CN108781124B - 用于用户设备的装置及操作方法、用于基站的装置及介质 - Google Patents

用于用户设备的装置及操作方法、用于基站的装置及介质 Download PDF

Info

Publication number
CN108781124B
CN108781124B CN201680083390.0A CN201680083390A CN108781124B CN 108781124 B CN108781124 B CN 108781124B CN 201680083390 A CN201680083390 A CN 201680083390A CN 108781124 B CN108781124 B CN 108781124B
Authority
CN
China
Prior art keywords
uci
orthogonal spreading
ifdma
processing circuitry
dci
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680083390.0A
Other languages
English (en)
Other versions
CN108781124A (zh
Inventor
A·博卡尔
牛华宁
权桓俊
叶悄扬
全晸鍸
F·哈米迪赛贝尔
韩承希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to CN202011233720.4A priority Critical patent/CN112332944A/zh
Publication of CN108781124A publication Critical patent/CN108781124A/zh
Application granted granted Critical
Publication of CN108781124B publication Critical patent/CN108781124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies

Abstract

描述了用户设备(UE)通过免授权载波发送上行链路控制信息(UCI)的方法和装置,其适用于例如MulteFire和授权辅助接入(LAA)系统。描述了利用扩频序列在块交织频分多址(B‑IFDMA)波形中将该UCI与来自其他UE的UCI进行码分复用的实施例。

Description

用于用户设备的装置及操作方法、用于基站的装置及介质
优先权要求
本申请要求2016年3月11日提交的第62/307,197号和2016年4月22日提交的第62/326,409号美国临时专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本文描述的实施例总体涉及无线网络和通信系统。一些实施例涉及包括3GPP(第三代合作伙伴项目)网络、3GPP LTE(长期演进)网络和3GPP LTE-A(LTE高级)网络的蜂窝通信网络,但是实施例的范围在这方面不受限制。
背景技术
无线业务增长的爆炸式增长导致迫切需要提高速率。利用成熟的物理层技术,频谱效率的进一步提高将是微不足道的。另一方面,低频段中授权频谱的稀缺使得频谱扩展成为问题。因此,新兴趣在于LTE系统在免授权频谱中的操作。一种这样的技术被称为授权辅助接入(LAA),其通过利用由LTE高级引入的灵活载波聚合(CA)框架来扩展系统带宽,其中,主分量载波(称为主小区或PCell)在授权频谱中操作,并且一个或多个辅分量载波(称为辅小区或SCell)在免授权频谱中操作。另一种方法是免授权频谱中的独立LTE系统,其中,基于LTE的技术仅在免授权频谱中操作而不需要授权频谱中的“锚点”,即所谓的MulteFire(MF)。
