terminal provided on the mounting surface and the output terminal of the second control IC are In addition, it is possible to adopt a mode in which they are connected via wiring inside the magnetic body.
  • the wiring inside the magnetic material may be a via hole conductor formed in the stacking direction of the multilayer substrate, and the wiring is formed on the upper surface of the multilayer substrate, and the end surface of the multilayer substrate is It is also possible to connect via
  • the first inductor is provided between a power output terminal of the first control IC and a first output terminal provided on the mounting surface.
  • a step-down DC-DC converter is configured by connecting and connecting the second inductor between a power supply output terminal of the second control IC and a second output terminal provided on the mounting surface. It is also possible to connect the first inductor between the power input terminal of the first control IC and the input terminal provided on the mounting surface, and the second control IC.
  • a step-up DC-DC converter can be configured by connecting the second inductor between a power supply input terminal and an input terminal provided on the mounting surface.
  • the voltage fluctuation can be suppressed when a plurality of control ICs are mounted.
  • FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-down DC-DC converter.
  • FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-up DC-DC converter.
  • FIG. 4A is a top view of a multi-channel DC-DC converter according to Modification 1
  • FIG. 4B is a circuit diagram.
  • FIG. 5A is a top view of a multi-channel DC-DC converter according to Modification 2
  • FIG. 5B is a circuit diagram.
  • 10 is a circuit diagram of a multi-channel DC-DC converter according to Modification 3.
  • FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-down DC-DC converter.
  • FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-up DC-DC converter.
  • FIG. 4A is a top view of a multi-channel DC-DC converter according to Modification 1
  • FIG. 4B is a circuit diagram
  • FIG. 10 is a circuit diagram of a multi-channel DC-DC converter according to Modification 4.
  • FIG. FIG. 8A is a top view of a multi-channel DC-DC converter according to Modification 5
  • FIG. 8B is a circuit diagram.
  • FIG. 9A is a top view of a multi-channel DC-DC converter according to Modification 6, and
  • FIG. 9B is a circuit diagram.
  • FIG. 1A is a top view of a multi-channel DC-DC converter according to an embodiment of the present invention (a diagram showing a main surface of a multilayer board), and FIG. 1B is a coil of the multilayer board.
  • FIG. 2 is a cross-sectional view of a portion where a conductor is formed (a cross-sectional view taken along line AA in FIG. 1A).
  • FIG. 2 is a circuit diagram when the multi-channel DC-DC converter is a step-down DC-DC converter.
  • the multi-channel DC-DC converter 1 is equipped with components on a multilayer substrate 2 in which a plurality of magnetic ceramic green sheets are laminated and fired.
  • Electronic components including a control IC 3A, a control IC 3B, an input side capacitor 12A, an input side capacitor 12B, an output side capacitor 13A, and an output side capacitor 13B are mounted on the surface.
  • the multilayer substrate 2 is composed of a magnetic material (ferrite) layer having a high magnetic permeability, and a coil conductor is provided between the laminated sheets to constitute an inductor 31A and an inductor 31B connected in the lamination direction.
  • a DC-DC converter using these inductors as choke coils can be realized.
  • a non-magnetic layer or a low-permeability layer having a lower magnetic permeability than the magnetic layer may be provided on the front surface, back surface, or part of the inner layer of the multilayer substrate 2.
  • control IC 3A and the control IC 3B are connected to the plurality of inductors 31A and 31B, respectively, different output voltages can be obtained, and a multi-channel DC-DC converter can be realized.
  • an inductor is interposed between the power input terminal 30A of the control IC 3A and the power input terminal 30B of the control IC 3B.
  • the power input terminals of the control ICs are separated in a high frequency manner to suppress voltage fluctuations.
  • the power input terminal 30A of the control IC 3A is connected to the input-side capacitor 12A and the via-hole conductor 11A via the input wiring 51A.
  • the ground electrode of the input-side capacitor 12A is connected to the end face through-hole conductor 91 via the ground wiring 71 and grounded.
  • the end face through-hole conductor 91 is an electrode penetrating the inside of the laminated substrate in the laminating direction, but a part of the end face through-hole conductor 91 is exposed to the outside and forms an open magnetic circuit. Therefore, the influence of the parasitic inductance of the end face through-hole conductor 91 can be almost ignored.
  • the power supply output terminal of the control IC 3A is connected to the inductor 31A, and finally connected to the output-side capacitor 13A and the via-hole conductor 14A via the output wiring 52A.
  • the ground terminal of the control IC 3A is connected to the output-side capacitor 13A and the end face through-hole conductor 91 via the ground wiring 71 and grounded.
  • the via-hole conductor 11 ⁇ / b> A penetrates the inside of the multilayer substrate 2 in the stacking direction and is connected to an input terminal 41 provided on a mounting surface facing the component mounting surface of the multilayer substrate 2.
  • the input terminal 41 is connected to an electrode for power supply input on the mounting substrate side.
  • the via-hole conductor 14A penetrates the multilayer substrate 2 in the stacking direction and is connected to an output terminal (Vout1) provided on the mounting surface.
  • the output terminal is connected to a power output electrode on the mounting substrate side.
  • the power input terminal 30B of the control IC 3B is connected to the input-side capacitor 12B and the via-hole conductor 11B via the input wiring 51B.
  • the ground electrode of the input-side capacitor 12B is connected to the end face through-hole conductor 91 via the ground wiring 71 and grounded.
  • the power supply output terminal of the control IC 3B is connected to the inductor 31B, and finally connected to the output-side capacitor 13B and the via-hole conductor 14B via the output wiring 52B.
  • the ground terminal of the control IC 3B is connected to the output-side capacitor 13B and the end face through-hole conductor 91 via the ground wiring 71 and grounded.
  • the via-hole conductor 11B penetrates the multilayer substrate 2 in the stacking direction and is connected to the input terminal 41.
  • the via-hole conductor 14B penetrates the multilayer substrate 2 in the stacking direction and is connected to an output terminal (Vout2) provided on the mounting surface.
  • the output terminal is connected to a power output electrode on the mounting substrate side.
  • the input terminal 41, the power input terminal 30A of the control IC 3A, and the power input terminal 30B of the control IC 3B are connected to each other, and the power input terminal 30A and the power input terminal 30B are formed inside the magnetic body. It will be connected through the wiring.
  • the via-hole conductor 11A and the via-hole conductor 11B penetrate the inside of the multilayer substrate 2 including the magnetic material in the stacking direction and are surrounded by the magnetic material, so that each inductor is shown in FIG. It functions as LinA and inductor LinB. Further, the via-hole conductor 14A and the via-hole conductor 14B also penetrate through the multilayer substrate 2 in the stacking direction and are surrounded by a magnetic material, so that the inductor LoutA and the inductor LoutB are respectively shown in FIG. Function.
  • the power input terminal 30A and the power input terminal 30B are separated by these inductors with high resistance in terms of high frequency.
  • a smoothing filter is configured by the inductor LinA and the input side capacitor 12A (inductor LinB and input side capacitor 12B). Therefore, even if the frequencies of the control IC 3A and the control IC 3B are different, the difference frequency does not appear as a voltage fluctuation.
