WO2013170399A1 - 棉花植物事件a2-6以及用于其检测的引物和方法 - Google Patents
棉花植物事件a2-6以及用于其检测的引物和方法 Download PDFInfo
- Publication number
- WO2013170399A1 WO2013170399A1 PCT/CN2012/000674 CN2012000674W WO2013170399A1 WO 2013170399 A1 WO2013170399 A1 WO 2013170399A1 CN 2012000674 W CN2012000674 W CN 2012000674W WO 2013170399 A1 WO2013170399 A1 WO 2013170399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cotton
- sequence
- seq
- event
- primer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention is in the field of plant molecular biology, particularly in the field of transgenic crop breeding in agricultural biotechnology research, particularly in cotton transformation events A2-6 with resistance to cotton bollworm, and a unique method for detecting such transformation events. Background technique
- Bacillus thurigiensis is a Gram-positive Bacillus capable of forming spores, which are known to produce against a variety of insects, such as Lepidopterans, Coleopterans, and Crop pests such as Dipterans are toxic parasporal crystalline proteins (Aronson, Microbiol. Rev. 50: 1-14, 1968). Due to the specificity and high selectivity of Bt toxin insecticides, they are not toxic to plants and animals including humans, and are environmentally acceptable. Therefore, the insect-resistant genes used in the currently commercialized insect-resistant transgenic crops are mainly Bt insecticidal protein genes.
- the present invention creates a novel cotton transformation event of GFM CrylA insecticidal gene, which is not only resistant to insects, genetically stable, single-copy integration, but also has clear molecular characteristics of the integrated flanking sequence, and the transgenic material is not only important in insect-resistant cotton breeding itself.
- Application value and because of the unique detection method, it is convenient to polymerize different commercial conversion events by means of hybridization polymerization.
- SUMMARY OF THE INVENTION The present inventors obtained a cotton transformation event A2-6 by a transgenic method. This transformation event has a stable high resistance to cotton bollworm traits. Its representative seeds have been deposited with the General Microbiology Center of the China Microbial Culture Collection Management Committee, and the preservation number is CGMCC No. 5965.
- the first aspect of the present invention provides a cotton transformation event A2-6 having a characteristic DNA sequence as shown in SEQ ID No: 22, which comprises a 576-6164 bp T-DNA insertion sequence, a 1_575 bp upstream flanking cotton genomic sequence and a The 6165 ⁇ 6586 bp downstream flanking cotton genome sequence constitutes.
- a second aspect of the invention provides a fragment of a characteristic DNA sequence of a cotton transformation event according to the first aspect of the invention, the fragment comprising at least a portion of the T-DNA insertion sequence and a portion of the flanking cotton genomic sequence.
- a third aspect of the invention provides a recombinant vector comprising the T-DNA insertion sequence of the first aspect of the invention.
- the carrier is the T66-35S-0K-Bt-PS-Tnos-2300 carrier of Figure 1.
- a fourth aspect of the invention provides a recombinant cell comprising the recombinant vector of the third aspect of the invention.
- the recombinant cell is a recombinant Agrobacterium cell comprising the vector of the third aspect of the invention.
- a fifth aspect of the invention provides a primer pair for detecting a cotton transformation event according to the first aspect of the invention, which comprises a first primer and specificity for specifically recognizing a flanking sequence of either side of the first aspect of the invention
- the second primer composition of the T-DNA insert of the first aspect of the invention is identified.
- the sequence of the first primer is SEQ ID NO: 18 or SEQ ID NO: 20
- the sequence of the second primer is SEQ ID NO: 11 or SEQ ID NO: 14.
- the sequence of the first primer is SEQ ID NO: 19 or SEQ ID NO: 21
- the sequence of the second primer is SEQ ID: 12 or 8. ID NO: 15.
- a sixth aspect of the invention provides a method for identifying an A2-6 transformation event in a cotton biological sample, comprising: (a) extracting a DNA sample from the cotton biological sample to be identified;
- a seventh aspect of the invention provides a method for transferring a cotton transformation event according to the first aspect of the invention to a different cotton breeding material, comprising: using a cotton material comprising the conversion event material of the first aspect of the invention, and other cotton After the breeding material is hybridized, further backcrossing is performed to obtain a new material containing the transformation event of the first aspect of the invention; during the hybridization and backcrossing, the method of the sixth aspect of the invention is used for screening and identification in the progeny population The presence of the transformation event of the first aspect of the invention is confirmed.
- the eighth aspect of the present invention provides the transformation event of the first aspect of the invention, the fragment of the second aspect of the invention, the vector of the third aspect of the invention or the recombinant cell of the fourth aspect of the invention, the invention
- the methods of the sixth and seventh aspects are for the use of cotton against cotton bollworm traits, for cotton breeding or for use as molecular markers.
- BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the construction of a plant expression vector T66-35S-0K-Bt-PS-Tnos-2300.
- Figure 2 shows the results of hybridization of the Southern blot analysis technique with digoxin-labeled DNA complementary to the Bt gene coding sequence.
- Figure 3 shows the results of an experiment using the Southern hybridization technique to detect the copy number of the conversion event A2-4.
- M marker, ⁇ DNA/HindIII+EcoRI; l, CK+, T66-35S—0K—Bt—PS—Tnos-2300/EcoRI+HindIII; 2, CK-, J14/EcoRI; 3, A2- 6/EcoRI; 4, A2- 6/HindIII; 5, A2- 6/EcoRI+HindIII.
- Figure 4 is a schematic diagram of the side sequence of the right border (RB).
- Figure 5 is a schematic diagram of the side of the left border (LB).
- Fig. 6 shows an amplification product having a size of about 800 bp amplified by using a primer pair of SEQ ID No: 18 and SEQ ID No: 19 using the receptor material ⁇ 14 DNA as a template, and sequencing and sequencing. The result of the alignment of the flanking sequence of A2-6.
- Figure 7 is a schematic representation of the insertion sequence of the A2-6 event and the identification of the primer.
- Figure 8 shows the use of primer pairs GSPl- ⁇ z'/xi ⁇ ⁇ / ⁇ 2-6-1 and GSP1- KI III/A2-6-2
- M marker, ⁇ DNA /Hindll I+EcoRI
- 1-4 GSPl-Nind III/ A2- 6-1 amplification A26-5, A2- 6, ⁇ cotton 14-1, ⁇ cotton 14-2, positive expansion Adding band about 3.5Kb
- 5-8 GSPl-# /7d ⁇ / ⁇ 2- 6-2 amplification A26- 5, A2- 6, ⁇ cotton 14-1, ⁇ cotton 14-2, positive amplification band Around 3.5Kb.
- transformation event refers to the transformation of an exogenous gene of interest into a cotton cell by an Agrobacterium-mediated genetic transformation method (known to those skilled in the art), and further obtained from a transgenic cotton plant.
- Example 1 Construction of plant expression vector
- the 35S promoter containing the double enhancer was amplified from the vector pCambia2300, and both ends were carried with Xba I and BaiM I, and the primer sequences were as shown in SEQ ID No: 1 and SEQ ID No: 2.
- the PCR product was digested and cloned into pMD.
- 18T a pMD-35S recombinant vector was obtained.
- the SSR sequence TMB0066 which has a large number of topoisomerase recognition sites from cotton genes, was cloned, and a plant expression vector with TMB0066 as AR sequence was constructed to increase the integration efficiency of the inserted sequences.
- the TMB0066 sequence is shown in SEQ ID No: 3. The two ends were introduced with ⁇ /?d III and ba l sites, and cloned into pMD-35S to obtain the recombinant vector pMD- TMB0066-35S.
- a fragment containing OK (Omega & Kozak) - Bt-PS (Processing & Splicing sequence) (the three sequences are disclosed in Chinese Patent No. 95119563.8, the entire disclosure of which is incorporated herein by reference)
- the OK-Bt ⁇ PS fragment was digested with Bani ⁇ I and Setc I and cloned into pMD_18T to obtain the recombinant plasmid pMD-OK-Bt-PS.
- the terminator Tnos sequence was cloned downstream of the PS by SacI+fcoR I.
- TMB0066-35S was cloned upstream of 35S using ⁇ lll+BaiM I to obtain the recombinant plasmid pMD- TMB0066-35S- 0K-Bt-PS-Tnos.
- Hind III and £coR I will TMB0066-35S-0K-Bt-PS-Tnos was cloned into vector pCambia2300 to obtain recombinant plant expression vector T66-35S-0 -Bt-PS-Tnos-2300.
- the construction process is shown in Figure 1.
- Agrobacterium LBA4404 containing T66-35S-OK-Bt-PS-Tnos-2300 vector was picked and inoculated to kanamycin (km) 50 mg/L rifampicin (rif) 50 mg/L And streptomycin (S/Sm) 50 mg / L in LB liquid medium, shake culture at 28 ° C overnight to the logarithmic phase of bacterial growth. 0 ⁇ 8 ⁇ 0. 8 ⁇ 1. 0 ⁇ The broth was diluted with the LB or YEB liquid medium, and then incubated for 4 to 6 h, the bacterial solution was diluted to 0D600 value 0. 8 ⁇ 1.
