WO2013170931A1 - Ventil und membran für ein ventil - Google Patents

Ventil und membran für ein ventil Download PDF

Info

Publication number
WO2013170931A1
WO2013170931A1 PCT/EP2013/001315 EP2013001315W WO2013170931A1 WO 2013170931 A1 WO2013170931 A1 WO 2013170931A1 EP 2013001315 W EP2013001315 W EP 2013001315W WO 2013170931 A1 WO2013170931 A1 WO 2013170931A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
membrane
section
arrangement
clamping
Prior art date
Application number
PCT/EP2013/001315
Other languages
English (en)
French (fr)
Inventor
Matthias SÜDEL
Jörg PIEPLOW
Original Assignee
Gea Tuchenhagen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48536781&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013170931(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP13725567.5A priority Critical patent/EP2850351B1/de
Priority to CN201380033155.9A priority patent/CN104395660B/zh
Priority to ES13725567.5T priority patent/ES2600483T3/es
Priority to IN2451MUN2014 priority patent/IN2014MN02451A/en
Priority to DK13725567.5T priority patent/DK2850351T3/en
Application filed by Gea Tuchenhagen Gmbh filed Critical Gea Tuchenhagen Gmbh
Priority to US14/401,225 priority patent/US9347568B2/en
Priority to RU2014147379/06A priority patent/RU2604467C2/ru
Priority to AU2013262105A priority patent/AU2013262105B2/en
Priority to CA2873086A priority patent/CA2873086C/en
Priority to JP2015511940A priority patent/JP6166362B2/ja
Publication of WO2013170931A1 publication Critical patent/WO2013170931A1/de
Priority to HK15108477.8A priority patent/HK1207898A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/10Spindle sealings with diaphragm, e.g. shaped as bellows or tube
    • F16K41/12Spindle sealings with diaphragm, e.g. shaped as bellows or tube with approximately flat diaphragm