  • the example using the via-hole conductor penetrating the inside of the multilayer substrate 2 in the stacking direction has been described.
  • the wiring is formed on the magnetic material layer constituting the multilayer substrate 2, it functions as an inductor. It is possible to make it.
  • FIG. 4 (A) is a top view of the multi-channel DC-DC converter according to Modification 1
  • FIG. 4 (B) is a circuit diagram thereof. Components that are the same as those in FIG. 1A and FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
  • the multi-channel DC-DC converter according to Modification 1 is provided with an end face through-hole conductor 92A and an end face through-hole conductor 92B in place of the via hole conductor 14A and the via hole conductor 14B, respectively.
  • the power supply output terminal of the control IC 3A is connected to the inductor 31A, and finally connected to the output-side capacitor 13A and the end face through-hole conductor 92A via the output wiring 52A.
  • the power output terminal of the control IC 3B is connected to the inductor 31B, and finally connected to the output-side capacitor 13A and the end face through-hole conductor 92B via the output wiring 52B.
  • the end face through-hole conductor 92A and the end face through-hole conductor 92B are electrodes that penetrate the laminated substrate in the laminating direction, but at least a part of the side faces are exposed to the outside and are open magnetic paths.
  • the output side inductor LoutA and the inductor LoutB do not exist. Also in this case, since the power supply input terminal 30A and the power supply input terminal 30B are separated by the inductor LinA and the inductor LinB with high resistance in terms of high frequency, no voltage fluctuation appears. However, when a capacitor is provided at the subsequent stage of the output terminal Vout1 and the output terminal Vout2, that is, on the mounting substrate side, if the inductor LoutA and the inductor LoutB are formed by the via-hole conductor 14A and the via-hole conductor 14B, a smoothing filter is configured by these inductors and capacitors. This contributes to noise suppression.
  • FIG. 5 (A) is a top view of a multi-channel DC-DC converter according to Modification 2
  • FIG. 5 (B) is a circuit diagram thereof. Components that are the same as those in FIG. 1A and FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
  • the multi-channel DC-DC converter according to Modification 2 is provided with an end face through-hole conductor 93B instead of the via-hole conductor 11B.
  • the power input terminal 30B of the control IC 3B is connected to the input-side capacitor 12B and the end face through-hole conductor 93B via the input wiring 51B.
  • the end face through-hole conductor 93B is an electrode that penetrates the inside of the laminated substrate in the laminating direction, but a part thereof is exposed to the outside and is an open magnetic circuit.
  • the inductor LinB on the input side does not exist. Even in this case, the power input terminal 30A and the power input terminal 30B are separated by the inductor LinA with high resistance in terms of high frequency, so that voltage fluctuation does not appear.
  • the wiring length on the component mounting surface can be made shorter than the end face through-hole conductor, so that the wiring pattern is not complicated and the increase in the mounting area of the element is prevented. In addition, loss due to wiring resistance can be reduced.
  • FIG. 6 is a circuit diagram of a multi-channel DC-DC converter according to Modification 3. Components that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
  • the multi-channel DC-DC converter according to Modification 3 is a three-channel DC-DC converter that further includes an input side capacitor 12C, a control IC 3C, and an output side capacitor 13C, and is provided with an inductor 31C.
  • the power input terminal 30C of the control IC 3C is connected to the input terminal 41 via the via-hole conductor, and therefore between the input terminal 41 and the power input terminal 30C.
  • the inductor LinC intervenes in.
  • the input terminal 41, the power input terminal 30A of the control IC 3A, the power input terminal 30B of the control IC 3B, and the power input terminal 30C of the control IC 3C are connected to each other, and the power input terminal 30A and the power input terminal are connected.
  • 30B and the power input terminal 30C are connected via an internal wiring of a magnetic body, and the power input terminal 30A, the power input terminal 30B, and the power input terminal 30C are separated by these inductors with high resistance in terms of high frequency. become.
  • the difference frequency does not appear as a voltage fluctuation.
  • the inductor LinA and the power input terminal 30B are not connected between the power input terminal 30A and the power input terminal 30B.
  • the inductor LinB is separated by a high resistance in terms of high frequency
  • the power supply input terminal 30A and the power supply input terminal 30C are separated by a high frequency resistance by the inductor LinA
  • the power supply input terminal 30B and the power supply input terminal 30C are separated by an inductor LinB.
  • the multi-channel DC-DC converter of the present embodiment has a configuration in which each electronic component is grounded via the end face through-hole conductor 91.
  • the modification shown in FIGS. 8A and 8B is used.
  • the end face through-hole conductor 91 is not an essential configuration.
  • a multi-channel type DC-DC converter according to Modification 5 is provided with a via-hole conductor 901 instead of the end face through-hole conductor 91.
  • the ground terminals of the control IC 3A, the control IC 3B, the input side capacitor 12A, the input side capacitor 12B, the output side capacitor 13A, and the output side capacitor 13B are connected to the via-hole conductor 901 via the ground wiring 71 and grounded.
  • the via-hole conductor 901 functions as an inductor LGND as shown in FIG. 8B because it passes through the inside of the multilayer substrate 2 containing the magnetic material in the stacking direction and is not exposed to the outside. In this case, the switching signal does not fall to the ground due to the inductor LGND but may appear as noise. In this case as well, the frequency between the power input terminal 30A and the power input terminal 30B is high due to the inductor LinA and the inductor LinB. Since they are separated by resistors, voltage fluctuations do not appear.
  • via hole conductor 901A via hole conductor 901A, via hole conductor 901B, and via hole. It is also possible to provide a conductor 901C).

Abstract

Provided is a multichannel DC-DC converter that minimizes voltage fluctuations when multiple switching ICs are mounted. An input terminal (41) is respectively connected to a power supply input terminal (30A) of a control IC (3A) and a power supply input terminal (30B) of a control IC (3B), and power supply input terminal (30A) and power supply input terminal (30B) are connected together via internal wiring of a magnetic body. Additionally, since a via hole conductor (11A) and a via hole conductor (11B) penetrate into a multilayer substrate (2), which contains the magnetic body, in the lamination direction without being exposed to the outside, the respective via hole conductors function as inductors. Power supply input terminal (30A) of control IC (3A) and power supply input terminal (30B) of control IC (3B) are separated from each other at high frequencies by the inductors in order to minimize voltage fluctuations.

Description

多チャンネル型DC-DCコンバータMulti-channel DC-DC converter
 この発明は、スイッチング素子を搭載したDC-DCコンバータに関し、特に多チャンネル型のDC-DCコンバータに関するものである。 The present invention relates to a DC-DC converter equipped with a switching element, and more particularly to a multi-channel type DC-DC converter.
 従来、磁性体基板内部にコイルパターンを形成し、磁性体基板上部に制御ICを搭載することで、DC-DCコンバータを実現するものが知られている(例えば特許文献1を参照)。 Conventionally, it has been known that a DC-DC converter is realized by forming a coil pattern inside a magnetic substrate and mounting a control IC on the magnetic substrate (see, for example, Patent Document 1).