- the transgenic receptor material is ⁇ cotton 14, and the hypocotyl hypocotyls grown for 3 to 4 days are cut into 0. 6 ⁇ 0. 8cm segments, dip 1 (T15 min, hypocotyl segments are removed, co-cultured)
- the medium (MSB + KT 0. 1 mg/L + 2, 4- DO. 1 mg/L) was co-cultured for 2 days at 22 °C ⁇ 25 °C.
- Transfer to callus induction medium (MSB + KT 0. 1 mg/L + 2, 4- DO. 1 mg/L+Kan50mg/L)
- Subculture once every 20 ⁇ 30 days, transfer to callus proliferation medium after 90 days (MSB+KT 0. 1 mg/L + 2 , 4-D0.
- Elisa and insect resistance tests of insect resistance proteins were carried out at seedling, flowering, bud and bell stage, respectively. According to Elisa detection at seedling stage, there were 125 transgenic cotton with high expression of insect resistance protein. After the insect resistance test, there were 94 strains resistant to cotton bollworm, and 25 strains with strong resistance to cotton bollworm.
- P+ PCR positive plants.
- a total of 14 cotton events were selfed and crossed with other cotton cultivars (LG6035, LG6036, LG6101, LG6118, LG6162), and the inbreds and hybrids were harvested separately.
- the harvested seeds are sown, and for the T1 generation (or F1 generation) cotton plants, the top second true leaves are selected at the 4-leaf stage, and the leaves are smeared with 2000 ppm kanamycin solution, and the leaves are preserved after 7 days of kanamycin treatment.
- the F1 hybrid numbering format is "AXB-m". "A” is the cotton material as the female parent, “B” is the cotton material as the male parent, and “m” is the single plant number;
- the T1 self-interest numbering format is "A-m", "A” is a self-intersecting cotton material, “m” is the number of self-crossing progeny, “(1)” means no trial repetition, otherwise it is the average of three repetitions.
- the purpose of hybridization in the foregoing Example 4 is to transfer the transformation event to other cotton breeding materials, followed by further backcrossing, to obtain a new agronomic trait consistent with the backcross parent and containing the transformation event to accelerate The process of breeding applications.
- the method of identifying the leaves by using the kanamycin solution described above or the detection method of the embodiment 8 of the present invention is screened and identified in the progeny population to confirm the existence of the transformation event. . If the conversion event is found to be lost, it will be eliminated.
- the backcross generation number format is "AX B BCmFl-x- y".
- A is the cotton material of the F1 generation as the female parent
- B is the cotton material of the F1 generation for the male parent.
- the numbered material starting with LG is the back-crossing parent;
- BC means the backcross, "m” For the backcross generation;
- _x-y is the number of the plant;
- Detection of copying event A2- 6 copy number by Southern hybridization Sample preparation Take the transformation event A2- 6 TO generation young plant tissue about 4.0g, extract plant genomic DNA, the specific steps are as follows: Grind into powder form in liquid nitrogen. Pre-heat the extraction buffer 15ml in a 65 ° C water bath, grind into a uniform powder, add to the extraction buffer, shake the hook, 65 ° water bath for 45 min, shake 2 - 3 times, fully lysed.
- the precipitate was drained and dissolved in 500 ul of sterilized water.
- the DNA sample was treated with 1/10 volume of RNase at 37 °C for 30 min ; 1/10 volume of 3 mol/L NaAc (pH 5.2) was added, and 2 volumes of absolute ethanol were mixed.
- Probe preparation The plasmid containing the ⁇ -Bt gene was used as a template, and the 0KF and BtR primers (the sequences are shown in SEQ ID No: 4 and SEQ ID No: 5) were used to prepare a high-zinc-labeled specific probe by PCR.
- the PCR system is as follows:
- Implicit ol/L dTTP, other dNTP concentrations are 2 mmol/L) ⁇ . ⁇ 1
- Hybridization test Put the nylon membrane into the hybridization tube, add a certain volume of the hybridization solution (10ml/100cm2), 65°C, pre-hybridization; T4h ; 95°C denatured DIG-labeled probe (25ng/ml) lOmin, quickly set The lOmin was completely cooled in ice water; the denatured probe was quickly added to the hybridization tube (3.5 ml/100 cm2 membrane), mixed, and hybridized overnight (>10 h) at 65 °C. The nylon membrane was taken out and the membrane was washed. Wash at room temperature for 2 x 5 min with 30 ml of 2XSSC / 0.1% SDS.
- 0.1XSSC I 0.1% SDS was washed by shaking for 2 ⁇ 15 min, and the membrane was transferred to a solution containing 20 ml of washing buffer to wash 5 ⁇ .
- the membrane is immersed in the washing buffer for 1 ⁇ 5min ; 20 ⁇ 30ml in the blocking solution for 30min ; incubated in the antibody solution for 30min; washed with 20 ⁇ 30ml washing solution for 2X 15min; 15ml in the detection solution ⁇ 5min; now with 20ml chromogenic substrate (NBT/BCIP) in the dark to stand the color; 50ml sterilized water or TE wash film for 5min to stop color development, photo preservation.
- NBT/BCIP chromogenic substrate
- Genomic DNA of cotton material containing A26-5 transformation event was extracted by plant DNA extraction method known to those skilled in the art, and 2.5 g of DNA was taken and digested with fcoR I, Hind III for 6 to 8 hours, respectively, after purification by alcohol precipitation. Add appropriate amount of water to dissolve.
- Connector According to the analysis of the vector cleavage site, two pairs of connectors are designed and synthesized:
- GenomeWalker Adaptor + Ecc I GenomeWalker Adaptor + EccR I (sequence as SEQ ID NO: 1
- GSP1-Nind III (sequence as shown in SEQ ID No: 10, SEQ ID No: ll, SEQ ID No: 12), using the ligation product as a template, performing the first round of amplification: 7 cycles: 94 ° C 25S, 72 ° C 6 min; 32 cycles: 94 ° C 25 S, 67 ° C 6 min; after the last cycle and then kept at 67 ° C for 7 minutes.
- the second round of PCR amplification was performed using AP2 and GSP2- £ oR I, GSP2- ind III (sequence as shown in SEQ ID No: 13, SEQ ID No: 14, SEQ ID No: 15).
- the PCR procedure was as follows: 5 cycles: 94 ° C 25S, 72 ° C 5 min ; 20 cycles: 94 ° C 25 S, 67 ° C 5 min; after the last cycle and then at 67 ° C for 10 minutes. Product recovery was sequenced.
- the right border (RB) end sequence analysis of the A2-6 event is shown in Figure 4.
- sequence SEQ ID No: 16 A total of 1773 bp nucleotide sequence (sequence SEQ ID No: 16) was obtained, including a lp ⁇ 575 bp cotton genomic sequence, 578 bp ⁇ 709 bp is the vector sequence between RB and TMB0066, the 710 bp ⁇ Gu bp is the T0066 sequence, and the 1039 bp ⁇ 1773 bp is the CaMV 35S sequence.
- Cotton DNA (412 bp) Using the receptor material ⁇ cotton 14 DNA as a template, primers were designed for the RB and LB flanking cotton genome sequences of the A2-6 insertion sequence (sequences such as SEQ ID No: 18, SEQ ID No: As shown in Fig. 19, an amplification product having a size of about 800 bp was amplified, and after sequencing, it was found to be aligned with the flanking sequence of A2-6, and the A2- 6 event was obtained by replacing the 116 bp base of the original genomic sequence by the insertion sequence. The comparison results are shown in Figure 6.
- the underlined portion shows the T-DNA insertion sequence
- the un-underlined portion shows the flanked cotton genomic DNA sequence of the inserted sequence.
- AAAATTATTA AAATATTATA TTTTTTAAAT TAAACTTTTT TAAAAAAATA AAATATATTT
- AAAAATTTAA AGAGCTCGAA TTTCCCCGAT CGTTCAAACA TTTGGCAATA AAGTTTCTTA
- PCR amplification is performed using a DNA primer pair to detect an A2-6 event, the primer pair being a first primer that specifically recognizes the T-DNA insert of the present invention and a second primer that specifically recognizes any flanking sequence of the inserted sequence composition.
- the insertion sequence of the A2-6 event and the schematic diagram of the identification primer are shown in Fig. 7.