Definitions

  • the invention relates to a valve according to the preamble of claim 1 and a diaphragm for a valve according to the preamble of claim 15.
  • Valves are important components in process plants, with which streams of product media are routed through piping systems of the product-carrying plant.
  • the steering effect is based on the switching function of the valves.
  • a valve has a valve housing with at least a first and a second
  • a closing member assembly is provided with a closing member which is movable along an axial direction.
  • a closing member In the context of this axial mobility, it can be brought into a closed position, in which it cooperates sealingly with a valve seat arranged between the connections, whereby a fluid connection between the first and second connection is prevented.
  • the axial movement of the closing member can be effected from outside the valve housing.
  • this is a fluid-operated drive is used, in which the pressure medium exerts a pressure on a piston against the restoring force of a spring.
  • valve Special requirements for the valve are aseptic applications, for example in the food industry. In such applications, the contact of the product with ambient air should be avoided, otherwise bacteria and germs in the product
  • the design of the seal in the valve is correspondingly complex. This includes the sealing of the closing member assembly against the environment of the housing, especially where the closing member assembly is connected to the drive.
  • DE 102007014282 A1 proposes here a fluid-impermeable membrane, which is held on the closing element arrangement on the one hand and a valve housing-side holding arrangement on the other hand with a sealing effect.
  • the holding arrangement has a clamping gap oriented obliquely to the axial direction.
  • the membrane comprises a clamping section extending in this clamping gap and a central opening, which is separated from the
  • Closing member arrangement is interspersed.
  • the sealing effect results from holding the central opening on the closing element arrangement and the clamping section in the clamping gap.
  • this is Membrane made of a dimensionally stable plastic, which is temperature resistant at least up to about 130 ° C. This is a constant geometry under
  • Clamping gap is provided a projection which increases the clamping force. It is the object of the invention to provide a valve with membrane and a membrane which further improve the valve housing side sealing of the membrane over the prior art and thereby reduce the need for maintenance.
  • the membrane according to the invention has a first section which is arranged on a radially outer edge of the membrane and to which a second section adjoins radially inwardly. Both sections are arranged at an angle to each other.
  • the first section is clamped in the retaining arrangement of the membrane, while the second section is at least guided.
  • the angle between the sections is dimensioned so that there is a positive connection between the holding arrangement and the sections.
  • the portions of the membrane and the angle between them may be preformed, preferably close to the angle formed in the support structure. Due to the clamping of the first section, the clamping forces which bring about the positioning of the membrane are increased overall and larger surface portions of the membrane are fixed by clamping, so that, in cooperation, slippage of the membrane in the clamping gap is greatly reduced.
  • the positive connection significantly enhances this effect, so that the membrane remains stationary in all operating conditions in the holding arrangement by the interaction of nip, positive connection and adhesion with the first section.
  • the outer edge of the membrane is also very good and better sealed than the prior art on the adhesion of the first section and holding arrangement. This is of great advantage and reduces the need for maintenance, because the inventors found that by moving the membrane in the Holding arrangement, in particular in the nip, product in the holding arrangement, in particular the nip, is pulled. This contamination can take place on the one hand via the product space in the valve, on the other hand via the housing environment. This is reliably prevented by the inventive design of membrane and valve.
  • the angle between the first and second sections is between 60 ° and 135 °. This causes a good fit and keeps the material load by deformation during production of the membrane or when installing a deviating preformed membrane in the holding arrangement low.
  • the first section in a plane approximately perpendicular to the axial direction. If the membrane in this way extends essentially flat radially outward in the first section, even if tolerated by a few angular deviations, the result is a cost-effective construction with easily adjustable clamping forces.
  • the invention can be developed by at least one passage provided in the membrane between the clamping section and the first section, wherein the passage is formed with a channel formed in the valve housing-side holding arrangement
  • This passage can be formed, for example, in the form of a plurality of passages arranged distributed over the circumference, which are in fluid communication with one another, for example by means of an annular groove in the passage
  • Valve housing and / or in the second housing part With this measure, material from the interior of the valve, for example the clamping section, will eventually be visible by passing it out through the passage in the membrane.
  • Another development relates to the design of the first gap and provides to delimit this gap with a first and a second wall, wherein at least one of the walls has a structure which increases the friction of the membrane in the gap, for example a groove, a projection, a ripple or the like. In this way, the membrane is even better determined by increased frictional engagement or going to the positive locking teeth of membrane and gap in their position and increases the tightness.
  • a next development relates to the configuration of the first nip and provides to limit this nip with a first and a second nip wall, wherein at least one of the walls has structure which increases the friction of the membrane in the nip, for example, a groove, a projection, a
  • the membrane is even better defined by increased frictional engagement or up to the positive locking teeth of the diaphragm and nip in their position and increases the tightness.
  • valve is a fluid-operated, for example pneumatic, drive provided, which with the
  • Closing member assembly is connected to effect the movement of the closing member along the axial direction.
  • Fluid-operated drives often produce a torsional force by a helical spring.
  • the transmission of the torsional force on the membrane is mitteis Drehentkopplungs issued prevented, so that the
  • the rotary decoupling device is arranged between the drive and closing element arrangement and comprises a first decoupling element in a cylindrical receptacle, in which a cylindrical extension of a second decoupling element is accommodated.
  • the membrane rests on each of the support surfaces, wherein they total at least 50% of their Surface is supported.
  • a support of this surface portion of the membrane has proved to be particularly advantageous in order to increase the aforementioned advantages in terms of purity and service life.
  • a next further development relates to the material of the membrane and provides that the membrane has a compressibility of at least 20% according to the standard ASTM F36 "Standard Test Method for Compressibility and Recovery of Gasket Materials" in the version of 2009. It was found that In this way, a permanent dimensional stability is achieved, which supports the positive locking long, and clamping forces and sealing effect can be increased.
  • a membrane for a valve in particular the food or process technology, which comprises a valve housing, a closure member assembly, a valve housing side holding arrangement for holding the membrane and an obliquely to an axial direction clamping gap for the membrane, wherein the membrane suitable for receiving in the nip conical section and one of the
  • Closing member arrangement has enforceable central opening, which reaches for the Valve according to the invention mentioned advantages. These are recessed in that on a radially outer edge of the membrane, a first portion is provided, which is followed radially inward by a second portion which is at an angle to the first portion which is dimensioned so that the first portion and second portion forming a positive connection in the holding arrangement are receivable.
  • This type of shaping which is created in the manufacturing process of the membrane and before installation in a valve, reduces the load on the membrane in the installed state, since preforming takes place during the manufacturing process instead of permanent deformation. A sustained, heavy load is prevented in this way, thus the
  • the angle between the first and second sections is between 60 ° and 135 °.
  • the membrane provides at least one passage in the second section, so that a positioning of the passage between clamping points of the holding arrangement is formed. It is advantageous that any material entering the holding arrangement nevertheless passes through the passage and thus becomes visible.
  • the membrane comprises a material with a compressibility of at least 20% according to ASTM F36. It has been found that in this way a permanent dimensional stability is achieved, which supports the positive locking for a long time, as well as clamping forces and sealing effect are increased.
  • FIG. 1 shows a longitudinal section through a valve and a schematic partial section through a drive coupled to the valve
  • FIG. 2 shows a detailed view of the region of the valve shown in dashed lines in FIG. 1;
  • FIG. Fig. 3 schematic and sectional view of the holding arrangement, which holds the membrane on the housing side;
  • Fig. 4 shows a section through the membrane along the longitudinal axis;
  • Fig. 5 section through the valve in the region of the membrane in the open position of
  • Fig. 6 section through the valve in the region of the membrane in the closed position of the closing member assembly.
  • a valve 100 is shown in FIG. It has a first connection 102 and a second connection 104, which can be connected to pipelines, for example a food processing plant.
  • a closing member 106 is provided, which can be brought into sealing contact with a valve seat 108, which is arranged between the first and second ports 102 and 104. Through this contact of valve seat 108 and closing member 106, a closed position is created. The sealing action prevents a fluid connection and thus a product flow between the first and second ports 102 and 104.
  • closing member 106 and valve seat 108 are separated from each other, so that the fluid connection between the first and second ports 102 and 104 is made and product between the two terminals 102 and 104 can flow.
  • the movement of the closing member 106 from the open position to the closed position and vice versa is effected by a drive 110.
  • a pressure means moves a piston 114 against the force of a spring 112, which causes a return of the piston 114.
  • the piston 114 is coupled by a suitable means, such as a valve rod, with the closing member 06.
  • the direction of movement of the closing member 106 defines an axial direction M. According to Fig. 1 is by pressurizing the piston 114 so along the axial
  • the mode of action of the drive 110 may also be reversed, so that the closing member 106 is held in the open position by the force of the spring 112 and the closed position is generated when pressure is applied.
  • the spring 112 for generating the counteracting force can cooperate with a second actuator.
  • This can be designed as pressure medium loading of the piston 114, which generates a force acting in the direction of the spring force.
  • the closing member 106 can be brought to positions in the axial direction with the aid of the drive 110, which are located between closed position and open position and thus
  • the valve 100 includes a fluid impermeable membrane 200 that is arranged and configured to allow contact of product entering the valve housing 160 through one of the ports 102 and 104 with the environment of the valve 100 in the region of the valve housing 160 passed through closing member assembly 126 prevents.
  • the product non-permeable membrane 200 is penetrated by the closing member 106 comprising the closing member assembly 126 and on the
  • Closing member assembly 126 comprise a plurality of interconnectable parts, such as the closing member 106, an optional spacer 116 and a second decoupling element 136. At the junction of spacer 116 or closing member 106 with the decoupling element 136, a clamping region 142 may be provided, in which the membrane 200 between closing member 106 and
  • Decoupling element 136 is clamped.
  • the clamping effect is such that a sealing effect against passage of product is achieved.
  • the clamping effect such that the membrane 200 does not execute any movement within the clamping region 142 that is noticeable due to product entrainment into the clamping region 142 when the closing member 106 moves from the open position to the closed position.
  • the closure member assembly 126 may include a second support surface 192 on which the membrane 200 rests in at least one position of the closure member 106. Such support of the membrane 200 reduces the stress of acting forces generated by pressurized fluid, for example, thereby increasing the life of the membrane 200.
  • the example helical spring 112 of the drive 110 causes a torsional moment, which in direct connection of the drive 110 with the
  • Closing member assembly 26 is transferred to this and the closing member 106. Due to its support on the closing member assembly 126, the torsional moment on the Transfer membrane 200. Due to the initiated torsion and the
  • Housing-side support arise additional deformation and distortion of the membrane 200, so that the life of the membrane 200 is reduced.
  • the local seal is loaded by force into the brackets.
  • Rotary decoupler 130 provide.
  • the rotational decoupling device 130 prevents the torsion moment caused by the drive 110 from being introduced into the membrane 200. Thus, the life is increased and the burden of
  • the rotational decoupler 130 includes, for example, a first one
  • Decoupling element 132 which is connected to the drive 110.
  • the first decoupling element 132 has a cylindrical receptacle 134, into which a cylindrical extension 138 dips into a second decoupling element 136, which is part of the closing element arrangement 126.
  • a fuse element 140 is configured to allow twisting of the first decoupling element 132 against the second decoupling element 136 while inhibiting axial movement of the decoupling elements 132 and 136 relative to one another.
  • the securing element 140 may, for example, be shaped as follows:
  • the cylindrical extension 138 has a circumferential groove.
  • a fuse which is designed so that an axial movement of the cylindrical extension 138 is prevented relative to the cylindrical receptacle 134.
  • the fuse can be moved relative to and in the circumferential direction of the groove, so that the rotation of the elements is made possible.
  • a substantially U-shaped disk whose thickness largely corresponds to the width of the groove is an example of such a design.
  • the advantage of such a designed fuse element is the very low wear, which borders on wear.
  • a valve housing-side holding arrangement 120 comprises the valve housing 160 and a second housing part 162, which together support the membrane 200.
  • the retaining assembly 120 may include a first support surface 190 and a channel 180. Structure and function and further developments of the holding arrangement 120 are explained in more detail below with reference to FIGS. 2 and 3.
  • the holding arrangement 120 of the exemplary embodiment comprises a suitably shaped part of the valve housing 160 and the second housing part 162. Both have at least piecewise complementary shaped contours, between which gaps are formed, in which in the assembled state of the valve 100 sections of the membrane 200, in particular the first section 202 and second section 204, are arranged.
  • the contour located on the valve housing 160 is disposed at an opening of the housing and surrounding this opening.
  • the opening is with a lid 164
  • the lid 164 contacts the second housing member 162 and is by means of a
  • the connecting element may be a screw connection and is formed in the example shown as a bracket 166. Through the bracket 166 cover 164 and second housing part 162 are stretched in the axial direction M against each other. This will be a force on the second
  • Housing part 162 causes, so that with an indirect force, the clamping of the diaphragm 200 between the valve housing 160 and the second housing part 162 is formed.
  • channel 180 may be formed in the second housing member 162, for example, radially inwardly in the direction of the second decoupling element 136, and cooperate with a passage 214 in the membrane 200. Should product reach the intermediate space between the diaphragm 200 and the valve housing 160, it can be discharged through the passage 214 and the passage 180 out of the space between the valve housing 160 and the second housing part 162.
  • the contours are formed by walls, as can be better seen from the detail view in FIG.
  • the contour on the second housing part 162 is formed by a first clamping gap wall 220, a first guide wall 228 and a first wall 224, which adjoin one another and are at different angles to one another.
  • the contour in the valve housing 160 in turn is formed from a second
  • First nip wall 220 and second nip wall 222 are arranged in a pair and define a nip in which a clamping portion 206 of the membrane 200 is clamped.
  • the clamping is designed so that in addition to the local definition, a seal between the clamping portion 206 and clamping gap wall 222 is effected.
  • the clamping gap has in the sectional view an extension direction E, which is aligned at an angle K to the axial direction M. This angle K may preferably be in the range between 30 ° and 60 °, preferably 45 °. This reduces the stress on the membrane 200.
  • a first portion 202 of the membrane 200 is located in a first gap formed between the first wall 224 and the second wall 226.
  • the arrangement is dimensioned such that the force exerted indirectly on the second housing part 162 causes a clamping of the first portion 202 between the first wall 224 and the second wall 226.
  • a second portion 204 of the membrane 200 is located in a second gap formed between the first guide wall 228 and the second guide wall 230. Clamping may be effected but the second portion 204 is guided at least through the walls 228 and 230. From the orientation of the walls 224, 226, 228 and 230 results in an arrangement of the first portion 202 and the second portion 204 at an angle V to each other.
  • This angle V is dimensioned such that from the first section 202, the second section 204 and the walls 224, 226, 228 and 230 a positive connection is formed and in this way the membrane 200 is fixed in a form-fitting manner in the holding arrangement 120.
  • This positive locking prevents movement of the diaphragm 200, even if the forces acting on it are suitable, the friction between the diaphragm 200 and the housing parts 160 and 162, in particular between the sections 202, 204 and 206 of the diaphragm and the walls 220, 222, 224, 226, 228 and 230, to be overcome.
  • the walls 224, 226, 228 and 230 may be shaped so that the angle V between the first portion 202 and the second portion 204 is between 60 ° and 135 °. This causes a good fit and at the same time keeps the material load by deformation during production of the membrane 200 or when installing a deviating preformed membrane 200 into the holding arrangement 120 low.
  • the first section 202 is arranged in a plane approximately perpendicular to the axial direction M. If the membrane 200 is arranged in this way in the first section 202 substantially flat extending radially outward, even tolerating a few angular degrees deviation, resulting in a cost-effective design with easily adjustable clamping forces.
  • the next design option is to form the second section 204 substantially cylindrical with a cylinder axis, wherein the cylinder axis is oriented in the axial direction M, wherein deviations in the context of manufacturing accuracies and some angular degrees of deviation are included. This leads to an economically producible holding arrangement 120 with good guiding properties for the second section 204.
  • the passage 214 may be provided in the second section 204 and thus between two clamped sections 202 and 206 of the membrane 200. This not only allows to detect product leakage, but also to narrow down the problem area before the sealing and holding of the membrane 200 has completely failed.
  • the determination of the membrane 200 can be improved by the following measures.
  • a first bump 170 may be provided on the first wall 224 which is in the During the assembly in the first portion 202 of the membrane 200 is pressed into it.
  • a groove 172 can be provided on the second wall 226, into which the first section 202 forms by the action of the clamping force. It may also be provided only a groove on the first wall 224. Also in the nip on one of the nip walls 220 and 222 at least one groove or a
  • Projection may be provided, for example, a second elevation 174 on the second clamping gap wall 222nd
  • the membrane 200 is shown as a preformed component. Preformed means that the individual sections are formed by permanent reshaping of the membrane blank prior to installation in the valve 100.
  • the material of the membrane 200 is selected so that upon operation of the valve 100, a deformation of the membrane 200 by moving the
  • the membrane 200 of the illustrated example has a plurality of radially adjacent ones
  • the first section 202 is provided on the radially outer edge. It may be shaped to extend substantially in a plane normal to the axial direction M.
  • the second portion 204 connects radially within the first portion 202 to this. This may be formed substantially cylindrical with a cylinder axis, wherein the cylinder axis is oriented in the axial direction M, wherein deviations in the context of manufacturing accuracies and some angular degrees of deviation
  • First section 202 and second section 204 are oriented at an angle W to each other, which in any case is different from 180 °, and preferably in the range between 60 ° and 135 °. It can be 90 ° for easy production, of which a few angular degrees of deviation are still detected. This preformed angle W can deviate from the angle V of the holding arrangement. A particularly easy and safe mountability is achieved when the angles W and V come close to a few degrees, for example, have a deviation of less than 10 °. This also reduces the material stress resulting from deformation during installation.
  • a third section which corresponds to the abovementioned clamping section 206, in turn adjoins the second section 204 radially inwardly. This forms approximately a cone and is thus shaped so that it is between the first clamping gap wall 220 of the second housing part 162 and the second clamping gap wall 222 of
  • Valve housing 160 is clamped.
  • a fourth section 208 is provided.
  • the course of the membrane 200 is subjected to the greatest changes in movement of the closing member 106 by the drive 110.
  • forces act on this fourth section 208 when the product is under pressure.
  • this section is preformed to cooperate with the support surfaces 190 and 192 in the open or closed valve position. This will be explained with reference to FIGS. 5 and 6 yet.
  • a fifth portion 210 connects to the fourth portion 208 radially inward and extends in a direction substantially perpendicular to the axial direction M level. This fifth section 210 surrounds a central opening 212 through which the second
  • Decoupling element 136 or an associated component can be passed.
  • the fifth section 210 is designed to be clampable on the closing element arrangement 126, preferably in the axial direction M, whereby on the one hand a fixing and on the other hand a seal are effected.
  • a material of high dimensional stability and with a temperature resistance of at least 130 ° C is used for the membrane 200. Due to the dimensional stability, it is possible to dispense with the support means connected to the membrane 200, for example. Support membranes. Preferably, the material has a high media resistance.
  • it may be a composite of several,
  • FIGS. 5 and 6 serve to illustrate the deformation of the diaphragm 200 during operation of the valve 100 and as a basis for explaining the advantageous support surfaces 190 and 192.
  • FIG. 1 To provide terminals 102 and 104 is shown in FIG. The closed position with interrupted fluid connection is shown in FIG.
  • the closing element arrangement 126 is displaced in the axial direction M toward the drive 110.
  • the fourth section 208 of the membrane 200 lies with a part of its extension on the first support surface 190 of the second housing part 162.
  • the first support surface 190 has an extremum 194, on which the fourth portion 208 also rests and from there without kinks and discontinuities steadily merges into the clamping portion 206.
  • First edge 196 and extremum 194 and thus the surface area of the first support surface 190 may be dimensioned such that in the open position at least 50% of the membrane surface is supported by at least one of the support surfaces 190 and 192 or the sum of the support surfaces 190 and 192.
  • the fourth section 208 of the membrane 200 bears against the closing element arrangement 126 on the first support surface 190 extending up to a second edge 198.
  • Valve housing side, the fourth portion 208 is located on the extremum 194.
  • the location of the second edge 198 and extremum 194 may be such that at least 50% of the membrane area is supported by at least one of the support surfaces 190 and 192 or the sum of the support surfaces 190 and 192 in this position as well.
  • Closing member arrangement 126 the influence of the deformation on the clamped in the nip third section 206 is kept as low as possible. In particular, forces directed transversely to the course of the clamping gap on the membrane 200 are avoided, since the membrane at the free end of the clamping gap extends largely without change of direction.
  • FIG. 5 and Fig. 6 an advantageous embodiment of the mounting of the membrane 200 is shown on the closing member assembly 126.
  • the fifth section 210 of the membrane 200 is clamped in a clamping region 142 between two components of the closing element arrangement 126. This clamping can be carried out substantially in a plane perpendicular to the axial direction M.
  • the invention has been presented with reference to a single seat valve, but is not limited to use in this type of valve. Also in valves having a plurality of seals on the closing member, so-called double-density valves, or change-over valves and double-seat valves with multiple closing elements, the invention is useful to seal a closing member against the valve housing where the
  • Closing member assembly is connected to the drive.
  • the skilled person in the field of valve technology will discover the possible applications in the valves of food and process technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Valve Housings (AREA)
  • Prostheses (AREA)