 また、1つの磁性体基板内部に複数のコイルを形成し、多チャンネル型のDC-DCコンバータを構成することも知られている(例えば特許文献2を参照)。 It is also known to form a multi-channel DC-DC converter by forming a plurality of coils inside one magnetic substrate (see, for example, Patent Document 2).
国際公開第2008/087781号International Publication No. 2008/087781 特開2004-343976号公報JP 2004-343976 A
 多チャンネル型のDC-DCコンバータにおいて、複数の制御ICを搭載する場合、各制御ICの電源入力端子間が接続されることになるため、各制御ICの周波数が異なると、その差分の周波数が電圧変動として現れるという課題がある。 In a multi-channel DC-DC converter, when a plurality of control ICs are mounted, the power input terminals of each control IC are connected. Therefore, if the frequency of each control IC is different, the difference frequency is There is a problem of appearing as voltage fluctuation.
 そこで、この発明は、複数の制御ICを搭載する場合において、上記電圧変動を抑制する多チャンネル型DC-DCコンバータを提供することを目的とする。 Therefore, an object of the present invention is to provide a multi-channel DC-DC converter that suppresses the voltage fluctuation when a plurality of control ICs are mounted.
 本発明の多チャンネル型DC-DCコンバータは、磁性体を含む多層基板と、前記多層基板の内部に形成された第1のインダクタおよび第2のインダクタと、前記多層基板の部品搭載面上に設けられ、前記第1のインダクタおよび第2のインダクタとそれぞれ接続される第1の制御ICおよび第2の制御ICと、を備えている。 A multi-channel DC-DC converter according to the present invention is provided on a multilayer substrate including a magnetic material, a first inductor and a second inductor formed inside the multilayer substrate, and a component mounting surface of the multilayer substrate. And a first control IC and a second control IC connected to the first inductor and the second inductor, respectively.
 そして、本発明の多チャンネル型DC-DCコンバータは、前記多層基板の前記部品搭載面と対向する実装面に設けられた入力端子と、前記第1の制御ICの電源入力端子と、前記第2の制御ICの電源入力端子と、がそれぞれ接続され、前記第1の制御ICの電源入力端子および前記第2の制御ICの電源入力端子は、前記磁性体の内部の配線を介して接続されていることを特徴とする。 The multi-channel DC-DC converter according to the present invention includes an input terminal provided on a mounting surface of the multilayer substrate facing the component mounting surface, a power input terminal of the first control IC, and the second And the power input terminal of the first control IC and the power input terminal of the second control IC are connected via an internal wiring of the magnetic body. It is characterized by being.
 複数の制御ICを搭載する場合、各制御ICの電源入力端子間が接続されているため、各制御ICの周波数が異なると、その差分の周波数が電圧変動として現れるが、本発明の多チャンネル型DC-DCコンバータでは、上記のように、各制御ICの電源入力端子間が磁性体の内部の配線を介して接続されているため、電源入力端子間に寄生インダクタが存在することになる。したがって、当該寄生インダクタによって各制御ICの電源入力端子間が高周波的には高い抵抗で分離されていることになるため、電圧変動が抑制される。 When a plurality of control ICs are mounted, since the power input terminals of each control IC are connected, if the frequency of each control IC is different, the difference frequency appears as a voltage fluctuation. In the DC-DC converter, as described above, the power supply input terminals of the control ICs are connected via the internal wiring of the magnetic material, so that a parasitic inductor exists between the power supply input terminals. Therefore, the power supply input terminals of each control IC are separated by a high resistance at high frequencies due to the parasitic inductor, so that voltage fluctuation is suppressed.
 なお、前記実装面に設けられた第1の出力端子および前記第1の制御ICの出力端子は、および前記実装面に設けられた第2の出力端子および前記第2の制御ICの出力端子は、それぞれ前記磁性体の内部の配線を介して接続されている態様とすることも可能である。 Note that the first output terminal provided on the mounting surface and the output terminal of the first control IC are the second output terminal provided on the mounting surface and the output terminal of the second control IC are In addition, it is possible to adopt a mode in which they are connected via wiring inside the magnetic body.
 また、磁性体の内部の配線とは、多層基板の積層方向に形成されたビアホール導体とする態様も可能であるし、多層基板のうち、ある基板上面に配線を形成し、多層基板の端面を介して接続することでも可能である。 In addition, the wiring inside the magnetic material may be a via hole conductor formed in the stacking direction of the multilayer substrate, and the wiring is formed on the upper surface of the multilayer substrate, and the end surface of the multilayer substrate is It is also possible to connect via
 なお、本発明の多チャンネル型DC-DCコンバータは、前記第1の制御ICの電源出力端子と、前記実装面上に設けられた第1の出力端子と、の間に前記第1のインダクタを接続し、前記第2の制御ICの電源出力端子と、前記実装面上に設けられた第2の出力端子と、の間に前記第2のインダクタを接続して降圧型DC-DCコンバータを構成することも可能であるし、前記第1の制御ICの電源入力端子と、前記実装面に設けられた入力端子と、の間に前記第1のインダクタを接続し、前記第2の制御ICの電源入力端子と、前記実装面に設けられた入力端子と、の間に前記第2のインダクタを接続して昇圧型DC-DCコンバータを構成することも可能である。 In the multi-channel DC-DC converter of the present invention, the first inductor is provided between a power output terminal of the first control IC and a first output terminal provided on the mounting surface. A step-down DC-DC converter is configured by connecting and connecting the second inductor between a power supply output terminal of the second control IC and a second output terminal provided on the mounting surface. It is also possible to connect the first inductor between the power input terminal of the first control IC and the input terminal provided on the mounting surface, and the second control IC. A step-up DC-DC converter can be configured by connecting the second inductor between a power supply input terminal and an input terminal provided on the mounting surface.
 この発明によれば、複数の制御ICを搭載する場合において、上記電圧変動を抑制することができる。 According to the present invention, the voltage fluctuation can be suppressed when a plurality of control ICs are mounted.
多チャンネル型DC-DCコンバータの上面図および横断面図を示す図である。It is a figure which shows the top view and cross-sectional view of a multichannel type DC-DC converter. 多チャンネル型DC-DCコンバータを降圧型DC-DCコンバータとする場合の回路図である。FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-down DC-DC converter. 多チャンネル型DC-DCコンバータを昇圧型DC-DCコンバータとする場合の回路図である。FIG. 5 is a circuit diagram when the multi-channel DC-DC converter is a step-up DC-DC converter. 図4(A)は、変形例1に係る多チャンネル型DC-DCコンバータの上面図であり、図4(B)は、回路図である。FIG. 4A is a top view of a multi-channel DC-DC converter according to Modification 1, and FIG. 4B is a circuit diagram. 図5(A)は、変形例2に係る多チャンネル型DC-DCコンバータの上面図であり、図5(B)は、回路図である。FIG. 5A is a top view of a multi-channel DC-DC converter according to Modification 2, and FIG. 5B is a circuit diagram. 変形例3に係る多チャンネル型DC-DCコンバータの回路図である。10 is a circuit diagram of a multi-channel DC-DC converter according to Modification 3. FIG. 変形例4に係る多チャンネル型DC-DCコンバータの回路図である。10 is a circuit diagram of a multi-channel DC-DC converter according to Modification 4. FIG. 図8(A)は、変形例5に係る多チャンネル型DC-DCコンバータの上面図であり、図8(B)は、回路図である。FIG. 8A is a top view of a multi-channel DC-DC converter according to Modification 5, and FIG. 8B is a circuit diagram. 図9(A)は、変形例6に係る多チャンネル型DC-DCコンバータの上面図であり、図9(B)は、回路図である。FIG. 9A is a top view of a multi-channel DC-DC converter according to Modification 6, and FIG. 9B is a circuit diagram.
