WO2013169085A1 - 무선통신 시스템에서 인코딩 방법 및 인코딩 장치 - Google Patents

무선통신 시스템에서 인코딩 방법 및 인코딩 장치 Download PDF

Info

Publication number
WO2013169085A1
WO2013169085A1 PCT/KR2013/004192 KR2013004192W WO2013169085A1 WO 2013169085 A1 WO2013169085 A1 WO 2013169085A1 KR 2013004192 W KR2013004192 W KR 2013004192W WO 2013169085 A1 WO2013169085 A1 WO 2013169085A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
error detection
encoding
channel
code
Prior art date
Application number
PCT/KR2013/004192
Other languages
English (en)
French (fr)
Inventor
황대성
안준기
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP13787316.2A priority Critical patent/EP2849401B1/en
Priority to US14/399,864 priority patent/US9385838B2/en
Publication of WO2013169085A1 publication Critical patent/WO2013169085A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/65253GPP LTE including E-UTRA
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • H03M13/098Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit using single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/136Reed-Muller [RM] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/23Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes

Definitions

  • the present invention relates to wireless communication, and more particularly, to an encoding method and an encoding apparatus for uplink control information in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the uplink channel is used for transmitting various uplink control information such as hybrid automatic repeat request (HARQ) ACK / NACK, channel state information (CSI), and scheduling request (SR).
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • SR scheduling request
  • Radio resources for the uplink channel are more limited than radio resources for the downlink channel, and transmission error of uplink control information may worsen the quality of service.
  • the present invention provides an encoding method and encoding apparatus for uplink control information.
  • an encoding method in a wireless communication system includes generating an error detection code for a first uplink control information (UCI), adding the error detection code to a second UCI, and encoding the first UCI And encoding a second UCI to which the error detection code is added.
  • UCI uplink control information
  • the error detection code may include a parity bit or a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the first UCI and the second UCI may be encoded based on different Reed-Muller (RM) codes.
  • RM Reed-Muller
  • the first UCI may include a rank indicator (RI), and the second UCI may include channel state information (CSI).
  • RI rank indicator
  • CSI channel state information
  • an encoding apparatus in a wireless communication system generates an error detection code for a first uplink control information (UCI), and adds the error detection code to a second UCI, encoding the first UCI And a second encoder for encoding a second UCI to which the error detection code has been added.
  • UCI uplink control information
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 shows a structure of an UL subframe in 3GPP LTE.
  • FIG. 3 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
  • FIG. 6 is a block diagram illustrating an encoding apparatus in which an embodiment of the present invention is implemented.
  • FIG. 7 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the wireless device may be fixed or mobile and may be called by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a mobile terminal (MT).
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • DL downlink
  • CC downlink component carrier
  • uplink uplink
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel in 3GPP LTE is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PHICH Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the uplink channel includes a PUSCH, a PUCCH, a Sounding Reference Signal (SRS), and a Physical Random Access Channl (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Random Access Channl
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channl
  • FIG. 2 shows a structure of an UL subframe in 3GPP LTE.
  • the UL subframe may be divided into a control region in which a Physical Uplink Control Channel (PUCCH) is allocated and a data region in which a Physical Uplink Shared Channel (PUSCH) is allocated in the frequency domain.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH is allocated to an RB pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • m is a position index indicating a logical frequency domain position of an RB pair allocated to a PUCCH in a subframe.
  • PUSCH is allocated by a UL grant on the PDCCH.
  • the fourth OFDM symbol of each slot of the normal CP is used for transmission of a DM RS (Demodualtion Reference Signal) for PUSCH.
  • DM RS Demodualtion Reference Signal
  • the uplink control information includes at least one of HARQ ACK / NACK, channel state information (CSI), and scheduling request (SR).
  • the CSI is an indicator indicating the state of the DL channel and may include at least one of a channel quality indicator (CQI) and a precoding matrix indicator (PMI).
  • a combination of UCI and PUCCH is defined in a PUCCH format as shown in the following table.
  • Table 1 PUCCH format UCI transmitted PUCCH format 1 Positive SR PUCCH Format 1a / 1b 1 or 2 bit HARQ ACK / NACK PUCCH format 2 CSI Report PUCCH format 2a / 2b CSI reporting and 1 or 2 bit HARQ ACK / NACK PUCCH format 3 HARQ ACK / NACK, SR, CSI
  • PUCCH format 3 is used to carry 48 bits of encoded UCI.
  • PUCCH format 3 may carry HARQ ACK / NACK for a plurality of serving cells and CSI report for one serving cell.
  • FIG. 3 is an exemplary diagram illustrating a structure of a PUCCH format 3 in a normal CP.
  • One slot includes 7 OFDM symbols, and l is an OFDM symbol number in the slot and has a value of 0 to 6.
  • the symbol sequence d may be referred to as a set of modulation symbols.
  • the number of bits or modulation scheme of UCI is merely an example and not a limitation.
  • One PUCCH uses 1 RB and one subframe includes a first slot and a second slot.
  • the symbol sequence is spread to the orthogonal sequence w i .
  • the symbol sequence corresponds to each data OFDM symbol, and the orthogonal sequence is used to distinguish the PUCCH (or terminal) by spreading the symbol sequence over the data OFDM symbols.
  • a reference signal sequence used for demodulation of UCI is mapped and transmitted to two RS OFDM symbols.
  • CSI RI (Rank Indicator), and HARQ ACK / NACK are independently coded.
  • CSI o 0 , o 1 , ..., o O-1 (O is the number of bits in the CSI) is channel coded to generate the control information bit sequence q 0 , q 1 , ..., q NL QCQI-1 do.
  • N L is the number of layers to which the corresponding UL transport block is mapped, and
  • Q CQI is the number of bits per layer available for CSI.
  • a (32, O) block code (or Reed-Muller (RM) code) may be used as the channel coding for CSI.
  • RM Reed-Muller
  • the intermediate sequences b 0 , b 1 , ..., b 31 for CQI channel coding are generated as follows.
  • n is a basis sequence for the (32, O) blockcode, and can be defined as shown in the following table.
  • the control information bit sequence q 0 , q 1 , ..., q Q-1 is generated by circularly repeating the intermediate sequences b 0 , b 1 , ..., b 31 as follows.
  • the data bit sequence f 0 , f 1 , ..., f G-1 and the CSI bit sequence are multiplexed into the multiplexed symbol sequence g 0 , g 1 , ..., g H'-1 .
  • the CSI may be placed first in the multiplexed symbol sequence and then the UL transport block may be placed.
  • q i is a modulation symbol in constellation.
  • H ' H / Q m .
  • UCI e.g., CSI
  • u 0 , u 1 , ..., u A-1 (A is the number of bits in UCI) is a sequence of bits encoded by channel coding b 0 , b 1 , ..., b B -1 is generated.
  • a (20, A) block code (or referred to as a Reed-Muller (RM) code) may be used. This can be expressed as follows.
