WO2013170398A1 - 棉花植物事件a26-5以及用于其检测的引物和方法 - Google Patents

棉花植物事件a26-5以及用于其检测的引物和方法 Download PDF

Info

Publication number
WO2013170398A1
WO2013170398A1 PCT/CN2012/000673 CN2012000673W WO2013170398A1 WO 2013170398 A1 WO2013170398 A1 WO 2013170398A1 CN 2012000673 W CN2012000673 W CN 2012000673W WO 2013170398 A1 WO2013170398 A1 WO 2013170398A1
Authority
WO
WIPO (PCT)
Prior art keywords
cotton
sequence
seq
primer
event
Prior art date
Application number
PCT/CN2012/000673
Other languages
English (en)
French (fr)
Inventor
崔洪志
何云蔚
王君丹
陈文华
王建胜
宋辉平
Original Assignee
创世纪转基因技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创世纪转基因技术有限公司 filed Critical 创世纪转基因技术有限公司
Priority to CN201280001629.7A priority Critical patent/CN104145019A/zh
Priority to IN2540MUN2014 priority patent/IN2014MN02540A/en
Priority to PCT/CN2012/000673 priority patent/WO2013170398A1/zh
Publication of WO2013170398A1 publication Critical patent/WO2013170398A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to the field of plant molecular biology, in particular to the field of genetically modified crop breeding in agricultural biotechnology research, and in particular to cotton transformation with cotton bollworm resistance. Event A26-5, and a unique method of detecting the conversion event. Background technique
  • Bacillus thurigiensis is a Gram-positive Bacillus capable of forming spores, which are known to produce against a variety of insects, such as Lepidopterans, Coleopterans, and Crop pests such as Dipterans are toxic parasporal crystalline proteins (Aronson, Microbiol. Rev. 50: 1-14, 1968). Due to the specificity and high selectivity of Bt toxin insecticides, they are not toxic to plants and animals including humans, and are environmentally acceptable. Therefore, the insect-resistant genes used in the currently commercialized insect-resistant transgenic crops are mainly Bt insecticidal protein genes.
  • the present invention creates a novel cotton transformation event of GFM CrylA insecticidal gene, which is not only resistant to insects, genetically stable, single-copy integration, but also has clear molecular characteristics of the integrated flanking sequence, and the transgenic material is not only important in insect-resistant cotton breeding itself.
  • Application value and because of the unique detection method, it is convenient to polymerize different commercial conversion events by means of hybridization polymerization.
  • SUMMARY OF THE INVENTION The present inventors obtained a cotton transformation event A26-5 by a transgenic method. This transformation event has a stable high resistance to cotton bollworm traits. Its representative seeds have been deposited with the General Microbiology Center of the China Microbial Culture Collection Management Committee, and the preservation number is CGMCC No. 5966.
  • the first aspect of the present invention provides a cotton transformation event A26-5 having a characteristic DNA sequence as shown in SEQ ID No: 22, which comprises a 341 to 6078 bp T-DNA insertion sequence and a first to 340 bp upstream flanking cotton genome.
  • the sequence and the 6079 ⁇ 6606 bp downstream flanking cotton genome sequence constitute.
  • a second aspect of the invention provides a fragment of a characteristic DNA sequence of a cotton transformation event according to the first aspect of the invention, the fragment comprising at least a portion of the T-DNA insertion sequence and a portion of the flanking cotton genomic sequence.
  • a third aspect of the invention provides a recombinant vector comprising the T-DNA insertion sequence of the first aspect of the invention.
  • the carrier is the T66-35S-OK-Bt-PS-Tnos-2300 carrier of Figure 1.
  • a fourth aspect of the invention provides a recombinant cell comprising the recombinant vector of the third aspect of the invention.
  • the recombinant cell is a recombinant Agrobacterium cell comprising the vector of the third aspect of the invention.
  • a fifth aspect of the invention provides a primer pair for detecting a cotton transformation event according to the first aspect of the invention, which comprises a first primer and specificity for specifically recognizing a flanking sequence of either side of the first aspect of the invention
  • the second primer composition of the T-DNA insert of the first aspect of the invention is identified.
  • the sequence of the first primer is SEQ ID NO: 18 or SEQ ID NO: 20
  • the sequence of the second primer is SEQ ID NO: 11 or SEQ ID NO: 14 0
  • the sequence of the first primer is SEQ ID NO: 19 or SEQ ID NO: 21
  • the sequence of the second primer is SEQ ID NO: 12 or SEQ ID NO: 15.
  • a sixth aspect of the invention provides a method of identifying an A26-5 transformation event in a cotton biological sample, comprising:
  • a seventh aspect of the invention provides a method for transferring a cotton transformation event of the first aspect of the invention to a different cotton breeding material, comprising: utilizing a cotton material comprising the transformation event of the first aspect of the invention, and other cotton breeding materials After hybridization, further backcrossing is performed to obtain a new material containing the transformation event of the first aspect of the invention; during the hybridization and backcrossing, screening and identification are performed in the progeny population by the method of the sixth aspect of the invention The presence of the transformation event of the first aspect of the invention is confirmed.
  • the eighth aspect of the present invention provides the transformation event of the first aspect of the invention, the fragment of the second aspect of the invention, the vector of the third aspect of the invention or the recombinant cell of the fourth aspect of the invention, the invention
  • the methods of the sixth and seventh aspects are for use in increasing cotton resistance to cotton bollworm traits, performing cotton breeding or serving as molecular markers.
  • BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the construction of a plant expression vector T66-35S-0K-Bt-PS-Tnos-2300.
  • Figure 2 shows the results of hybridization of the Southern blot analysis technique with digoxin-labeled DNA complementary to the Bt gene coding sequence.
  • Figure 3 shows the results of an experiment using the Southern hybridization technique to detect the number of copies of the transformation event A26-5.
  • Figure 4 is a schematic diagram of the side sequence of the right border (RB).
  • Figure 5 is a schematic diagram of the sequence of the left border (LB).
  • Fig. 6 shows an amplification product having a size of about 900 bp amplified using a primer pair of SEQ ID No: 18 and SEQ ID No: 19 using the receptor material ⁇ 14 DNA as a template, and after sequencing, The result of the alignment of the flanking sequence of A26-5.
  • Figure 7 is a schematic representation of the insertion sequence of the A26-5 event and the identification of the primer.
  • Figure 8 shows the use of primer pairs GSPl-#/ «i III/A26-5-3 GSPl-ffind III/A26-5- and GSPl-EcoR I/A26- 5- 1, GSP1- EcoR I/A26- 5- 2 Results of cotton samples of A26-5 strain, A2- 6 strain, ⁇ cotton 14-1, and ⁇ 14-2, respectively .
  • M marker, ⁇ DNA/HindIII+EcoRI 1-4: GSPl-ffind III/A26-5-3 amplification A26-5, A2- 6, ⁇ cotton 14-1, ⁇ cotton-2, positive amplification band 3.
  • transformation event refers to the transformation of an exogenous gene of interest into a cotton cell by an Agrobacterium-mediated genetic transformation method (known to those skilled in the art), and further obtaining a foreign DM sequence in the transgenic cotton plant.
  • Example 1 Construction of plant expression vector
  • the 35S promoter containing the double enhancer was amplified from the vector pCambia2300, and both ends were carried with l3 ⁇ 4a I and I, and the primer sequences were as shown in SEQ ID No: 1 and SEQ ID No: 2.
  • the PCR product was digested and cloned into pMD ⁇ In 18T, a pMD-35S recombinant vector was obtained.
  • the SSR sequence TMB0066 which has a large number of topoisomerase recognition sites from cotton genes, was cloned, and a plant expression vector with TMB0066 as AR sequence was constructed to increase the integration efficiency of the inserted sequences.
  • the TMB0066 sequence is shown in SEQ ID No: 3. The two ends were introduced with ⁇ / xi ⁇ and the site, and cloned into pJH35S to obtain the recombinant vector ⁇ 0066-35S.
  • a fragment containing OK (Omega & Kozak) - Bt-PS (Processing & Splicing sequence) (the three sequences are disclosed in Chinese Patent No. 95119563. 8 which is incorporated herein by reference in its entirety) Plasmid, the O-Bt-PS fragment was digested with Banii i Sac I and cloned into pMD-18T. The recombinant plasmid pMD-OK-Bt-PS was obtained. The terminator Tnos sequence was cloned downstream of the PS by Sac l+Ecd ⁇ I.
  • T B0066-35S was cloned upstream of 35S using mnA III+feflH I to obtain the recombinant plasmid pMD-T B0066-35S-0K-Bt-PS-Tnos.