 図1(A)は、本発明の実施形態に係る多チャンネル型DC-DCコンバータの上面図(多層基板の主面を示す図)であり、図1(B)は、多層基板のうち、コイル導体が形成されている部分の横断面図(図1(A)におけるA-A線の断面図)である。図2は、多チャンネル型DC-DCコンバータを降圧型DC-DCコンバータとする場合の回路図である。 1A is a top view of a multi-channel DC-DC converter according to an embodiment of the present invention (a diagram showing a main surface of a multilayer board), and FIG. 1B is a coil of the multilayer board. FIG. 2 is a cross-sectional view of a portion where a conductor is formed (a cross-sectional view taken along line AA in FIG. 1A). FIG. 2 is a circuit diagram when the multi-channel DC-DC converter is a step-down DC-DC converter.
 図1(A)および図1(B)に示すように、本実施形態の多チャンネル型DC-DCコンバータ1は、複数の磁性体セラミックグリーンシートが積層・焼成されてなる多層基板2の部品搭載面上に制御IC3A、制御IC3B、入力側コンデンサ12A、入力側コンデンサ12B、出力側コンデンサ13A、および出力側コンデンサ13Bからなる電子部品を搭載したものである。 As shown in FIGS. 1 (A) and 1 (B), the multi-channel DC-DC converter 1 according to the present embodiment is equipped with components on a multilayer substrate 2 in which a plurality of magnetic ceramic green sheets are laminated and fired. Electronic components including a control IC 3A, a control IC 3B, an input side capacitor 12A, an input side capacitor 12B, an output side capacitor 13A, and an output side capacitor 13B are mounted on the surface.
 多層基板2は、高透磁率を有する磁性体(フェライト)層にて構成されており、積層されるシート間にコイル導体を設け、積層方向に接続したインダクタ31Aおよびインダクタ31Bを構成することで、これらインダクタをチョークコイルとして用いたDC-DCコンバータを実現することができる。なお、多層基板2の表面、裏面、あるいは一部内層に、非磁性体層や前記磁性体層よりも低い透磁率を有する低透磁率層が設けられていてもよい。 The multilayer substrate 2 is composed of a magnetic material (ferrite) layer having a high magnetic permeability, and a coil conductor is provided between the laminated sheets to constitute an inductor 31A and an inductor 31B connected in the lamination direction. A DC-DC converter using these inductors as choke coils can be realized. Note that a non-magnetic layer or a low-permeability layer having a lower magnetic permeability than the magnetic layer may be provided on the front surface, back surface, or part of the inner layer of the multilayer substrate 2.
 また、これら複数のインダクタ31Aおよびインダクタ31Bのそれぞれに制御IC3Aおよび制御IC3Bを接続することで、それぞれ異なる出力電圧を得ることができ、多チャンネル型DC-DCコンバータを実現することができる。 Further, by connecting the control IC 3A and the control IC 3B to the plurality of inductors 31A and 31B, respectively, different output voltages can be obtained, and a multi-channel DC-DC converter can be realized.
 このように複数の制御ICを搭載する場合、各制御ICの電源入力端子間が接続されているため、各制御ICの周波数が異なると、その差分の周波数が電圧変動として現れることになる。差分の周波数は、それぞれの制御ICの周波数よりも低いため、出力側の平滑化フィルタでは電圧変動を抑制することができない。また、差分の周波数が制御ICの応答速度よりも高い周波数である場合も、電圧変動を抑制することができない。 When a plurality of control ICs are mounted in this way, since the power input terminals of each control IC are connected, if the frequency of each control IC is different, the difference frequency appears as a voltage fluctuation. Since the frequency of the difference is lower than the frequency of each control IC, the output side smoothing filter cannot suppress voltage fluctuation. Also, voltage fluctuation cannot be suppressed when the difference frequency is higher than the response speed of the control IC.
 そこで、本実施形態の多チャンネル型DC-DCコンバータ1では、図2の回路図に示すように、制御IC3Aの電源入力端子30Aおよび制御IC3Bの電源入力端子30Bの間にインダクタを介在させることで、各制御ICの電源入力端子間を高周波的に分離し、電圧変動を抑制する。以下、当該回路構成を実現するための構造的特徴について説明する。 Therefore, in the multi-channel DC-DC converter 1 of the present embodiment, as shown in the circuit diagram of FIG. 2, an inductor is interposed between the power input terminal 30A of the control IC 3A and the power input terminal 30B of the control IC 3B. The power input terminals of the control ICs are separated in a high frequency manner to suppress voltage fluctuations. Hereinafter, structural features for realizing the circuit configuration will be described.
 図1(A)に示すように、制御IC3Aの電源入力端子30Aは、入力用配線51Aを介して入力側コンデンサ12Aおよびビアホール導体11Aに接続されている。また、入力側コンデンサ12Aのグランド電極は、グランド用配線71を介して端面スルーホール導体91に接続され、接地される。端面スルーホール導体91は、積層基板内部を積層方向に貫通した電極であるが、一部が外部に露出し、開磁路となっている。したがって、端面スルーホール導体91の寄生インダクタンスの影響はほぼ無視することができる。 As shown in FIG. 1A, the power input terminal 30A of the control IC 3A is connected to the input-side capacitor 12A and the via-hole conductor 11A via the input wiring 51A. The ground electrode of the input-side capacitor 12A is connected to the end face through-hole conductor 91 via the ground wiring 71 and grounded. The end face through-hole conductor 91 is an electrode penetrating the inside of the laminated substrate in the laminating direction, but a part of the end face through-hole conductor 91 is exposed to the outside and forms an open magnetic circuit. Therefore, the influence of the parasitic inductance of the end face through-hole conductor 91 can be almost ignored.
 制御IC3Aの電源出力端子は、インダクタ31Aに接続され、最終的に出力用配線52Aを介して出力側コンデンサ13Aおよびビアホール導体14Aに接続される。また、制御IC3Aのグランド端子は、グランド用配線71を介して出力側コンデンサ13Aおよび端面スルーホール導体91に接続され、接地される。 The power supply output terminal of the control IC 3A is connected to the inductor 31A, and finally connected to the output-side capacitor 13A and the via-hole conductor 14A via the output wiring 52A. The ground terminal of the control IC 3A is connected to the output-side capacitor 13A and the end face through-hole conductor 91 via the ground wiring 71 and grounded.