  • M i, n is a basis sequence for the (20, A) blockcode, and can be defined as shown in the following table.
  • UCI e.g. RI or HARQ ACK / NACK
  • A is the number of bits in UCI
  • channel coding is performed to encode the encoded bit sequence q 0 , q 1 ,. .., q B-1 is generated.
  • B is the number of bits that can be transmitted by the corresponding PUCCH.
  • PUCCH format 3 can transmit a maximum of 48 bits, but channel coding uses a basis sequence for the (32, A) block code of Table 2. Therefore, coding according to whether UCI bit number A is larger than the number of RM bass (or also called a basis sequence). According to Table 2, the number of RM basis is 11.
  • the intermediate sequences b 0 , b 1 , ..., b 31 for channel coding are generated as follows.
  • the control information bit sequence q 0 , q 1 , ..., q B-1 is generated by circularly repeating the intermediate sequence b 0 , b 1 , ..., b 31 as follows.
  • control information bit sequence q 0 , q 1 , ..., q B-1 is obtained by concatenating intermediate sequences as follows.
  • a plurality of serving cells may be activated for the wireless device, and CSI / RI for the plurality of serving cells may be transmitted on a PUCCH or a PUSCH.
  • Periodic CSI reporting is set, and CSI reporting for a plurality of serving cells may be triggered in one UL subframe. This is called a collision of CSI reporting. If a collision of the CSI report occurs, only the CSI for one serving cell is reported and the other abandons the transmission. This is because the existing PUCCH format and the structure of the PUSCH do not support CSI reporting for a plurality of serving cells. .
  • the collision of CSI reporting may increase, and accordingly, the number of times that CSI reporting is abandoned is increased. Since the CSI is not sufficiently reported at the time desired by the base station, it may be difficult for the base station to fully reflect the DL channel situation in the DL scheduling.
  • CSIs for a plurality of serving cells are transmitted in one subframe (or one PUCCH or one PUSCH), CSI reporting due to CSI collision can be prevented from being abandoned.
  • the RI for one serving cell is 5 bits. If there are five serving cells, the total number of bits of the RI is 25.
  • the following embodiment proposes a coding scheme and an error detection method according to an increase in the number of bits of UCI.
  • the UCI includes RI and CSI
  • the first UCI is RI
  • the second UCI is CSI
  • the UCI may include various control information such as a PTI (precoding type indicator).
  • the RI may include an RI for one or more serving cells.
  • the CSI may include CSI for one or more serving cells.
  • step S410 the wireless device determines the total number of bits T of the first UCI (eg, RI) and the second UCI (eg, CSI).
  • step S420 T is compared with a reference value Tr.
  • step S430 if T> Tr, the first UCI and the second UCI are independently coded.
  • the first UCI may be coded based on the single RM or dual RM of 7 in Equation 6 described above.
  • the second UCI may be coded based on the (32, O) block code of Table 2.
  • UCI may be coded based on single RM or dual RM of 7 in Equation 6 described above.
  • the coded UCI may be transmitted on PUCCH or PUSCH.
  • Tr is not limited, but may be 15, for example. Tr may be given by a base station. If the total number of bits of the UCI to be transmitted is greater than 15 bits, the first UCI including the RI and the second UCI including the information except the RI are independently coded.
  • UCI is transmitted through PUSCH, additional resource allocation is required to apply independent coding.
  • one of the remaining OFDM symbols except for the OFDM symbols reserved for DM demodulation reference signal (DM RS), HARQ ACK / NACK, and SRS may be additionally allocated to the RI.
  • the wireless device may change the number of subcarriers to which UCI is mapped in the corresponding OFDM symbol in consideration of the number of bits of the CSI and / or RI.
  • the total number of bits of the UCI may vary depending on the number of bits of the RI, and in particular, a reception error of the RI may lower the DL throughput. Therefore, it is proposed to add an additional error detection code to improve the error detection performance of the UCI.
  • the error detection code may include a parity bit with one or more bits and / or a CRC with one or more bits.
  • RI and CSI with parity bits are coded independently.
  • RI and CSI may be coded in different encoding schemes.
  • a single RM or dual RM or three or more RMs may be used as a coding scheme. For example, if dual RM is applied based on the (20, A) RM code of Table 3, up to 26 bits of RI may be coded.
  • triple RM is applied based on the (20, A) RM code of Table 3, up to 39 bits of RI may be coded.
  • TBCC tail-biting convolutional coding
  • parity bits are generated based on RI, but the parity bits are added to CSI.
  • the CSI with RI and parity bits added is coded independently.
  • RI and CSI may be coded in different encoding schemes. Based on the aforementioned (20, A) RM code or (32, A) RM code, single RM or dual RM may be used as a coding scheme. Alternatively, when triple RM is applied based on the (20, A) RM code of Table 3, up to 39 bits of RI may be coded.
  • the coding scheme and well-known coding such as TBCC may be applied.
  • a CRC is generated based on RI and CSI.
  • CRC is added to CSI.
  • CSI with RI and CRC added is coded independently.
  • RI and CSI may be coded in different encoding schemes.
  • triple RM is applied based on the (20, A) RM code of Table 3, up to 39 bits of RI may be coded.
  • the coded UCI may be transmitted on one or more UL channels. Independently encoded RI and CSI may be transmitted on one UL channel.
  • the UL channel may include a PUCCH (eg, PUCCH format 3) or PUSCH.
  • the error detection code may be added when the number of bits of the UCI is more than a predetermined value. For example, an error detection code may be added when the number of bits of UCI (or the number of bits of RI) is greater than Tr.
  • the UCI to which the error detection code is added and the UCI to which the error detection code is not added may be encoded independently.
  • FIG. 6 is a block diagram illustrating an encoding apparatus in which an embodiment of the present invention is implemented.
  • the encoding apparatus implements the embodiments of FIGS. 4 and 5.
  • the encoding apparatus 600 includes a UCI generator 610, a first encoder 620, and a second encoder 630.
  • the UCI generation unit 610 generates a UCI and adds an error detection code.
  • an error detection code for the first UCI may be added to the second UCI.
  • the first encoder 620 encodes the first UCI.
  • the second encoder 630 encodes the second UCI.
  • the first encoder 620 and the second encoder 630 may perform single RM or dual RM based on the (20, A) RM code or the (32, A) RM code.
  • FIG. 7 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
  • the wireless device 700 includes a processor 710, a memory 720, and an RF unit 730.
  • the memory 720 is connected to the processor 710 to store instructions executed by the processor 710.
  • an instruction to execute for the software may be stored in the memory 720.
  • the RF unit 730 is connected to the processor 710 to transmit and / or receive a radio signal.
  • the UCI may be transmitted on the PUCCH or the PUSCH by the RF unit 730.
  • Processor 710 implements the proposed functions, processes, and / or methods. In the above-described embodiment, the operation of the wireless device 700 may be implemented by the processor 710.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 인코딩 방법 및 장치가 제공된다. 인코딩 장치는 제1 UCI(uplink control information)에 대한 오류 검출 코드를 생성하고, 상기 오류 검출 코드를 제2 UCI에 부가한다. 상기 인코딩 장치는 상기 제1 UCI를 인코딩하고, 상기 오류 검출 코드가 부가된 제2 UCI를 인코딩한다.