为了在免授权频谱中操作,MF和LAA系统需要与遗留LTE系统不同的信号结构和信令技术。例如,免授权频谱的非排他性质要求LAA/MF系统与其他系统(包括利用诸如Wi-Fi的其他技术操作的系统)公平地共用无线介质的机制。LAA/MF合并了先听后说(LBT)过程,其中,无线发射机首先侦听介质并且仅在侦听到介质空闲时才进行发送。本公开涉及适用于LAA/MF系统的用于触发和发送上行链路控制信息(UCI)的过程。
附图说明
图1示出根据一些实施例的示例性UE和eNB。
图2示出根据一些实施例的MulteFire或LAA帧结构的示例。
图3示出B-IFDMA交织带(interlace)。
图4示出由上行链路批准触发的关于免授权频谱的非周期性CSI上报。
图5示出根据一些实施例的用户设备装置的示例。
图6示出根据一些实施例的计算机器的示例。
具体实施方式
在长期演进(LTE)系统中,移动终端(称为用户设备或UE)经由基站(称为演进节点B或eNB)连接到蜂窝网络。LTE系统通常将授权频谱用于UE和eNB之间的上行链路(UL)和下行链路(DL)传输两者。图1示出UE 400和基站或eNB 300的组件的示例。eNB 300包括连接到用于提供空中接口的无线收发机302的处理电路301。eNB 400包括连接到用于通过无线介质提供空中接口的无线收发机402的处理电路401。设备中的每个收发机都连接到天线55。
当前LTE系统将基于正交频分复用(OFDM)的正交频分多址(OFDMA)用于下行链路(DL),并且将相关技术(基于DFT预编码OFDM的单载波频分多址(SC-FDMA)用于上行链路(UL)。LTE系统可以以时分双工(TDD)模式操作,其中UL和DL通信在同一频段内的分离的时隙中进行时间复用,或者以频分双工(FDD)模式操作,其中在不同频段中进行上行链路和下行链路通信。由于LTE系统专用的免授权频谱中缺少一对频段,所以用于LAA和MF两者的免授权载波通常以TDD模式操作。
在OFDMA/SC-FDMA中,根据诸如QAM(正交幅度调制)的调制方案的复合调制符号分别被映射到在正交频分复用(OFDM)符号期间发送的特定OFDM子载波(称为资源元素(RE))。RE是LTE中最小的物理资源。LTE还提供MIMO(多输入多输出)操作,其中,由多个天线发送和接收多个数据层,并且其中,每个复合调制符号被映射到多个传输层之一,然后被映射到特定天线端口。然后,每个RE由具有10ms持续时间的无线帧内的天线端口、子载波位置和OFDM符号索引唯一识别。每个无线帧由10个子帧组成,每个子帧由两个连续的0.5ms时隙组成。每个时隙对于扩展循环前缀而言包括六个索引OFDM符号,对于正常循环前缀而言包括七个索引OFDM符号。在单个时隙内与十二个连续子载波对应的一组资源元素被称为资源块(RB),或者对于物理层来说,称为物理资源块(PRB)。
在LTE中,DL数据经由称为下行链路共享信道(DL-SCH)的传输信道流入和流出媒体接入控制(MAC)协议层。UL数据经由称为上行链路共享信道(UL-SCH)的传输信道流入和流出MAC层。物理层经由物理上行链路共享信道(PUSCH)传送UL数据,并且经由物理下行链路共享信道(PDSCH)传送DL数据。eNB经由物理下行链路控制信道(PDCCH)将下行链路控制信息(DCI)发送到UE。UE经由物理上行链路控制信道(PUCCH)或经由PUSCH将上行链路控制信息(UCI)发送到eNB,其中UCI可以与UL数据复用。另外,每个PUSCH或PUCCH传输伴随有解调参考信号(DMRS),以允许eNB解调PUSCH或PUCCH符号。
UE发送的UCI可以包括以下中的一个或多个。响应于DL上的数据分组接收,发送混合自动重传请求确认(HARQ-ACK),其中,取决于数据分组接收是正确还是不正确,HARQ-ACK分别具有ACK或NAK值。(HARQ-ACK在本文中也可以称为A/N。)UE还可以发送调度请求(SR)信号以请求用于数据传输的UL资源。UE在eNB的请求下周期性地或非周期性地发送信道状态信息(CSI)报告。CSI报告可以包括:信道质量指示符(CQI)信号,用于向eNB通知它经历的DL信道状况;和预编码器矩阵指示符/秩指示符(PMI/RI)信号,用于向eNB通知如何根据多输入多输出(MIMO)原理组合从多个eNB天线到UE的信号传输。