 ビアホール導体11Aは、多層基板2の内部を積層方向に貫通し、多層基板2の部品搭載面と対向する実装面上に設けられた入力端子41に接続されている。入力端子41は、実装基板側の電源入力用の電極等と接続される。ビアホール導体14Aは、多層基板2の内部を積層方向に貫通し、実装面上に設けられた出力端子(Vout1)に接続されている。出力端子は、実装基板側の電源出力用の電極等と接続される。 The via-hole conductor 11 </ b> A penetrates the inside of the multilayer substrate 2 in the stacking direction and is connected to an input terminal 41 provided on a mounting surface facing the component mounting surface of the multilayer substrate 2. The input terminal 41 is connected to an electrode for power supply input on the mounting substrate side. The via-hole conductor 14A penetrates the multilayer substrate 2 in the stacking direction and is connected to an output terminal (Vout1) provided on the mounting surface. The output terminal is connected to a power output electrode on the mounting substrate side.
 一方、制御IC3Bの電源入力端子30Bは、入力用配線51Bを介して入力側コンデンサ12Bおよびビアホール導体11Bに接続されている。また、入力側コンデンサ12Bのグランド電極は、グランド用配線71を介して端面スルーホール導体91に接続され、接地される。 On the other hand, the power input terminal 30B of the control IC 3B is connected to the input-side capacitor 12B and the via-hole conductor 11B via the input wiring 51B. The ground electrode of the input-side capacitor 12B is connected to the end face through-hole conductor 91 via the ground wiring 71 and grounded.
 制御IC3Bの電源出力端子は、インダクタ31Bに接続され、最終的に出力用配線52Bを介して出力側コンデンサ13Bおよびビアホール導体14Bに接続される。また、制御IC3Bのグランド端子は、グランド用配線71を介して出力側コンデンサ13Bおよび端面スルーホール導体91に接続され、接地される。 The power supply output terminal of the control IC 3B is connected to the inductor 31B, and finally connected to the output-side capacitor 13B and the via-hole conductor 14B via the output wiring 52B. The ground terminal of the control IC 3B is connected to the output-side capacitor 13B and the end face through-hole conductor 91 via the ground wiring 71 and grounded.
 ビアホール導体11Bは、多層基板2の内部を積層方向に貫通し、入力端子41に接続されている。また、ビアホール導体14Bは、多層基板2の内部を積層方向に貫通し、実装面上に設けられた出力端子(Vout2)に接続されている。出力端子は、実装基板側の電源出力用の電極等と接続される。 The via-hole conductor 11B penetrates the multilayer substrate 2 in the stacking direction and is connected to the input terminal 41. The via-hole conductor 14B penetrates the multilayer substrate 2 in the stacking direction and is connected to an output terminal (Vout2) provided on the mounting surface. The output terminal is connected to a power output electrode on the mounting substrate side.
 したがって、入力端子41と、制御IC3Aの電源入力端子30Aと、制御IC3Bの電源入力端子30Bと、がそれぞれ接続されることになり、かつ電源入力端子30Aおよび電源入力端子30Bは、磁性体の内部の配線を介して接続されることになる。 Therefore, the input terminal 41, the power input terminal 30A of the control IC 3A, and the power input terminal 30B of the control IC 3B are connected to each other, and the power input terminal 30A and the power input terminal 30B are formed inside the magnetic body. It will be connected through the wiring.
 そして、ビアホール導体11Aおよびビアホール導体11Bは、磁性体が含まれる多層基板2の内部を積層方向に貫通し、かつその全周が磁性体で囲まれているため、図2に示すようにそれぞれインダクタLinAおよびインダクタLinBとして機能する。また、ビアホール導体14Aおよびビアホール導体14Bも、多層基板2の内部を積層方向に貫通し、かつその全周が磁性体で囲まれているため、図2に示すようにそれぞれインダクタLoutAおよびインダクタLoutBとして機能する。 The via-hole conductor 11A and the via-hole conductor 11B penetrate the inside of the multilayer substrate 2 including the magnetic material in the stacking direction and are surrounded by the magnetic material, so that each inductor is shown in FIG. It functions as LinA and inductor LinB. Further, the via-hole conductor 14A and the via-hole conductor 14B also penetrate through the multilayer substrate 2 in the stacking direction and are surrounded by a magnetic material, so that the inductor LoutA and the inductor LoutB are respectively shown in FIG. Function.
 したがって、電源入力端子30Aおよび電源入力端子30B間は、これらインダクタによって高周波的には高い抵抗で分離されていることになる。また、機能的には、インダクタLinAおよび入力側コンデンサ12A(インダクタLinBおよび入力側コンデンサ12B)により平滑化フィルタを構成することになる。したがって、制御IC3Aおよび制御IC3Bの周波数が異なる場合であっても、その差分の周波数が電圧変動として現れることはない。 Therefore, the power input terminal 30A and the power input terminal 30B are separated by these inductors with high resistance in terms of high frequency. Functionally, a smoothing filter is configured by the inductor LinA and the input side capacitor 12A (inductor LinB and input side capacitor 12B). Therefore, even if the frequencies of the control IC 3A and the control IC 3B are different, the difference frequency does not appear as a voltage fluctuation.
 なお、上記の例では、降圧型DC-DCコンバータの例を示したが、本発明は、図3に示すように昇圧型DC-DCコンバータの場合にも適用することが可能である。 In the above example, an example of a step-down DC-DC converter is shown, but the present invention can also be applied to a step-up DC-DC converter as shown in FIG.
 なお、上記の例では、多層基板2の内部を積層方向に貫通するビアホール導体を用いた例について説明したが、多層基板2を構成する磁性体の層間上に配線を形成することでもインダクタとして機能させることが可能である。 In the above example, the example using the via-hole conductor penetrating the inside of the multilayer substrate 2 in the stacking direction has been described. However, even if the wiring is formed on the magnetic material layer constituting the multilayer substrate 2, it functions as an inductor. It is possible to make it.
 また、ビアホール導体を複数設け、多層基板2の磁性体内部を通る配線の長さを長くし、より高いインダクタンスを実現することも可能である。 It is also possible to provide a plurality of via-hole conductors, increase the length of the wiring passing through the inside of the magnetic body of the multilayer substrate 2, and realize higher inductance.
 次に、図4(A)は、変形例1に係る多チャンネル型DC-DCコンバータの上面図であり、図4(B)は、その回路図である。図1(A)および図2と共通する構成については同一の符号を付し、その説明を省略する。 Next, FIG. 4 (A) is a top view of the multi-channel DC-DC converter according to Modification 1, and FIG. 4 (B) is a circuit diagram thereof. Components that are the same as those in FIG. 1A and FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
 変形例1に係る多チャンネル型DC-DCコンバータは、ビアホール導体14Aおよびビアホール導体14Bに変えて、それぞれ端面スルーホール導体92Aおよび端面スルーホール導体92Bを設けたものである。この場合、制御IC3Aの電源出力端子は、インダクタ31Aに接続され、最終的に出力用配線52Aを介して出力側コンデンサ13Aおよび端面スルーホール導体92Aに接続される。また、制御IC3Bの電源出力端子は、インダクタ31Bに接続され、最終的に出力用配線52Bを介して出力側コンデンサ13Aおよび端面スルーホール導体92Bに接続される。 The multi-channel DC-DC converter according to Modification 1 is provided with an end face through-hole conductor 92A and an end face through-hole conductor 92B in place of the via hole conductor 14A and the via hole conductor 14B, respectively. In this case, the power supply output terminal of the control IC 3A is connected to the inductor 31A, and finally connected to the output-side capacitor 13A and the end face through-hole conductor 92A via the output wiring 52A. The power output terminal of the control IC 3B is connected to the inductor 31B, and finally connected to the output-side capacitor 13A and the end face through-hole conductor 92B via the output wiring 52B.