Description

무선통신 시스템에서 인코딩 방법 및 인코딩 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 상향링크 제어정보를 위한 인코딩 방법 방법 및 인코딩 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
상향링크 채널은 HARQ(hybrid automatic repeat request) ACK/NACK, CSI(Channel State Information), SR(scheduling request)와 같은 다양한 상향링크 제어 정보의 전송에 사용된다.
MIMO(multiple input multiple output)와 CA(carrier aggregation)과 같이 채널 용량을 증가하는 기법이 도입됨에 따라 상향링크 제어 정보의 양도 증가하고 있다. 상향링크 채널을 위한 무선 자원은 하향링크 채널을 위한 무선 자원보다 제한적이고, 상향링크 제어 정보의 전송 오류는 서비스 품질을 악화시킬 수 있다.
증가하는 상향링크 제어 정보의 양에 대응하여 상향링크 채널을 위한 코딩 및 전송 방식을 설계할 필요가 있다.
본 발명은 상향링크 제어 정보를 위한 인코딩 방법 및 인코딩 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 인코딩 방법은 제1 UCI(uplink control information)에 대한 오류 검출 코드를 생성하는 단계, 상기 오류 검출 코드를 제2 UCI에 부가하는 단계, 상기 제1 UCI를 인코딩하는 단계, 상기 오류 검출 코드가 부가된 제2 UCI를 인코딩하는 단계를 포함한다.
상기 오류 검출 코드는 패리티 비트 또는 CRC(Cyclic Redundancy Check)를 포함할 수 있다.
상기 제1 UCI와 상기 제2 UCI는 서로 다른 RM(Reed-Muller) 코드를 기반으로 인코딩될 수 있다.
상기 제1 UCI는 RI(rank indicator)를 포함하고, 상기 제2 UCI는 CSI(Channel State Information)을 포함할 수 있다.
다른 양태에서, 무선 통신 시스템에서 인코딩 장치는 제1 UCI(uplink control information)에 대한 오류 검출 코드를 생성하고, 상기 오류 검출 코드를 제2 UCI에 부가하는 UCI 생성부, 상기 제1 UCI를 인코딩하는 제1 인코더, 및 상기 오류 검출 코드가 부가된 제2 UCI를 인코딩하는 제2 인코더를 포함한다.
다양한 종류와 증가된 양의 상향링크 제어 정보를 전송할 수 있고, 오류 검출 성능을 향상시킬 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 UL 서브프레임의 구조를 나타낸다.
도 3는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
도 4는 본 발명의 일 실시예에 따른 UCI 코딩을 나타낸다.
도 5는 본 발명의 다른 실시예에 따른 UCI 코딩을 나타낸다.
도 6은 본 발명의 실시예가 구현되는 인코딩 장치를 나타낸 블록도이다.
도 7은 본 발명의 실시예가 구현되는 무선기기를 나타낸 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, 단말(User Equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다.
서빙셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 3GPP LTE에서 DL 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V10.4.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V10.4.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
3GPP TS 36.211 V10.4.0에 의하면, 상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channl)을 포함한다.
도 2는 3GPP LTE에서 UL 서브프레임의 구조를 나타낸다.
UL 서브 프레임은 주파수 영역에서 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 RB 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
동일한 m 값을 갖는 RB이 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
PUSCH는 PDCCH 상의 UL 그랜트에 의해 할당된다. 도면에는 나타내지 않았지만, 노멀 CP의 각 슬롯의 4번째 OFDM 심벌은 PUSCH를 위한 DM RS(Demodualtion Reference Signal)의 전송에 사용된다.
UCI(uplink control information)는 HARQ ACK/NACK, CSI(Channel State Information) 및 SR(Scheduling Request) 중 적어도 어느 하나를 포함한다. 이하에서, CSI는 DL 채널의 상태를 나타내는 지표로, CQI(Channel Qualoty Indicator) 및 PMI(Precoding Matrix Indicator) 중 적어도 어느 하나를 포함할 수 있다.