LAA基于LTE的载波聚合框架。主分量载波(称为主小区或PCell)在授权频谱中操作并用作锚点,并且与在免授权频谱中操作的一个或多个辅分量载波(称为辅小区或SCell)聚合。如在常规LTE载波聚合中,LAA系统还可以具有在授权频谱中操作的一个或多个SCell。在MF系统中,SCell和任何PCell仅在免授权频谱中操作。在LAA系统和MF系统两者中,实现先听后说(LBT)机制,其涉及发射机确保发送之前在载波频率上不存在正在进行的传输。LBT在LAA/MF系统和诸如利用同一频谱的Wi-Fi的其他技术之间提供公平的共存。发射机通过评估频率信道是否可用(即,空闲信道评估或CCA)来执行LBT过程,并且如果信道被侦听为空闲,则在跨一个或多个子帧的信道上发送连续突发,这取决于保留的最大信道占用时间(MCOT)。
图2示出根据一个实施例的用于时分双工(TDD)模式的MulteFire或LAA帧结构的示例。在该结构中,来自eNB的DL突发之前是常规LBT。后续DL子帧包含DL数据之前的PDCCH。PDCCH可以包含对UE的PUSCH资源的UL批准以用于在UL子帧中发送UL数据,和/或可以批准用于所谓的长或扩展物理上行链路控制信道(ePUCCH)的资源传输,等。ePUCCH在时域中跨子帧(即,12或14个OFDM符号)并在频域中跨系统带宽。自UE的ePUCCH的传输可以由PDCCH中的UL批准来触发,或者经由所谓的公共PDCCH(cPDCCH)在没有UL批准的情况下进行触发。还可以经由所谓的缩短的PUCCH(sPUCCH)格式发送UL控制信号,其位于在DL和UL子帧之间发生转换的特殊子帧的UL部分中。
用于在MulteFire载波和LAA免授权载波中发送PUSCH和ePUCCH的波形是块交织频分多址(B-IFDMA),其为具有交织子载波分配的DFT预编码OFDMA的一般化。B-IFDMA波形是交织带结构,其中每个交织带由频率间隔开的一个或多个RB组成。在一个实施例中,每个交织带包括在整个系统带宽上分布(等间隔)的10个RB。可以为每个UE指派单个或多个交织带。在一个实施例中,PUSCH由一个或多个交织带组成,并且ePUCCH由一个交织带组成。图3示出由ePUCCH占用的B-IFDMA交织带。PUSCH交织带的设计类似。ePUCCH交织带可以与从同一UE或从锚定在同一eNB处的不同UE发送的PUSCH交织带进行频率复用。参考信号和数据符号与位于PUSCH的每个时隙的符号3处和位于ePUCCH的每个时隙的符号1和5处的DMRS进行时间复用。
与如上所述的遗留LTE类似,诸如PDSCH的HARQ-ACK反馈、调度请求(SR)和/或CSI报告形式的信道状态信息(CSI)反馈的各种类型的UCI可以经由sPUCCH、ePUCCH或PUSCH来传输。本公开的一个方面涉及利用扩频序列对ePUCCH内的UCI与从其他UE传输的UCI进行码分复用的实施例。本公开的另一方面涉及eNB触发从UE经由PUSCH传输非周期CSI报告的实施例。
UCI的码分复用
在一个实施例中,对于20MHz系统带宽,每个B-IFDMA交织带由10个RB组成。在一个实施例中,每个RB由14个符号组成,其中2个符号由DMRS占用。然后,等效地,每个RB由144个RE(子帧内的12个RE/符号和12个符号)组成,以产生每个ePUCCH交织带的1440个RE。因此,在一个交织带上仅从一个UE传输UCI可能是一种浪费,并且来自多个UE的UCI的复用可以更有效地利用ePUCCH资源。下面描述的是经由扩频序列在ePUCCH内码分复用UCI的实施例。这些实施例提供对于大量UE复用UCI的能力和/或复用大小可变的UCI净荷比特的能力。
在一个实施例中,经由X个正交扩频序列执行UCI的复用,其中X是整数,当每RB有144个RE时其可以高达144。UCI的每个编码后的正交相移键控(QPSK)符号在时域和频域中用长度144正交扩频码进行扩频。频率优先映射或时间优先映射可以用于将扩频符号映射到每个RE。在另一实施例中,可以在频域和时域上(即,在OFDM符号上)独立地使用多达12个正交Hadamard序列,以有效地允许在交织带内复用多达144个UCI。在这种情况下,每个编码后的QPSK符号在时域和频域中用长度12正交扩频码进行扩频。用于任一实施例的正交序列的示例包括具有不同循环移位的Zadoff-Chu序列、正交覆盖码(OCC)、Hadamard序列或其任何组合。