 端面スルーホール導体92Aおよび端面スルーホール導体92Bは、積層基板内部を積層方向に貫通した電極であるが、側面の少なくとも一部が外部に露出し、開磁路となっている。 The end face through-hole conductor 92A and the end face through-hole conductor 92B are electrodes that penetrate the laminated substrate in the laminating direction, but at least a part of the side faces are exposed to the outside and are open magnetic paths.
 よって、図4(B)に示すように、変形例1に係る多チャンネル型DC-DCコンバータの場合、出力側のインダクタLoutAおよびインダクタLoutBが存在しない。この場合においても、電源入力端子30Aおよび電源入力端子30B間は、インダクタLinAおよびインダクタLinBによって高周波的に高い抵抗で分離されているため、電圧変動が現れることはない。ただし、出力端子Vout1および出力端子Vout2の後段、つまり実装基板側においてコンデンサを設ける場合、ビアホール導体14Aおよびビアホール導体14BによるインダクタLoutAおよびインダクタLoutBが存在すると、これらインダクタおよびコンデンサにより平滑化フィルタを構成することができるため、ノイズ抑制に寄与する。 Therefore, as shown in FIG. 4B, in the case of the multichannel DC-DC converter according to the first modification, the output side inductor LoutA and the inductor LoutB do not exist. Also in this case, since the power supply input terminal 30A and the power supply input terminal 30B are separated by the inductor LinA and the inductor LinB with high resistance in terms of high frequency, no voltage fluctuation appears. However, when a capacitor is provided at the subsequent stage of the output terminal Vout1 and the output terminal Vout2, that is, on the mounting substrate side, if the inductor LoutA and the inductor LoutB are formed by the via-hole conductor 14A and the via-hole conductor 14B, a smoothing filter is configured by these inductors and capacitors. This contributes to noise suppression.
 次に、図5(A)は、変形例2に係る多チャンネル型DC-DCコンバータの上面図であり、図5(B)は、その回路図である。図1(A)および図2と共通する構成については同一の符号を付し、その説明を省略する。 Next, FIG. 5 (A) is a top view of a multi-channel DC-DC converter according to Modification 2, and FIG. 5 (B) is a circuit diagram thereof. Components that are the same as those in FIG. 1A and FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
 変形例2に係る多チャンネル型DC-DCコンバータは、ビアホール導体11Bに変えて、端面スルーホール導体93Bを設けたものである。この場合、制御IC3Bの電源入力端子30Bは、入力用配線51Bを介して入力側コンデンサ12Bおよび端面スルーホール導体93Bに接続されている。 The multi-channel DC-DC converter according to Modification 2 is provided with an end face through-hole conductor 93B instead of the via-hole conductor 11B. In this case, the power input terminal 30B of the control IC 3B is connected to the input-side capacitor 12B and the end face through-hole conductor 93B via the input wiring 51B.
 端面スルーホール導体93Bは、積層基板内部を積層方向に貫通した電極であるが、一部が外部に露出し、開磁路となっている。 The end face through-hole conductor 93B is an electrode that penetrates the inside of the laminated substrate in the laminating direction, but a part thereof is exposed to the outside and is an open magnetic circuit.
 よって、図5(B)に示すように、変形例2に係る多チャンネル型DC-DCコンバータの場合、入力側のインダクタLinBが存在しない。この場合においても、電源入力端子30Aおよび電源入力端子30B間は、インダクタLinAによって高周波的に高い抵抗で分離されているため、電圧変動が現れることはない。ただし、ビアホール導体とした場合、端面スルーホール導体よりも部品搭載面上における配線長さを短くすることができるため、配線パターンが煩雑化することがなく、素子の実装面積の増大を防止しつつ、配線抵抗による損失を低減することもできる。 Therefore, as shown in FIG. 5B, in the case of the multi-channel DC-DC converter according to the modification 2, the inductor LinB on the input side does not exist. Even in this case, the power input terminal 30A and the power input terminal 30B are separated by the inductor LinA with high resistance in terms of high frequency, so that voltage fluctuation does not appear. However, when the via-hole conductor is used, the wiring length on the component mounting surface can be made shorter than the end face through-hole conductor, so that the wiring pattern is not complicated and the increase in the mounting area of the element is prevented. In addition, loss due to wiring resistance can be reduced.
 次に、図6は、変形例3に係る多チャンネル型DC-DCコンバータの回路図である。図2と共通する構成については同一の符号を付し、その説明を省略する。 Next, FIG. 6 is a circuit diagram of a multi-channel DC-DC converter according to Modification 3. Components that are the same as those in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
 変形例3に係る多チャンネル型DC-DCコンバータは、入力側コンデンサ12C、制御IC3C、および出力側コンデンサ13Cをさらに搭載し、インダクタ31Cを設けた3チャンネル型のDC-DCコンバータである。 The multi-channel DC-DC converter according to Modification 3 is a three-channel DC-DC converter that further includes an input side capacitor 12C, a control IC 3C, and an output side capacitor 13C, and is provided with an inductor 31C.
 変形例3に係る多チャンネル型DC-DCコンバータにおいて、制御IC3Cの電源入力端子30Cは、ビアホール導体を介して上記入力端子41に接続されているため、入力端子41と電源入力端子30Cとの間には、インダクタLinCが介在する。そして、入力端子41と、制御IC3Aの電源入力端子30Aと、制御IC3Bの電源入力端子30Bと、制御IC3Cの電源入力端子30Cがそれぞれ接続されることになり、かつ電源入力端子30A、電源入力端子30Bおよび電源入力端子30Cは、磁性体の内部の配線を介して接続され、電源入力端子30A、電源入力端子30Bおよび電源入力端子30C間は、これらインダクタによって高周波的に高い抵抗で分離されることになる。 In the multi-channel DC-DC converter according to the modification 3, the power input terminal 30C of the control IC 3C is connected to the input terminal 41 via the via-hole conductor, and therefore between the input terminal 41 and the power input terminal 30C. The inductor LinC intervenes in. The input terminal 41, the power input terminal 30A of the control IC 3A, the power input terminal 30B of the control IC 3B, and the power input terminal 30C of the control IC 3C are connected to each other, and the power input terminal 30A and the power input terminal are connected. 30B and the power input terminal 30C are connected via an internal wiring of a magnetic body, and the power input terminal 30A, the power input terminal 30B, and the power input terminal 30C are separated by these inductors with high resistance in terms of high frequency. become.