다양한 UCI를 PUCCH 상으로 전송하기 위해 UCI와 PUCCH 간의 조합을 다음 표와 같이 PUCCH 포맷으로 정의한다.
표 1
PUCCH 포맷 전송되는 UCI
PUCCH 포맷 1 긍정적(positive) SR
PUCCH 포맷 1a/1b 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 2 CSI 보고
PUCCH 포맷 2a/2b CSI 보고 및 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 3 HARQ ACK/NACK, SR, CSI
PUCCH 포맷 3는 48 비트의 인코딩된 UCI를 나르는데 사용된다. PUCCH 포맷 3는 복수의 서빙셀에 대한 HARQ ACK/NACK 및 하나의 서빙셀에 대한 CSI 보고를 나를 수 있다.
도 3는 노멀 CP에서 PUCCH 포맷 3의 구조를 나타낸 예시도이다.
하나의 슬롯은 7 OFDM 심벌을 포함하고, l은 슬롯 내의 OFDM 심벌 번호로 0~6의 값을 갖는다. l=1, 5인 2개의 OFDM 심벌은 기준신호를 위한 RS OFDM 심벌이 되고, 나머지 OFDM 심벌들은 UCI 신호를 위한 데이터 OFDM 심벌이 된다.
48비트의 인코딩된(encoded) UCI(예, 인코딩된 ACK/NACK)는 QPSK(quadrature phase-shift keying) 변조하여, 심벌 시퀀스 d={d(0), d(1), ..., d(23)}를 생성한다. d(n)(n=0,1,...,23)는 복소(complex-valued) 변조 심벌이다. 심벌 시퀀스 d는 변조 심벌들의 집합이라 할 수 있다. UCI의 비트 수나 변조 방식은 예시에 불과하고 제한이 아니다.
하나의 PUCCH는 1 RB를 사용하고, 한 서브프레임은 제1 슬롯과 제2 슬롯을 포함한다. 심벌 시퀀스 d={d(0), d(1), ..., d(23)}는 길이 12의 2개의 시퀀스 d1={d(0),…, d(11)}과 d2={d(12),…,d(23)}으로 나누어지고, 제1 시퀀스 d1은 제1 슬롯에서 전송되고, 제2 시퀀스 d2는 제2 슬롯에서 전송된다. 도 3는 제1 시퀀스 d1가 제1 슬롯에서 전송되는 것을 보이고 있다.
심벌 시퀀스는 직교 시퀀스 wi로 확산된다. 심벌 시퀀스는 각 데이터 OFDM 심벌에 대응하고, 직교 시퀀스는 데이터 OFDM 심벌들에 걸쳐서 심벌 시퀀스를 확산시켜 PUCCH(또는 단말)을 구분하는 데 사용된다.
2개의 RS OFDM 심벌에는 UCI의 복조에 사용되는 기준신호 시퀀스가 맵핑되어 전송된다.
이제, 3GPP TS 36.212 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)"의 5절을 참조하여, 3GPP LTE에서 UCI 코딩에 대해 기술한다.
CSI, RI(Rank Indicator), HARQ ACK/NACK는 독립적으로 코딩된다.
먼저, PUSCH를 위한 CSI의 코딩에 대해 설명한다.
CSI o0, o1, ..., oO-1 (O는 CSI의 비트 수)는 채널 코딩이 수행되어 제어정보 비트 시퀀스 q0, q1, ..., qNL QCQI-1이 생성된다. NL은 대응하는 UL 전송 블록이 맵핑되는 계층(layer)의 갯수, QCQI는 CSI를 위해 사용가능한 계층 당 비트수이다.
예를 들어, CSI를 위한 채널 코딩으로 (32, O) 블록코드(또는 RM(Reed-Muller) 코드라고 함)가 사용될 수 있다.
CQI 채널 코딩에 대한 중간 시퀀스 b0, b1, ..., b31은 다음과 같이 생성된다.
수학식 1
Figure PCTKR2013004192-appb-M000001
여기서, i=0,1,...,31이다. Mi,n은 (32, O) 블록코드를 위한 베이시스 시퀀스(basis sequence)로 다음 표와 같이 정의될 수 있다.
표 2
Figure PCTKR2013004192-appb-T000001
제어정보 비트 시퀀스 q0, q1, ..., qQ-1는 중간 시퀀스 b0, b1, ..., b31를 다음과 같이 순환 반복시켜 생성된다.
수학식 2
Figure PCTKR2013004192-appb-M000002
여기서, i=0,1, ...,NLQCQI-1 이다.
데이터 비트 시퀀스 f0, f1,..., fG-1와 CSI 비트 시퀀스가 다중화된 심벌 시퀀스 g0, g1, ..., gH'-1로 다중화된다. 다중화된 심벌 시퀀스 내에서 CSI가 먼저 배치되고, 이후로 UL 전송 블록이 배치될 수 있다. H는 PUSCH에 할당된 총 비트 수로, H=G+NLQCQI이다. 여기서, qi는 성상(constellation)상의 변조 심벌이다. H'=H/Qm이다. Qm은 변조 방식에 대한 변조 심벌당 비트 수이다. 예를 들어, 변조 방식으로 QPSK(Qaudrature Phase Shift Keying)를 사용하는 경우 Qm=2 이다.
이제 PUCCH 포맷 2를 위한 CSI 코딩에 대해 기술한다.
UCI (예, CSI) u0, u1, ..., uA-1 (A는 UCI의 비트 수)는 채널 코딩이 수행되어 인코딩된 비트 시퀀스 b0, b1, ..., bB-1이 생성된다. B는 해당 PUCCH가 전송 가능한 비트수로, PUCCH 포맷 2는 20비트의 코딩된 UCI를 전송할 수 있으므로, B=20이다.
PUCCH 포맷 2를 위한 채널 코딩으로 (20, A) 블록코드(또는 RM(Reed-Muller) 코드라고 함)가 사용될 수 있다. 이는 다음과 같이 나타낼 수 있다.