在上述实施例中,UCI的信息比特可以用前向纠错码进行编码,诸如咬尾卷积码(TBCC)或Reed-Mueller码。在编码之前,可以将8或16比特循环冗余校验(CRC)附加到信息比特。然后在调制到QPSK符号并用指示的扩频序列进行扩频之前,对编码比特进行速率匹配。
当使用总共144个扩频序列时,可以在一个交织带上经由QPSK传输总共20个编码比特。也就是说,每个QPSK符号(2个比特)在整个RB上进行扩频,并且在一个交织带中存在10个RB以产生20个比特。换句话说,作为在10个RB上进行扩频的结果,UCI等效地占用10个RE。以下选项可以用于传输更多数量的编码比特。在第一选项中,为了提高每个交织带的可能编码容量的数量,可以减少扩频序列的数量。例如,代替时域和频域中的12个正交序列,可以使用时域中的12个正交序列和频域中的6个正交序列,使得每个UCI等效地占用20个RE,以等效地将编码比特的数量增加到40个比特。在第二选项中,UCI的编码比特被分割,然后映射到具有不同扩频序列的RE。在一个实施例中,40个编码比特被分成2个部分,每个部分20个比特。然后,使用可用的144个序列中的两个扩频序列,在时间/频率上对调制到QPSK符号之后的编码比特进行扩频。
复用能力取决于能够嵌入ePUCCH内的DMRS序列的数量。遗留DMRS支持多达12个不同的循环移位,使得如果仅使用经由循环移位进行的复用,则可能复用的UE的数量被限制为12。可以通过增加包含DMRS序列的符号的数量来增加可以在子帧内复用的DMRS序列的数量。还可以在DMRS符号上应用正交覆盖码以增加可以被复用的UE的数量。
还可以复用具有不同净荷大小的UCI。在一个实施例中,编码和速率匹配被应用于UCI以产生多个比特,在调制到QPSK符号之后,这些比特可以用扩频序列映射到适当数量的RE。例如,如果UCI中的信息比特的数量为1,则可以应用编码和速率匹配以产生可以映射到10个QPSK符号的20个比特,因为如果利用正交扩频序列在交织带的每个RB上对每个QPSK符号进行最大程度地扩频,则在每个交织带中等效地存在10个可用的QPSK符号。如果编码比特的数量超过一个扩频序列所允许的容量,则可以如上所述分割UCI的编码比特。
在另一方面中,可以经由UL批准来传送UE将要使用哪个特定扩频序列进行UCI传输。在一个实施例中,eNB经由UL批准指示可用数量的扩频序列中的扩频序列的起始和结束的索引。所需比特的数量为2*ceil(log(N)),其中N是扩频序列的总数。在一个实施例中,N=144,并且UL批准中所需比特的数量为2*8=16。在另一实施例中,eNB单独地指示频域和时域中扩频序列的起始和结束索引。为此所需比特的数量为4*ceil(log(N)),其中N是时域和频域中的扩频序列的总数。在一个实施例中,N=12,并且UL批准中所需比特的数量为4*4=16。在另一实施例中,eNB经由UL批准指示可用数量的扩频序列中的扩频序列的索引,并且UE基于UCI的类型隐式地确定UCI传输所需扩频序列的数量。本实施例所需比特的数量为ceil(log(N)),其中N是扩频序列的总数。在一个实施例中,N=144,并且UL批准中所需比特的数量为8。在另一实施例中,eNB单独地指示用于时域和频域扩频两者的扩频序列的起始索引。在这种情况下所需比特的数量为2*ceil(log(N)),其中N是时域或频域中的序列的总数。在一个实施例中,N=12,并且UL批准中所需比特的数量为2*4=8。UE可以基于UCI的类型隐式地确定UCI传输所需扩频序列的数量。在一个实施例中,如果需要传输更大的UCI净荷大小,则使用频域中的下一个扩频序列。在另一实施例中,如果需要传输更大的UCI净荷大小,则使用时域中的下一个扩频序列。