  • TMB0066-35S-0K-Bt-PS-Tnos was cloned into vector Carabia2300 to obtain recombinant plant expression vector T66-35S-OK-Bt-PS-Tnos-2300.
  • the construction process is shown in Figure 1.
  • Example 2 The construction process is shown in Figure 1.
  • Agrobacterium LBM404 containing T66-35S-0K-Bt-PS-Tnos- 2300 vector was picked and inoculated to kanamycin-containing
  • the transgenic acceptor material is ⁇ cotton 14, and the sterile hypocotyls are grown for 3 to 4 days, and cut into 0. 6 ⁇ 0. 8cm segments, dip dyed] ( ⁇ ⁇ , removed hypocotyl segments, co-cultured
  • the medium (8+ 0. 1 13 ⁇ 4 /1 ⁇ + 2, 4-1) 0. 1 13 ⁇ 4) was co-cultured at 22 °C ⁇ 25 °C for 2 days.
  • Transfer to callus induction medium (MSB + KT 0. 1 rag / L + 2, 4- DO. 1 mg / L + Kan 50mg / L) 20 ⁇ 30 days subculture, 90 days later transferred to callus proliferation culture Base (MSB+KT 0. 1 rag/L + 2, 4-D0.
  • El isa detected 125 strains of transgenic cotton with high expression of insect-resistant protein. After the insect resistance test, there were 94 strains resistant to cotton bollworm, and 25 strains with strong resistance to cotton bollworm. No. PCR Elisa seedling Elisa bud Elisa flower Elisa bell insect test insect resistance
  • P+ PCR positive plants.
  • Insect resistance analysis - N no resistance; ; resistant; HR/HR-: Strong resistance combined with Elisa results and insect resistance test results 22 pieces of resistant materials were selected for Southern analysis.
  • DNA was extracted from cotton tissue, digested with EcoRI, and hybridized with digoxin-labeled DNA complementary to the Bt gene coding sequence by Southern blot analysis. The results are shown in Figure 2. Thirteen single-copy cotton events were screened for further screening.
  • LG610K LG6118, LG6162 were crossed and harvested from inbreds and hybrids.
  • the harvested seeds are sown, and for the T1 generation (or F1 generation) cotton plants, the top second true leaves are selected at the 4-leaf stage, and the leaves are smeared with 2000 ppm kanamycin solution, and the leaves are preserved after 7 days of kanamycin treatment.
  • Plants that did not change color were tested for Elisa and insect resistance at the seedling, bud, and flowering stages, respectively.
  • the insect-resistant test the second leaf was extracted, 12 insects were collected, and each sample was set to repeat. After 5 days, the results were observed and compared with the control to calculate the corrected mortality. Calculated as follows:
  • the F1 hybrid numbering format is "AXB-m". "A” is the cotton material as the female parent, “B” is the cotton material as the male parent, and “m” is the single plant number;
  • the T1 self-interest numbering format is "A- ⁇ ", " ⁇ ” is a self-interested cotton material, "m” is the number of self-crossing progeny, "(1)” means no trial repetition, otherwise it is the average of three repetitions. Data; the results are as follows :
  • the purpose of hybridization in the foregoing Example 4 is to transfer the transformation event to other cotton breeding materials, and further to carry out continuous backcrossing, to obtain a new material whose agronomic trait is consistent with the backcross parent and contains the transformation event, Speed up the process of breeding applications.
  • the method for identifying leaves by using the aforementioned kanamycin solution or the detection method of the embodiment 8 of the present invention (more accurate than the former) is screened and identified in the progeny population to confirm the existence of the transformation event. . If the conversion event is found to be lost, it will be eliminated.
  • the backcross generation number format is "AXB BCmFl- x-y".
  • A is the cotton material of the F1 generation as the female parent
  • B is the cotton material of the F1 for the male parent.
  • the numbered material beginning with LG is the backcross parent;
  • BC means the backcross, "m” For the backcross generation;
  • - xy is the number of the plant.
  • the following table lists the insect resistance identification data of the A2-6 and A26-5 conversion events and the LG6101, LG6036, LG6035 three backbone breeding resources backcross materials in different growth stages, and other conversion events (data not listed) Compared with the insect resistance, and stable at different developmental stages, it is ideal -
  • the transfection event A26-5 copy number was detected by Southern hybridization.
  • Sample preparation Take the transformation event A26- 5 TO generation young plant tissue 4. 0 g , extract plant genomic DNA, the specific steps are as follows: Grind into powder form in liquid nitrogen. Pre-heat the extraction buffer 15ml in a 65'C water bath, grind into a uniform powder, add to the extraction buffer, shake and mix, 65 ° water bath for 45 min, shake 2 - 3 times, fully lysed.
  • Probe preparation Using the plasmid containing the ⁇ -Bt gene as a template, using 0KF and BtR primers (sequences as shown in SEQ ID No: 4 and SEQ ID No: 5), the specificity of the preparation of high zinc label by PCR method
  • the needle, PCR system is as follows:
  • Template DNA (including OK-Bt gene granules) 1.0 ⁇ 1
  • PCR program 94. 0 ⁇ 5min; 30 cycles: 94. 0. C 30s, 53.0. C 30s, 72. 0. C 30s ; 72. 0°C 5mir
  • Hybridization assay Place the nylon membrane into the hybridization tube and add a volume of hybridization solution (10ffil/100 C m2) at 65 °C. Pre-hybridization for 3 h; 95 ⁇ denatured DIG-labeled probe (25 ng/ml) lOmin, rapidly placed in ice water to cool lOmin thoroughly; the denatured probe was quickly added to the hybridization tube (3.5 ml/100 cm2 membrane), mixed, 65 Hybridization at °C overnight (>10h). The nylon membrane was taken out and the membrane was washed. At room temperature, 30 ml of 2XSSC / 0.1% SDS was shaken and washed for 2 x 5 min.
  • 0.1 X SSC I 0. 1 SDS was shaken for 2X for 15 min, and the membrane was transferred to a 20 ml wash buffer and shaken for 5 min. After hybridization and rigorous washing, the membrane is washed with a washing buffer for 1 ⁇ 5min; 20 ⁇ 30ml is incubated for 30min in the blocking solution; 3ftnin is fermented in lOral antibody solution; 2X 15mi 15ml is washed with 20 ⁇ 30ml washing solution Medium balance 2 ⁇ 5min; now with 20ml chromogenic substrate (NBT/BCIP) in the dark place to stand color; 50ml sterilized water or TE wash film for 5min to stop color development, photo preservation.
  • NBT/BCIP chromogenic substrate
  • Genomic DNA of cotton material containing A26-5 transformation event was extracted by plant DNA extraction method known to those skilled in the art, and 2. 5 ⁇ ⁇ DNA was digested with Ec I, ⁇ III for 6 to 8 hours, respectively. After purification, add appropriate amount of water to dissolve.
  • Connector According to the analysis of the vector cleavage site, two pairs of connectors are designed and synthesized separately -
  • GenomeWalker Adaptor + EcdR I GenomeWalker Adaptor - EccR I (sequence as shown in SEQ ID No: 6, SEQ ID No: 7) and Genome 3 ⁇ 4lker Adaptor + ⁇ III, GenomeWalker Adaptor - ffind III (sequence as SEQ ID No: 8, SEQ ID No: 9), wherein the 5' end of SEQ ID No: 7 and SEQ ID No: 9 was phosphorylated, and the 3' end was added with an amino group.
  • the right border (RB) end sequence analysis of the A26-5 event is shown in Figure 4.
  • a total of 1539 bp nucleotide sequence (sequence shown in SEQ ID No: 16) was obtained, including a cotton genome sequence of lbp to 340 bp.
  • the 341 bp to 475 bp is the vector sequence between RB and TMB0066, the 476 bp to 752 bp is the TMB0066 sequence, and the 753 bp to 1539 bp is the CaMV 35S sequence.
  • the characteristic DNA sequence of the A26-5 event (SEQ ID NO: 22) can be easily obtained by those skilled in the art, as shown below, the underlined portion shows the T-DNA insertion sequence, and the ununderlined portion is shown. Is out Inserted sequence flanking cotton genomic DNA sequence
  • AAAAAAAAM AAAAAAAAAT TTAAAGAGCT CGAATTTCCC CGATCGTTCA AACATTTGGC
  • PCR amplification is performed using a DNA primer pair to detect an A26-5 event, the primer pair consisting of a first primer that specifically recognizes the T-DNA insert of the present invention and a second primer that specifically recognizes any flanking sequence of the inserted sequence composition.
  • the A26-5 insertion sequence and the identification primers are shown in Figure 7.
  • the second primer may be GSP1-ffi2d III (SEQ ID NO: 12) or GSP2- 'xi III (SEQ ID NO: 15);
  • the first primer is A26-5- 1 (SEQ ID ⁇ ): 20) or 26-5-2 (SEQ ID NO: 18)
  • the second primer may be GSP1-£ o I (SEQ ID NO: 11) or I (SEQ ID NO: 14).
  • the published diploid cotton iGossypium raimondi D genome sequence http: ⁇ www. phytozome. net/cotton, php
  • the ligated cotton flanking DM sequence is highly homologous to the sequence on the D8 chromosome, so it is known that the integration site of the exogenous DNA insert in the A26-5 event is located on the chromosome 8 of the receptor tetraploid cotton.