- the second primer when the first primer is A2- 6-3 (SEQ ID NO: 20) or A2-6-4 (SEQ ID NO: 18), the second primer may be GSP1-EcoR I (SEQ ID NO: 11) Or GSP2- EcoR l (SEQ ID NO: 14); when the first primer is A2-6-1 (SEQ ID NO: 21) or A2- 6-2 (SEQ ID NO: 19), the second primer may be GSP1- ' ⁇ (SEQ ID NO: 12) or GSP2- Hindill (SEQ ID NO: 15).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Botany (AREA)
- Mycology (AREA)
- Insects & Arthropods (AREA)
- Pest Control & Pesticides (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了抗棉铃虫的棉花转化事件及其特征序列以及用于其检测的引物和方法。携带A2-6转化事件的棉花植物在第一组染色体上包含所述事件即外源插入DNA序列和棉花基因组DNA序列的接合。利用外源插入DNA序列及其侧翼棉花基因组上接合区的DNA序列,可设计检测引物,用于针对A2-6事件的特异性检测。针对A2-6事件的检测方法可为利用该植物事件进行育种的应用提供便捷的追踪该特定基因插入事件的手段,该特定基因插入事件可作为分子标记使用以提高育种工作效率。
Description
棉花植物事件 A2-6以及用于其检测的引物和方法
技术领域 本发明属于植物分子生物学领域, 尤其是农业生物技术研究中的转基因农作 物育种领域, 特别是涉及具有棉铃虫抗性的棉花转化事件 A2-6, 以及检测该转化 事件的特有方法。 背景技术
在世界范围内, 虫害给农业生产带来了较大的损失。 传统采用化学杀虫剂的 防治技术, 在传统农业实践中发挥了巨大的作用。 但是, 这种虫害防治技术存在 很大的弊端, 一方面, 大量有毒化学农药的使用, 不仅污染环境, 而且易残留, 严重威胁人们健康; 另一方面, 化学农药长期大量使用还能够造成害虫的抗药性, 导致虫害的爆发。 例如, 上世纪 90年代初, 由于棉铃虫抗药性的发展, 导致我国 棉铃虫的大爆发, 使我国各大棉区大幅度减产甚至绝产。
目前, 转基因技术为解决虫害给棉花生产造成严重危害这一世界性难题提供 了可行方案。 人们也通过选择种植转基因抗虫作物防治某类虫害。 苏云金芽孢杆 菌 (Bacillus thurigiensis,下文简称为 Bt)是一种能形成芽孢的革兰氏阳性芽孢杆菌, 已知其可产生对多种昆虫, 如鳞翅目(Lepidopterans)、 鞘翅目(Coleopterans)和双翅 目(Dipterans)等作物害虫有毒性的伴孢结晶蛋白质 (Aronson, Microbiol. Rev. 50: 1-14, 1968)。 由于 Bt毒素杀虫的专一性和高度选择性, 所以对植物和包括人在内 的动物没有毒害, 而且是环境可以接受的。因此, 目前商业化应用的抗虫转基因农 作物所使用的抗虫基因主要是 Bt杀虫蛋白基因。
1995年, 郭三堆等人采用植物优化密码子, 人工合成了 GFM CrylA杀虫基因 (ZL95119563.8), 随后导入到数个中国主产棉区的主栽品种中, 获得抗虫棉, 并在 1997年进行了产业化应用。 孟山都公司获得的 Mon531抗虫棉花转化事件在 1996 年进行了商业化;随后孟山都公司又获得的 Monl5985双 Bt抗虫棉花转化事件(中 国专利申请号 02802047.2, 审中), 已经在全球进行了商业化。 通过转化事件专利 对转基因农作物进行知识产权保护是目前国际上的一个新趋势, 因为一个进入商 业化的转化事件是发明人通过筛选鉴定而获得的生物类的独特创造, 外源基因与 受体作物基因组特定位置的整合, 不仅使转化事件具备独特的分子特征, 而且具
有独特的外源基因表达规律, 区别于研究过程中获得的其它转化事件, 具有相比 较更适合商业化应用的特征特性, 因此具有明显的新颖性、 实用性和创造性。 目 前, 国际上已有商业化的转化事件获得了知识产权保护, 均为跨国公司所拥有, 部分在中国也申请了专利。
在我国早期的抗虫棉研究中, 由于转化手段的限制, 所获得的抗虫棉存在整 合拷贝数和整合位置不确定的情况, 在育种中转基因性状不容易把握, 不同育种 家选育的抗虫棉品种抗虫性差异较大。 同时, 由于不能获得转化事件基因整合侧 翼序列的分子特征, 不便于进一步新的转基因性状聚合, 使其进一步应用出现局 限性。 因此, 本发明创造出 GFM CrylA杀虫基因新型棉花转化事件, 不仅抗虫性 强, 遗传稳定, 单拷贝整合, 而且整合侧翼序列分子特征清楚, 该转基因材料不 但本身在抗虫棉育种中具有重要应用价值, 而且由于具有独特的检测方法, 可方 便地通过杂交聚合的方式聚合不同的商业化转化事件。 发明内容 本发明人通过转基因方法获得了棉花转化事件 A2- 6。 该转化事件具有稳定的高抗棉 铃虫性状。 其代表性种子己保藏于中国微生物菌种保藏管理委员会普通微生物中心, 保 藏编号为: CGMCC No. 5965。
本发明第一方面提供棉花转化事件 A2- 6, 其特征 DNA序列如 SEQ ID No: 22所示, 其由第 576-6164 bp的 T-DNA插入序列、第 1_575 bp上游侧翼棉花基因组序列和第 6165〜 6586 bp的下游侧翼棉花基因组序列构成。
本发明第二方面提供本发明第一方面所述的棉花转化事件的特征 DNA序列的片段, 所述片段至少包含部分所述 T-DNA插入序列和部分所述侧翼棉花基因组序列。
本发明第三方面提供一种重组载体,其含有本发明第一方面所述的 T- DNA插入序列。 在一个实施方案中, 所述载体为附图 1中的 T66-35S-0K-Bt-PS- Tnos- 2300载体。
本发明第四方面提供一种重组细胞, 其含有本发明第三方面所述的重组载体。 在一 个实施方案中, 所述重组细胞为含有本发明第三方面所述的载体的重组农杆菌细胞。
本发明第五方面提供用于检测本发明第一方面所述的棉花转化事件的引物对, 其由 特异性识别本发明第一方面所述的任一侧的侧翼序列的第一引物和特异性识别本发明第 一方面所述的 T-DNA插入序列的第二引物组成。 在一些实施方案中, 所述第一引物的序 列为 SEQ ID NO: 18或 SEQ ID N0: 20,所述第二引物的序列为 SEQ ID NO: 11或 SEQ ID NO: 14。
在另一些实施方案中, 其中所述第一引物的序列为 SEQ ID N0: 19或 SEQ ID N0: 21, 所述 第二引物的序列为 SEQ ID :12或8£。 ID NO: 15。
本发明第六方面提供一种鉴定棉花生物样品中 A2-6转化事件的方法, 其包括: (a) 从待鉴定的棉花生物样品提取 DNA样品;
(b) 以提取的 DNA样品为模板,使用本发明第五方面所述的引物对进行 PCR扩增;
(c) 检测 PCR扩增产物, 如果扩增产物长度与 SEQ ID NO: 22上所述 PCR引物对的 序列之间的理论长度一致, 则表明所述棉花生物样品中 A2-6转化事件的存在。
本发明第七方面提供了本发明第一方面所述的棉花转化事件向不同棉花育种材料中 转移的方法, 包括: 利用含有本发明第一方面所述的转化事件材料的棉花材料, 与其它 棉花育种材料进行杂交后, 进一步进行回交, 获得含有本发明第一方面所述的转化事件 的新材料; 在杂交及回交过程中, 利用本发明第六方面的方法在后代群体中进行筛选鉴 定, 确认本发明第一方面所述的转化事件的存在。
本发明第八方面提供本发明第一方面所述的转化事件、本发明第二方面所述的片段、 本发明第三方面所述的载体或本发明第四方面所述的重组细胞、 本发明第六和第七方面 所述方法用于提高棉花抗棉铃虫性状、 进行棉花育种或用作分子标记的用途。 附图说明 图 1示出了植物表达载体 T66- 35S-0K- Bt-PS- Tnos- 2300的构建流程。
图 2示出了 Southern印迹分析技术与互补于 Bt基因编码序列的地高辛标记的 DNA 进行杂交的结果。
图 3示出了利用 Southern杂交技术对转化事件 A2- 6拷贝数进行检测的实验结果。 M, marker, λ DNA/HindIII+EcoRI; l,CK+, T66-35S—0K— Bt—PS— Tnos-2300/EcoRI+HindIII; 2, CK -, J14/EcoRI ; 3, A2- 6/EcoRI; 4, A2- 6/HindIII; 5, A2- 6/EcoRI+HindIII。
图 4是右边界 (RB)旁侧序列示意图。
图 5是左边界 (LB)旁侧序列示意图。
图 6示出了以受体材料冀棉 14 DNA为模板, 使用序列分别为 SEQ ID No : 18和 SEQ ID No : 19的引物对, 扩增得到大小为 800bp左右的扩增产物, 测序后与 A2-6的旁侧序列比 对的结果。
图 7是 A2-6事件的插入序列及鉴定引物的示意图。
图 8示出了利用引物对 GSPl-^z'/xi Π Ι/Α2-6- 1以及 GSP1- KI I I I/A2-6- 2分别扩
增 A26- 5事件、 A2- 6事件、冀棉 14-1、冀棉 14-2的棉花样品的结果。 M, marker, λ DNA /Hindll I+EcoRI; 1-4: GSPl-Nind III/ A2- 6-1 扩增 A26-5, A2- 6, 冀棉 14-1, 冀棉 14-2, 阳性扩增条带 3.5Kb左右; 5-8: GSPl-# /7d ΠΙ/Α2- 6-2扩增 A26- 5, A2- 6, 冀棉 14-1, 冀棉 14-2, 阳性扩增条带 3.5Kb左右。 具体实施方式 在本发明中, "转化事件"是指将外源目的基因通过农杆菌介导遗传转化方法(本领 域技术人员公知), 转化到棉花细胞中, 并进一步获得的转基因棉花植株中外源 DNA序列 在棉花基因组中的特定位置插入并整合的事件; "转化事件"并不是一种植物细胞或植株, 植物细胞或植株是转化事件存在的载体; 转化事件的核心特征是外源基因在植物基因组 中特定位点的插入所形成的外源插入序列和特定棉花基因组序列连接的一段特征 DNA序 列。 实施例 下面结合非限制性实施例对本发明进行进一步说明。 实施例 1. 植物表达载体构建