在另一实施例中,ePUCCH由cPDCCH触发。在这种情况下,通过无线资源控制(RRC)信令半统计地配置每个UE的序列分配。当经由cPDCCH发送针对一个特定交织带的触发时,为该交织带配置的所有UE将使用对应的序列来对UCI进行扩频和传输。
触发用于经由PUSCH传输的非周期性CSI报告
在LTE中,CRS用于CSI测量(CSI/PMI/RI)和传输模式TM1-TM7的解调,而CRS仅用于TM8中的CSI测量。在传输模式TM9和TM10中使用CSI-RS、小区特定稀疏序列(在频域和时域中,与CRS相比)进行CSI测量。对于TM8、TM9和TM10,UE特定DMRS用于PDSCH解调。基于CRS/CSI-RS的接收,LTE Release 12支持:1)周期性上报,其中UE在预先配置的PUCCH/PUSCH资源上周期性地报告CSI,其中周期由更高层配置;2)非周期性上报,其中,通过在PUSCH传输中动态指派UL资源,使用DCI触发CSI报告。在子帧n中接收到DCI格式0或随机接入响应批准时,UE在子帧n+k中使用PUSCH执行非周期性CSI(ACSI)上报。eNodeB也可以配置周期性参数。取决于上报模式,单个报告的大小限制为约11个比特。eNodeB使用PDCCH UL批准中的特定比特显式地触发(请求)非周期性上报。非周期性报告可以搭载数据,也可以单独在PUSCH上发送。当CSI报告与上行链路数据一起在PUSCH上传输时,它通过所谓的L1层与传输块一起复用(即,CSI报告不是上行链路传输块的一部分)。
在MF系统中的LAA SCell上支持包括TM9、TM10的基于CSI-RS的传输模式。下面描述的实施例涉及在上行链路波形的交织带结构上传输LAA和MF系统的非周期性CSI报告。非周期性CSI上报所需的资源可以远小于用于在免授权频谱上操作的UL波形的交织带结构的资源分配粒度。下面讨论的一些实施例涉及如何在LAA和MF系统中高效地传输非周期性CSI上报的问题。一些实施例涉及向UE指示ACSI上报请求的方式。
在授权辅助接入操作下,通过经由UL批准在PCell上动态分配PUSCH资源,可以利用Release 13兼容UE经由PCell传输非周期性CSI报告。替代地,非周期性CSI报告可以在免授权载波上经由PUSCH传输,从而提供一种可扩展的方法,因为配置的免授权载波的数量增加了。图4中示出非周期性CSI报告的示例,其中在传输UL批准之后4ms(即,4个子帧),UL批准在UE处触发CSI上报事件。
如前所述,非周期性CSI报告可以在PUSCH上搭载数据。另一方面,在一些情况下,可能仅需要报告非周期性CSI,因为例如eNB仅想要ACSI上报或者UE没有要与非周期性CSI报告复用的任何UL数据。然后,需要在PUSCH上单独发送非周期性CSI。在遗留LTE系统中,当通过MCS索引设定为1或保留值{29、30、31}的DCI信令(UL批准)触发CSI报告时,通过指派少量资源(例如,小于或等于4个PRB)来暗示eNB支持仅需要ACSI上报的这种情况的方式。
如上所述,B-IFDMA是用于在MF和LAA系统中在免授权频谱上传输PUSCH/PUCCH的UL波形,其中每个交织带由分布(等间隔)在整个系统带宽上的10个PRB组成。可以为每个UE指派单个或多个交织带,因此在MF和LAA系统中,最小资源分配粒度是一个交织带或相当于10个PRB。因此,重要的是考虑仅传输非周期性CSI上报(仅ACSI)的高效方式(也许物理资源的浪费减少)。除了使用资源的效率之外,取决于用于为CSI报告分配资源元素的方式,可能的是,如果在一些资源中不存在传输,则在侦听到空闲介质之后,可以通过其他操作符(operator)获取信道。以下描述的实施例涉及用于指示仅ACSI上报的传输、区分仅ACSI上报与一般ACSI上报(具有/不具有UL数据)以及提高仅ACSI上报的传输的资源利用效率的方法。