 したがって、この変形例3に係る多チャンネル型DC-DCコンバータにおいても、制御IC3A、制御IC3Bおよび制御IC3Cの周波数が異なる場合であっても、その差分の周波数が電圧変動として現れることはない。 Therefore, even in the multi-channel DC-DC converter according to the third modification, even if the frequencies of the control IC 3A, the control IC 3B, and the control IC 3C are different, the difference frequency does not appear as a voltage fluctuation.
 なお、図7の変形例4に係る多チャンネル型DC-DCコンバータの回路図のように、インダクタLinCが存在しない場合であっても、電源入力端子30Aおよび電源入力端子30B間は、インダクタLinAおよびインダクタLinBによって高周波的に高い抵抗で分離され、電源入力端子30Aおよび電源入力端子30C間は、インダクタLinAによって高周波的に高い抵抗で分離され、電源入力端子30Bおよび電源入力端子30C間は、インダクタLinBによって高周波的に高い抵抗で分離される。 Note that, as in the circuit diagram of the multi-channel DC-DC converter according to the modification 4 of FIG. 7, even when the inductor LinC does not exist, the inductor LinA and the power input terminal 30B are not connected between the power input terminal 30A and the power input terminal 30B. The inductor LinB is separated by a high resistance in terms of high frequency, the power supply input terminal 30A and the power supply input terminal 30C are separated by a high frequency resistance by the inductor LinA, and the power supply input terminal 30B and the power supply input terminal 30C are separated by an inductor LinB. Are separated by high resistance in terms of high frequency.
 つまり、ある制御IC(第1の制御IC)の電源入力端子と、他の制御IC(第2の制御IC)の電源入力端子とが、磁性体の内部の配線を介して接続されている態様とすれば、さらに多チャンネルのDC-DCコンバータの場合であっても電圧変動を抑えることが可能である。 That is, a mode in which a power supply input terminal of a certain control IC (first control IC) and a power supply input terminal of another control IC (second control IC) are connected via a wiring inside the magnetic body. If so, it is possible to suppress voltage fluctuations even in the case of a multi-channel DC-DC converter.
 なお、本実施形態の多チャンネル型DC-DCコンバータは、端面スルーホール導体91を介して各電子部品を接地する構成を示したが、図8(A)および図8(B)に示す変形例5に係る多チャンネル型DC-DCコンバータのように、端面スルーホール導体91は必須の構成ではない。 The multi-channel DC-DC converter of the present embodiment has a configuration in which each electronic component is grounded via the end face through-hole conductor 91. However, the modification shown in FIGS. 8A and 8B is used. As in the multi-channel DC-DC converter according to No. 5, the end face through-hole conductor 91 is not an essential configuration.
 変形例5に係る多チャンネル型DC-DCコンバータは、端面スルーホール導体91に変えて、ビアホール導体901を設けたものである。この場合、制御IC3A、制御IC3B、入力側コンデンサ12A、入力側コンデンサ12B、出力側コンデンサ13A、および出力側コンデンサ13Bのグランド端子は、グランド用配線71を介してビアホール導体901に接続され、接地される。 A multi-channel type DC-DC converter according to Modification 5 is provided with a via-hole conductor 901 instead of the end face through-hole conductor 91. In this case, the ground terminals of the control IC 3A, the control IC 3B, the input side capacitor 12A, the input side capacitor 12B, the output side capacitor 13A, and the output side capacitor 13B are connected to the via-hole conductor 901 via the ground wiring 71 and grounded. The
 ビアホール導体901は、磁性体が含まれる多層基板2の内部を積層方向に貫通し、かつ外部に露出しないため、図8(B)に示すようにインダクタLGNDとして機能する。この場合、インダクタLGNDによってスイッチング信号がグランドに落ちず、ノイズとして現れる可能性があるが、この場合においても、電源入力端子30Aおよび電源入力端子30B間は、インダクタLinAおよびインダクタLinBによって高周波的に高い抵抗で分離されているため、電圧変動が現れることはない。 The via-hole conductor 901 functions as an inductor LGND as shown in FIG. 8B because it passes through the inside of the multilayer substrate 2 containing the magnetic material in the stacking direction and is not exposed to the outside. In this case, the switching signal does not fall to the ground due to the inductor LGND but may appear as noise. In this case as well, the frequency between the power input terminal 30A and the power input terminal 30B is high due to the inductor LinA and the inductor LinB. Since they are separated by resistors, voltage fluctuations do not appear.
 また、図9(A)および図9(B)に示す変形例6に係る多チャンネル型DC-DCコンバータのように、さらに多数のビアホール導体(この例ではビアホール導体901A、ビアホール導体901B、およびビアホール導体901C)を設ける態様とすることも可能である。 Further, as in the multi-channel DC-DC converter according to Modification 6 shown in FIGS. 9A and 9B, a larger number of via hole conductors (in this example, via hole conductor 901A, via hole conductor 901B, and via hole). It is also possible to provide a conductor 901C).
 この場合、グランド側には、複数のインダクタが並列接続されることになるため、合成インダクタンスとしてはより低い値となり、図8の例に比べてより安定的な動作が可能になる。 In this case, since a plurality of inductors are connected in parallel on the ground side, the combined inductance becomes a lower value, and more stable operation is possible as compared with the example of FIG.
1…DC-DCコンバータ
2…多層基板
3A,3B…制御IC
11A,11B…ビアホール導体
12A,12B…入力側コンデンサ
13A,13B…出力側コンデンサ
14A,14B…ビアホール導体
30A,30B…電源入力端子
31A,31B…インダクタ
41…入力端子
51A,51B…入力用配線
52A,52B…出力用配線
71…グランド用配線
91…端面スルーホール導体
DESCRIPTION OF SYMBOLS 1 ... DC-DC converter 2 ... Multilayer substrate 3A, 3B ... Control IC
11A, 11B ... via- hole conductors 12A, 12B ... input- side capacitors 13A, 13B ... output- side capacitors 14A, 14B ... via- hole conductors 30A, 30B ... power input terminals 31A, 31B ... inductors 41 ... input terminals 51A, 51B ... input wiring 52A , 52B ... Output wiring 71 ... Ground wiring 91 ... End face through-hole conductor

Claims (5)

  1.  磁性体を含む多層基板と、
     前記多層基板の内部に形成された第1のインダクタおよび第2のインダクタと、
     前記多層基板の部品搭載面上に設けられ、前記第1のインダクタおよび第2のインダクタとそれぞれ接続される第1の制御ICおよび第2の制御ICと、
     を備えた多チャンネル型DC-DCコンバータであって、
     前記多層基板の前記部品搭載面と対向する実装面に設けられた入力端子と、前記第1の制御ICの電源入力端子と、前記第2の制御ICの電源入力端子と、がそれぞれ接続され、前記第1の制御ICの電源入力端子および前記第2の制御ICの電源入力端子は、前記磁性体の内部の配線を介して接続されていることを特徴とする多チャンネル型DC-DCコンバータ。
    A multilayer substrate including a magnetic material;
    A first inductor and a second inductor formed inside the multilayer substrate;
    A first control IC and a second control IC which are provided on a component mounting surface of the multilayer substrate and are connected to the first inductor and the second inductor, respectively;
    A multi-channel DC-DC converter with
    An input terminal provided on a mounting surface opposite to the component mounting surface of the multilayer substrate, a power input terminal of the first control IC, and a power input terminal of the second control IC are respectively connected. The multi-channel DC-DC converter, wherein a power input terminal of the first control IC and a power input terminal of the second control IC are connected via an internal wiring of the magnetic body.