从载体 pCambia2300扩增含双增强子的 35S启动子, 两端分别带 Xba I和 BaiM I, 引物序列如 SEQ ID No:l及 SEQ ID No:2所示, PCR产物经酶切后克隆到 pMD- 18T中, 得 到 pMD- 35S重组载体。 为了增加表达框的重组率, 克隆来自棉花基因具有大量拓扑异构 酶 Π识别位点的 SSR序列 TMB0066, 构建以 TMB0066为 AR序列的植物表达载体, 增加 插入序列的整合效率。 TMB0066序列如 SEQ ID No:3所示。 其两端分别引入^ /?d III和 ba l位点, 克隆到 pMD-35S, 得到重组载体 pMD- TMB0066-35S。
将含 OK (Omega & Kozak) - Bt- PS (Processing & Splicing sequence) 片段 (三者 序列已在专利号为 95119563.8的中国专利中公开,该专利公开以引用的方式全文纳入本 文) 组合的质粒, 利用 Bani\ I和 Setc I酶切 OK- Bt~PS片段, 将其克隆到 pMD_18T中, 获得重组质粒 pMD- OK- Bt- PS。 将终止子 Tnos序列通过 SacI+fcoR I克隆到 PS下游。 利 用 Ηίηά lll+BaiM I 将 TMB0066- 35S 克隆到 35S 上游, 得到重组质粒 pMD- TMB0066-35S- 0K-Bt-PS- Tnos 。 利 用 Hind III 和 £coR I , 将
TMB0066-35S-0K-Bt-PS-Tnos 克隆到载体 pCambia2300 中, 获得重组植物表达载体 T66-35S-0 -Bt-PS-Tnos-2300 , 构建流程见图 1。 实施例 2. 陆地棉 (Gossypium hirsutum) 的遗传转化:
利用农杆菌介导的遗传转化方法,用 T66-35S-0K- Bt- PS-Tnos-2300载体转化冀棉 14
(国家棉花中期库, 获取单位中国棉花研究所, 统一编号: ZM-30270) 下胚轴。
挑取含有 T66-35S- OK-Bt- PS- Tnos-2300载体的农杆菌 LBA4404, 接种至含卡那霉素 (kanamycin, km) 50 mg/L 利福平(rifampicin, rif) 50 mg/L及链霉素(streptomycin, S/Sm) 50 mg/L的 LB液体培养基中, 28°C振荡暗培养过夜到细菌生长对数期。 以菌液: 培养基 1 : 50〜1: 100的比例用 LB或 YEB液体培养基稀释菌液, 再振荡培养 4~6 h, 将 菌液稀释至 0D600值 0. 8〜1. 0。
转基因受体材料为冀棉 14,取生长 3〜4天的无菌苗下胚轴,切成 0. 6〜0. 8cm的段, 浸染 1(T15 min, 取出下胚轴段, 置共培养培养基 (MSB +KT 0. 1 mg/L + 2, 4- DO. 1 mg/L), 22 °C ~25 °C共培养 2 天。 转至愈伤诱导培养基 (MSB + KT 0. 1 mg/L + 2, 4- DO. 1 mg/L+Kan50mg/L) 20〜30天继代一次, 90天后转接至愈伤增殖培养基(MSB+KT 0. 1 mg/L + 2, 4-D0. 05 mg/L+Kan50mg/L), 20〜30天继代一次, 待长出胚性愈伤后, 将胚性愈伤继 代至萌发培养基 (MSB+KT 0. 1 mg/L+Kan50mg/L), 40天左右挑取萌发的绿芽至生根培 养基(SH+Kan50mg/L)进行筛选, 进而获得小苗和可嫁接抗性植株 268株。 抗性植株经 过 PCR鉴定后嫁接并移栽, 获得 A系列棉花共 210株。 实施例 3. T0代转基因材料的筛选鉴定:
分别对苗期、 花期、 蕾期及铃期进行抗虫蛋白的 Elisa检测及抗虫试验。 根据苗期 Elisa检测, 抗虫蛋白高表达的转基因棉花有 125株。经过抗虫试验, 对棉铃虫有抗性的 有 94株, 其中对棉铃虫抗性较强的有 25株。
PCR Elisa苗 Elisa蕾 Elisa花 Elisa铃 虫试次数 抗虫性
A6-2 P+ 0. 323 0. 181 0. 21 0. 085 6 R
A7-2 P+ 0. 223 0. 321 0. 141 0. 129 6 R
A2-1 P+ 0. 162 0. 151 0. 245 0. 115 6 R
A1-1 P+ 0. 421 0. 294 0. 207 0. 101 6 N
A4-4 P+ 0. 311 0. 135 0. 151 0. 096 6 N
A4-3 P+ 0. 292 0. 202 0. 166 0. 119 6 N
A5-1 P+ 0. 278 0. 112 0. 261 0. 117 6 N
A4-5 P+ 0. 207 0. 096 0. 128 0. 101 6 N
OAz/es6ii 6oD/ldlN/sioz s-
g oo
A15-15 P+ 1. 278 4 N
A27-3 P+ 0. 492 3 N
A10-8 P+ 0. 481 4 N
A20-12 P+ 2. 094 3 HR-
A27-7 P+ 0. 784 3 HR-
A30-1 P+ 2. 091 3 HR
A30-3 P+ 2. 087 3 HR
A35-2 P+ 2. 085 4 HR
A32-1 P+ 2. 074 3 HR
A27-2 P+ 1. 088 3 HR
A20-13 P+ 2. 131 2. 106 4 R
A40-3 P+ 2. 127 2. 105 4 R
A26-15 P+ 2. 125 4 R
A20-19 P+ 2. 12 2. 122 4 R
A27-11 P+ 1. 777 4 R
A40-2 P+ 2. 14 2. 11 4 HR
A30-4 P+ 2. 124 4 R
A27-9 P+ 1. 994 4 R
A27-10 P+ 0. 736 4 R
A40-6 P+ 2. 115 4 HR
A34-2 P+ 2. 113 4 HR
A41-9 P+ 2. 142 4 R
A37-3 P+ 2. 138 4 R
A40-11 P+ 2. 135 3 R
A27-12 P+ 2. 13 4 R
A34-4 P+ 2. 128 4 R
A42-1 P+ 2. 101 4 R
A27-14 P+ 2. 056 3 R
A27-13 P+ 1. 849 4 R
A36-4 P+ 1. 732 4 R
A42-2 P+ 1. 204 4 R
A36-3 P+ 1. 126 4 R
A41-7 P+ 2. 113 4 HR-
A41-3 P+ 2. 134 4 HR
A41-8 P+ 2. 128 4 HR
A41-4 P+ 2. 123 4 HR
A34-3 P+ 2. Ill 4 HR
A34-5 P+ 0. 973 4
A40-8 P+ 2. 116 3 R
A43-1 P+ 1. 892 3 R
A37-5 P+ 1. 014 3 N
A37-8 P+ 0. 938 3 N
A37-6 P+ 0. 371 3 N
A40-7 P+ 2. 112 3 HR
A30-5 P+ 2. I ll 3 HR
A40-9 P+ 2. 101 3 HR
A30-6 P+ 2. 084 3 HR
P+: PCR阳性植株。
抗虫性分析: N: 无抗性; R: 有抗性; HR/HR-: 较强抗性
结合 Elisa结果及抗虫试验结果选择 22个抗虫性较强的材料进行 Southern分析。 对于 Southern分析, 并结合植株育性情况, 从棉花组织提取 DNA, 用 EcoRI进行消化, 并利用 Southern印迹分析技术与互补于 Bt基因编码序列的地高辛标记的 DNA进行杂交, 结果如图 2所示, 筛选出 13个单拷贝棉花事件进行进一步筛选。 实施例 4. F1代或 T1代转基因材料的筛选鉴定:
收取 A19- 2、 A2- 6、 A3- 6、 A3 - 7、 A6-7、 A7- 6、 A9- 7、 A10- 5、 All- 1、 A19- 5、 A19- 7、 A19-8、 A20- 8、 A26- 5共 14个棉花事件分别自交并与其它棉花栽培种(LG6035、 LG6036、 LG6101、 LG6118、 LG6162) 杂交, 分别收获自交种及杂交种。 将收获的种子播种, 对 T1 代(或 F1代)棉花植株, 于 4叶期选择顶部第二片真叶, 以 2000ppm卡那霉素溶液进行 叶片涂抹筛选, 保留卡那霉素处理 7天后叶片不变色的植株, 分别于苗期、 蕾期、 花期 进行 Elisa检测及抗虫试验。 抗虫试验分别摘取倒二叶, 接虫 12头, 每样品设置一个重 复, 于 5日后观察结果, 与对照进行比较, 计算校正死亡率。 计算公式如下:
平均死亡率(% ) = 死亡率 1 +死亡率 2 X 100%
12x2
^ ^ 平均死亡率-对照平均死亡率
校正死亡率( % ) = X 100%
、 ) 100-对照平均死亡率
植株编号说明:
F1代杂交编号格式为 "AXB-m"。 "A"为作为母本的棉花材料, "B"为作为父本的棉 花材料, "m"为单株编号;
T1 自交编号格式为" A- m", "A"为自交的棉花材料, "m"为自交后代单株编号, "(1)" 表示没有进行试验重复, 否则为三次重复的平均数据;
结果如下:
(1)苗期结果:
棺株编号 Elisa 楮株编号 El isa 柃 TF死
A2-6xI.Gfi1fi2-1 2.09 77.78 LG6101xA6-7-12 2.023 57.14
A2-6xLGfi1fi2-2 I.rTfiini Afi-7-n 2.069 S7.14
A2-fixLG6036-l 2.046 66.67 2.084 71.43
A2-6xLGfi03fi-2 2.049 77.78 LGfil l Afi-7-17 2.058 61.9
Α2-6χΙΓτ71 0-1 2.02 50 ΙΓτ6101χΑ6-7-19 2.073 57.14
A2-fixLG71 0-2 2.048 77.78 ΙΓτ6101χΑ6-7-21 2.078 52.38
Α2-6χΙ.Γτ71 0-3 2.04 72.22 I.f,fi101xAfi-7-24 2.058 80.95
A2-6xLGfil01-l 2.084 94.44 A6-7xLG6118-3 1.59 52.94
A2-fixLGfi101-2 2.064 61.11 Α6-7χΙ ,6118-4 1.939 5.88
A2-fixI.Gfi101-3 2.097 88.89 LG6035xA7-6-l 2.056 65
LG6101xA3-6-50 1.972 50 LG6101xA20-8-28 2.043 23.53
ΙΓτ6101χΑ -6-51 1 - 958 22.22 T.rTfiinixA20-8-29 ?..02B 17.(54
2.06 68.75 I.r,fi101xA20-8-30 1.943 5.88