Abstract

Die Erfindung betrifft ein Ventil (100) mit einem Ventilgehäuse (160), welches einen ersten Anschluss (102) und einen zweiten Anschluss (104) aufweist, einem Schließglied (106), welches entlang einer axialen Richtung bewegbar und in eine Schließstellung bringbar ist, in der das Schließglied (106) mit einem zwischen erstem Anschluss (102) und zweitem Anschluss (104) angeordneten Ventilsitz (108) dichtend zusammenwirkt, wodurch eine Fluidverbindung zwischen erstem und zweitem Anschluss (102, 104) unterbunden ist, einer fluidundurchlässigen Membran (200), welche eine von einer das Schließglied (106) umfassenden Schließgliedanordnung (126) durchsetzten Zentralöffnung (212) und einen in einem schräg zur axialen Richtung ausgerichteten Klemmspalt verlaufenden Klemmabschnitt (206) umfasst und welche an der Schließgliedanordnung (126) einerseits und einer ventilgehäuseseitigen Halteanordnung (120) andererseits mit Dichtwirkung gehaltert ist. Um ein Ventil mit einer verringerten Notwendigkeit zur Wartung zu schaffen, wird vorgeschlagen, dass die Membran (200) einen an einem äußeren Rand befindlichen ersten Abschnitt (202) und einen sich an den ersten Abschnitt (202) radial innen anschließenden zweiten Abschnitt (204) aufweist, dass der erste Abschnitt kraftschlüssig in der Halteanordnung gehaltert ist, dass der zweite Abschnitt in der Halteanordnung geführt ist, und dass erster und zweiter Abschnitt (202, 204) derart in einem Winkel (V) zueinander angeordnet sind und die Halteanordnung so angepasst ist, dass durch ersten Abschnitt (202), zweiten Abschnitt (204) und Halteanordnung ein Formschluss gebildet ist. Die Erfindung betrifft außerdem eine Membran für ein Ventil.