수학식 3
Figure PCTKR2013004192-appb-M000003
여기서, i=0,1,...,B-1 이다. Mi,n은 (20, A) 블록코드를 위한 베이시스 시퀀스(basis sequence)로 다음 표와 같이 정의될 수 있다.
표 3
Figure PCTKR2013004192-appb-T000002
이제 RI 또는 HARQ ACK/NACK의 코딩에 대해 기술한다.
UCI (예, RI 또는 HARQ ACK/NACK) u0, u1, ..., uA-1 (A는 UCI의 비트 수)에 채널 코딩이 수행되어 인코딩된 비트 시퀀스 q0, q1, ..., qB-1이 생성된다. B는 해당 PUCCH가 전송 가능한 비트수로, PUCCH 포맷 3는 48비트의 코딩된 UCI를 전송할 수 있으므로, B=48이다.
PUCCH 포맷 3는 최대 48비트를 전송할 수 있지만, 채널 코딩은 표 2의 (32, A) 블록코드를 위한 베이시스 시퀀스를 사용한다. 따라서, UCI 비트 수 A가 RM 베이시(또는 베이시스 시퀀스라고도 함)의 갯수 보다 큰지 여부에 따라 다음과 같이 코딩한다. 표 2에 의하면, RM 베이시스의 개수는 11이다.
A <= 11 이면 다음과 같다.
채널 코딩에 대한 중간 시퀀스 b0, b1, ..., b31은 다음과 같이 생성된다.
수학식 4
Figure PCTKR2013004192-appb-M000004
여기서, i=0,1,...,31이고, Mi,n은 표 2의 (32, O) 블록코드를 위한 베이시스 시퀀스(basis sequence)이다.
제어정보 비트 시퀀스 q0, q1, ..., qB-1는 중간 시퀀스 b0, b1, ..., b31를 다음과 같이 순환 반복시켜 생성된다.
수학식 5
Figure PCTKR2013004192-appb-M000005
여기서, i=0,1, ...,B-1 이다.
11 < A <= 21 이면 다음과 같다.
다음과 같이 2개의 중간 시퀀스 b1 i, b2 i가 생성된다.
수학식 6
Figure PCTKR2013004192-appb-M000006
여기서, i=0,1,...,23이다.
제어정보 비트 시퀀스 q0, q1, ..., qB-1는 중간 시퀀스들을 다음과 같이 연접(concatenation)하여 구한다.
수학식 7
Figure PCTKR2013004192-appb-M000007
A <=11 일 때, 1개의 RM 블록 코드(또는 1개의 RM 인코더)가 사용되므로, 이를 싱글 RM 이라고 한다. A > 11 일 때, 2개의 RM 블록 코드(또는 2개의 RM 인코더)가 사용되므로, 이를 듀얼(dual) RM 이라고 한다.
이제 본 발명의 실시예에 따른 UCI 코딩 및 전송에 대해 기술한다.
무선기기에게 복수의 서빙셀이 활성화될 수 있으며, 복수의 서빙셀에 대한 CSI/RI는 PUCCH 또는 PUSCH 상으로 전송될 수 있다.
주기적 CSI 보고가 설정되고, 하나의 UL 서브프레임에서 복수의 서빙셀에 대한 CSI 보고가 트리거될 수 있다. 이를 CSI 보고의 충돌(collision)이라 한다. CSI 보고의 충돌이 발생하면, 하나의 서빙셀에 대한 CSI 만이 보고되고 나머지는 전송을 포기한다. 기존 PUCCH 포맷과 PUSCH의 구조는 복수의 서빙셀에 대한 CSI 보고를 지원하지 있기 때문이다. .
서빙셀의 갯수가 증가하면 CSI 보고의 충돌이 증가할 수 있고, 이에 따라 CSI 보고가 포기되는 횟수도 증가한다. CSI가 기지국이 원하는 시점에 충분히 보고되지 않아, 기지국이 DL 스케줄링에 DL 채널 상황을 충분히 반영하기 어려울 수 있다.
복수의 서빙셀에 대한 CSI를 하나의 서브프레임(또는 하나의 PUCCH 또는 하나의 PUSCH)에서 전송하도록 한다면, CSI 충돌로 인한 CSI 보고가 포기되는 것을 방지할 수 있다.
하지만, 복수의 서빙셀에 대한 CSI를 지원하기 위해서는 해당 채널의 페이로드(payload)를 고려하고, 에러 검출을 강화할 필요가 있다. 예를 들어, 안테나 포트의 개수가 8일 때, 하나의 서빙셀에 대한 RI는 5비트이다. 만약 5개의 서빙셀이 있다면, RI의 총 비트수는 25가 된다.
이하의 실시예는 UCI의 비트 수 증가에 따른 코딩 방식과 에러 검출 방법을 제안한다.
이하에서, UCI는 RI와 CSI를 포함하고, 제1 UCI는 RI, 제2 UCI는 CSI라고 하지만, 이는 예시에 불과하다. UCI는 PTI(precoding type indicator) 등 다양한 제어 정보를 포함할 수 있다. RI는 하나 또는 그 이상의 서빙셀에 대한 RI를 포함할 수 있다. CSI는 하나 또는 그 이상의 서빙셀에 대한 CSI를 포함할 수 있다.
도 4는 본 발명의 일 실시예에 따른 UCI 코딩을 나타낸다.
단계 S410에서, 무선기기는 제1 UCI(예, RI)와 제2 UCI(예, CSI)의 총 비트수 T를 결정한다. 단계 S420에서, T를 기준값 Tr과 비교한다.
단계 S430에서, T>Tr 이면, 제1 UCI와 제2 UCI를 독립적으로 코딩한다. 예를 들어, 제1 UCI는 전술한 수학식 6 내 7의 싱글 RM 또는 듀얼 RM을 기반으로 코딩될 수 있다. 제2 UCI는 표 2의 (32, O) 블록코드를 기반으로 코딩될 수 있다.