Landscapes

  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pest Control & Pesticides (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了抗棉铃虫的棉花转化事件A26-5及其特征序列,以及用于检测上述转化事件的引物和方法。转化事件A26-5位于棉花植物的第八组染色体上,包含外源插入DNA序列和棉花基因组DNA序列的组合。还提供了利用外源插入DNA序列及其侧翼棉花基因组上的接合区的DNA序列,设计特异性检测A26-5事件的引物。针对A26-5事件的检测方法可作为使用该事件育种提供便捷的追踪该特定基因插入事件的手段。A26-5基因插入事件可作为分子标记,用于提高育种效率。

Description

棉花植物事件 A26- 5以及用于其检測的引物和方法 技术领域 本发明属于植物分子生物学领域, 尤其是农业生物技术研究中的转基因农作 物育种领域,特别是涉及具有棉铃虫抗性的棉花转化事件 A26-5, 以及检测该转化 事件的特有方法。 背景技术
在世界范围内, 虫害给农业生产带来了较大的损失。 传统采用化学杀虫剂的 防治技术, 在传统农业实践中发挥了巨大的作用。 但是, 这种虫害防治技术存在 很大的弊端, 一方面, 大量有毒化学农药的使用, 不仅污染环境, 而且易残留, 严重威胁人们健康; 另一方面, 化学农药长期大量使用还能够造成害虫的抗药性, 导致虫害的爆发。 例如, 上世纪 90年代初, 由于棉铃虫抗药性的发展, 导致我国 棉铃虫的大爆发, 使我国各大棉区大幅度减产甚至绝产。
目前, 转基因技术为解决虫害给棉花生产造成严重危害这一世界性难题提供 了可行方案。 人们也通过选择种植转基因抗虫作物防治某类虫害。 苏云金芽孢杆 菌 (Bacillus thurigiensis,下文简称为 Bt)是一种能形成芽孢的革兰氏阳性芽孢杆菌, 已知其可产生对多种昆虫, 如鳞翅目(Lepidopterans)、 鞘翅目(Coleopterans)和双翅 目(Dipterans)等作物害虫有毒性的伴孢结晶蛋白质 (Aronson, Microbiol. Rev. 50: 1-14, 1968)。 由于 Bt毒素杀虫的专一性和高度选择性, 所以对植物和包括人在内 的动物没有毒害, 而且是环境可以接受的。因此, 目前商业化应用的抗虫转基因农 作物所使用的抗虫基因主要是 Bt杀虫蛋白基因。
1995年, 郭三堆等人采用植物优化密码子,人工合成了 GFM CrylA杀虫基因 (ZL95119563.8), 随后导入到数个中国主产棉区的主栽品种中, 获得抗虫棉, 并在 1997年进行了产业化应用。 孟山都公司获得的 ΜΟΠ531抗虫棉花转化事件在 19% 年进行了商业化;随后孟山都公司又获得的 Monl5985双 Bt抗虫棉花转化事件(中 国专利申请号 02802047.2, 审中), 已经在全球进行了商业化。 通过转化事件专利 对转基因农作物进行知识产权保护是目前国际上的一个新趋势, 因为一个进入商 业化的转化事件是发明人通过筛选鉴定而获得的生物类的独特创造, 外源基因与 受体作物基因组特定位置的整合, 不仅使转化事件具备独特的分子特征, 而且具 有独特的外源基因表达规律, 区别于研究过程中获得的其它转化事件, 具有相比 较更适合商业化应用的特征特性, 因此具有明显的新颖性、 实用性和创造性。 目 前, 国际上已有商业化的转化事件获得了知识产权保护, 均为跨国公司所拥有, 部分在中国也申请了专利。
在我国早期的抗虫棉研究中, 由于转化手段的限制, 所获得的抗虫棉存在整 合拷贝数和整合位置不确定的情况, 在育种中转基因性状不容易把握, 不同育种 家选育的抗虫棉品种抗虫性差异较大。 同时, 由于不能获得转化事件基因整合侧 翼序列的分子特征, 不便于进一步新的转基因性状聚合, 使其进一步应用出现局 限性。 因此, 本发明创造出 GFM CrylA杀虫基因新型棉花转化事件, 不仅抗虫性 强, 遗传稳定, 单拷贝整合, 而且整合側翼序列分子特征清楚, 该转基因材料不 但本身在抗虫棉育种中具有重要应用价值, 而且由于具有独特的检测方法, 可方 便地通过杂交聚合的方式聚合不同的商业化转化事件。 发明内容 本发明人通过转基因方法获得了棉花转化事件 A26- 5。该转化事件具有稳定的高抗棉 铃虫性状。 其代表性种子已保藏于中国微生物菌种保藏管理委员会普通微生物中心, 保 藏编号为: CGMCC No. 5966。
本发明第一方面提供棉花转化事件 A26- 5, 其特征 DNA序列如 SEQ ID No: 22所示, 其由第 341〜6078 bp的 T- DNA插入序列、 第 1〜340 bp的上游侧翼棉花基因组序列和第 6079〜6606 bp的下游侧翼棉花基因组序列构成。
本发明第二方面提供本发明第一方面所述的棉花转化事件的特征 DNA序列的片段, 所述片段至少包含部分所述 T-DNA插入序列和部分所述侧翼棉花基因组序列。
本发明第三方面提供一种重组载体,其含有本发明第一方面所述的 T- DNA插入序列。 在一个实施方案中, 所述载体为附图 1中的 T66- 35S- OK-Bt- PS- Tnos- 2300载体。
本发明第四方面提供一种重组细胞, 其含有本发明第三方面所述的重组载体。 在一 个实施方案中, 所述重组细胞为含有本发明第三方面所述的载体的重组农杆菌细胞。
本发明第五方面提供用于检測本发明第一方面所述的棉花转化事件的引物对, 其由 特异性识别本发明第一方面所述的任一侧的侧翼序列的第一引物和特异性识别本发明第 一方面所述的 T-DNA插入序列的第二引物组成。 在一些实施方案中, 所述第一引物的序 列为 SEQ ID NO: 18或 SEQ ID N0:20,所述第二引物的序列为 SEQ ID NO: 11或 SEQ ID NO: 140 在另一些实施方案中, 其中所述第一引物的序列为 SEQ ID N0: 19或SEQ ID NO: 21, 所述 第二引物的序列为 SEQ ID N0: 12或 SEQ ID N0: 15。
本发明第六方面提供一种鉴定棉花生物样品中 A26-5转化事件的方法, 其包括:
(a)从待鉴定的棉花生物样品提取 DM样品;
( b ) 以提取的 DNA样品为模板,使用本发明第五方面所述的引物对进行 PCR扩增:
( c )检测 PCR扩增产物, 如果扩增产物长度与 SEQ ID NO: 22上所述 PCR引物对的 序列之间的理论长度一致, 则表明所述棉花生物样品中 A26-5转化事件的存在。
本发明第七方面提供了本发明第一方面所述棉花转化事件向不同棉花育种材料中转 移的方法, 包括: 利用含有本发明第一方面所述的转化事件的棉花材料, 与其它棉花育 种材料进行杂交后, 进一步进行回交, 获得含有本发明第一方面所述的转化事件的新材 料; 在杂交及回交过程中, 利用本发明第六方面所述的方法在后代群体中进行筛选鉴定, 确认本发明第一方面所述的转化事件的存在。
本发明第八方面提供本发明第一方面所述的转化事件、本发明第二方面所述的片段、 本发明第三方面所述的载体或本发明第四方面所述的重组细胞、 本发明第六和第七方面 所述的方法用于提高棉花抗棉铃虫性状、 进行棉花育种或用作分子标记的用途。 跗图说明 图 1示出了植物表达载体 T66-35S-0K-Bt-PS-Tnos- 2300的构建流程。
图 2示出了 Southern印迹分析技术与互补于 Bt基因编码序列的地高辛标记的 DNA 进行杂交的结果。
图 3示出了利用 Southern杂交技术对转化事件 A26- 5拷贝数进行检测的实验结果。
1, CK+, T66-35S-0K-Bt-PS-Tnos-2300/EcoRI+Hi ndl 11; , marker , λ DNA/HindIII+EcoRI ;
2, A26-5/EcoRI+HindIII ; 3, A26- 5/HindIII ; 4, A26- 5/EcoRI。
图 4是右边界 (RB)旁侧序列示意图。
图 5是左边界 (LB〉旁侧序列示意图。
图 6示出了以受体材料冀棉 14 DNA为模板, 使用序列分别为 SEQ ID No : 18和 SEQ ID No : 19的引物对, 扩增得到大小为 900bp左右的扩增产物, 测序后与 A26-5的旁侧序列 比对的结果。
图 7是 A26-5事件的插入序列及鉴定引物的示意图。
图 8 示出了利用引物对 GSPl-#/«i III/A26-5-3 GSPl-ffind III/A26-5- 及 GSPl-EcoR I/A26- 5- 1、GSP1- EcoR I/A26- 5- 2分别扩增 A26- 5品系、 A2- 6品系、冀棉 14 - 1、 冀棉 14-2 的棉花样品的结果。 M, marker, λ DNA/HindIII+EcoRI 1-4: GSPl-ffind III/A26-5-3扩增 A26- 5, A2- 6,冀棉 14-1 ,冀棉 -2,阳性扩增条带 3. 5 Kb左右; 5-8: GSP1-历 '/?d III/A26- 5- 4扩增 A26-5, A2-6,冀棉 14-1,冀棉 14- 2, 阳性扩增条带 3. 6Kp 左右; 12-16: GSP1- EcoR Ι/Α26- 5- 1扩增 A26- 5, A2- 6, 冀棉 14-1, 冀棉 14- 2, 阳性扩 增条带 2. 6Kb左右; 17-21 : GSPl-EcoR I/A26- 5-2扩增 A26- 5, A2- 6, 冀棉 14- 1, 冀棉 14-2, 阳性扩增条带 2. 7Kb左右 具体实施方式 在本发明中, "转化事件"是指将外源目的基因通过农杆菌介导遗传转化方法(本领 域技术人员公知),转化到棉花细胞中, 并进一步获得的转基因棉花植株中外源 DM序列 在棉花基因组中的特定位置插入并整合的事件; "转化事件"并不是一种植物细胞或植株, 植物细胞或植株是转化事件存在的载体; 转化事件的核心特征是外源基因在植物基因组 中特定位点的插入所形成的外源插入序列和特定棉花基因组序列连接的一段特征 DNA序 列。 实施例 下面结合非限制性实施例对本发明迸行进一步说明。 实施例 1. 植物表达载体构建