Description

Ventil und Membran für ein Ventil
Die Erfindung betrifft eine Ventil nach dem Oberbegriff des Anspruchs 1 und eine Membran für ein Ventil nach dem Oberbegriff des Anspruchs 15.
Ventile sind wichtige Komponenten in Prozessanlagen, mit deren Hilfe Ströme von Produktmedien durch Rohrleitungssysteme der produktführenden Anlage gelenkt werden. Die Lenkwirkung beruht dabei auf der Schaltfunktion der Ventile. Ein Ventil besitzt ein Ventilgehäuse mit wenigstens einem ersten und einem zweiten
Anschluss. Im Ventil der gattungsgemäßen Art ist eine Schließgliedanordnung mit einem Schließglied vorgesehen, welches entlang einer axialen Richtung bewegbar ist. Im Rahmen dieser axialen Bewegbarkeit ist es in eine Schließstellung bringbar, in welcher es mit einem zwischen den Anschlüssen angeordneten Ventilsitz dichtend zusammenwirkt, wodurch eine Fluidverbindung zwischen erstem und zweitem Anschluss unterbunden ist. Die axiale Bewegung des Schließglieds kann von außerhalb des Ventilgehäuses bewirkt werden. In der Regel kommt hierbei ein druckmittelbetriebener Antrieb zum Einsatz, in welchem das Druckmittel einen Druck auf einen Kolben gegen die rückstellende Kraft einer Feder ausübt.
Besondere Anforderungen an das Ventil stellen aseptische Anwendungen, beispielsweise in der Lebensmittelindustrie. In solchen Anwendungen ist der Kontakt des Produkts mit Umgebungsluft zu vermeiden, da sonst Bakterien und Keime in das Produkt
eingeschleppt werden können. Entsprechend aufwändig ist die Gestaltung der Abdichtung im Ventil. Hierzu zählt die Abdichtung der Schließgliedanordnung gegen die Umgebung des Gehäuses, insbesondere dort, wo die Schließgliedanordnung an den Antrieb angebunden ist.
Die DE 102007014282 A1 schlägt hier eine fluidundurchlässige Membran vor, welche an der Schließgliedanordnung einerseits und einer ventilgehäuseseitigen Halteanordnung andererseits mit Dichtwirkung gehaltert ist. Die Halteanordnung besitzt einen schräg zur axialen Richtung ausgerichteten Klemmspalt. Die Membran umfasst einen in diesem Klemmspalt verlaufenden Klemmabschnitt und eine Zentralöffnung, die von der
Schließgliedanordnung durchsetzt ist. Die Dichtwirkung ergibt sich durch Halterung der Zentralöffnung an der Schließgliedanordnung und des Klemmabschnitts im Klemmspalt. Im Gegensatz zu den bekannten Materialien auf Basis von Elastomeren ist diese Membran aus einem formstabilen Kunststoff gefertigt, der zumindest bis etwa 130°C temperaturbeständig ist. Hierdurch soll eine konstante Geometrie unter
Betriebsbedingungen, insbesondere Betriebsdruck und Betriebstemperatur, erreicht werden. Zusammen mit Einspannung der Membran im Klemmspalt sollen sich eine hohe Lagestabilität und insgesamt eine gute Abdichtung ergeben.
Die DE 102007014282 A1 lehrt, die Abdichtung weiter zu verbessern, indem im
Klemmspalt ein Vorsprung vorgesehen ist, der die Klemmkraft erhöht. Es ist die Aufgabe der Erfindung, ein Ventil mit Membran und eine Membran zu schaffen, die die ventilgehäuseseitige Abdichtung der Membran gegenüber dem Stand der Technik weiter verbessern und dadurch die Notwendigkeit zur Wartung verringern.
Diese Aufgabe wird gelöst durch ein Ventil mit den Merkmalen des Anspruchs 1 und einer Membran mit den Merkmalen des Anspruchs 15. Die abhängigen Ansprüche 2 bis 14 und 16 bis 18 geben vorteilhafte Weiterbildungen an, deren aufgeführte Wirkungen die Gesamtvorteile erhöhen.
Die Membran gemäß Erfindung besitzt einen ersten Abschnitt, der an einem radial äußeren Rand der Membran angeordnet ist und an den sich radial einwärts ein zweiter Abschnitt anschließt. Beide Abschnitte sind winklig zueinander angeordnet. Der erste Abschnitt ist in der Halteanordnung der Membran geklemmt, der zweite Abschnitt hingegen wenigstens geführt. Der Winkel zwischen den Abschnitten ist so bemessen, dass sich zwischen Halteanordnung und den Abschnitten ein Formschluss ergibt. Die Abschnitte der Membran und der Winkel zwischen ihnen können vorgeformt sein, vorzugsweise nahe an dem Winkel, der in Halteanordnung ausgebildet ist. Durch die Klemmung des ersten Abschnitts werden die Klemmkräfte, die die Positionierung der Membran bewirken, insgesamt erhöht und es werden größere Flächenanteile der Membran über Klemmung fixiert, so dass im Zusammenwirken ein Verrutschen der Membran im Klemmspalt stark verringert wird. Der Formschluss verstärkt diesen Effekt erheblich, so dass durch das Zusammenwirken von Klemmspalt, Formschluss und Kraftschluss mit dem ersten Abschnitt die Membran in allen Betriebsbedingungen in der Halteanordnung ortsfest bleibt. Der äußere Rand der Membran ist über den Kraftschluss von erstem Abschnitt und Halteanordnung zudem sehr gut und besser als im Stand der Technik abgedichtet. Dies ist von großem Vorteil und verringert die Notwendigkeit zur Wartung, denn die Erfinder fanden heraus, dass durch Bewegung der Membran in der Halteanordnung, insbesondere im Klemmspalt, Produkt in die Halteanordnung, insbesondere den Klemmspalt, hineingezogen wird. Diese Kontamination kann einerseits über den Produktraum im Ventil, andererseits über die Gehäuseumgebung erfolgen. Dies wird durch die erfindungsgemäße Ausgestaltung von Membran und Ventil zuverlässig verhindert.
In einer Weiterbildung des Ventils beträgt der Winkel zwischen erstem und zweitem Abschnitt zwischen 60° und 135°. Dies bewirkt einen guten Formschluss und hält die Materialbelastung durch Verformung bei Herstellung der Membran oder bei Einbau einer abweichend vorgeformten Membran in die Halteanordnung gering.
In einer anderen Weiterbildung wird vorgeschlagen, den ersten Abschnitt in einer zur axialen Richtung etwa senkrechten Ebene anzuordnen. Ist die Membran auf diese Weise sich im ersten Abschnitt im Wesentlichen flach radial nach außen erstreckend, auch unter Duldung einiger Winkelgrade Abweichung, ergibt sich ein kostengünstiger Aufbau mit leicht einstellbaren Klemmkräften.
Eine wiederum andere Weiterbildung sieht vor, den zweiten Abschnitt im Wesentlichen zylindrisch mit einer Zylinderachse zu formen, wobei die Zylinderachse in axialer Richtung orientiert ist, worin Abweichungen im Rahmen von Fertigungsgenauigkeiten und einige Winkelgrade Abweichung eingeschlossen sind. Dies führt zu einer kostengünstig herstellbaren Halteanordnung mit guten Führungseigenschaften für den zweiten
Abschnitt. Die Erfindung kann durch wenigstens einen in der Membran zwischen Klemmabschnitt und erstem Abschnitt vorgesehen Durchlass weitergebildet werden, wobei der Durchlass mit einem in der ventilgehäuseseitigen Halteanordnung ausgebildeten Kanal
zusammenwirkt. Dieser Durchlass kann beispielsweise in Form mehrerer über den Umfang verteilt angeordneter Durchlassöffnungen ausgebildet werden, die fluidgängig miteinander in Verbindung stehen, beispielsweise mittels einer ringförmigen Nut im
Ventilgehäuse und/oder im zweiten Gehäuseteil. Mit dieser Maßnahme wird etwaig doch aus dem Ventilinnenraum in die Halteanordnung, beispielsweise den Klemmabschnitt, eintretendes Material sichtbar, indem es durch den Durchlass in der Membran hindurch nach außen geführt wird. In einer Weiterbildung ist vorgesehen, die Halteanordnung mit einem ersten und einem zweiten Spalt zu versehen, wobei der erste Spalt einen Kraftschluss mit dem ersten Abschnitt der Membran ausbildet und der zweite Spalt den zweiten Abschnitt führt. Mit dieser Ausgestaltung der Halteanordnung werden die bereits genannten Vorteile kostengünstig erreicht und zudem die Materialbelastung für die Membran besonders gering gehalten.
Eine andere Weiterbildung betrifft die Ausgestaltung des ersten Spaltes und sieht vor, diesen Spalt mit einer ersten und einer zweiten Wand zu begrenzen, wobei wenigstens eine der Wände eine Struktur aufweist, die die Reibung der Membran im Spalt erhöht, beispielsweise eine Nut, einen Vorsprung, eine Welligkeit oder dergleichen. Auf diese Weise wird die Membran noch besser durch erhöhten Reibschluss oder bis in den Formschluss gehende Verzahnung von Membran und Spalt in ihrer Position festgelegt und die Dichtigkeit erhöht.
Eine nächste Weiterbildung betrifft die Ausgestaltung des ersten Klemmspaltes und sieht vor, diesen Klemmspalt mit einer ersten und einer zweiten Klemmspaltwand zu begrenzen, wobei wenigstens eine der Wände Struktur aufweist, die die Reibung der Membran im Klemmspalt erhöht, beispielsweise eine Nut, einen Vorsprung, eine
Welligkeit oder dergleichen. Auf diese Weise wird die Membran noch besser durch erhöhten Reibschluss oder bis in den Formschluss gehende Verzahnung von Membran und Klemmspalt in ihrer Position festgelegt und die Dichtigkeit erhöht.
In einer vorteilhaft kostengünstigen Weiterbildung ist am Ventil ein druckmittelbetriebener, beispielsweise pneumatischer, Antrieb vorgesehen, welcher mit der
Schließgliedanordnung verbunden ist, um die Bewegung des Schließgliedes entlang der axialen Richtung zu bewirken.
Im Zusammenspiel mit einem druckmittelbetriebenen Antrieb schlägt eine nächste Weiterbildung vor, eine Drehentkopplungseinrichtung im Antrieb oder zwischen Antrieb und Schließgliedanordnung vorzusehen. Druckmittelbetriebene Antriebe erzeugen oftmals durch eine wendeiförmige Feder eine Torsionskraft. Die Übertragung der Torsionskraft auf die Membran wird mitteis Drehentkopplungseinrichtung verhindert, so dass die
Lebensdauer der Membran aufgrund des Wegfalls der Torsionsbeanspruchung steigt. Gemäß einer wiederum anderen Weiterbildung wird eine kostengünstige Ausgestaltung der Drehentkopplung vorgeschlagen. Nach dieser ist die Drehentkopplungseinrichtung zwischen Antrieb und Schließgliedanordnung angeordnet und umfasst ein erstes Entkopplungselement in einer zylindrischen Aufnahme, in der ein zylindrischer Fortsatz eines zweiten Entkopplungselements aufgenommen ist.
Eine vorteilhafte Entlastung der Membran, die Schädigungen und damit einhergehende Keimeintragsmöglichkeiten deutlich verringert sowie die Lebensdauer erhöht, wird mit einer weiteren Weiterbildung erreicht. Gemäß dieser sind gehäuseseitig eine erste Stützfläche und an der Schließgliedanordnung eine zweite Stützfläche jeweils für die Membran vorgesehen. Durch wenigstens abschnittsweises Auflegen der Membran auf eine der Stützflächen wird die Drucklast und damit auch die Zugkräfte verringert, die auf den in der Halteanordnung befindlichen Teil der Membran einwirken und auf eine Verschiebung dieses Teils in der Halteanordnung hinwirken.
Gemäß einer Weiterbildung der Anordnung mit Stützflächen ist vorgesehen, dass in einer Offenstellung des Schließgliedes, in der eine Fluidverbindung zwischen erstem Anschluss und zweitem Anschluss hergestellt ist, und der Schließstellung die Membran auf je einer der Stützflächen aufliegt, wobei sie insgesamt zu wenigstens 50% ihrer Fläche abgestützt ist. Eine Abstützung dieses Flächenanteils der Membran hat sich als besonders vorteilhaft erwiesen, um die vorgenannten Vorteile hinsichtlich Reinheit und Lebensdauer zu erhöhen.
Eine nächste Weiterbildung betrifft das Material der Membran und sieht vor, dass die Membran eine Kompressibilität von wenigstens 20% nach dem Standard ASTM F36 „Standard Test Method for Compressibility and Recovery of Gasket Materials" in der Fassung von 2009 aufweist. Es wurde festgestellt, dass auf diese Weise eine dauerhafte Formstabilität erreicht wird, die den Formschluss lange unterstützt, sowie Klemmkräfte und Dichtwirkung erhöht werden.
Eine Membran für ein Ventil, insbesondere der Lebensmittel- oder Prozesstechnologie, welches ein Ventilgehäuse, eine Schließgliedanordnung, eine ventilgehäuseseitige Halteanordnung zum Haltern der Membran und einen schräg zu einer axialen Richtung verlaufenden Klemmspalt fü die Membran umfasst, wobei die Membran einen zur Aufnahme im Klemmspalt geeigneten konischen Abschnitt und eine von der
Schließgliedanordnung durchsetzbare Zentralöffnung aufweist, erreicht die für das erfindungsgemäße Ventil genannten Vorteile. Vertieft werden diese dadurch, dass an einem radial äußeren Rand der Membran ein erster Abschnitt vorgesehen ist, an dem sich radial innen ein zweiter Abschnitt anschließt, welcher in einem Winkel zu dem ersten Abschnitt steht, der so bemessen ist, dass erster Abschnitt und zweiter Abschnitt unter Ausbildung eines Formschlusses in der Halteanordnung aufnehmbar sind. Diese Art der Formgebung, die im Herstellungsprozess der Membran und vor Einbau in ein Ventil geschaffen wird, reduziert die Belastung der Membran im eingebauten Zustand, da statt dauerhafter Verformung eine Vorformung während des Herstellungsprozesses erfolgt. Eine anhaltende, starke Belastung wird auf diese Weise verhindert, mithin die