Ι,Γτ6118χΑ6-7-1 2.014 38.1 I.G6101 A20-8-33 2.046 17,64
ΙΓτ6118χΑ6-7-2 2.009 52.38 I.f,fiinixA20- -34 2.039 29.41
ΙΓτ6118χΑ6-7-3 1.59 90.48 LGfil01xA20-8-35 2.042 11.76
ΙΓτ6118χΑ6-7-4 1.939 90.48 I.r,fi101xA20-8-3fi 2.034 1 .64
2.027 38.1 I.G6101xA20-8-37 2.067 23.53
ΓΓτ6101 Α6-7-4 1.517 57. 14 I.r,fi101xA20-8-38 2.042 5- 88
ΪΓτ6101 Α6-7-5 1.92 fifi. fi7 T.G6101xA20-8-41 2.033 17.64
1Γτ6101 Α6-7-6 2.028 52.38 Ι.Γ,6101 Α20-8-42 2.044 11,76
Ι,Γτ6101χΑ6-7-8 2.002 42.86 I.r,fiimxA20-8-44 1.995 11- 76
ΙΓτ6101χΑ6-7-10 2.051 71.43 ΙΓτ6101χΑ20-8-46 2.039 17.64
LGfil01xA6-7-ll 2.039 52.38
1.921 33.33 A 19-5-32(1) 0. 126 4.76
Α3-7-Ζ(1) 1.382 4.76 0.112 14.29
A3- 7- 3(1) 1.502 19.05 0.131 19.05
Α3-7-6(1) 1.841 14.29 A 19-5-38(1) 0. 146 〗9.05
Α7-6-1 (1) 1.345 42.8fi A 19-5-41 (1) 0.125 14.29
Α7-6-8(1) 1.944 38.1 A19-5-42(l) 0.13 9,52
A7-fi-9(1) 1.824 B2.38 0.141 19.05
Α7-6-11 (1) 1.215 4.76 d i 0.127 19.05
Α7-6-12(1) 1.273 28.57 A 19-5-47(1) 0.151 4.76
Α7- 6-14(1) 1.743 28.57 A 19-5-48(1) 0.195 19.05
Α7-6-17(ΐ) 1.649 14.29 A19-B-50(1) 0.269 9.52
A7-fi-18(1) 1.517 23.81 Al 9+52(1) 0.298
A7-6-21 (1) 1.258 9.52 Al 9-5-54(1) 0.151 ?-3.81
Α7-6-26(1) 1.667 28.57 0.146 19.05
A7-R-?.7(1 1.243 4.7R A19-5- 7(l) 0.37 19-05
Α7 - 6-33(1) 1.959 1 .05 A 19-5-58(1) 0.209 B7
A7-fi--?4 1) 1.817 4.76 0.12 4.76
A7-6-36fl) 1.659 28.57 A19-7-K1) 1.432 9.52
A7-6-37(1) 2.065 4.7fi A19-7-fi(1 0.113 9.52
A7-6-39(l) 2.038 14.29 Al -7-8(1) 0.1 9.52
A 7-6-41 (1) 1.87 19.05 A19-7-10(l) 0. 12 4.7fi
A7-fi - 43(1) 1.856 19.05 A19-7-12(1) 0. Ilfi 19-05
A7-6-45(l) 1.619 4.76 A19-7-15(l) 0.157 19.05
A 10-5-1 (1) 1.587 A19-7-18(1) 0. 138 28.57
AT 0-5-2(1) 1.83 28.57 A19-7-19(l) 0.143 4.76
A 10-5-4(1) 1.877 28.57 Al 9-7-21 (1) 0.134 9.52
A 10-5-6(1) 1.913 23.81 A 19-7-22(1) 0. 146 14.29
Al 0-5-8(1) 1.926 9.52 Al -7-25(1) 0.176 14.29
A10-5-10(1) 1.784 14.29 Al 9-7-27(1) 1.491 ¾8- 57
Al 0-5-11 (1) 1.973 9.52 Al 9-8-1(1) 0. 145 19.05
A10- 5- 13(1) 1.7B 9B.24 Al 9-8-3(1) 0.023 4.76
0.368 28.57 Al 9-8-4(1) 0.122 19.05
Al 9-4-3(1) 0.623 14.29 A26-5-1 1.712 fifi.67
Al 9-4-4(1) 0.183 9.52 A2R-5-2 1.712 mo
Al 9-5-1 (1) 0.16 14.29 A26-5-3 1.258 94.44
A 19-5-4(1) 0.19?. 4.7fi A 6-B-4 1.232 0
A 19-5-9(1) 0. 146 14.29 A26-5-5 1.442 100
Al 9-5-13(1) 0.141 38.1 A26-5-6 1.763 83.33
A 19-5-23(1) 0.13fi 9.52 A26-5-7 1.782 94.44
A 19-5-24(1) 0.134 14.29 A26-5-8 1.181 33.33
A 19-5-29(1) 0. 112 4.7fi A2R-5-9 1.179 83.33
(2)根据苗期抗虫结果, 选取抗虫表现好的 Ϊ株进行蕾期抗虫试验, 结果如下:
棺株编号 Elisa 柃 iF死亡率 楮株编号 Elisa 柃 TF死亡率
A2-fixI. fi1fi2-1 2.09 100 ΙΓ,6101 Α6-7-7 2.04 41.17
A2-6XLG6162-2 2.087 100 If,610lxAfi-7-18 2.075 41.17
在前述实施例 4中进行杂交的目的是将转化事件转移到其它的棉花育种材料中, 后 续将进一步进行连续回交, 获得农艺性状与回交亲本一致并含有该转化事件的新材料, 以加速育种应用的进程。 在杂交或回交过程中, 利用前述的卡那霉素溶液涂抹叶片鉴定 的方法或者本发明实施例 8的检测方法 (较前者更准确) 在后代群体中进行筛选鉴定, 确认该转化事件的存在。 如发现转化事件丢失, 则将之淘汰。
植株编号说明:
回交后代编号格式为 "AX B BCmFl-x- y... "。 "A"为 F1代作为母本的棉花材料, "B" 为 F1 代作父本的棉花材料, 其中 LG 开头的编号材料是回交亲本; " BC "表示回交 (Backcross ), "m"为回交代次; "_x-y... "为单株编号;
目前, 利用不同生态区的若干棉花回交转育亲本材料, 已经获得了这两个转化事件 的回交四代材料。
下表列举了 A2-6和 A26-5两个转化事件 与 LG6101、 LG6036, LG6035三个骨干育种 资源材料回交后代材料不同生长阶段的抗虫性鉴定数据, 与其它转化事件(数据未列出) 相比, 抗虫性好, 且在不同发育阶段比较稳定, 十分理想:
利用 Southern杂交技术对转转化事件 A2- 6拷贝数进行检
样品制备: 取转化事件 A2- 6 TO代幼嫩植物组织 4.0g左右, 提取植物基因组 DNA, 具体步骤如下: 于液氮中研磨成粉末状。 在 65°C水浴中预热提取缓冲液 15ml, 将研磨成 均匀粉状后加入提取缓冲液中,振荡混勾, 65Ό水浴 45min,期间摇匀 2- 3次,充分裂解。 加入 1/3体积 5mol/L KAc上下颠倒混匀, 冰浴约 2_h3, 4°C, 12000rpm, 离心 lOmin; 取上清, 加入 1/5体积的 5% CTAB Buffer, 上下颠倒充分混勾, 65°C水浴约 20min; 待 冷却置窒温后,加入等体积的氯仿 /异戊醇(24: 1)抽提 3次,室温 12000rpm离心 5min, 如界面浑浊再抽提一至两次; 取上清, 加入 2/3体积异丙醇, 上下颠倒充分混匀, 室温 放置 10min, 室温, 12000rpm, 离心 lOmin; 弃上清, 用 70%乙醇洗涤沉淀两次。 抽干沉 淀, 加 500ul灭菌水溶解; 加 1/10体积 RNase处理 DNA样品, 37 °C 30 min; 加 1/10体 积 3mol/L NaAc(pH5.2), 2倍体积无水乙醇混匀, _20°0放置10111^, 4°C, 12 OOOrpm, 离心 5min, 用 70%乙醇洗涤沉淀两次, 抽干沉淀, 加适量 ddH20溶解, 使用紫外分光光 度计测量 DNA浓度及纯度, 取 100〜200μ8 DNA分别用限制性内切酶 EcoR I, Hind III, EcoR 1+ Ηΐιή III消化过夜后酒精沉淀, 用适量 ddH20溶解后加入 0.8%琼脂糖凝胶中, 以 lV/cm电压电泳过夜。 真空转移至尼龙膜上, 紫外交联固定。
探针制备: 以含 ΟΚ-Bt基因的质粒为模板, 以 0KF和 BtR引物(序列如 SEQIDNo:4 和 SEQ ID No:5所示), 利用 PCR法制备地高锌标记的特异性探针, PCR体系如下:
10 X扩增缓冲液 5.0μ 1
dNTP (0.7 mmol/L DIG—ll— dUTP,
1.3 隱 ol/L dTTP, 其它 dNTP浓度均为 2 mmol/L) Ι.Ομ 1
5,引物 (10μπιο1/υ 2.0μ 1
3,引物 (ΙΟμιηοΙ/L) 2. On 1
模板 DNA (含 OK- Bt基因质粒) 1.0 μ 1
Taq DNA Polymerase 2 U
加无菌水至总体积 50ul
PCR程序:94.0°C 5min;30个循环: 94.0°C 30s,53.0°C 30s,72.0°C 30s ; 72.0°C
5min。
杂交检测: 将尼龙膜放入杂交管中, 加一定体积的杂交液(10ml/100cm2), 65°C, 预杂交; T4h; 95°C变性 DIG标记探针(25ng/ml) lOmin, 迅速置于冰水中冷却 lOmin彻底 变;将变性探针迅速加到杂交管(3.5ml/100cm2 membrane ),混匀, 65°C杂交过夜(>10h)。 取出尼龙膜, 进行洗膜。 在室温下, 30ml 2XSSC /0.1%SDS 振荡洗涤 2X5min。 在 5(TC