단계 S440에서, T<=Tr 이면, 제1 UCI와 제2 UCI를 하나의 UCI로써 코딩한다. 예를 들어, UCI는 전술한 수학식 6 내 7의 싱글 RM 또는 듀얼 RM을 기반으로 코딩될 수 있다.
코딩된 UCI는 PUCCH 또는 PUSCH 상으로 전송될 수 있다.
Tr의 값은 제한이 없으나, 예를 들어 15일 수 있다. Tr는 기지국에 의해 주어질 수 있다. 전송될 UCI의 총 비트 수가 15 비트보다 크면, RI를 포함하는 제1 UCI와 RI를 제외한 정보를 포함하는 제2 UCI가 독립적으로 코딩된다.
만약 UCI가 PUSCH를 통해 전송되면 독립적인 코딩을 적용하기 위해 추가적인 자원 할당이 필요하다. UL 서브프레임에서 DM RS(demodulation reference signal), HARQ ACK/NACK 및 SRS를 위해 예약된 OFDM 심벌을 제외한 나머지 OFDM 심벌 중 하나를 추가적으로 RI에 할당할 수 있다. 무선기기는 CSI 및/또는 RI의 비트 수를 고려하여 해당 OFDM 심벌에서 UCI가 맵핑될 부반송파의 개수를 변경할 수 있다.
도 5는 본 발명의 다른 실시예에 따른 UCI 코딩을 나타낸다.
UCI의 총 비트 수는 RI의 비트 수에 따라서 달라질 수 있고, 특히 RI의 수신 오류는 DL 수율(throughput)을 저하시킬 수 있다. 따라서, UCI의 오류 검출 성능을 향상시키기 위해 추가적인 오류 검출 코드(error detection code)를 부가하는 것을 제안한다.
오류 검출 코드는 하나 또는 그 이상의 비트를 갖는 패리티 비트(parity bit) 및/또는 하나 또는 그 이상의 비트를 갖는 CRC를 포함할 수 있다.
도 5의 (A)는 RI에 패리티 비트를 부가한 예이다. 패리티 비트를 갖는 RI와 CSI는 독립적으로 코딩된다. RI와 CSI는 서로 다른 인코딩 방식으로 코딩될 수 있다. 전술한 (20, A) RM 코드 또는 (32, A) RM 코드를 기반으로 싱글 RM 또는 듀얼 RM 또는 세개 이상의 RM이 코딩 방식으로 사용될 수 있다. 예를 들어, 표 3의 (20, A) RM 코드를 기반으로 듀얼 RM이 적용되면 최대 26비트의 RI를 코딩할 수 있다. 또는 표 3의 (20, A) RM 코드를 기반으로 트리플 RM이 적용되면 최대 39비트의 RI를 코딩할 수 있다. 코딩 방식에는 제한이 없으며, TBCC(tail-biting convolutional coding)과 같은 잘 알려진 코딩이 적용될 수 있다.
도 5의 (B)에 의하면, RI를 기반으로 패리티 비트가 생성되지만, 상기 패리티 비트는 CSI에 부가된다. RI와 패리티 비트가 부가된 CSI는 독립적으로 코딩된다. RI와 CSI는 서로 다른 인코딩 방식으로 코딩될 수 있다. 전술한 (20, A) RM 코드 또는 (32, A) RM 코드를 기반으로 싱글 RM 또는 듀얼 RM이 코딩 방식으로 사용될 수 있다. 또는 표 3의 (20, A) RM 코드를 기반으로 트리플 RM이 적용되면 최대 39비트의 RI를 코딩할 수 있다. 코딩 방식에는 제한이 없으며, TBCC과 같은 잘 알려진 코딩이 적용될 수 있다.
도 5의 (C)에 의하면, RI와 CSI를 기반으로 CRC를 생성한다. CRC는 CSI에 부가된다. RI와 CRC가 부가된 CSI는 독립적으로 코딩된다. RI와 CSI는 서로 다른 인코딩 방식으로 코딩될 수 있다. 전술한 (20, A) RM 코드 또는 (32, A) RM 코드를 기반으로 싱글 RM 또는 듀얼 RM이 코딩 방식으로 사용될 수 있다. 또는 표 3의 (20, A) RM 코드를 기반으로 트리플 RM이 적용되면 최대 39비트의 RI를 코딩할 수 있다. 코딩 방식에는 제한이 없으며, TBCC과 같은 잘 알려진 코딩이 적용될 수 있다.
코딩된 UCI는 하나 또는 그 이상의 UL 채널을 통해 전송될 수 있다. 독립적으로 인코딩된 RI 및 CSI는 하나의 UL 채널을 통해 전송될 수 있다. UL 채널은 PUCCH(예, PUCCH 포맷 3) 또는 PUSCH을 포함할 수 있다.
오류 검출 코드는 UCI의 비트 수가 일정 값 이상일때 부가될 수 있다. 예를 들어, UCI의 비트 수(또는 RI의 비트 수)가 Tr 보다 클 때, 오류 검출 코드가 부가될 수 있다.
도 5의 실시예는 도 4의 실시예와 조합될 수 있다. 오류 검출 코드가 부가된 UCI의 비트 수가 Tr보다 클 때, 오류 검출 코드가 부가된 UCI와 오류 검출 코드가 부가되지 않은 UCI가 독립적으로 인코딩될 수 있다.
도 6은 본 발명의 실시예가 구현되는 인코딩 장치를 나타낸 블록도이다. 인코딩 장치는 도 4 및 도 5의 실시예를 구현한다.
인코딩 장치(600)는 UCI 생성부(610), 제1 인코더(620) 및 제2 인코더(630)를 포함한다. UCI 생성부(610)는 UCI를 생성하고, 오류 검출 코드를 부가한다. UCI가 제1 UCI와 제2 UCI를 포함할 때, 제2 UCI에 제1 UCI에 대한 오류 검출 코드를 부가할 수 있다.
제1 인코더(620)는 제1 UCI를 인코딩한다. 제2 인코더(630)는 제2 UCI를 인코딩한다. 제1 인코더(620)와 제2 인코더(630)는 (20, A) RM 코드 또는 (32, A) RM 코드를 기반으로 싱글 RM 또는 듀얼 RM을 수행할 수 있다.
도 7은 본 발명의 실시예가 구현되는 무선기기를 나타낸 블록도이다.
무선기기(700)은 프로세서(processor, 710), 메모리(memory, 720) 및 RF부(RF(radio frequency) unit, 730)을 포함한다.