  2.  前記実装面に設けられた第1の出力端子および前記第1の制御ICの出力端子は、および前記実装面に設けられた第2の出力端子および前記第2の制御ICの出力端子は、それぞれ前記磁性体の内部の配線を介して接続されていることを特徴とする請求項1に記載の多チャンネル型DC-DCコンバータ。 The first output terminal provided on the mounting surface and the output terminal of the first control IC, and the second output terminal provided on the mounting surface and the output terminal of the second control IC are respectively 2. The multi-channel DC-DC converter according to claim 1, wherein the multi-channel DC-DC converter is connected via an internal wiring of the magnetic body.
  3.  前記磁性体の内部の配線は、ビアホール導体を含むことを特徴とする請求項1または請求項2に記載の多チャンネル型DC-DCコンバータ。 The multi-channel DC-DC converter according to claim 1 or 2, wherein the wiring inside the magnetic body includes a via-hole conductor.
  4.  前記第1の制御ICの電源出力端子と、前記実装面上に設けられた第1の出力端子と、の間に前記第1のインダクタを接続し、前記第2の制御ICの電源出力端子と、前記実装面上に設けられた第2の出力端子と、の間に前記第2のインダクタを接続して降圧型DC-DCコンバータを構成したことを特徴とする請求項1~3のいずれかに記載の多チャンネル型DC-DCコンバータ。 The first inductor is connected between a power output terminal of the first control IC and a first output terminal provided on the mounting surface, and a power output terminal of the second control IC 4. The step-down DC-DC converter is configured by connecting the second inductor between a second output terminal provided on the mounting surface. The multi-channel DC-DC converter described in 1.
  5.  前記第1の制御ICの電源入力端子と、前記実装面に設けられた入力端子と、の間に前記第1のインダクタを接続し、前記第2の制御ICの電源入力端子と、前記実装面に設けられた入力端子と、の間に前記第2のインダクタを接続して昇圧型DC-DCコンバータを構成したことを特徴とする請求項1~3のいずれかに記載の多チャンネル型DC-DCコンバータ。 The first inductor is connected between a power input terminal of the first control IC and an input terminal provided on the mounting surface, and the power input terminal of the second control IC and the mounting surface The multi-channel DC-DC converter according to any one of claims 1 to 3, wherein the step-up DC-DC converter is configured by connecting the second inductor between the input terminal and the input terminal. DC converter.
PCT/JP2012/079322 2012-05-15 2012-11-13 Multichannel dc-dc converter WO2013171924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014515456A JP5880697B2 (en) 2012-05-15 2012-11-13 Multi-channel DC-DC converter
CN201290001130.1U CN204244072U (en) 2012-05-15 2012-11-13 Multi-channel type dc-dc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012111632 2012-05-15
JP2012-111632 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013171924A1 true WO2013171924A1 (en) 2013-11-21

Family

ID=49583360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079322 WO2013171924A1 (en) 2012-05-15 2012-11-13 Multichannel dc-dc converter

Country Status (3)

Country Link
JP (1) JP5880697B2 (en)
CN (1) CN204244072U (en)
WO (1) WO2013171924A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116429A1 (en) * 2015-01-19 2016-07-28 Efficient Energy Gmbh Coil array
CN110268627A (en) * 2017-02-10 2019-09-20 松下知识产权经营株式会社 Multilager base plate filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322616A (en) * 1994-05-23 1995-12-08 Nec Eng Ltd Dc-dc switching power supply device
JP2004343976A (en) * 2003-03-14 2004-12-02 Fuji Electric Holdings Co Ltd Multi-output microminiature power conversion device
JP2005287226A (en) * 2004-03-30 2005-10-13 Tamura Seisakusho Co Ltd Synchronous circuit of switching power supply and switching power supply
WO2008087781A1 (en) * 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. Dc-dc converter module
JP2009171832A (en) * 2007-12-19 2009-07-30 Canon Inc High-tension power supply, image forming device having the same, and circuit board of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353330B2 (en) * 2009-03-13 2013-11-27 富士電機株式会社 Power conversion system, filter component constant calculation method, and program for the system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322616A (en) * 1994-05-23 1995-12-08 Nec Eng Ltd Dc-dc switching power supply device
JP2004343976A (en) * 2003-03-14 2004-12-02 Fuji Electric Holdings Co Ltd Multi-output microminiature power conversion device
JP2005287226A (en) * 2004-03-30 2005-10-13 Tamura Seisakusho Co Ltd Synchronous circuit of switching power supply and switching power supply
WO2008087781A1 (en) * 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. Dc-dc converter module
JP2009171832A (en) * 2007-12-19 2009-07-30 Canon Inc High-tension power supply, image forming device having the same, and circuit board of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116429A1 (en) * 2015-01-19 2016-07-28 Efficient Energy Gmbh Coil array
CN110268627A (en) * 2017-02-10 2019-09-20 松下知识产权经营株式会社 Multilager base plate filter
CN110268627B (en) * 2017-02-10 2023-06-30 松下知识产权经营株式会社 Multilayer substrate filter

Also Published As

Publication number Publication date
CN204244072U (en) 2015-04-01
JPWO2013171924A1 (en) 2016-01-07
JP5880697B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP4591559B2 (en) Balance-unbalance converter and amplifier circuit module
JP3832505B2 (en) Multilayer capacitor and its mounting structure
JP2009182377A (en) Laminated low-pass filter
JP2006261584A (en) Laminated capacitor
WO2012140805A1 (en) Laminated inductor element and method for manufacturing same
JP2007235170A (en) Laminated capacitor and packaging structure thereof
JP5194625B2 (en) Micro power module
WO2018043318A1 (en) Inductor component and power supply module
JP6432460B2 (en) DC-DC converter
JP5136732B1 (en) Multi-channel DC-DC converter
JP3832504B2 (en) Multilayer capacitor and its mounting structure
JPH10200357A (en) Laminated lc composite part and method for adjusting characteristic for the same
JP5880697B2 (en) Multi-channel DC-DC converter
JP4961818B2 (en) Multilayer capacitor
JP2006238310A (en) Lc composite component and noise suppressing circuit using the same
US11024571B2 (en) Coil built-in multilayer substrate and power supply module
JP2000299249A (en) Multilayer capacitor and manufacture thereof
JP6658234B2 (en) Multilayer electronic components
JP5439797B2 (en) Noise filter
JP6531880B2 (en) Noise removal circuit and noise removal element
JP2011243829A (en) Laminate electronic component
JP5287048B2 (en) Micro power module
JP2007235169A (en) Laminated capacitor and packaging structure thereof
JP2012099512A (en) Composite electronic component
JP2006319004A (en) Capacitor mounting structure, and multilayer circuit board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001130.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014515456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876610

Country of ref document: EP

Kind code of ref document: A1