下, 0.1XSSC I 0.1%SDS 振荡洗涤 2X15min, 将膜转入装有 20ml洗涤缓冲液中振荡洗 涤 5πΰη。 在杂交和严谨洗涤后, 将膜置洗涤缓冲液浸润 l〜5min; 20〜30ml 封闭液中孵 育 30min; 在編 抗体液孵育 30min; 用 20〜30ml洗涤液洗涤 2X 15min; 15ml 检测液 中平衡 2〜5min; 现配 20ml 显色底物 (NBT/BCIP) 暗处静置显色; 50ml 灭菌水或 TE 洗膜 5min终止显色, 拍照保存。 检测结果如图 3如示, 两组单酶切结果均只出现一条杂 交信号带, 表明 A2-6 为单拷贝插入, 经 Hind ΠΙ+ Ecc I 的酶切 A2- 6 DNA 和 T66- 35S- OK-Bt- PS-Tnos- 2300的杂交带型基本一致,表明 A2- 6事件为单拷贝、并且是完 整 TDNA区的插入。 实施例 7. 旁侧序列分析
样品制备: 用本领域技术人员公知的植物 DNA提取方法提取含有 A26-5转化事件的 棉花材料的基因组 DNA, 取 2.5 g DNA, 分别用 fcoR I, Hind III消化 6〜8小时, 酒精 沉淀纯化后加适量水溶解。
连接接头: 根据载体酶切位点分析, 分别设计合成两对接头:
GenomeWalker Adaptor + Ecc I, GenomeWalker Adaptor - EccR I (序列如 SEQ ID
No :6, SEQ ID No:7所示)和 GenomeWalker Adaptor + Hind III, GenomeWalker Adaptor -Hind III (序列如 SEQ ID No:8, SEQ ID No:9所示), 其中对 SEQ ID No:7和 SEQ ID No:9 的 5' 端进行了磷酸化, 3' 端加氨基。
分别等量混合 GenomeWalker Adaptor + EcdR I和 GenomeWalker Adaptor - BcdR I, GenomeWalker Adaptor + Hind 111和 GenomeWalker Adaptor —Hind III, 70。C保温 10分 钟, 后缓慢降到室温。 取 4μ 1消化纯化的 DNA加到含 1.9 1 GenomeWalker Adaptor (25 μΜ), 1.6 μ 1 10X连接缓冲液, 0.5μ 1 Τ4 DNA连接酶 (6 units/ 1) , 在 16°C下过夜 培养, 停止反应, 在 70°C下培养 5min, 在每个管中, 加入 72 μ 1 TE (10/1, ρΗ 7.5) , 在 低速下振荡 5- 10 seco
使用 Clontech GenomeWalker™ Universal试剂盒, 利用引物 API和 GSP1- EccR I,
GSPl-Nind III (序列如 SEQ ID No:10, SEQ ID No:ll, SEQ ID No:12所示), 以连接产 物为模板, 进行第一轮扩增: 7 个循环: 94°C 25S, 72°C 6min; 32个循环: 94°C 25S, 67°C 6 min; 最后一个循环后再于 67°C保温 7分钟。 PCR产物稀释 50倍后, 用 AP2和 GSP2- £ oR I, GSP2- ind III (序列如 SEQ ID No: 13, SEQ ID No:14, SEQ ID No:15所 示) 进行第二轮 PCR扩增, PCR程序如下: 5循环: 94°C 25S, 72 °C 5min; 20循环: 94 °C 25S, 67°C 5 min; 最后一个循环后再于 67°C保温 10分钟。 产物回收测序。
对 A2-6事件的右边界(RB)端序列分析如图 4所示, 共获得 1773 bp的核苷酸序列(序 列如 SEQ ID No : 16),包括 lbp〜575 bp的棉花基因组序列,第 578 bp〜709 bp为 RB与 TMB0066 之间的载体序列, 第 710 bp〜顧 bp 为 T0066序列, 第 1039 bp〜1773 bp为 CaMV 35S序 列。 序列说明:
1-575 棉花 DNA
578-709 RB与 T0066之间的载体序列
710-1038 T0066
1039-1773 CaMV 35S 对 A2-6事件的左边界(LB)端序列分析如图 5所示, 共获得 1345bp的核苷酸序列 (序 列如 SEQ ID No : 17), 包括 lbp〜798 bp的 ΝΡΤΠ序列, 第 798bp〜933bp的 CaMV 35SpolyA 序列和第 934bp〜1345bp的棉花基因组序列。 序列说明:
1-798 NPTII
798-933 CaMV 35SpolyA
934-1345 棉花 DNA (412bp) 以受体材料冀棉 14 DNA为模板, 分别在 A2-6插入序列的 RB和 LB端侧翼棉花基因组序 列设计引物(序列如 SEQ ID No: 18, SEQ ID No: 19所示), 扩增得到大小为 800bp左右的 扩增产物, 测序后与 A2-6的旁侧序列比对发现, A2- 6事件是通过插入序列替换原基因组 序列上 116bp碱基获得的。 比对结果见图 6。
根据以上结果, 本领域技术人员可容易得出 A2-6 事件的特征 DNA 序列(SEQ ID
NO : 22) , 如下所示, 加下划线部分示出的是 T- DNA插入序列, 未加下划线部分示出的是 插入序列的侧翼棉花基因组 DNA序列。
1 AAATGGAAAT AATATTTTTA TAAGTAAAAT TATATTTTTA AMTTTATTA ATTTTCTAAT
61 AAAATTATTA AAATATTATA TTTTTTAAAT TAAACTTTTT TAAAAAAATA AAATATATTT
121 TTTTGTMAG TAATTTTGAT ATTTTTTTTA AGAAGGGGGT CCCCTTACTT AAAAATGAAA
181 AAACAAAAAC CTTGGGGGAA TTGCTTCAAC TTGAAATCAT AGAGCCCCGG GTAATTAACT
241 G (; GGCAACCC GGGCCCTAAC CCCCCAATTA TTTTTTTTTT TAGGTTTTTT TTTTTGCTTT
GG CAAGSTT G AAATS TTSTTAAT MGACC AAM
3541 ACAGTTCCAG CTACAGCTAC CTCCTTGGAT AATCTCCAAT CCAGCGATTT CGGTTACTTT
3601 GAAAGTGCCA ATGCTTTTAC ATCTTCACTC GGTAACATCG TGGGTGTTAG AAACTTTAGT
3661 GGGACTGCTG GAGTGATTAT CGACAGATTC GAGTTCATTC CAGTTACTGC AACACTCGAG
372J GCTGAGTAAG GTTAACTTTG AGTATTATGG CATTGGAAAA GCCATTGTTC TGCTTGTAAT 3781 TTACTGTGTT CTTTCAGTTT TGTTTTCGGA CATCAAGTTA ACAAAAAAAA AAAAAAAAAA
3841 AAAAAAATTT AACAAAAAAA AAAAAAAAAA AAAAAATTTA ACAAAAAAAA AAAAAAAAAA
3901 AAAAATTTAA AGAGCTCGAA TTTCCCCGAT CGTTCAAACA TTTGGCAATA AAGTTTCTTA
3961 AGATTGAATC CTGTTGCCGG TCTTGCGATG ATTATCATAT AATTTCTGTT GAATTACGTT
4021 AAGCATGTAA TAATTAACAT GTAATGCATG ACGTTATTTA TGAGATGGGT TTTTATGATT 4081 AGAGTCCCGC AATTATACAT TTAATACGCG ATAGAAAACA AAATATAGCG CGCAACTAGG
4141 ATAAATTATC GCGCGCGGTG TCATCTATGT TACTAGATCG GGAATCCGTA ATCATGGTCA
4201 TAGCTGTTTC CTGTGTGAAA TTGTTATCCG CTCACAATTC CACACAACAT ACGAGCCGGA
4261 AGCATAAAGT GTAAAGCCTG GGGTGCCTAA TGAGTGAGCT AACTCACATT AATTGCGTTG
4321 CGCTCACTGC CCGCTTTCCA GTCGGGAAAC CTGTCGTGCC AGCTGCATTA ATGAATCGGC 4381 CAACGCGCGG GGAGAGGCGG TTTGCGTATT GGCTAGAGCA GCTTGCCAAC ATGGTGGAGC
4441 ACGACACTCT CGTCTACTCC AAGAATATCA AAGATACAGT CTCAGAAGAC CAAAGGGCTA
4501 TTGAGACTTT TCAACAAAGG GTAATATCGG GAAACCTCCT CGGATTCCAT TGCCCAGCTA
4561 TCTGTCACTT CATCAAAAGG ACAGTAGAAA AGGAAGGTGG CACCTACAAA TGCCATCATT
4621 GCGATAAAGG AAAGGCTATC GTTCAAGATG CCTCTGCCGA CAGTGGTCCC AAAGATGGAC 4681 CCCCACCCAC GAGGAGCATC GTGGAAAAAG AAGACGTTCC AACCACGTCT TCAAAGCAAG
4741 TGGATTGATG TGATAACATG GTGGAGCACG ACACTCTCGT CTACTCCAAG AATATCAAAG
4801 ATACAGTCTC AGAAGACCAA AGGGCTATTG AGACTTTTCA ACAAAGGGTA ATATCGGGAA
4861 ACCTCCTCGG ATTCCATTGC CCAGCTATCT GTCACTTCAT CAAAAGGACA GTAGAAAAGG
4921 AAGGTGGCAC CTACAAATGC CATCATTGCG ATAAAGGAAA GGCTATCGTT CAAGATGCCT 4981 CTGCCGACAG TGGTCCCAAA GATGGACCCC CACCCACGAG GAGCATCGTG GAAAAAGAAG
5041 ACGTTCCAAC CACGTCTTCA AAGCAAGTGG ATTGATGTGA TATCTCCACT GACGTAAGGG
5101 ATGACGCACA ATCCCACTAT CCTTCGCAAG ACCTTCCTCT ATATAAGGAA GTTCATTTCA
5161 TTTGGAGAGG ACACGCTGAA ATCACCAGTC TCTCTCTACA AATCTATCTC TCTCGAGCTT
5221 TCGCAGATCT GTCGATCGAC CATGGGGATT GAACAAGATG GATTGCACGC AGGTTCTCCG 5281 GCCGCTTGGG TGGAGAGGCT ATTCGGCTAT GACTGGGCAC AACAGACAAT CGGCTGCTCT