从载体 pCambia2300扩增含双增强子的 35S启动子, 两端分别带 l¾a I和 I, 引物序列如 SEQ ID No: l及 SEQ ID No:2所示, PCR产物经酵切后克隆到 pMD~18T中, 得 到 pMD- 35S重组载体。 为了增加表达框的重组率, 克隆来自棉花基因具有大量拓扑异构 酶 Π识别位点的 SSR序列 TMB0066, 构建以 TMB0066为 AR序列的植物表达载体, 增加 插入序列的整合效率。 TMB0066序列如 SEQ ID No:3所示。 其两端分别引入^ /xi ΙΠ和 位点, 克隆到 pJH35S, 得到重组载体 ρΑβΗΓΜΒ0066- 35S。
将含 OK (Omega & Kozak) -Bt-PS (Processing & Splicing sequence )片段(三者 序列已在专利号为 95119563. 8的中国专利中公开,该专利公开以引用的方式全文纳入本 文)组合的质粒, 利用 Banii i Sac I酶切 O -Bt-PS片段, 将其克隆到 pMD- 18T中, 获得重组质粒 pMD-OK- Bt- PS。 将终止子 Tnos序列通过 Sac l+Ecd^ I克隆到 PS下游。 利 用 mnA III+feflH I 将 T B0066-35S 克隆到 35S 上游, 得到重组质粒 pMD-T B0066-35S-0K-Bt-PS-Tnos 。 利 用 Ηίπά III 和 &o I , 将 TMB0066-35S-0K- Bt-PS- Tnos 克隆到载体 Carabia2300 中, 获得重组植物表达载体 T66-35S-OK-Bt-PS-Tnos-2300, 构建流程见图 1。 实施例 2. 陆地棉(Gossypium hirsutum)的遗传转化 - 利用农杆菌介导的遗传转化方法,用 T66-35S-0K-Bt PS- Tnos- 2300载体转化冀棉 14 (国家棉花中期库, 获取单位中国棉花研究所, 统一编号: ZM-30270)下胚轴。
挑取含有 T66-35S-0K-Bt-PS- Tnos- 2300载体的农杆菌 LBM404, 接种至含卡那霉素
(kanamycin, km) 50 mg/L 利福平 (rifampicin, rif ) 50 mg/L及链霉素 ( streptomycin, S/Sm) 50 mg/L的 LB液体培养基中, 28Ό振荡暗培养过夜到细菌生长对数期。 以菌液: 培养基 1 : 50〜; b 100的比例用 LB或 YEB液体培养基稀释菌液, 再振荡培养 4~6 h, 将 菌液稀释至 0D600值 0. 8〜1. 0。
转基因受体材料为冀棉 14,取生长 3〜4天的无菌苗下胚轴,切成 0. 6〜0. 8cm的段, 浸染】 (Γΐδ ιπίη, 取出下胚轴段, 置共培养培养基( 8+ 0. 1 /1^ + 2, 4-1)0. 1 1¾几), 22 °C ~25 °C共培养 2 天。 转至愈伤诱导培养基 (MSB + KT 0. 1 rag/L + 2, 4- DO. 1 mg/L+Kan50mg/L) 20〜30天继代一次, 90天后转接至愈伤增殖培养基(MSB+KT 0. 1 rag/L + 2, 4-D0. 05 mg/L+Kan50mg/L), 20〜30天继代一次, 待长出胚性愈伤后, 将胚性愈伤继 代至萌发培养基(MSB+KT 0. 1 rag/L+Kan50mg/L), 40天左右挑取萌发的绿芽至生根培 养基(SH+KanSOmg/U进行筛选, 进而获得小苗和可嫁接抗性植株 268株。抗性植株经 过 PCR鉴定后嫁接并移栽, 获得 A系列棉花共 210株。 实施例 3. T0代转基因材料的筛选鉴定:
分别对苗期、 花期、 蕾期及铃期进行抗虫蛋 ¾的 Elisa检测及抗虫试验。 根据苗期
El isa检测,抗虫蛋白高表达的转基因棉花有 125株。经过抗虫试验,对棉铃虫有抗性的 有 94株, 其中对棉铃虫抗性较强的有 25株。 编号 PCR Elisa苗 Elisa蕾 Elisa花 Elisa铃 虫试次数 抗虫性
A6-2 P+ 0.323 0. 181 0. 21 0. 085 6 R
A7-2 P+ 0. 223 0. 321 0. 141 0. 129 6 R
A2-1 P+ 0. 162 0. 151 0. 245 0. 115 6 R
A1-1 P+ 0. 421 0.294 0. 207 0. 101 6 N 義s/u P90 ssld
φ > σϊ σ¾ ςο ^ f to to c o^ oi oo oo m co oo csi L L C OQ LC ci σ¾ CD co CD CM σ¾
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
O O O O O O O O O O O O O O O o o o o o o o o o o o o o o o o o o o o 05 Ο 00 εΟ ιΟ ΐΛ ΙΛ Ο O¾ t_O 00 C Cs] -* tQ C^ O Oi OO GO <D iC L C O O O O o o o o o o o o o o o o o o o o o o o cM cNi o o esi —^ o o o o o o o o e i e^ M csi ea o c
Figure imgf000008_0001
v οsdΐ +—
Figure imgf000009_0001
A P25+-
Figure imgf000010_0001
3 ^ :^:^ ^; ^:^:^ ^::^:^:^:^:^:^ ^;^:^:^:^:^ : ¾:2::¾::¾: :25:2::2: ?0 5¾3 |50 5^ :¾ ¾3;30;¾ !¾ !?0 ¾3 5« » §§ :2::2;;2;:2::2;:2::2:
7丄 8
1 Α2Θ2Ι u/u/d piozss
Ά Οιιί Ge£
Figure imgf000011_0001
Ί A30-6 P+ 2. 084
P+: PCR阳性植株。
抗虫性分析 - N: 无抗性; ; 有抗性; HR/HR-: 较强抗性 结合 Elisa结果及抗虫试验结果选择 22个抗虫性较强的材料进行 Southern分析。 对于 Southern分析, 并结合植株育性情况, 从棉花组织提取 DNA, 用 EcoRI进行消化, 并利用 Southern印迹分析技术与互补于 Bt基因编码序列的地高辛标记的 DNA进行杂交, 结果如图 2所示, 筛选出 13个单拷贝棉花事件进行进一步筛选。 实施例 4. F1代或 T1代转基因材料的筛选鉴定:
收取 A19- 2、 A2- 6、 A3- 6、 A3- 7、 A6- 7、 A7-6、 A9- 7、 A10- 5、 All- 1、 A19-5 A19 - 7、
A19 - 8、 A20~8、 A26- 5共 14个棉花事件分别自交并与其它棉花栽培种(LG6035、 LG6036
LG610K LG6118、 LG6162)杂交, 分别收获自交种及杂交种。 将收获的种子播种, 对 T1 代(或 F1代)棉花植株, 于 4叶期选择顶部第二片真叶, 以 2000ppm卡那霉素溶液进行 叶片涂抹筛选, 保留卡那霉素处理 7天后叶片不变色的植株, 分别于苗期、 蕾期、 花期 进行 Elisa检测及抗虫试验。抗虫试验分别摘取倒二叶,接虫 12头, 每样品设置一个重 复, 于 5日后观察结果, 与对照进行比较, 计算校正死亡率。 计算公式如下:
平均死亡率(%): 死亡^ ^亡率 2 χ ΐ∞%
12x2
^ 平均死亡率-舰平均死亡率 ΛηηΜ
较正死亡率 ( % } = X 100%
1 ; 100 -对) 平均死亡率
植株编号说明:
F1代杂交编号格式为 "AXB- m"。 "A"为作为母本的棉花材料, "B"为作为父本的棉 花材料, "m"为单株编号;
T1自交编号格式为" A- ιη", "Α"为自交的棉花材料, "m"为自交后代单株编号, "(1 )" 表示没有进行试验重复, 否则为三次重复的平均数据; 结果如下:
(1)苗期结果:
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
2) 据苗 虫结果, 选取抗虫表现好的植株进行蕾期抗虫试验, 结果如下-
Figure imgf000016_0001
Figure imgf000016_0002
根据 Tl I Fl代抗虫试验及 Elisa检测的结果, 筛选出 A2-6及 A26- 5两个转化事件 的抗虫表现最佳。 继续进一步的实验分析。 实施例 5.回交后代材料的鉴定
在前述实施例 4中进行杂交的目的是将转化事件转移到其它的棉花育种材料中, 后 续将进一步迸行连续回交, 获得农艺性状与回交亲本一致并含有该转化事件的新材料, 以加速育种应用的进程。 在杂交或回交过程中, 利用前述的卡那霉素溶液涂抹叶片鉴定 的方法或者本发明实施例 8的检测方法(较前者更准确)在后代群体中进行筛选鉴定, 确认该转化事件的存在。 如发现转化事件丢失, 则将之淘汰。
植株编号说明:
回交后代编号格式为 "AXB BCmFl- x-y..."。 "A"为 Fl代作为母本的棉花材料, "B" 为 F1 代作父本的棉花材料, 其中 LG开头的编号材料是回交亲本; "BC"表示回交 (Backcross), "m"为回交代次; "- x-y... "为单株编号。
目前, 利用不同生态区的若千棉花回交转育亲本材料, 已经获得了这两个转化事件 的回交四代材料。