Lebensdauer gesteigert sowie Dichtheit und Sauberkeit verbessert.
In einer Weiterbildung der Membran beträgt der Winkel zwischen erstem und zweitem Abschnitt zwischen 60° und 135°. Diese Art der Vorformung während der Herstellung bewirkt einen guten Formschluss nach Einbau in ein Ventil und hält die Materialbelastung durch Verformung während des Einbaus in eine Halteanordnung im Ventil vorteilhaft gering.
Eine andere Weiterbildung der Membran sieht wenigstens einen Durchlass im zweiten Abschnitt vor, so dass eine Positionierung des Durchlasses zwischen Klemmstellen der Halteanordnung entsteht. Vorteilhaft wird bewirkt, dass etwaig doch in die Halteanordnung eintretendes Material durch den Durchlass hindurchtritt und so sichtbar wird.
Eine nächste Weiterbildung der Membran sieht vor, dass die Membran ein Material umfasst mit einer Kompressibilität von wenigstens 20% nach ASTM F36. Es wurde festgestellt, dass auf diese Weise eine dauerhafte Formstabilität erreicht wird, die den Formschluss lange unterstützt, sowie Klemmkräfte und Dichtwirkung erhöht werden.
Anhand eines Ausführungsbeispiels und seiner Weiterbildungen sollen die Erfindung näher erläutert und die Darstellung der Wirkungen und Vorteile vertieft werden.
Es zeigen:
Fig. 1 : Längsschnitt durch ein Ventil und schematischer Teilschnitt durch einen mit dem Ventil gekoppelten Antrieb;
Fig. 2: Detailansicht des in Fig. 1 gestrichelt eingerahmten Bereichs des Ventils; Fig. 3: schematische und geschnittene Darstellung der Halteanordnung, die die Membran gehäuseseitig haltert;
Fig. 4: Schnitt durch die Membran entlang der Längsachse; Fig. 5: Schnitt durch das Ventil im Bereich der Membran in offener Stellung der
Schließgliedanordnung; und
Fig. 6: Schnitt durch das Ventil im Bereich der Membran in geschlossener Stellung der Schließgliedanordnung.
In einer teilweise iängsgeschnittenen Ansicht ist in Fig. 1 ein Ventil 100 dargestellt. Es besitzt einen ersten Anschluss 102 und einen zweiten Anschluss 104, welche mit Rohrleitungen, beispielsweise einer lebensmitteltechnischen Prozessanlage, verbindbar sind. Innerhalb eines Ventilgehäuses 160 ist ein Schließglied 106 vorgesehen, welches in dichtenden Kontakt mit einem Ventilsitz 108 bringbar ist, welcher zwischen erstem und zweitem Anschluss 102 und 104 angeordnet ist. Durch diesen Kontakt von Ventilsitz 108 und Schließglied 106 wird eine Schließstellung geschaffen. Die Dichtwirkung unterbindet eine Fluidverbindung und damit einen Produktfluss zwischen erstem und zweitem Anschluss 102 und 104. In einer Offenstellung des Ventils 100 sind Schließglied 106 und Ventilsitz 108 voneinander getrennt, so dass die Fluidverbindung zwischen erstem und zweitem Anschluss 102 und 104 hergestellt ist und Produkt zwischen den beiden Anschlüssen 102 und 104 strömen kann.
Die Bewegung des Schließgiiedes 106 von der Offenstellung in die Schließstellung und umgekehrt wird von einem Antrieb 110 bewirkt. Dieser ist im Beispiel druckmittelbetrieben ausgeführt. Ein Druckmittel bewegt einen Kolben 114 gegen die Kraft einer Feder 112, welche eine Rückstellung des Kolbens 114 bewirkt. Der Kolben 114 ist durch ein geeignetes Mittel, beispielsweise einer Ventilstange, mit dem Schließglied 06 gekoppelt.
Die Bewegungsrichtung des Schließgliedes 106 legt eine axiale Richtung M fest. Gemäß Fig. 1 wird durch Druckmittelbeaufschlagung der Kolben 114 so entlang der axialen
Richtung M bewegt, dass die Offenstellung erreicht wird. Die Feder 112 hingegen erzeugt die Schließstellung.
Die Wirkweise des Antriebs 110 kann auch umgekehrt ausgeführt sein, so dass das Schließglied 106 durch die Kraft der Feder 112 in Offenstellung gehalten wird und bei Druckbeaufschlagung die Schließstellung erzeugt wird.
Die Feder 112 zum Erzeugen der Gegenstellkraft kann mit einer zweiten Aktorik zusammenwirken. Diese kann als Druckmittelbeaufschlagung des Kolbens 114 gestaltet sein, die eine in Richtung der Feder wirkende Kraft erzeugt. Auf diese Weise ist das Schließglied 106 mit Hilfe des Antriebes 110 auf Positionen in axialer Richtung bringbar, die zwischen Schließstellung und Offenstellung gelegen sind und somit
Zwischenstellungen des Schließglieds 106 ergeben.
Das Ventil 100 umfasst eine fluidundurchlässige Membran 200, die so angeordnet und gestaltet ist, dass sie den Kontakt von Produkt, welches durch einen der Anschlüsse 102 und 104 in das Ventilgehäuse 160 eintritt, mit der Umgebung des Ventils 100 im Bereich einer durch das Ventilgehäuse 160 hindurchgeführten Schließgliedanordnung 126 verhindert. Die für Produkt nicht permeable Membran 200 ist von der das Schließglied 106 umfassenden Schließgliedanordnung 126 durchsetzt und an der
Schließgliedanordnung 126 und ventilgehäuseseitig in einer Halteanordnung 120 abgedichtet gehaltert.
Um einen einfachen Aufbau mit schneller Montierbarkeit zu erreichen, kann die
Schließgliedanordnung 126 mehrere miteinander verbindbare Teile umfassen, beispielsweise das Schließglied 106, ein optionales Distanzstück 116 und ein zweites Entkopplungselement 136. An der Verbindungsstelle von Distanzstück 116 oder Schließglied 106 mit dem Entkopplungseiement 136 kann ein Klemmbereich 142 vorgesehen sein, in dem die Membran 200 zwischen Schließglied 106 und
Entkopplungselement 136 eingeklemmt ist. Die Klemmwirkung ist so bemessen, dass eine Dichtwirkung gegen Hindurchtreten von Produkt erzielt wird.
Vorteilhaft ist es, in einer Weiterbildung die Klemmwirkung so zu bemessen, dass die Membran 200 bei Bewegung des Schließgliedes 106 von Offenstellung in Schließstellung keine durch Produktverschleppung in den Klemmbereich 142 spürbare Bewegung innerhalb des Klemmbereichs 142 ausführt.
Die Schließgliedanordnung 126 kann eine zweite Stützfläche 192 umfassen, auf welcher die Membran 200 in wenigstens einer Stellung des Schließgliedes 106 aufliegt. Solch eine Abstützung der Membran 200 verringert die Belastung durch einwirkende Kräfte, die beispielsweise durch unter Druck stehendes Fluid erzeugt wird und erhöht auf diese Weise die Lebensdauer der Membran 200.
Die beispielsweise wendeiförmig ausgebildete Feder 112 des Antriebs 110 bewirkt ein Torsionsmoment, welches bei direkter Verbindung des Antriebs 110 mit der
Schließgliedanordnung 26 auf diese und das Schließglied 106 übertragen wird. Aufgrund ihrer Halterung an der Schließgliedanordnung 126 wird das Torsionsmoment auch auf die Membran 200 übertragen. Durch das eingeleitete Torsionsmoment und die
gehäuseseitige Halterung entstehen zusätzliche Verformung und Verspannung der Membran 200, so dass die Lebensdauer der Membran 200 verringert wird. Außerdem wird durch Krafteinleitung in die Halterungen die dortige Abdichtung belastet.
Daher ist es eine vorteilhafte Weiterbildung, zwischen dem Befestigungspunkt der Membran 200 an der Schließgliedanordnung 126 und dem Antrieb 110 eine
Drehentkopplungseinrichtung 130 vorzusehen. Durch die Drehentkopplungseinrichtung 130 wird verhindert, dass das vom Antrieb 110 bewirkte Torsionsmoment in die Membran 200 eingeleitet wird. Somit wird die Lebensdauer erhöht und die Belastung der
Abdichtung verringert.
Die Drehentkopplungseinrichtung 130 umfasst beispielsweise ein erstes
Entkopplungselement 132, welches mit dem Antrieb 110 verbunden ist. Das erste Entkopplungselement 132 weist eine zylindrische Aufnahme 134 auf, in die ein zylindrischer Fortsatz 138 einem zweiten Entkopplungselements 136 eintaucht, welches Teil der Schließgliedanordnung 126 ist.
Ein Sicherungselement 140 ist so gestaltet, dass es die Verdrehung von dem ersten Entkopplungselement 132 gegen das zweite Entkopplungselement 136 zulässt, während eine axiale Bewegung der Entkopplungselemente 132 und 136 relativ zueinander unterbunden wird.
Das Sicherungselement 140 kann beispielsweise wie folgt geformt sein: Der zylindrische Fortsatz 138 weist eine umlaufende Nut auf. In diese greift eine Sicherung ein, welche so gestaltet ist, dass eine axiale Bewegung des zylindrischen Fortsatzes 138 relativ zur zylindrischen Aufnahme 134 verhindert wird. Die Sicherung kann relativ zur und in Umfangsrichtung der Nut bewegt werden, so dass die Verdrehung der Elemente ermöglicht ist. Eine im Wesentlichen u-förmige Scheibe, deren Dicke weitgehend der Weite der Nut entspricht, ist ein Beispiel für solche Gestaltung. Der Vorteil eines solcherart gestalteten Sicherungselements ist der sehr geringe Verschleiß, der an Verschleißfreiheit grenzt.
Eine ventilgehäuseseitige Halteanordnung 120 umfasst das Ventilgehäuse 160 und ein zweites Gehäuseteil 162, welche zusammen die Membran 200 haltern. Vorteilhaft kann die Halteanordnung 120 eine erste Stützfläche 190 und einen Kanal 180 umfassen. Aufbau und Funktion sowie Weiterbildungen der Halteanordnung 120 werden nachfolgend anhand der Fig. 2 und Fig. 3 näher erläutert. Die Halteanordnung 120 des Ausführungsbeispiels umfasst einen geeignet geformten Teil des Ventilgehäuses 160 und das zweite Gehäuseteil 162. Beide besitzen wenigstens stückweise komplementär zueinander geformte Konturen, zwischen denen Spalte entstehen, in denen im montierten Zustand des Ventils 100 Abschnitte der Membran 200, insbesondere erster Abschnitt 202 und zweiter Abschnitt 204, angeordnet sind.
Die am Ventilgehäuse 160 befindliche Kontur ist an einer Öffnung des Gehäuses und diese Öffnung umgebend angeordnet. Die Öffnung ist mit einem Deckel 164
verschlossen, mit welchem der Antrieb 110 mittelbar oder unmittelbar verbunden ist. Wenigstens eines der Bauteile, die eine Verbindung von Schließglied 106 und Antrieb 110 schaffen, beispielsweise das zweite Entkopplungselement 136, durchsetzt den Deckel 164.
Der Deckel 164 berührt das zweite Gehäusebauteil 162 und wird mittels eines
Verbindungselements am Ventilgehäuse 160 fixiert. Das Verbindungselement kann eine Schraubverbindung sein und ist im gezeigten Beispiel als Klammer 166 ausgeformt. Durch die Klammer 166 werden Deckel 164 und zweites Gehäuseteil 162 in axialer Richtung M gegeneinander gespannt. Hierdurch wird eine Kraft auf das zweite
Gehäuseteil 162 bewirkt, so dass mit einer mittelbaren Kraft die Klemmung der Membran 200 zwischen Ventilgehäuse 160 und zweitem Gehäuseteil 162 entsteht.
Der bereits zu Fig. 1 als vorteilhafte Weiterbildung erwähnte Kanal 180 kann im zweiten Gehäusebauteil 162 ausgeformt sein, beispielsweise radial nach innen in Richtung des zweiten Entkopplungselements 136, und mit einem Durchlass 214 in der Membran 200 zusammenwirken. Sollte Produkt bis in den Zwischenraum zwischen Membran 200 und Ventilgehäuse 160 gelangen, kann es durch den Durchlass 214 und den Kanal 180 aus dem Raum zwischen Ventilgehäuse 160 und zweitem Gehäuseteil 162 abgeführt werden.
Die Konturen werden gebildet durch Wände, wie aus der Detailansicht in Fig. 3 besser zu entnehmen ist. Die Kontur am zweiten Gehäuseteil 162 ist gebildet durch eine erste Klemmspaltwand 220, eine erste Führungswand 228 und eine erste Wand 224, welche aneinander grenzen und in unterschiedlichem Winkel zueinander stehen. Die Kontur im Ventilgehäuse 160 wiederum ist gebildet aus einer zweiten
Klemmspaltwand 222, einer zweiten Führungswand 230 und einer zweiten Wand 226, welche ebenfalls aneinander grenzen und in unterschiedlichem Winkel zueinander stehen. Erste Klemmspaltwand 220 und zweite Klemmspaltwand 222 sind als Paar angeordnet und begrenzen einen Klemmspalt, in welchem ein Klemmabschnitt 206 der Membran 200 geklemmt ist. Die Klemmung ist so ausgeführt, dass neben der örtlichen Festlegung eine Abdichtung zwischen Klemmabschnitt 206 und Klemmspaltwand 222 bewirkt ist. Der Klemmspalt besitzt im Schnittbild eine Erstreckungsrichtung E, die in einem Winkel K zur axialen Richtung M ausgerichtet ist. Dieser Winkel K kann vorzugsweise aus dem Bereich zwischen 30° und 60°, vorzugsweise 45°, sein. Dies verringert die Belastung der Membran 200.