5341 GATGCCGCCG TGTTCCGGCT GTCAGCGCAG GGGCGCCCGG TTCTTTTTGT CAAGACCGAC
5401 CTGTCCGGTG CCCTGAATGA ACTCCAGGAC GAGGCAGCGC GGCTATCGTG GCTGGCCACG
5461 ACGGGCGTTC CTTGCGCAGC TGTGCTCGAC GTTGTCACTG AAGCGGGAAG GGACTGGCTG
5521 CTATTGGGCG AAGTGCCGGG GCAGGATCTC CTGTCATCTC ACCTTGCTCC TGCCGAGAAA 5581 GTATCCATCA TGGCTGATGC AATGCGGCGG CTGCATACGC TTGATCCGGC TACCTGCCCA
5641 TTCGACCACC AAGCGAAACA TCGCATCGAG CGAGCACGTA CTCGGATGGA AGCCGGTCTT
5701 GTCGATCAGG ATGATCTGGA CGAAGAGCAT CAGGGGCTCG CGCCAGCCGA ACTGTTCGCC
5761 AGGCTCAAGG CGCGCATGCC CGACGGCGAG GATCTCGTCG TGACACATGG CGATGCCTGC
5821 TTGCCGAATA TCATGGTGGA AAATGGCCGC TTTTCTGGAT TCATCGACTG TGGCCGGCTG 5881 GGTGTGGCGG ACCGCTATCA GGACATAGCG TTGGCTACCC GTGATATTGC TGAAGAGCTT
5941 GGCGGCGAAT GGGCTGACCG CTTCCTCGTG CTTTACGGTA TCGCCGCTCC CGATTCGCAG
6001 CGCATCGCCT TCTATCGCCT TCTTGACGAG TTCTTCTGAG CGGGACTCTG GGGTTCGGAT
6061 CGATCCTCTA GCTAGAGTCG ATCGACAAGC TCGAGTTTCT CCATAATAAT GTGTGAGTAG
6121 TTCCCAGATA AGGGAATTAG GGTTCCTATA GGGTTTCGCT CATGTGTTGA GCATTTAAGA 6J 1 Tl'ATACCATA TCATCACTTA TTTTGGGTGA TGACATTATA TAATCTCATG GTGACACGTT
6241 ATCATATTTT TACATAATCT AAATTTATAG ATCAAAGTAG ATTTTATTGT CMGTCCAAG
6301 TATCAAACTA GACCAAAAAA AGACAATTTT ATTGGAACTA AACCAGATTA GCCGATTAGA
6361 TTGGTTGAAT AGATACCCGT TTGAAAAAAA GGGTTTGATC TAGTTCTTAA GCGAACTCTT
6421 AAAATTTATA AAAAAACTGA AAMTAAGAC AATATATAAA ΤΑΤΪΤΤΑΛΤΤ TTTGTTTATT 648.1. AMTTTTAAC TAAITAACTA TTGAACTAGC AGTTAAATTG GTAATTTAAT TTATTCAACT
6541 ACCTATCTAA ΑΤΤΤΊΆΑΛΑΑ CATTGAAAAT ATATAAATAC TAAATC
12 000674 实施例 8.转化事件检测
使用 DNA引物对进行 PCR扩增以检测 A2-6事件, 所述引物对由特异性识别本发明 T-DNA插入序列的第一引物和特异性识别所述插入序列任一侧翼序列的第二引物组成。 A2 - 6事件的插入序列及鉴定引物的示意图如图 7所示。例如, 当第一引物为 A2- 6- 3 (SEQ ID N0 : 20)或 A2-6-4 (SEQ ID NO: 18)时, 第二引物可为 GSPl-EcoR I (SEQ ID NO : 11 ) 或 GSP2- EcoR l (SEQ ID NO : 14); 当第一引物为 A2- 6-1 (SEQ ID NO: 21)或 A2- 6-2 ( SEQ ID NO: 19)时, 第二引物可为 GSP1- ' ίΛΙΙ (SEQ ID NO: 12) 或 GSP2- Hindill (SEQ ID N0: 15)。
利用上述引物进行 PCR 鉴定的方法是本领域技术人员所熟知的。 利用引物对 I II/ A2-6-1以及 GSP1- Ill/ A2-6-2分别扩增 A26- 5事件、 A2- 6事件、 冀棉 14-1、 冀棉 14-2的棉花样品的结果如图 8所示。 实施例 9.染色体定位
根据所获得的棉花侧翼序列, 利用公布的二倍体棉花 Gossypium n mondif) D染 色体组基因组序列(http:〃 www. phytozome. net/cotton, php)进行对比分析, 可知 A2- 6 事件中,与插入序列接合的棉花侧翼 DNA序列与 D1染色体上的序列高度同源,因此可知, A2-6事件中外源 DNA插入序列的整合位点位于受体四倍体棉花的第 1组染色体上。
Claims
1.棉花转化事件 A2-6, 其特征 DNA序列如 SEQ ID No: 22所示, 其由第 576-6164 bp 的 T- DNA插入序列、 第 1-575 bp的上游侧翼棉花基因组序列和第 6165〜6586 bp的下游 侧翼棉花基因组序列构成。
2.权利要求 1所述的棉花转化事件的特征 DNA序列的片段, 所述 DNA片段至少包含 部分所述 T- DNA插入序列和部分所述侧翼棉花基因组序列。
3.—种重组载体, 其含有权利要求 1所述的 T- DNA插入序列; 例如, 所述载体为附 图 1中的 T66- OK- Bt-PS- Tnos- 2300载体。
4.一种重组细胞, 含有权利要求 3所述的载体; 例如, 所述重组细胞为含有权利要 求 3所述的载体的重组农杆菌细胞。
5.用于检测权利要求 1所述的棉花转化事件的引物对, 其由特异性识别权利要求 1 所述的任一侧的侧翼序列的第一引物和特异性识别权利要求 1所述的 T-DNA插入序列的 第二引物组成。
6.权利要求 5所述的引物对, 其中所述第一引物的序列为 SEQ ID NO: 18或 SEQ ID NO : 20, 所述第二引物的序列为 SEQ ID NO: 11或 SEQ ID NO: 14。
7.权利要求 5所述的引物对, 其中所述第一引物的序列为 SEQ ID NO: 19或 SEQ ID N0: 21, 所述第二引物的序列为 SEQ ID NO: 12或 SEQ ID NO: 15。
8.—种鉴定棉花生物样品中 A2- 6转化事件的方法, 其包括:
(a) 从待鉴定的棉花生物样品提取 DNA样品;
(b ) 以提取的 DNA样品为模板,使用权利要求 5-7任一项所述的引物对进行 PCR扩 增;
( c) 检测 PCR扩增产物, 如果扩增产物长度与 SEQ ID NO: 22上所述 PCR引物对的 序列之间的理论长度一致, 则表明所述棉花生物样品中 A2-6转化事件的存在。
9. 一种获得转基因抗虫棉花材料的的方法, 包括: 利用含有权利要求 1转化事件的 棉花材料, 与其它棉花育种材料进行杂交后, 进一步进行回交, 获得含有权利要求 1所 述的转化事件的新材料; 在杂交及回交过程中, 利用权利要求 8所述的方法在后代群体 中进行筛选鉴定, 确认权利要求 1所述的转化事件的存在。
10.权利要求 1所述的转化事件、 权利要求 2所述的片段、 权利要求 3所述的载体、 权利要求 4所述的重组细胞、 权利要求 8或权利要求 9所述的方法用于提高棉花抗棉铃 虫性状、 进行棉花育种或用作分子标记的用途。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/000674 WO2013170399A1 (zh) | 2012-05-16 | 2012-05-16 | 棉花植物事件a2-6以及用于其检测的引物和方法 |
CN201280001638.6A CN103003429B (zh) | 2012-05-16 | 2012-05-16 | 棉花植物事件a2‑6以及用于其检测的引物和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/000674 WO2013170399A1 (zh) | 2012-05-16 | 2012-05-16 | 棉花植物事件a2-6以及用于其检测的引物和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013170399A1 true WO2013170399A1 (zh) | 2013-11-21 |
Family
ID=47930684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000674 WO2013170399A1 (zh) | 2012-05-16 | 2012-05-16 | 棉花植物事件a2-6以及用于其检测的引物和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103003429B (zh) |
WO (1) | WO2013170399A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2017182420A1 (en) | 2016-04-20 | 2017-10-26 | Bayer Cropscience Nv | Elite event ee-gh7 and methods and kits for identifying such event in biological samples |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105296501B (zh) * | 2014-06-25 | 2020-01-31 | 创世纪种业有限公司 | 棉花植物事件aC20-3以及用于其检测的引物和方法 |
CN105316319A (zh) * | 2014-06-25 | 2016-02-10 | 创世纪种业有限公司 | 棉花植物事件aD14-2以及用于其检测的组合物和方法 |
CN106434686A (zh) * | 2015-08-13 | 2017-02-22 | 创世纪种业有限公司 | 耐旱棉花事件r9-1以及用于其检测的引物和方法 |