下表列举了 A2-6和 A26- 5两个转化事件与 LG6101、 LG6036、 LG6035三个骨干育种 资源材料回交后代材料不同生长阶段的抗虫性鉴定数据,与其它转化事件(数据未列出) 相比, 抗虫性好, 且在不同发育阶段比较稳定, 十分理想-
Figure imgf000017_0001
实施例 6. 转化事件 A26-5拷贝数检測
利用 Southern杂交技术对转转化事件 A26- 5拷贝数进行检测。
样品制备: 取转化事件 A26- 5 TO代幼嫩植物组织 4. 0g左右, 提取植物基因组 DNA, 具体步骤如下: 于液氮中研磨成粉末状。在 65'C水浴中预热提取缓冲液 15ml, 将研磨成 均匀粉状后加入提取缓冲液中,振荡混匀, 65Ό水浴 45min,期间摇匀 2- 3次,充分裂解。 加入 1/3体积 5mol/L KAc上下颠倒混匀, 冰浴约 2-h3, 4V, 12000rpm, 离心 lOmin; 取上清, 加入 1/5体积的 5% CTAB Buffer, 上下颠倒充分混匀, 65Ό水浴约 20min; 待 冷却置窒温后,加入等体积的氯仿 /异戊醇(24: 1 )抽提 3次,室温 12000rpm离心 5min, 如界面浑浊再抽提一至两次; 取上清, 加入 2/3体积异丙醇, 上下颠倒充分混匀, 室温 放置 lOrain, 室温, 12000rpm, 离心 lOrain; 弃上清, 用 70%乙醇洗涤沉淀两次。 抽干沉 淀, 加 500ul灭菌水溶解; 加 1/10体积 Nase处理 DM样品, 37Ό 30 min; 加 1/10体 积 3BIO1/L NaAc (pH5. 2) , 2倍体积无水乙醇混匀, - 20'C放置 10min, 4°C, 12 OOOrpm, 离心 5niin, 用 70%乙醇洗漆沉淀两次, 抽干沉淀, 加适量 ddH20溶解, 使用紫外分光光 度计测量 DNA浓度及纯度, 取 100〜200μ8 D 分别用限制性内切酵 EcoR I, Hind III, EcoR 1+ Hind III消化过夜后酒精沉淀, 用适量 ddffiO溶解后加入 0. 8%琼脂糖凝胶中, 以 IV/cm电压电泳过夜。 真空转移至尼龙膜上, 紫外交联固定。
探针制备: 以含 ΟΚ-Bt基因的质粒为模板, 以 0KF和 BtR引物(序列如 SEQ ID No :4 和 SEQ ID No:5所示), 利用 PCR法制备地高锌标记的特异性探针, PCR体系如下:
10 X扩增缓冲液 5. 0 μ 1
dNTP (0. 7 讓 ol/L DIG-ll -dUTP,
L 3 画 o】/L dTTP, 其它 dNTP浓度均为 2 BBBOI/L) Ι. Οϋ Ι
5,引物 (10 rool/L) 2.0 μ 1
3,引物 (10 BK)1/L) 2. 0 1
模板 DNA (含 OK- Bt基因貭粒) 1.0 μ 1
Taq DNA Polymerase 2 U
加无菌水至总体积 50μ 1
PCR程序: 94. 0Γ 5min; 30个循环: 94. 0。C 30s, 53.0。C 30s, 72. 0。C 30s ; 72. 0°C 5mir
杂交检测: 将尼龙膜放入杂交管中, 加一定体积的杂交液 (10ffil/100Cm2), 65°C, 预杂交 3 h; 95Ό变性 DIG标记探针 (25ng/ml) lOmin,迅速置于冰水中冷却 lOmin彻底 变;将变性探针迅速加到杂交管(3. 5ml/100cm2 membrane ) ,混匀, 65°C杂交过夜( >10h)。 取出尼龙膜, 进行洗膜。 在室温下, 30ml 2XSSC /0. 1%SDS振荡洗涤 2X5min。 在 50Ό 下, 0. 1 X SSC I 0. 1 SDS振荡洗涤 2X 15min, 将膜转入装有 20ml洗涤缓冲液中振荡洗 涤 5min。在杂交和严谨洗漆后, 将膜置洗漆缓冲液浸润 l〜5min; 20〜30ml 封闭液中蜉 育 30min;在 lOral 抗体液殍育 3ftnin;用 20〜30ml洗涤液洗涤 2X 15mi 15ml检测液 中平衡 2〜5min; 现配 20ml显色底物(NBT/BCIP)暗处静置显色; 50ml灭菌水或 TE 洗膜 5min终止显色, 拍照保存。检测结果如图 3如示,两组单酶切结果均只出现一条杂 交信号带, 表明 A26-5为单拷贝插入, 经 Hind III+ FcdR I 的酶切 A26- 5 DNA和 T66-35S- OK- Bt- PS- Tnos- 2300的杂交带型基本一致, 表明 A26-5事件为单拷贝、 并且是 完整 TDNA区的插入。 实施例 7. 旁側序列分析
样品制备: 用本领域技术人员公知的植物 DNA提取方法提取含有 A26-5转化事件的 棉花材料的基因组 DNA, 取 2. 5μδ DNA, 分别用 Ec I, Ηίηά III消化 6〜8小时, 酒精 沉淀纯化后加适量水溶解。
连接接头: 根据载体酶切位点分析, 分别设计合成两对接头-
GenomeWalker Adaptor + EcdR I, GenomeWalker Adaptor― EccR I (序列如 SEQ ID No :6, SEQ ID No:7所示)和 Genome¾lker Adaptor + Ηίιή III, GenomeWalker Adaptor -ffind III (序列如 SEQ ID No:8, SEQ ID No:9所示), 其中对 SEQ ID No:7和 SEQ ID No :9 的 5' 端进行了磷酸化, 3' 端加氨基。
分别等量混合 GenomeWalker Adaptor + FcdR I和 Genomeliali er Adaptor― EccR I, GenomeWalker Adaptor + Hind 111和 GenomeWalker Adaptor -Hind III, 70。C保温 10分 钟, 后缓慢降到室温。 取 4 μ 1消化纯化的 DNA加到含 1. 9 μ 1 GenomeWalker Adaptor (25 Μ) , 1. 6 μ ΐ 10X连接缓冲液, 0. 5 μ 1 Τ4 D ¾接酶 (6 units/ ΐ) , 在 16 下过夜 培养, 停止反应, 在 70'C下培养 5 min, 在每个管中, 加入 72 μ 1 TE (10/1, pH 7. 5), 在 低速下振荡 5- 10 sec。
使用 Clontech GenoBteffalker™ Universal试剤盒, 利用引物 API和 GSP1- EcdR I, GSPl-ffi«l III (序列如 SEQ ID No: 10, SEQ ID No : ll, SEQ ID No: 12所示), 以连接产 物为模板, 进行第一轮扩增: 7个循环: 94'C 25S, 72 6min; 32个循环: 94°C 25S, 67Ό 6 min; 最后一个循环后再于 67Γ保温 7分钟。 PCR产物稀释 50倍后, 用 AP2和 GSP2-fcoR I, GS?2~ffind III (序列如 SEQ ID No: 13, SEQ ID No: 14, SEQ ID No: 15所 示)进行第二轮 PCR扩增, PCR程序如下: 5循环: 94Ό 25S, 72V 5min; 20 cycles: 94 V 25S, 67°C 5 niin; 最后一个循环后再于 67 保温 10分钟。 产物回收测序。
对 A26- 5事件的右边界(RB)端序列分析如图 4所示,共获得 1539 bp的核苷酸序列(序 列如 SEQ ID No: 16所示), 包括 lbp〜340 bp的棉花基因组序列, 第 341 bp〜475 bp为 RB 与 TMB0066之间的载体序列,第 476bp〜752 bp为 TMB0066序列,第 753 bp~1539 bp为 CaMV 35S序列。 序列说明:
1-340 棉花 DNA
341-475 RB与 TO066之间的载体序列
476-752 T0066
753-1539 CaMV 35S 对 A26-5事件的左边界(LB)端序列分析如图 5所示,共获得 1651 bp的核苷酸序列(序 列如 SEQ ID No: 17所示), 包括 lbp〜798 bp的 NPTII序列, 第 799bp〜1011bp的 CaMV 35SpolyA序列, 第 1097 bp〜1122 bp的 TW½ (左边界)和第 1123bP〜1651bp的棉花基因组
序列说明-
1-798 NPTII
799-1011 CaMV 35SpolyA
1097-1122 左边界
1123-1651 棉花 DNA 以受体材料冀棉 14 D 为模板, 分别在插入序列的 RB和 LB端侧翼棉花基因组序列设 计引物(序列如 SEQ ID No:18, SEQ ID No:19所示), 得到大小为 900bp左右的扩增产物, 与 A26- 5的旁侧序列比对发現, 该事件通过插入序列替换原基因组序列上 206bp碱基获得 的。 比对结果见图 6。
根据以上结果, 本领域技术人员可容易得出 A26-5事件的特征 DNA序列 (SEQ ID N0:22) , 如下所示, 加下划线部分示出的是 T-DNA插入序列, 未加下划线部分示出的是 插入序列的侧翼棉花基因组 DNA序列
I CTACCTAMA TCTT.4TATTT TCCT CCTT ATCCATCGAC GAGT.4GAACT TTTTC G
61 AMAACATTA TTCGMTTTT TATTCATAM CTCATGATGT TTAAAACTGT TTCATAAAM 121 ATGMTTGTT AAAGAG,\AAG AAGCTTTT AATTAACGTA GATGGTGCGA ACGGA ATG
181 TATACAACGT CTATTTTAAC AACTCAAATA CTTAAATAM ATATTCGMT AATTTAAATA