메모리(720)는 프로세서(710)와 연결되어, 프로세서(710)에 의해 실행되는 명령(instructions)를 저장한다. 도 4 및 도 5의 인코딩 방법이 소프트웨어로 구현될 때, 상기 소프트웨어를 위한 실행하는 명령이 메모리(720)에 저장될 수 있다.
RF부(730)는 프로세서(710)와 연결되어, 무선 신호를 송신 및/또는 수신한다. UCI는 RF부(730)에 의해 PUCCH 또는 PUSCH 상으로 전송될 수 있다.
프로세서(710)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기(700)의 동작은 프로세서(710)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 무선 통신 시스템에서 인코딩 방법에 있어서,
    제1 UCI(uplink control information)에 대한 오류 검출 코드를 생성하는 단계;
    상기 오류 검출 코드를 제2 UCI에 부가하는 단계;
    상기 제1 UCI를 인코딩하는 단계;
    상기 오류 검출 코드가 부가된 제2 UCI를 인코딩하는 단계를 포함하는 인코딩 방법.
  2. 제 1 항에 있어서,
    상기 오류 검출 코드는 패리티 비트 또는 CRC(Cyclic Redundancy Check)를 포함하는 것을 특징으로 하는 인코딩 방법.
  3. 제 1 항에 있어서,
    상기 제1 UCI와 상기 제2 UCI는 서로 다른 RM(Reed-Muller) 코드를 기반으로 인코딩되는 것을 특징으로 하는 인코딩 방법.
  4. 제 3 항에 있어서,
    상기 제1 UCI는 (20, A) RM 코드를 기반으로 인코딩되고, 상기 제2 UCI는 (32, A) RM 코드를 기반으로 인코딩되고, A는 인코더로 입력되는 UCI의 비트 수인 것을 특징으로 하는 인코딩 방법.
  5. 제 3 항에 있어서,
    상기 제1 UCI는 (32, A) RM 코드를 기반으로 인코딩되고, 상기 제2 UCI는 (20, A) RM 코드를 기반으로 인코딩되는 것을 특징으로 하는 인코딩 방법.
  6. 제 1 항에 있어서,
    상기 제1 UCI는 RI(rank indicator)를 포함하고, 상기 제2 UCI는 CSI(Channel State Information)을 포함하는 것을 특징으로 하는 인코딩 방법.
  7. 제 1 항에 있어서,
    상기 인코딩된 제1 UCI와 상기 인코딩된 제2 UCI는 하나의 상향링크 채널을 통해 전송되는 것을 특징으로 하는 인코딩 방법.
  8. 제 7 항에 있어서,
    상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel) 또는 PUCCH(Physical Uplink Control Channel)인 것을 특징으로 하는 인코딩 방법.
  9. 무선 통신 시스템에서 인코딩 장치에 있어서,
    제1 UCI(uplink control information)에 대한 오류 검출 코드를 생성하고, 상기 오류 검출 코드를 제2 UCI에 부가하는 UCI 생성부;
    상기 제1 UCI를 인코딩하는 제1 인코더; 및
    상기 오류 검출 코드가 부가된 제2 UCI를 인코딩하는 제2 인코더를 포함하는 인코딩 장치.
  10. 제 9 항에 있어서,
    상기 오류 검출 코드는 패리티 비트 또는 CRC(Cyclic Redundancy Check)를 포함하는 것을 특징으로 하는 인코딩 장치.
  11. 제 9 항에 있어서,
    상기 제1 UCI와 상기 제2 UCI는 서로 다른 RM(Reed-Muller) 코드를 기반으로 인코딩되는 것을 특징으로 하는 인코딩 장치.
  12. 제 9 항에 있어서,
    상기 제1 UCI는 RI(rank indicator)를 포함하고, 상기 제2 UCI는 CSI(Channel State Information)을 포함하는 것을 특징으로 하는 인코딩 장치.
  13. 제 9 항에 있어서,
    상기 인코딩된 제1 UCI와 상기 인코딩된 제2 UCI는 하나의 상향링크 채널을 통해 전송되는 것을 특징으로 하는 인코딩 장치.
PCT/KR2013/004192 2012-05-10 2013-05-10 무선통신 시스템에서 인코딩 방법 및 인코딩 장치 WO2013169085A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13787316.2A EP2849401B1 (en) 2012-05-10 2013-05-10 Encoding method and encoding apparatus in a wireless communications system
US14/399,864 US9385838B2 (en) 2012-05-10 2013-05-10 Encoding method and encoding apparatus in a wireless communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261645060P 2012-05-10 2012-05-10
US61/645,060 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013169085A1 true WO2013169085A1 (ko) 2013-11-14