CN109929850B (zh) * | 2017-12-15 | 2022-08-19 | 中国种子集团有限公司 | 抗线虫棉花转化事件ghp10 |
CN109929940B (zh) * | 2017-12-15 | 2022-09-09 | 中国种子集团有限公司 | 抗线虫棉花转化事件ghm3 |
CN109234427B (zh) * | 2018-07-16 | 2021-10-26 | 浙江理工大学 | 一种棉花紫化突变体hs2的特异性鉴定引物及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134981A (zh) * | 1995-12-28 | 1996-11-06 | 中国农业科学院生物技术研究中心 | 携带编码杀虫蛋白质融合基因的表达载体及其转基因植物 |
CN101027396A (zh) * | 2004-03-26 | 2007-08-29 | 美国陶氏益农公司 | Cry1F和Cry1Ac转基因棉花株系及其事件特异性鉴定 |
CN101255432A (zh) * | 2008-03-03 | 2008-09-03 | 创世纪转基因技术有限公司 | 人工改造合成的杀虫基因及其编码的蛋白质与应用 |
WO2012048136A1 (en) * | 2010-10-07 | 2012-04-12 | Dow Agrosciences Llc | Endpoint taqman methods for determining zygosity of cotton comprising cry1ac event 3006-210-23 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104145019A (zh) * | 2012-05-16 | 2014-11-12 | 创世纪转基因技术有限公司 | 棉花植物事件a26-5以及用于其检测的引物和方法 |
-
2012
- 2012-05-16 CN CN201280001638.6A patent/CN103003429B/zh active Active
- 2012-05-16 WO PCT/CN2012/000674 patent/WO2013170399A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134981A (zh) * | 1995-12-28 | 1996-11-06 | 中国农业科学院生物技术研究中心 | 携带编码杀虫蛋白质融合基因的表达载体及其转基因植物 |
CN101027396A (zh) * | 2004-03-26 | 2007-08-29 | 美国陶氏益农公司 | Cry1F和Cry1Ac转基因棉花株系及其事件特异性鉴定 |
CN101255432A (zh) * | 2008-03-03 | 2008-09-03 | 创世纪转基因技术有限公司 | 人工改造合成的杀虫基因及其编码的蛋白质与应用 |
WO2012048136A1 (en) * | 2010-10-07 | 2012-04-12 | Dow Agrosciences Llc | Endpoint taqman methods for determining zygosity of cotton comprising cry1ac event 3006-210-23 |
Non-Patent Citations (1)
Title |
---|
ZHANG, JUNHE ET AL.: "Positional Effects of Matrix Attachment Regions on Transgene Expressions", CHINESE JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 30 September 2009 (2009-09-30), pages 839 - 843 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017042259A1 (en) | 2015-09-11 | 2017-03-16 | Bayer Cropscience Aktiengesellschaft | Hppd variants and methods of use |
WO2017182420A1 (en) | 2016-04-20 | 2017-10-26 | Bayer Cropscience Nv | Elite event ee-gh7 and methods and kits for identifying such event in biological samples |
US11085050B2 (en) | 2016-04-20 | 2021-08-10 | Basf Agricultural Solutions Seed, Us Llc | Elite event EE-GH7 and methods and kits for identifying such event in biological samples |
US11926838B2 (en) | 2016-04-20 | 2024-03-12 | BASF Agricultural Solutions Seed US LLC | Elite event EE-GH7 and methods and kits for identifying such event in biological samples |
Also Published As
Publication number | Publication date |
---|---|
CN103003429B (zh) | 2018-03-16 |
CN103003429A (zh) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013170399A1 (zh) | 棉花植物事件a2-6以及用于其检测的引物和方法 | |
US11254949B2 (en) | Method for modifying the resistance profile of Spinacia oleracea to downy mildew | |
US11332755B2 (en) | Method for modifying the resistance profile of Spinacia oleracea to downy mildew | |
CA2843172C (en) | Soybean event pdab9582.814.19.1 detection method | |
EP2736321B1 (en) | Insect resistant and herbicide tolerant soybean event 9582.814.19.1 | |
KR101303110B1 (ko) | 옥수수 이벤트 mir604 | |
KR102296563B1 (ko) | 생물학적 샘플에서 형질전환 대두 이벤트 dbn9004의 존재를 검출하기 위한 핵산 서열, 이를 포함하는 키트 및 이의 검출 방법 | |
WO2024060732A1 (zh) | 转基因玉米事件lp026-2及其检测方法 | |
RU2712730C2 (ru) | Растение кукурузы dbn9858, устойчивое к гербициду, и нуклеотидная последовательность и способ для ее выявления | |
AU2022442022A1 (en) | Nucleic acid sequence for detecting glycine max plant dbn8205 and detection method therefor | |
WO2013170398A1 (zh) | 棉花植物事件a26-5以及用于其检测的引物和方法 | |
CN113913457A (zh) | 一种抑制或杀灭桃蛀螟的方法及其应用 | |
CN109929850B (zh) | 抗线虫棉花转化事件ghp10 | |
WO2012006866A1 (zh) | 植物黄矮病抗性蛋白tistk1及其编码基因与应用 | |
CN114134171A (zh) | 一种抑制或杀灭东方黏虫的方法及其应用 | |
Woo et al. | Generation and molecular characterization of marker-free Bt transgenic rice plants by selectable marker-less transformation | |
US20180127770A1 (en) | Xa1-mediated resistance to tale-containing bacteria | |
Ravelonandro et al. | Evaluation of Plum pox virus (PPV) CP and P1 constructs on sharka resistance in plum (Prunus domestica) | |
US7173166B2 (en) | DNA sequence for root preferred gene expression in plants | |
CN109929940B (zh) | 抗线虫棉花转化事件ghm3 | |
Schenstnyi | Analyses of TALE-induced resistance and putative susceptibility genes in tomato | |
KR20240152379A (ko) | 글라이신 맥스 식물 dbn8205를 검출하기 위한 핵산 서열 및 이의 검출 방법 | |
WO2022140255A1 (en) | Maize regulatory elements and uses thereof | |
Mehdi | Role of Hemomucin-Like Genes in Arabidopsis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280001638.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12876792 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12876792 Country of ref document: EP Kind code of ref document: A1 |