241 CAATTTTGTA ACTHTTGAA ATTAMAAAC TAA CATAT AATTTAATGT AATTTACTTA
301 AAAATTMCT GTTA.AATTTG AAAAA T TATTGCCGCG ACTGTTt^GA AGGGCGATCG
361 GTGCGGGCCT CTTOiCTATT ACGCCAGCTG GCGAMGGGG GATGTGCTGC AAGGCGATTA 421 AGTTGGGTAA CGCCAGCGTT HCCCAGTCA CGACGTTGTA AAACGACGGC CAGTGCCAAG
481 CTTATCGCCA TCAACGCHA TATGTATTTA ATCCGTAATC TCAGTCCGGC TCTCGCCACC
541 AGCTACGCTT ACGTTAACCC GGTGGTCGCG GTCTTGCTGG GTACGGGACT 6GGTGGAGAA
601 ACACTGTCGA AGAHGAATG GCTGGCGCTC GGCGTMTTG TCTTCG(¾GT GGTACTGGTC
662 ACGTTGGGAA MTATCTCTT CCCGGCAAAA CCCGTAGHG CGCCAGTTAT TCAGGACGCA ?21 TCMGCGAGT AAATGAATCC CCTGCGTGM TCTCTAGAGG ATCACGACAC TCTCGTCTAC
781 TCCMG TA TCAAAGATAC AGTCTCAGM GACCAAAGGG CTATTGAGAC TTTTCAACAA
841 AGCGTAATAT CCGCAAACCT CCTCGGATTC CATTGCCCAG CTATCTGTCA CTTCATCAAA
901 AGGACAGTAG AAMGGAAGG TGCCA CTAC AAATGCCATC ATTGCGATAA AGGAMGGCT
961 ATCGTTCAAG ATGCCTCTGC CGACAGTGGT OCCAAAGATG GACCCCCACC CACGAGGAGC 1021 ATCGTGGAAA AAGAAGACGT TCCAACCA(¾ TCTTCAAAGC MGTGGATTG ATGTGMCAT
1081 GGTGGAGCAC GACACTCTCG TCTACTCCAA GAATATCAAA GATACAGTCT CAGAAGACCA
1141 MGGGCTATT GAGACTTTTC AACAMGGGT TATCGGGA CCTCCTCG GATTCCATTG
1201 CCCAGCTATC TGTCACTTCA TCAA GGAC AOTAGAMAG GAAGGTGGCA CCTACA TG
1261 CCATCATTGC GATAAAGGM AGGCTATCGT TCAAGATGCC TCTGCCGACA GTGGTCCCAA 1321 AGAT6GACCC CCACCCACGA GGAGCATCGT GCAAAAAGAA GACGTTCC CCACGTCTTC
1381 AMGC GTG GATTGATGTG ATATCTCCAC TGA(¾TAAGG GATGACGCAC TCCCACTA
1441 TCCTTCGCAA GACCCTTCCT CTATATAAGG AAGTTCATTT CATTTGGAGA GGACACGCTG
1501 AAATCACCAG TCTCTCTCTA CAAATCTATC TCTGGATCCC TCTGGATCCT ATTTTTACM
1561 CAATTACCAA CMCMCAAA CMCAMCM CATTAC TT ACTATTTACA AT CMTGG 1621 ACTGCAGGCC ATACMCTGC TTGAGTAACC CAGAAGTTGA AGTACTTGGT GGAGAACGCA
1681 TTGAAACCGG TTACACTCCC ATCGACATCT CCTTGTCCTT GACACACTTT CTGCTCAGCG
1741 AGTTCGTGCC AGGTGCTGGG TTCGTTCTCG GACTAGTTGA CATCATCTGG GGTATCTTTG
1801 GTCCATCTCA ATGGGATGCA TTCCTCGTGC AMTTGAGCA GTTGATCAAC CAGAGGATCG
1861 MGAGTTCGC CAGGMCCAG GCCATCTCTA GGTTGGMGG ATTGAGCAAT CTCTACCAAA 1921 TCTATGCAGA GAGCTTCAGA GAGTGGGMG CCGATCCTAC TAACCCAGCT CTCCGCGAGG
1981 A TGCGTAT TCAATTCAAC GACATGAACA GCGCCTTGAC CACAGCTATC CCATTGTTCG
2041 CAGTCCAGM CTACCAAGTT CCTCTCTTGT CCGTGTACGT TCAAGCAGCT MTCTTCACC
2101 TCAGCGTGCT TCGAGACGTT AGCGTGTTTG GCCAAAGGTG GGGATTOAT GCTGCMCCA
2161 TCMTAGCCG TTACAACGAC CTTACTAGGC TGATTGGAAA CTACACCGAC CACGCTGTTC 2221 GnGGTACAA CACTGGCTTG GAGCGTGTCT GGGGTCCTGA TTCTAGAGAT TGGATTAGAT
2281 ACMCCAGTT CAGGAGAGAA TTGACCXTTCA CAGTTTTGGA CATTGTGTCT CTCTTCCCGA
2341 ACTATGACTC CAGMCCTAC CCTATC^TA CAGTGTCCCA ACTTACCAGA GAAATCTATA
2401 CTAACCCAGT TCTTGAGAAC TTCGACGGTA GCTTCCGTGG TTCTGCCCAA GGTATCG G
2461 GCTCCATCAG GAGCCCACAC TTGATGGACA TCTTGAACAG CATMCTATC TACACCGATG 2521 CTCACAGAGG AGAGTAWAC TGGTCTGCAC ACCAGATCAT 6GCCTCTCCA GTTGGATTCA
2581 GCGGGCCCGA GTTTACCTTT CCTCTCTATG GAACTATGGG AMCGCCGCT CCACAACAAC
2641 GTATCGTTGC TCMCTAGGT CAGGGTGTCT ACAGMCCTT GTCTTCCACC TTGTACAGM
2701 GACCCTTCAA TATCGGTATC MCAA(¾:AGC AACTTTCCGT TCTTGACGGA ACAGAGTTCG
2761 CCTATGGMC CTCTTCT C TTGCC CCG CTGTTTACAG AAAGAGCGGA ACCGTTGATT 2821 CCTTGGACGA AATCCCACCA CAGAACAACA ATGTGCCACC CAGGCAAGGA TTCTCCCACA
2881 GCTTGAGCCA CGTGTCCATG TTCCGTTC(¾ GATTCAGCAA CAGTTCCGT6 AGCATCATCA
2941 GGGCTCCTAT GTTCTCTTGG ATACAC(¾TA GTGCTGAGTT CMCAACATC ATCGCATCCG 3001 ATAGTATTAC TCAAATCCCT GCAGTGMGG GAAACTTTCT OTCAACGGT TCTGTCATTT
3061 CAGGACCAG6 ATTCACTGGT GGAGA TTCG TTAGACTCM CAGCAGTGGA MCAACATTC
3121 AGAATAGGAG GTATATTGAA GTTCCAATTC ACTTCCCATC CACATCTACC AGATATAGAG
3181 TTCGTGTGAG GTATGCTTCT GTGACCCCTA TTCACTrCM CGnMTTGG GGTAATTCAT
3241 CCATCTTCTC C TACAGTT CCAGCTACAG CTACCTCCTT GGATMTCTC C TCCAGCG
3301 ATTTCGG™ CTTTGAMGT GCCAATGCTT TTACATCTTC ACTCGGTAAC ATCGTGGGTG
3361 TTAGMACTT TAGTGGGACT GCTGGAGTGA TTATCGACAG ATTCGAGTTC ATTCCAGTTA
3421 CTGC CACT CGAGGCTGAG TAAGGTT C TTTGAGTATT ATGGCAHGG AAMGCCATT
3481 GTTCTGCTTG TMTTTACTG TGTTCTTTCA GTTTTGTTTT CGGACATCAA GTTAACMM
3541 AAAAAAAAAA AAAAAAAA ATTTMCMA AAMAAAAAA AAAAAAAAAA TTTAACAAAA
3601 AAAAAAAAM AAAAAAAAAT TTAAAGAGCT CGAATTTCCC CGATCGTTCA AACATTTGGC
3661 MTA GTTT CTTAAGAHG AATCCTGTTG CCGGTCTTGC GATGATTATC ATATAATTTC
3721 TGTTG TTA CGTTAAGCAT GTAATMTTA ACATGTMTG CATGACGHA TTTATGAGAT
3781 GGGTTTTTAT GATTAGAGTC CCGCAATTAT ACATTTMTA CGCGATAGAA MCAAMTAT
3841 AGCGCGCMC TAGGATAAAT TATCGCGCGC GGTGTCATCT ATGTTA AG ATCGGGMTC