Family

ID=49551023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004192 WO2013169085A1 (ko) 2012-05-10 2013-05-10 무선통신 시스템에서 인코딩 방법 및 인코딩 장치

Country Status (3)

Country Link
US (1) US9385838B2 (ko)
EP (1) EP2849401B1 (ko)
WO (1) WO2013169085A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093573A1 (ko) * 2014-12-08 2016-06-16 엘지전자 주식회사 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
WO2016182378A1 (ko) * 2015-05-13 2016-11-17 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 무선기기
CN108781124A (zh) * 2016-03-11 2018-11-09 英特尔Ip公司 上行链路控制信息的码分复用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10028210B1 (en) 2017-03-23 2018-07-17 At&T Intellectual Property I, L.P. Encoding and decoding data for group common control channels
US11617166B2 (en) 2021-01-04 2023-03-28 Qualcomm Incorporated Multiplexing higher priority and lower priority uplink control information on a physical uplink control channel
US20220232574A1 (en) * 2021-01-18 2022-07-21 Qualcomm Incorporated Channel coding with unequal error protection for lp uci and hp uci multiplexing in nr

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100008294A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Method and apparatus for using uplink control information for inter-cell decoding and interference cancellation
KR20100086920A (ko) * 2009-01-23 2010-08-02 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
KR101061116B1 (ko) * 2004-09-15 2011-08-31 엘지전자 주식회사 이동통신 시스템에서 상향링크 제어정보 전송 방법 및수신측에서의 제어정보의 복호 방법
WO2012015217A2 (ko) * 2010-07-26 2012-02-02 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557715B1 (en) * 2007-04-30 2016-12-07 InterDigital Technology Corporation Feedback signaling error detection and checking in MIMO wireless communication systems
WO2010098289A1 (ja) * 2009-02-24 2010-09-02 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
KR101701305B1 (ko) * 2010-06-21 2017-02-13 주식회사 팬택 반송파 집합화 환경에서 상향제어정보를 송수신하는 방법 및 장치
US8769365B2 (en) * 2010-10-08 2014-07-01 Blackberry Limited Message rearrangement for improved wireless code performance
JP4948671B1 (ja) * 2010-10-29 2012-06-06 シャープ株式会社 移動局装置、処理方法および集積回路
US8549374B2 (en) * 2011-02-11 2013-10-01 Sharp Laboratories Of America, Inc. Dual Reed-Muller (RM) code segmentation for uplink control information (UCI)
US9043667B2 (en) * 2011-11-04 2015-05-26 Blackberry Limited Method and system for up-link HARQ-ACK and CSI transmission
EP2880924B1 (en) * 2012-07-31 2016-10-05 Telefonaktiebolaget LM Ericsson (publ) Power control for simultaneous transmission of ack/nack and channel-state information in carrier aggregation systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101061116B1 (ko) * 2004-09-15 2011-08-31 엘지전자 주식회사 이동통신 시스템에서 상향링크 제어정보 전송 방법 및수신측에서의 제어정보의 복호 방법
US20100008294A1 (en) * 2008-07-11 2010-01-14 Qualcomm Incorporated Method and apparatus for using uplink control information for inter-cell decoding and interference cancellation
KR20100086920A (ko) * 2009-01-23 2010-08-02 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
WO2012015217A2 (ko) * 2010-07-26 2012-02-02 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG RAN; E-UTRA; Multiplexing and channel coding (Release 10)", 3GPP TS 36.212 V10.4.0, December 2011 (2011-12-01), XP050555011, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/html-info/36212.htm> *
"Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10", 3GPP TS 36.212 V10.4.0, December 2011 (2011-12-01)
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10", 3GPP TS 36.211 V10.4.0, December 2011 (2011-12-01)
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10", 3GPP TS 36.211 VI0.4.0, December 2011 (2011-12-01)
See also references of EP2849401A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093573A1 (ko) * 2014-12-08 2016-06-16 엘지전자 주식회사 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
WO2016182378A1 (ko) * 2015-05-13 2016-11-17 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 무선기기
CN108781124A (zh) * 2016-03-11 2018-11-09 英特尔Ip公司 上行链路控制信息的码分复用
CN108781124B (zh) * 2016-03-11 2020-11-03 苹果公司 用于用户设备的装置及操作方法、用于基站的装置及介质

Also Published As

Publication number Publication date
EP2849401A1 (en) 2015-03-18
US9385838B2 (en) 2016-07-05
US20150106681A1 (en) 2015-04-16
EP2849401A4 (en) 2015-12-02
EP2849401B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2018084488A1 (ko) 무선 통신 시스템에서 동적 가변 사이즈의 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2018143621A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2011162568A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2012044045A1 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2012108688A2 (ko) 스케줄링 정보 모니터링 방법 및 장치
WO2011013986A2 (en) Apparatus and method for transmitting channel state information in a mobile communication system
WO2012144842A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2013077677A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2013141594A1 (ko) Ack/nack 신호 전송 또는 수신 방법
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2011074885A2 (ko) 무선 통신 시스템에서 채널 품질 보고 방법 및 장치
WO2011139064A2 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2017052251A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2010095884A2 (en) Method for indicating precoding matrix indicator in uplink mimo system with based on sc-fdma
WO2013141546A1 (ko) 데이터 패킷 전송 방법 및 무선기기
WO2013137682A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2017078411A1 (ko) 비면허 대역에서 제어채널을 모니터링하는 방법 및 장치
WO2016143996A1 (en) Method and apparatus for performing network cooperative communication to distribute traffic in a wireless communication system
WO2011002173A2 (ko) 다중 안테나 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 장치
WO2013119015A1 (ko) 상향링크 제어 정보 전송 방법 및 장치
WO2013169085A1 (ko) 무선통신 시스템에서 인코딩 방법 및 인코딩 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013787316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013787316

Country of ref document: EP