Ein erster Abschnitt 202 der Membran 200 befindet sich in einem zwischen erster Wand 224 und zweiter Wand 226 gebildeten ersten Spalt. Die Anordnung ist dabei so bemessen, dass die mittelbar auf das zweite Gehäuseteil 162 ausgeübte Kraft eine Klemmung des ersten Abschnitts 202 zwischen erster Wand 224 und zweiter Wand 226 bewirkt. Ein zweiter Abschnitt 204 der Membran 200 befindet sich in einem zwischen der ersten Führungswand 228 und der zweiten Führungswand 230 gebildeten zweiten Spalt. Es kann eine Klemmung bewirkt sein, der zweite Abschnitt 204 ist jedoch wenigstens durch die Wände 228 und 230 geführt. Aus der Ausrichtung der Wände 224, 226, 228 und 230 ergibt sich eine Anordnung von erstem Abschnitt 202 und zweitem Abschnitt 204 in einem Winkel V zueinander. Dieser Winkel V ist so bemessen, dass aus erstem Abschnitt 202, zweitem Abschnitt 204 und den Wänden 224, 226, 228 und 230 ein Formschluss gebildet ist und auf diese Weise die Membran 200 formschlüssig in der Halteanordnung 120 festgelegt ist. Dieser Formschluss verhindert eine Bewegung der Membran 200 auch dann, wenn die auf sie einwirkenden Kräfte geeignet sind, die Reibung zwischen Membran 200 und den Gehäuseteilen 160 und 162, insbesondere zwischen den Abschnitten 202, 204 und 206 der Membran und den Wänden 220, 222, 224, 226, 228 und 230, zu überwinden.
Für die Ausrichtung der Wände 224, 226, 228 und 230 in Bezug zur axialen Richtung M und zur Wahl des Winkels V gibt es einige vorteilhafte Gestaltungsmöglichkeiten, die einzeln oder in Kombination gewählt werden können. Die Wände können so geformt sein, dass der Winkel V zwischen erstem Abschnitt 202 und zweitem Abschnitt 204 zwischen 60° und 135° beträgt. Dies bewirkt einen guten Formschluss und hält gleichzeitig die Materialbelastung durch Verformung bei Herstellung der Membran 200 oder bei Einbau einer abweichend vorgeformten Membran 200 in die Halteanordnung 120 gering.
Gemäß einer nächsten Gestaltungsmöglichkeit ist vorgesehen, den ersten Abschnitt 202 in einer zur axialen Richtung M etwa senkrechten Ebene anzuordnen. Ist die Membran 200 auf dieser Weise sich im ersten Abschnitt 202 im Wesentlichen flach radial nach außen erstreckend angeordnet, auch unter Duldung einiger Winkelgrade Abweichung, ergibt sich ein kostengünstiger Aufbau mit leicht einstellbaren Klemmkräften.
Die nächste Gestaltungsmöglichkeit sieht vor, den zweiten Abschnitt 204 im Wesentlichen zylindrisch mit einer Zylinderachse zu formen, wobei die Zylinderachse in axialer Richtung M orientiert ist, worin Abweichungen im Rahmen von Fertigungsgenauigkeiten und einige Winkelgrade Abweichung eingeschlossen sind. Dies führt zu einer kostengünstig herstellbaren Halteanordnung 120 mit guten Führungseigenschaften für den zweiten Abschnitt 204.
Vorteilhaft kann gemäß Weiterbildung der Durchlass 214 im zweiten Abschnitt 204 und damit zwischen zwei geklemmten Abschnitten 202 und 206 der Membran 200 vorgesehen sein. Dies erlaubt nicht nur Produktleckage festzustellen, sondern auch die Problemstelle einzugrenzen, bevor die Abdichtung und Halterung der Membran 200 vollkommen versagt hat. Die Festlegung der Membran 200 kann durch die nachfolgenden Maßnahmen verbessert werden. Eine erste Erhebung 170 kann auf der ersten Wand 224 vorgesehen sein, der im Zuge der Montage in den ersten Abschnitt 202 der Membran 200 hineingepresst wird. Alternativ oder zusätzlich kann eine Nut 172 auf der zweiten Wand 226 vorgesehen sein, in die sich der erste Abschnitt 202 unter Einwirken der Klemmkraft hineinformt. Es kann auch lediglich eine Nut auf der ersten Wand 224 vorgesehen sein. Auch im Klemmspalt kann auf einer der Klemmspaltwände 220 und 222 wenigstens eine Nut oder ein
Vorsprung vorgesehen sein, beispielsweise eine zweite Erhebung 174 auf der zweiten Klemmspaltwand 222.
Mit Hilfe von Nut oder Erhebung, deren Anzahl und Abmessungen in Abstimmung mit dem Material der Membran 200 festgelegt werden, sind Strukturen geschaffen, die die
Reibung der Membran 200 im durch die jeweilige Paarung der Wände 220, 222, 224, 225, 228 und 230 gebildeten Spalt erhöhen. Auf diese Weise wird die Membran 200 noch besser durch erhöhten Reibschluss oder bis in den Formschluss gehende„Verzahnung" von Membran 200 und Spalt in ihrer Position festgelegt und die Dichtheit erhöht.
In Fig. 4 ist die Membran 200 als vorgeformtes Bauteil gezeigt. Vorgeformt bedeutet, dass die einzelnen Abschnitte durch bleibendes Umformen des Membranrohlings vor Einbau in das Ventil 100 ausgebildet sind. Das Material der Membran 200 ist so gewählt, dass bei Betrieb des Ventils 100 eine Verformung der Membran 200 durch Bewegen des
Schließgliedes möglich ist.
Die Membran 200 des dargestellten Beispiels weist mehrere radial benachbarte
Abschnitte auf. Der erste Abschnitt 202 ist am radial außen liegenden Rand vorgesehen. Er kann sich im Wesentlichen in einer zur axialen Richtung M normalen Ebene erstreckend geformt sein. Der zweite Abschnitt 204 schließt sich radial innerhalb des ersten Abschnitts 202 an diesen an. Dieser kann im Wesentlichen zylindrisch mit einer Zylinderachse geformt sein, wobei die Zylinderachse in axialer Richtung M orientiert ist, worin Abweichungen im Rahmen von Fertigungsgenauigkeiten und einige Winkelgrade Abweichung
eingeschlossen sind.
Erster Abschnitt 202 und zweiter Abschnitt 204 sind in einem Winkel W zueinander orientiert, welcher auf jeden Fall von 180° verschieden ist und vorzugsweise im Bereich zwischen 60° und 135° liegt. Er kann zur einfachen Herstellung 90° betragen, wovon wenige Winkelgraden Abweichung noch erfasst sind. Dieser vorgeformte Winkel W kann von dem Winkel V der Halteanordnung abweichen. Eine besonders leichte und sichere Montierbarkeit wird erreicht, wenn sich die Winkel W und V bis auf wenige Winkelgrade nahekommen, beispielsweise eine Abweichung von weniger als 10° besitzen. Dies reduziert zudem die durch Verformung im Einbau entstehende Materialbelastung.
An den zweiten Abschnitt 204 schließt sich wiederum radial innenliegend ein dritter Abschnitt an, der dem oben genannten Klemmabschnitt 206 entspricht. Dieser bildet etwa einen Konus aus und ist damit so geformt, dass er zwischen der ersten Klemmspaltwand 220 des zweiten Gehäuseteils 162 und der zweiten Klemmspaltwand 222 des
Ventilgehäuses 160 einklemmbar ist.
Dem Klemmabschnitt 206 radial nach innen folgend ist ein vierter Abschnitt 208 vorgesehen. In diesem ist der Verlauf der Membran 200 den größten Veränderungen bei Bewegung des Schließgliedes 106 durch den Antrieb 110 unterworfen. Auf diesen vierten Abschnitt 208 wirken zudem Kräfte ein, wenn das Produkt unter Druck steht. Um die Belastung durch solche Kräfte zu verringern, ist dieser Abschnitt so vorgeformt, dass er mit den Stützflächen 190 und 192 in geöffneter oder geschlossener Ventilstellung zusammenwirkt. Dies wird anhand der Fig. 5 und 6 noch erläutert werden. Ein fünfter Abschnitt 210 schließt an den vierten Abschnitt 208 radial innenliegend an und erstreckt sich in einer zur axialen Richtung M im Wesentlichen senkrechten Ebene. Dieser fünfte Abschnitt 210 umgibt eine Zentralöffnung 212, durch die das zweite
Entkopplungselement 136 oder ein damit verbundenes Bauteil hindurchführbar ist. Auf diese Weise ist der fünfte Abschnitt 210 an der Schließgliedanordnung 126 klemmbar ausgeführt, vorzugsweise in axialer Richtung M, wodurch einerseits eine Festlegung und andererseits eine Abdichtung bewirkt werden.
Vorzugsweise wird für die Membran 200 ein Material hoher Formstabilität und mit einer Temperaturbeständigkeit von wenigstens 130°C eingesetzt. Durch die Formstabilität ist es möglich, auf mit der Membran 200 verbundene Stützmittel, bspw. Stützmembranen, zu verzichten. Vorzugsweise weist das Material eine hohe Medienbeständigkeit auf.
Insbesondere soll es ein geringes Kriechverhalten aufweisen, vorzugsweise eine
Kompressibilität von wenigstens 20%, besser 25%, vorteilhaft mehr als 30% nach ASTM F36 besitzen. Es kann sich beispielsweise um einen Verbund von mehreren,
Polytetrafluorethylen (PTFE) enthaltenden Schichten handeln, wobei wenigstens eine der Schichten einen Füllstoff enthält, beispielsweise Siliziumoxid. Die Fig. 5 und Fig. 6 dienen zur Veranschaulichung der Verformung der Membran 200 im Betrieb des Ventils 100 und als Grundlage zur Erläuterung der vorteilhaften Stützflächen 190 und 192.
Die Offenstellung des Ventils 100, in der das Schließglied 106 vom Ventilsitz 108 abgehoben und somit beabstandet ist, um eine Fluidverbindung zwischen den
Anschlüssen 102 und 104 zu schaffen, ist in Fig. 5 dargestellt. Die Schließstellung mit unterbrochener Fluidverbindung ist in Fig. 6 gezeigt.
In der Offenstellung gemäß Fig. 5 ist die Schließgliedanordnung 126 in axialer Richtung M zum Antrieb 110 hin verschoben. Der vierte Abschnitt 208 der Membran 200 liegt mit einem Teil seiner Erstreckung auf der ersten Stützfläche 190 des zweiten Gehäuseteils 162 auf. Die erste Stützfläche 190 weist ein Extremum 194 auf, an dem der vierte Abschnitt 208 ebenfalls anliegt und von dort ohne Knicke und Sprungstellen stetig in den Klemmabschnitt 206 übergeht. Radial innenliegend endet die erste Stützfläche 190 und damit die Unterstützung in einem Rand 196, der vorteilhaft abgerundet geformt ist. Erster Rand 196 und Extremum 194 und somit der Flächeninhalt der ersten Stützfläche 190 können so bemessen sein, dass in der Offenstellung wenigsten 50% der Membranfläche von wenigstens einer der Stützflächen 190 und 192 oder der Summe der Stützflächen 190 und 192 unterstützt ist.
In der Schließstellung gemäß Fig. 6 liegt der vierte Abschnitt 208 der Membran 200 auf der sich bis zu einem zweiten Rand 198 erstreckenden ersten Stützfläche 190 an der Schließgliedanordnung 126 an. Ventilgehäuseseitig liegt der vierte Abschnitt 208 am Extremum 194 an. Die Lage von zweitem Rand 198 und Extremum 194 kann so bemessen sein, dass auch in dieser Stellung wenigstens 50% der Membranfläche von wenigstens einer der Stützflächen 190 und 192 oder der Summe der Stützflächen 190 und 192 unterstützt ist.
Durch die Anlage der Membran 200 am Extremum 194 in beiden Stellungen der
Schließgliedanordnung 126 wird der Einfluss der Verformung auf den im Klemmspalt geklemmten dritten Abschnitt 206 so gering wie möglich gehalten. Insbesondere werden quer zum Verlauf des Klemmspalts gerichtete Kräfte auf die Membran 200 vermieden, da die Membran am freien Ende des Klemmspalts weitgehend ohne Richtungsänderung verläuft. In Fig. 5 und Fig. 6 ist eine vorteilhafte Ausführung der Halterung der Membran 200 an der Schließgliedanordnung 126 dargestellt. Der fünfte Abschnitt 210 der Membran 200 ist in einem Klemmbereich 142 zwischen zwei Bauteilen der Schließgliedanordnung 126 eingeklemmt. Diese Klemmung kann im Wesentlichen in einer Ebene senkrecht zur axialen Richtung M ausgeführt sein. Zusammen mit der zweiten Stützflache 192, die gekrümmt ist und zur Mitte hin in die Ebene der Klemmung übergehend ausgeführt ist, ergibt sich eine geringe Belastung des fünften Abschnitts 210 bei Bewegung der Schließgliedanordnung 126. Mit einem an der Schließgiiedanordnung 126 vorgesehenen und umlaufenden Vorsprung 176, der in den fünften Abschnitt 210 der Membran 200 gedrückt wird, können Halterung und Abdichtung zusätzlich verbessert werden.
Die Erfindung wurde anhand eines Einsitzventils vorgestellt, ist jedoch nicht auf die Anwendung in diesem Ventiltyp beschränkt. Auch in Ventilen, die mehrere Dichtungen am Schließglied aufweisen, so genannte doppeldichte Ventile, oder in Umschaltventilen sowie in Doppelsitzventilen mit mehreren Schließgliedern ist die Erfindung sinnvoll anwendbar, um ein Schließglied gegen das Ventilgehäuse dort abzudichten, wo die
Schließgliedanordnung an den Antrieb angebunden ist. Anhand der vorgestellten Funktionsweise erschließen sich dem Fachmann auf dem Gebiet der Ventiltechnik die möglichen Anwendungen in den Ventilen der Lebensmittel- und Prozesstechnologie.
Bezugszeicheniiste
100 Ventil
102 erster Anschluss
104 zweiter Anschluss
106 Schließglied
108 Ventilsitz
110 Antrieb
112 Feder
114 Kolben
116 Distanzstück
120 Halteanordnung
126 Schließgliedanordnung
130 Drehentkopplungseinrichtung
132 erstes Entkopplungselement
134 zylindrische Aufname
136 zweites Entkopplungselement
138 zylindrischer Fortsatz
140 Sicherungselement
142 Klemmbereich
160 Ventilgehäuse
162 zweites Gehäuseteil
164 Deckel
166 Klammer
170 erste Erhebung
172 Nut
174 zweite Erhebung
176 Vorsprung in Zentralklemmung
180 Kanal
190 erste Stützfläche
192 zweite Stützfläche
194 Extrem um
196 erster Rand
198 zweiter Rand
200 Membran
202 erster Abschnitt 204 zweiter Abschnitt
206 Klemmabschnitt
208 vierter Abschnitt
210 fünfter Abschnitt
212 Zentralöffnung
214 Durchläse
220 erste Klemmspaltwand
222 zweite Klemmspaltwand
224 erste Wand
226 zweite Wand
228 erste Führungswand
230 zweite Führungswand
M axiale Richtung
V Winkel zwischen erstem und zweitem Abschnitt
W vorgeformter Winkel zwischen erstem und zweitem Abschnitt
K Winkel zwischen axialer Richtung und Klemmabschnitt
E Erstreckungsrichtung