3901 CGTMTCATC GTCATAGCTG TTTCCTGTGT GAAATTGHA TCCGCTCACA ATTOACACA
3961 ACATACGAGC CGGAAGC MGTGTAMG CCTGGGGTGC CT TGAGTG AGCTMCTCA
4021 CATTMTTGC GTTGCGCTCA CTGCCCGCTT TCCAGTC¾GG AMCCTGTCG TGCCAGCT6C
4081 ATTAATGAAT CGGCCAACGC GCGGGGAGAG GCGGTTTGCG TATTGGCTAG AGCAGCTTGC
4141 CMCATGGTG GAGCACGACA CTCTCGTCTA CTCC GAAT ATCAAAGATA CAGTCTCAGA
42Q1 AGACCAMGG GCTATTGAGA CTTTTCAACA MGGGTAATA TO¾GAAACC TCCTCGGATT
4261 CCATTGCCCA GCTATCTGTC ACTTCATCAA AAGGACAGTA CAAMGGAAG GTGGCACCTA
4321 CAMTGCCAT CATTGCGATA AAGGAAAGGC TATi¾TTCM GATGCCTCTG CCGACAGTGG
4381 TCCCA GAT GGhCCCCCAC CCACGAGGAG CATCGTGGM AMGMGACG TTCCMCCAC
4441 GTCTTCA G CMGTGGATT GATGTGATM CATGGTGGAG CACGACACTC TCGTCTACTC
4501 C GMTATC AGATACAG TCTCAG GA CC AGGGCT mGAGACTT TTCAACAMG
4561 GGTMTATCG GGAAACCTCC TCGGATTCCA TTGCCCAGCT ATCTCTCACT TCATC AAC
4621 GACAGTAGM AAGGAAGGTG GCACCTACAA ATGCCATCAT TGCGATAAAG GAAAGGCTAT
4681 CCTTC GAT GCCTCTGCCG ACAGTGGTCC CA GATGGA CCCCCACCCA CGAGGAGCAT
4741 CGTGGAAAAA GMGACGTTC C CCACGTC TTCMAGCM GTGGATTGAT GTGATATCTC
4801 CACTGACGTA AGGGATGACG CACAATCCCA CTATCCTTCG CMGACCTTC CTCTATATAA
4861 GGAAGTTCAT TTCATTTGGA GAGGACACGC TCAMTCACC AGTCTCTCTC TACAAATCTA
4921 TCTCTCTCGA GCTTTCGCAG ATCTGTCGAT CGACCATGGG GAHGAACAA GATGGATTGC
•498】 ACGCAGGTTC TCCGGCCGCT TGGGTGGAGA GGCTATTCGG CTATGACTGG GCACMCAGA
5041 CAATCGGCTG CTCTGATGCC GCCGTGTTCC GGCTCTCAGC GCAGGGGCGC CCGGTTCTTT
5101 TTGTCMGAC CGACCTGTCC GGTGCCCTGA ATGAACTCCA GGACGAGGCA GCGCGGCTAT
5161 CGTGGCTGGC CACGACGGGC GTTCCT GCG CAGCTGTGCT CGACGTTGTC ACTGAAGO¾
5221 GAAGGGACTG GCTGCTATTG GGCXJMCTGC (X¾¾«:AGGA TCTCCTGTCA TCTCACCTTG
5281 CTCCTGCCGA GMAGTATCC ATCATGGCTG ATGCAATGCG GCGGCTGCAT ACGCTTGATC
5341 CGGCTACCTG CCCATTCGAC CAa GCGA MCATCGCAT TOAGCGAGCA CGTACTCGGA
5401 TGGMGCCGG TCTTGTCGAT CAGGATGATC TGGACG GA GCATCAGGGG CTOJCGCCAG
5461 CCGAACTCTT CGCCAGGCTC AAGGCGCGCA TGCCCGACGG CGAGGATCTC GT(ETGACAC
5521 ATGGOJATGC CTGCTTGCCG AATATCATGG TCGMAATGG C X TTTCT GGATTCATCG
5581 ACTGTGGCCG GCTGGGTGTG GCGGACCGCT ATCAGGACAT AGCGHGGCT ACCCGTGATA
5641 nGCTG GA GCTTGGCGGC GAATGGGCTG AC JCTTCCT CGTGCTTTAC GGTATCGC(¾
5701 CTCCCGATTC GCAGCGCATC GCCTTCTATC GCCTTCTTGA CGAGTTCTTC TGAGCGGGAC
5761 TCTGGGGTTC GGATCGATCC TCTAGCTAGA GTOATffiAC GCTCGAGT TTCTCCATAA
5821 TMTGTGTGA GTAGTTCCCA GATMGGGAA TTAGGGTTCC TATAGGGTTT CGCTCATGTG
5881 TTGAGCATAT MGAMCCCI TAGTATGTAT TTGTATTTGT AAAATACTTC TATCAATAAA
5941 ATTTCTMTT CCTMAACCA AAATCCAGTA CTAAAATCCA GATCCCCCGA ATTMHCGG
6001 CGTTAAHCA CTA VTTA MCGTCCGCA ATGTGTTATT AAGHGTCTA AGCGTCMTT
6061 TGTTTACACC ACAATATACC ATATCTTAAA CG ATCTAC CCGTTCTTCC CACATMTAA
6121 TGTAGGTAAT TATTTGA T TGGATGAA TTTMATG ATATGTTAAA TTTMTACAT 6181 TMCAT TA ATTCATGTGT ATTTCACTGT TGATATATAT ΤΑΤΤΤΪΤΤΑΑ ACATTCTTTT
62 1 ATGAACTTTG AAATTTGTT6 AATTTTT細 TATTTTTAH TATTTTTGTA ΜΑΤΤΤΤΤΑΪ
6301 TAATTAATAT CGTTAAATTT TGAATAATTT AATTAACTTT TTCATCTTAA AA ACCAGT
6361 TTGACT AT TITTATTAAG CAGGCA CA CC TTT6AC AMAAAATAT GAATMTAM
6421 ΑΑΤΤΛΑΑΤΤΤ ATCATTATGC CTATTATATA ΤΑΤ ΠΑΤΤ ATTTTTTCTT TTTTAAA A
6481 GGTGT TAT GTA ACTTT GGTCTATTTA TAA ATTAA ATTTGCACCA AA MAGTA
6541 ACATMAT TATGTACTTG G6TTCAAATT ATTATGAMA AAMGGAAAT AGGATTTATA
6601 TCGTTA 实施例 8.转化事件检测
使用 DNA引物对进行 PCR扩增以检測 A26- 5事件, 所述引物对由特异性识别本发明 T-DNA插入序列的第一引物和特异性识别所述插入序列任一侧翼序列的第二引物组成。 A26-5插入序列及鉴定引物如图 7所示。 例如, 当第一引物为 A26-5_3(SEQ ID N0:21)或 A26 - 5-4 (SEQIDTO:19)时, 第二引物可为 GSP1- ffi2d III (SEQIDN0:12)或 GSP2- 'xi III (SEQ ID冊:15); 当第一引物为 A26- 5- 1 (SEQ ID ^):20)或 26~5-2 ( SEQ ID NO: 18) 时, 第二引物可为 GSP1- £ o I (SEQ ID NO: 11)或 I (SEQ ID N0:14)。
利用上述引物进行 PCR鉴定的方法是本领域技术人员所熟知的。 利用引物对 GSPl-ffind III/ A26- 5- 3、 GSPl-i½'/3d III/ A26- 5 - 4及 GSP卜 EcoR 1/ A26- 5- 1、 GSPl-EcoR 1/ A26- 5- 2分别扩增 A26-5事件、 A2- 6事件、 冀棉 14- 1、 冀棉 14- 2的棉花样品的结果 如图 8所示。 实施例 9.染色体定位
根据所获得的棉花侧翼序列, 利用公布的二倍体棉花 iGossypium raimondi D染 色体组基因组序列(http:〃 www. phytozome. net/cotton, php)进行对比分析,可知 A26-5 事件中,与插入序列接合的棉花側翼 DM序列与 D8染色体上的序列高度同源,因此可知, A26-5事件中外源 DNA插入序列的整合位点位于受体四倍体棉花的第 8组染色体上。
申请人或代理人档案号 FP〗〗2056 P 国际申请号 KT/CN 2012/0 00673 关于微生物保藏的说明
(细则 13之二)
A.对说明书第 J—页 , 第 行所述的已保藏的微生物或其他生物材料的说明
B. »m 更多的保藏在附加页说明□ 保藏单位名称 中国微生物菌种保藏管理委员会普通微生物中心
保藏单位地址
(包括邮政编码和国名〉
中国北京市朝 ¾区北辰西路】号院中国科学院微生物研究所 100101
保藏日期 2012年 0 月 06日
C.补充说明 (必要时) 更多信息在附加页中 □
D.本说明是为下列指定国作的(如果说明不是为所有指定国而作的)
E.补充说明 (必要时)
下列说明将随后向国际局提供 (写出说明的类别, 例如: "保藏的编号")
由国际局堉写
□ 国际局 本页曰期 授权官员
Figure imgf000024_0001

Claims

权 利 要 求 书
L棉花转化事件 A26- 5,其特征 DM序列如 SEQ ID Not 22所示,其由第 341-6078 bp 的 T-DNA插入序列、 第 1-340 bp的上游侧翼棉花基因组序列和第 6079〜6606 bp的下游 侧翼棉花基因组序列构成。
2.权利要求 1所述的棉花转化事件的特征 DNA序列的片段, 所述 DNA片段至少包含 部分所述 T-DNA插入序列和部分所述侧翼棉花基因组序列。
3.—种重组载体, 其含有权利要求 i所述的 T- DNA插入序列; 例如, 所述载体为附 图 1中的 T66-35S- OK- Bt- PS- Tnos-2300载体。
4.一种重组细胞, 含有权利要求 3所述的载体; 例如, 所述重组细胞为含有权利要 求 3所述的载体的重组农杆菌细胞。
5.用于检测权利要求 1所述的棉花转化事件的引物对, 其由特异性识别权利要求 1 所述的任一侧的侧翼序列的第一引物和特异性识别权利要求 1所述的 T-DNA插入序列的 第二引物组成。
6.权利要求 5所述的引物对, 其中所述第一引物的序列为 SEQ ID NO: 18或 SEQ ID ):20, 所述第二引物的序列为 SEQ ID N0:11或 SEQ ID N0: 14o
7.权利要求 5所述的引物对, 其中所述第一引物的序列为 SEQ ID NO: 19或 SEQ ID N0:21 , 所述第二引物的序列为 SEQ ID NO: 12或 SEQ ID MO: 15ο
8.—种鉴定棉花生物样品中 Α26-5转化事件的方法, 其包括:
<a)从待鉴定的棉花生物样品提取 DM样品;
(b) 以提取的 DNA样品为模板,使用权利要求 5-7任一项所述的引物对进行 PCR扩 增;
(c)检测 PCR扩增产物, 如果扩增产物长度与 SEQ ID NO: 22上所述 PCR引物对的 序列之间的理论长度一致, 则表明所述棉花生物样品中 A26-5转化事件的存在。
9.一种获得转基因抗虫棉花材料的的方法, 包括: 利用含有权利要求 1所述的转化 事件的棉花材料, 与其它棉花育种材料进行杂交后, 进一步进行回交, 获得含有权利要 求 1所述的转化事件的新材料; 在杂交及回交过程中, 利用权利要求 8所述的方法在后 代群体中进行筛选鉴定, 确认权利要求 1所述的转化事件的存在。
10.权利要求 1所述的转化事件、 权利要求 2所述的片段、 权利要求 3所述的载体、 权利要求 4所述的重组细胞、 权利要求 8或权利要求 9所述的方法用于提高棉花抗棉铃 虫性状、 进行棉花育种或用作分子标记的用途。
PCT/CN2012/000673 2012-05-16 2012-05-16 棉花植物事件a26-5以及用于其检测的引物和方法 WO2013170398A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280001629.7A CN104145019A (zh) 2012-05-16 2012-05-16 棉花植物事件a26-5以及用于其检测的引物和方法
IN2540MUN2014 IN2014MN02540A (zh) 2012-05-16 2012-05-16
PCT/CN2012/000673 WO2013170398A1 (zh) 2012-05-16 2012-05-16 棉花植物事件a26-5以及用于其检测的引物和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000673 WO2013170398A1 (zh) 2012-05-16 2012-05-16 棉花植物事件a26-5以及用于其检测的引物和方法

Publications (1)

Publication Number Publication Date
WO2013170398A1 true WO2013170398A1 (zh) 2013-11-21

Family

ID=49582955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000673 WO2013170398A1 (zh) 2012-05-16 2012-05-16 棉花植物事件a26-5以及用于其检测的引物和方法

Country Status (3)

Country Link
CN (1) CN104145019A (zh)
IN (1) IN2014MN02540A (zh)
WO (1) WO2013170398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042259A1 (en) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Hppd variants and methods of use
WO2017182420A1 (en) 2016-04-20 2017-10-26 Bayer Cropscience Nv Elite event ee-gh7 and methods and kits for identifying such event in biological samples

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003429B (zh) * 2012-05-16 2018-03-16 创世纪种业有限公司 棉花植物事件a2‑6以及用于其检测的引物和方法
WO2018035803A1 (zh) * 2016-08-25 2018-03-01 创世纪种业有限公司 棉花事件n15-5以及用于其检测的引物和方法
CN109929850B (zh) * 2017-12-15 2022-08-19 中国种子集团有限公司 抗线虫棉花转化事件ghp10

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071668A2 (en) * 1999-05-20 2000-11-30 The Board Of Regents Of The University Of Nebraska Method for identifying components involved in signal transduction pathways in higher plants
CN101679996A (zh) * 2007-04-05 2010-03-24 拜尔生物科学公司 抗虫棉花植物及其鉴定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037913C (zh) * 1995-12-28 1998-04-01 中国农业科学院生物技术研究中心 编码杀虫蛋白质的融合基因和表达载体及其应用
WO2000006757A1 (en) * 1998-07-31 2000-02-10 Mycogen Plant Science, Inc. Improved plant transformation process by scaffold attachment regions (sar)
EG26529A (en) * 2001-06-11 2014-01-27 مونسانتو تكنولوجى ل ل سى Prefixes for detection of DNA molecule in cotton plant MON15985 which gives resistance to damage caused by insect of squamous lepidoptera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071668A2 (en) * 1999-05-20 2000-11-30 The Board Of Regents Of The University Of Nebraska Method for identifying components involved in signal transduction pathways in higher plants
CN101679996A (zh) * 2007-04-05 2010-03-24 拜尔生物科学公司 抗虫棉花植物及其鉴定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK 12 January 2001 (2001-01-12), RHOADES, D.M., accession no. X052539.1 *
DATABASE GENBANK 26 December 2007 (2007-12-26), MA, B.G. ET AL., accession no. U327494.1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042259A1 (en) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Hppd variants and methods of use
WO2017182420A1 (en) 2016-04-20 2017-10-26 Bayer Cropscience Nv Elite event ee-gh7 and methods and kits for identifying such event in biological samples
US11085050B2 (en) 2016-04-20 2021-08-10 Basf Agricultural Solutions Seed, Us Llc Elite event EE-GH7 and methods and kits for identifying such event in biological samples
US11926838B2 (en) 2016-04-20 2024-03-12 BASF Agricultural Solutions Seed US LLC Elite event EE-GH7 and methods and kits for identifying such event in biological samples

Also Published As

Publication number Publication date
CN104145019A (zh) 2014-11-12
IN2014MN02540A (zh) 2015-07-24

Similar Documents

Publication Publication Date Title
US20210011424A1 (en) Corn event 5307
Bordas et al. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance
Yao et al. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids
WO2020207125A1 (zh) 用于检测玉米植物dbn9501的核酸序列及其检测方法
WO2024060732A1 (zh) 转基因玉米事件lp026-2及其检测方法
KR102296563B1 (ko) 생물학적 샘플에서 형질전환 대두 이벤트 dbn9004의 존재를 검출하기 위한 핵산 서열, 이를 포함하는 키트 및 이의 검출 방법
AU2016218738B2 (en) Herbicide-resistant protein, encoding gene and use thereof
CN103003429B (zh) 棉花植物事件a2‑6以及用于其检测的引物和方法
WO2019154373A1 (zh) 抗虫耐除草剂玉米转化事件
WO2011127744A1 (zh) 与植物株型相关的蛋白ipa1及其编码基因与应用
WO2021026689A1 (zh) 用于检测大豆植物dbn8007的核酸序列及其检测方法
Zheng et al. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.)
WO2013170398A1 (zh) 棉花植物事件a26-5以及用于其检测的引物和方法
EP4012028A1 (en) Nucleic acid sequence for detecting soybean plant dbn8002 and detection method therefor
Kumar et al. Transgenic cowpea plants expressing Bacillus thuringiensis Cry2Aa insecticidal protein imparts resistance to Maruca vitrata legume pod borer
CN115449521A (zh) 一种同时表达抗虫基因和抗除草剂基因的双元载体及其应用
WO2023155193A1 (zh) 用于检测大豆植物dbn8205的核酸序列及其检测方法
CN106350536B (zh) 一种植物杂交体系及其应用
KR20170116124A (ko) 제초제 내성 단백질, 그 코딩 유전자 및 용도
CN110881367A (zh) 一种玉米事件t抗-4及其使用方法
CN104718293B (zh) 大豆事件pDAB9582.816.15.1检测方法
JP2007527694A (ja) ワタアブラムシ耐性遺伝子
Zhang Transgenic cotton breeding
CN109929850B (zh) 抗线虫棉花转化事件ghp10
CN114134171A (zh) 一种抑制或杀灭东方黏虫的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876721

Country of ref document: EP

Kind code of ref document: A1