Claims

Patentansprüche
1. Ventil (100) mit einem Ventilgehäuse (160), welches einen ersten Anschluss (102) und einen zweiten Anschluss (104) aufweist, einem Schließglied (106), welches entlang einer axialen Richtung bewegbar und in eine Schließstellung bringbar ist, in der das Schließglied (106) mit einem zwischen erstem Anschluss (102) und zweitem Anschluss (104) angeordneten Ventilsitz (108) dichtend zusammenwirkt, wodurch eine Fluidverbindung zwischen erstem und zweitem Anschluss (102, 104) unterbunden ist, einer fluidundurchlässigen Membran (200), welche eine von einer das Schließglied (106) umfassenden Schließgliedanordnung (126) durchsetzten Zentralöffnung (212) und einen in einem schräg zur axialen Richtung
ausgerichteten Klemmspalt verlaufenden Klemmabschnitt (206) umfasst und welche an der Schließgliedanordnung (126) einerseits und einer
ventilgehäuseseitigen Halteanordnung (120) andererseits mit Dichtwirkung gehaltert ist, dadurch gekennzeichnet, dass die Membran (200) einen an einem äußeren Rand befindlichen ersten Abschnitt (202) und einen sich an den ersten Abschnitt (202) radial innen anschließenden zweiten Abschnitt (204) aufweist, dass der erste Abschnitt kraftschlüssig in der Halteanordnung gehaltert ist, dass der zweite Abschnitt in der Halteanordnung geführt ist, und dass erster und zweiter Abschnitt (202, 204) derart in einem Winkel (V) zueinander angeordnet sind und die Halteanordnung so angepasst ist, dass durch ersten Abschnitt (202), zweiten Abschnitt (204) und Halteanordnung ein Formschluss gebildet ist.
2. Ventil (100) nach Anspruch 1 , dadurch gekennzeichnet, dass der Winkel (V) zwischen 60 Grad und 135 Grad beträgt.
3. Ventil (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Abschnitt (202) in einer zur axialen Richtung (M) senkrechten Ebene angeordnet ist.
Ventil (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zweite Abschnitt (204) zylindrisch mit einer Zylinderachse geformt und die Zylinderachse in axialer Richtung (M) orientiert ist.
Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Membran (200) zwischen Klemmabschnitt (206) und erstem Abschnitt (202) wenigstens einen Durchläse (214) aufweist, der mit einem in der ventilgehäuseseitigen Halteanordnung (120) ausgebildeten Kanal (180) zusammenwirkt.
Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Halteanordnung (120) einen ersten Spalt, in welchem der erste Abschnitt (202) kraftschlüssig gehaltert ist, und einen zweiten Spalt, in welchem der zweite Abschnitt (204) geführt ist, aufweist.
Ventil (100) nach Anspruch 6, dadurch gekennzeichnet, dass der erste Spalt von einer ersten Wand (224) und einer zweiten Wand (226) gebildet ist und wenigstens eine der Wände eine Struktur (170; 172) aufweist, die die Reibung der Membran (200) im Spalt erhöht.
Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass der Klemmspalt von einer ersten Klemmspaltwand (220) und einer zweiten Klemmspaltwand (222) gebildet ist und wenigstens eine der Klemmspaltwände eine Wandstruktur (174) aufweist, die die Reibung der Membran (200) im Klemmspalt erhöht.
Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass ein druckmittelbetreibbarer Antrieb (110) vorgesehen ist, welcher mit Schließgiiedanordnung (126) verbunden ist. 10. Ventil (100) nach Anspruch 9, dadurch gekennzeichnet, dass im Antrieb (110) oder zwischen Antrieb (110) und Schließgliedanordnung (126) eine
Drehentkopplungseinrichtung ( 30) angeordnet ist.
11. Ventil (100) nach Anspruch 10, dadurch gekennzeichnet, dass die
Drehentkopplungseinrichtung (130) zwischen Antrieb (110) und
Schließgliedanordnung (126) angeordnet ist und ein erstes Entkopplungselement (132) mit einer zylindrischen Aufnahme (134) umfasst, in der ein zylindrischer Fortsatz (138) eines zweiten Entkopplungselements (136) aufgenommen ist.
12. Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass zum Abstützen der Membran (200) ventilgehäuseseitig eine erste Stützfläche (190) und an der Schließgliedanordnung (126) eine zweite Stützfläche (192) vorgesehen sind.
13. Ventil (100) nach Anspruch 12, dadurch gekennzeichnet, dass in einer
Offensteliung des Ventils (100), in der eine Fluidverbindung zwischen erstem
Anschluss (102) und zweitem Anschluss (104) hergestellt ist, und der
Schließstellung des Ventils (100) die Membran (200) auf je einer der Stützflächen (190, 192) aufliegt und insgesamt zu wenigstens 50% ihrer Fläche abgestützt ist. 1 . Ventil (100) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Membran (200) eine Kompressibilität von wenigstens 20% nach ASTM F36 aufweist.
15. Membran (200) für ein Ventil (100) der Lebensmittel- oder Prozesstechnologie, welches ein Ventilgehäuse (160), eine Schließgliedanordnung (126), eine ventilgehäuseseitige Halteanordnung (120) zum Haltern der Membran (200) und einen schräg zu einer axialen Richtung verlaufenden Klemmspalt zum Klemmen der Membran (200) umfasst, wobei die Membran (200) einen zur Aufnahme im Klemmspalt geeigneten konischen Abschnitt (206) und eine von der
Schließgliedanordnung (126) durchsetzbare Zentralöffnung (212) aufweist, dadurch gekennzeichnet, dass an einem radial äußeren Rand der Membran ein erster Abschnitt (202) vorgesehen ist, an dem sich radial innen ein zweiter Abschnitt (204) anschließt, welcher in einem vorgeformten Winkel (W) zu dem ersten Abschnitt (202) steht, der so bemessen ist, dass erster Abschnitt (202) und zweiter Abschnitt (204) unter Ausbildung eines Formschlusses in der
Halteanordnung (120) aufnehmbar sind.
16. Membran (200) nach Anspruch 15, dadurch gekennzeichnet, dass der
vorgeformte Winkel (W) zwischen 60 Grad und 135 Grad beträgt.
17. Membran (200) nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass ' zweiten Abschnitt (202) wenigstens ein Durchlass (214) vorgesehen ist.
18. Membran (200) nach der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Membran (200) eine Kompressibilität von wenigstens 20% nach ASTM F36 aufweist.
PCT/EP2013/001315 2012-05-15 2013-05-03 Ventil und membran für ein ventil WO2013170931A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2015511940A JP6166362B2 (ja) 2012-05-15 2013-05-03 弁および弁用ダイヤフラム
CN201380033155.9A CN104395660B (zh) 2012-05-15 2013-05-03 阀和用于阀的膜片
ES13725567.5T ES2600483T3 (es) 2012-05-15 2013-05-03 Válvula y membrana para una válvula
IN2451MUN2014 IN2014MN02451A (de) 2012-05-15 2013-05-03
DK13725567.5T DK2850351T3 (en) 2012-05-15 2013-05-03 Valve and diaphragm for a valve
EP13725567.5A EP2850351B1 (de) 2012-05-15 2013-05-03 Ventil und membran für ein ventil
US14/401,225 US9347568B2 (en) 2012-05-15 2013-05-03 Valve and diaphragm for a valve
RU2014147379/06A RU2604467C2 (ru) 2012-05-15 2013-05-03 Клапан и диафрагма клапана
AU2013262105A AU2013262105B2 (en) 2012-05-15 2013-05-03 Valve and diaphragm for a valve
CA2873086A CA2873086C (en) 2012-05-15 2013-05-03 Valve and diaphragm for a valve
HK15108477.8A HK1207898A1 (en) 2012-05-15 2015-08-31 Valve and diaphragm for a valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012009585 2012-05-15
DE102012009585.6 2012-05-15

Publications (1)

Publication Number Publication Date
WO2013170931A1 true WO2013170931A1 (de) 2013-11-21

Family

ID=48536781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/001315 WO2013170931A1 (de) 2012-05-15 2013-05-03 Ventil und membran für ein ventil

Country Status (13)

Country Link
US (1) US9347568B2 (de)
EP (1) EP2850351B1 (de)
JP (1) JP6166362B2 (de)
CN (1) CN104395660B (de)
AU (1) AU2013262105B2 (de)
CA (1) CA2873086C (de)
DK (1) DK2850351T3 (de)
ES (1) ES2600483T3 (de)
HK (1) HK1207898A1 (de)
IN (1) IN2014MN02451A (de)
PL (1) PL2850351T3 (de)
RU (1) RU2604467C2 (de)
WO (1) WO2013170931A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215266A1 (de) * 2013-08-02 2015-02-05 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Ventileinrichtung
EP2966331A1 (de) 2014-07-10 2016-01-13 GEA Tuchenhagen GmbH Hubventil mit membran
WO2016146632A1 (de) * 2015-03-19 2016-09-22 Gea Tuchenhagen Gmbh Hubventil mit drehentkopplungseinrichtung
WO2018215229A1 (de) 2017-05-26 2018-11-29 Gea Tuchenhagen Gmbh Membrangedichtetes doppelsitzventil und antrieb
DE102017007028A1 (de) 2017-07-25 2019-01-31 Gea Tuchenhagen Gmbh Doppelsitzventil mit Membran
DE102018003658A1 (de) * 2018-05-05 2019-11-07 Gea Tuchenhagen Gmbh Prozesskomponente
DE102018008266A1 (de) 2018-10-18 2020-04-23 Gea Tuchenhagen Gmbh Prozesskomponente
EP4202267A1 (de) * 2021-12-22 2023-06-28 Gemü Gebr. Müller Apparatebau GmbH & Co. Kommanditgesellschaft Stöpsel-diaphragm für prozessventil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4090869B1 (de) * 2020-01-14 2024-03-13 GEMÜ Gebr. Müller Apparatebau GmbH & Co. Kommanditgesellschaft Ventilkörper und membranventil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171792A (en) * 1974-12-23 1979-10-23 Dresser Industries, Inc. High pressure diaphragm valves
GB2224335A (en) * 1986-05-16 1990-05-02 Nupro Co Valve
DE20211511U1 (de) * 2002-07-13 2002-12-05 Flowserve Essen GmbH, 45141 Essen Ventil
EP1553473A1 (de) * 2002-07-03 2005-07-13 Asahi Organic Chemicals Industry Co., Ltd. Fluidsteuerventil
US20070120086A1 (en) * 2004-01-29 2007-05-31 Asahi Organic Chemicals Industry Co., Ltd. Valve
EP1953436A2 (de) * 2007-02-02 2008-08-06 Millipore AB Ventildichtung
DE102007014282A1 (de) 2007-03-19 2008-10-02 Südmo Holding GmbH Ventil zum Trennen von Produktmedien in Rohrleitungen einer produktführenden Anlage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500406A (nl) 1995-03-02 1996-10-01 Asco Controls Bv Gasklep en werkwijze voor het geven van een gaspuls.
WO2006071807A2 (en) 2004-12-23 2006-07-06 Pharmenta, Inc. Sanitary drain valve
RU73439U1 (ru) * 2007-10-29 2008-05-20 Николай Павлович Попов Клапан мембранный
GB0922625D0 (en) * 2009-12-24 2010-02-10 Flexitallic Ltd A gasket

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171792A (en) * 1974-12-23 1979-10-23 Dresser Industries, Inc. High pressure diaphragm valves
GB2224335A (en) * 1986-05-16 1990-05-02 Nupro Co Valve
EP1553473A1 (de) * 2002-07-03 2005-07-13 Asahi Organic Chemicals Industry Co., Ltd. Fluidsteuerventil
DE20211511U1 (de) * 2002-07-13 2002-12-05 Flowserve Essen GmbH, 45141 Essen Ventil
US20070120086A1 (en) * 2004-01-29 2007-05-31 Asahi Organic Chemicals Industry Co., Ltd. Valve
EP1953436A2 (de) * 2007-02-02 2008-08-06 Millipore AB Ventildichtung
DE102007014282A1 (de) 2007-03-19 2008-10-02 Südmo Holding GmbH Ventil zum Trennen von Produktmedien in Rohrleitungen einer produktführenden Anlage

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215266A1 (de) * 2013-08-02 2015-02-05 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Ventileinrichtung
EP2966331A1 (de) 2014-07-10 2016-01-13 GEA Tuchenhagen GmbH Hubventil mit membran
DE102014010193A1 (de) 2014-07-10 2016-01-14 Gea Tuchenhagen Gmbh Hubventil mit Membran
EP3271623B1 (de) 2015-03-19 2020-12-16 GEA Tuchenhagen GmbH Hubventil mit drehentkopplungseinrichtung
WO2016146632A1 (de) * 2015-03-19 2016-09-22 Gea Tuchenhagen Gmbh Hubventil mit drehentkopplungseinrichtung
JP2018507997A (ja) * 2015-03-19 2018-03-22 ゲーエーアー トゥーヘンハーゲン ゲーエムベーハー 回転減結合装置を備えた玉形弁
WO2018215229A1 (de) 2017-05-26 2018-11-29 Gea Tuchenhagen Gmbh Membrangedichtetes doppelsitzventil und antrieb
US11156297B2 (en) 2017-05-26 2021-10-26 Gea Tuchenhagen Gmbh Diaphragm-sealed double-seat valve and drive
WO2019020361A1 (de) 2017-07-25 2019-01-31 Gea Tuchenhagen Gmbh Doppelsitzventil mit membran
DE102017007028A1 (de) 2017-07-25 2019-01-31 Gea Tuchenhagen Gmbh Doppelsitzventil mit Membran
US11193595B2 (en) 2017-07-25 2021-12-07 Gea Tuchenhagen Gmbh Double-seat valve having a diaphragm
WO2019215007A1 (de) 2018-05-05 2019-11-14 Gea Tuchenhagen Gmbh Prozesskomponente
DE102018003658A1 (de) * 2018-05-05 2019-11-07 Gea Tuchenhagen Gmbh Prozesskomponente
DE102018008266A1 (de) 2018-10-18 2020-04-23 Gea Tuchenhagen Gmbh Prozesskomponente
WO2020078751A1 (de) 2018-10-18 2020-04-23 Gea Tuchenhagen Gmbh Elektromagnetisches ventil
US11435007B2 (en) 2018-10-18 2022-09-06 Gea Tuchenhagen Gmbh Electromagnetic valve
EP4202267A1 (de) * 2021-12-22 2023-06-28 Gemü Gebr. Müller Apparatebau GmbH & Co. Kommanditgesellschaft Stöpsel-diaphragm für prozessventil

Also Published As

Publication number Publication date
ES2600483T3 (es) 2017-02-09
CA2873086A1 (en) 2013-11-21
DK2850351T3 (en) 2016-11-21
JP6166362B2 (ja) 2017-07-19
US20150129790A1 (en) 2015-05-14
EP2850351B1 (de) 2016-07-27
RU2604467C2 (ru) 2016-12-10
US9347568B2 (en) 2016-05-24
PL2850351T3 (pl) 2017-06-30
CA2873086C (en) 2017-04-25
CN104395660B (zh) 2017-08-25
CN104395660A (zh) 2015-03-04
AU2013262105A1 (en) 2015-01-15
JP2015520343A (ja) 2015-07-16
HK1207898A1 (en) 2016-02-12
RU2014147379A (ru) 2016-07-10
EP2850351A1 (de) 2015-03-25
IN2014MN02451A (de) 2015-07-10
AU2013262105B2 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
EP2850351B1 (de) Ventil und membran für ein ventil
EP2488776B1 (de) Druckhalteventil
CH688833A5 (de) Ventil.
DE68925264T2 (de) Elektromagnetisches Drei-Wege-Ventil
WO2014131478A1 (de) Klappenvorrichtung für eine verbrennungskraftmaschine
EP2453332B1 (de) Strömungsmengenregler
EP2580507A1 (de) Ventilanordnung
DE19960630A1 (de) Kunststoffventil
DE102014111407A1 (de) Drehschieberventil
WO2019034401A1 (de) Dichtungsanordnung
DE69406238T2 (de) Regelventil
EP3824207B1 (de) Hubventil und dichtung
EP1705411B1 (de) Schnellschaltendes pneumatisches Ventil
EP3271623B1 (de) Hubventil mit drehentkopplungseinrichtung
WO2007095952A1 (de) Ventil, insbesondere heizkörperventil, und einsatz für ein derartiges ventil
DE102009032685B4 (de) Vormontierte Ventilbaugruppe zur Verwendung in einem Turbolader
EP1703185B1 (de) Coaxialventil
EP3867550A1 (de) Ventil, insbesondere rückschlagventil
WO2019025045A1 (de) Absperrvorrichtung mit einer dichtungsvorrichtung
EP2966331B1 (de) Hubventil mit membran
DE102013226586A1 (de) Ventil mit einem Verbindungselement
DE2206827A1 (de) Regelventil mit doppeltem Sitz
EP3631258B1 (de) Membrangedichtetes doppelsitzventil und antrieb
DE102006030973B3 (de) Systemtrenner
EP3070384A1 (de) Ventil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13725567

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015511940

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2873086

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14401225

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013725567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013725567

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014147379

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013262105

Country of ref document: AU

Date of ref document: 20130503

Kind code of ref document: A