在一个实施例中,通过DCI中的ACSI请求字段显式地指示仅非周期性CSI上报。在LTE载波聚合中,考虑两个比特指示用于与UL-SCH数据一起的非周期性CSI传输的不同选项(或者不触发非周期性CSI报告)。也可以扩展和/或修改设计以包括仅ACSI的选项。这种指示有多种可能的方式。在第一选项中,提供除了非周期性CSI请求字段的现有比特之外的另一比特。可以仅在UE特定的PDCCH搜索空间上发送具有该附加比特的DCI。可以认为扩展的3比特字段中的MSB或LSB指示非周期性CSI请求是不带UL-SCH数据的仅ACSI而还是带UL-SCH数据的ACSI。在第二选项中,重新定义两比特非周期性CSI请求字段状态和不同ACSI传输指示之间的映射。在一个实施例中,可以定义ACSI请求字段状态和不同指示之间的以下映射(可能地通过例如改变CRS来隐式地指示无非周期性CSI的选项):1)00:SIB-2链接的带UL-SCH数据的非周期性CSI;2)01:第一高层信令,用于指示针对带UL-SCH数据的非周期性CSI的目标小区;3)10:第二高层信令,用于指示针对带UL-SCH数据的非周期性CSI的目标小区;4)11:不带UL-SCH数据的仅非周期性CSI。
在一个实施例中,隐式地指示仅ACSI的指示。实现此目的的一种方式是通过改变CRS(例如,相移),其中UE应该针对CRS测试两种假设,以便识别该指示。该选项的一个实施例是,当ACSI与UL数据复用时,eNB发送与遗留LTE相同的CRS序列{x},并且发送{-x}以用于仅ACSI传输。指示经由PUSCH的仅非周期性CSI上报的另一种方式是经由资源分配信令。例如,通过Y(Y<10)表示最小资源分配粒度,可以通过使PRB的数量约束为NPRB≤Y来扩展用于在遗留LTE中指示仅UCI的PUSCH传输的方法,其中N PRB是分配的PRB的数量。
以下实施例涉及传输ACSI报告的方式。在适合于LAA系统的一个实施例中,如果在UE不具有任何UL数据的同时需要非周期性CSI上报,则可以将非周期性CSI上报配置为在PCell PUSCH上传输。由于PCell不使用B-IFDMA PUSCH波形,所以资源分配粒度不会引起任何问题。然后,当通过UL批准触发CSI报告时,eNB可以通过指派小于或等于4个PRB来支持不带UL数据的非周期性CSI上报的传输。
在适用于LAA系统和MF系统两者的其他实施例中,非周期性CSI上报的传输可以在SCell PUSCH上进行。在一个实施例中,如果eNB仅需要ACSI上报,则即使UE具有UL数据,它也不会将数据与ACSI报告一起复用,并且仅传输ACSI(如果资源分配粒度与ACSI上报的大小不匹配,则可能浪费剩余资源)。否则,当UE具有可用于与CSI复用的UL数据时,将非周期性CSI搭载有数据。如果UE不具有UL数据,则在SCell PUSCH上仅传输ACSI。CSI报告和UL数据的复用可以在时域和/或频域中进行。例如,UE可以首先加载ACSI信息比特,然后对于剩余的PRB加载附加数据比特。
在另一实施例中,最小资源分配粒度配置为小于10个PRB。当触发非周期性CSI上报时,eNB可以用信号通知该配置,或者由UE基于其UL数据可用性来确定该配置。为了减小资源分配粒度,可以应用以下选项。一种选项是将带宽划分为若干组,例如10组。然后可以在每组中分配一个交织带或在组的子集中分配一个交织带(降低一个交织带的PRB的周期性)。另一种选项是启用基于时隙的资源指派。以这种方式,可以将交织带的一个或两个时隙分配给UE。另一种选项是指派边缘PRB(即,在系统带宽的边缘处)以用于仅ACSI的传输。交织带的其余PRB可以可能地被指派给其他UE。
示例UE描述
如本文中所使用的,术语“电路”可以指代、为其一部分或包括:专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共用、专用或组)和/或存储器(共用、专用或组)、组合逻辑电路和/或提供所描述的功能的其他合适的硬件组件。在一些实施例中,电路可以实施在一个或多个软件或固件模块中,或者与电路相关联的功能可以由一个或多个软件或固件模块来实现。在一些实施例中,电路可以包括至少部分地以硬件操作的逻辑。
本文所描述的实施例可以使用合适配置的硬件和/或软件实现到系统中。图5关于一个实施例示出用户设备(UE)100的示例组件。在一些实施例中,UE设备100可以包括应用电路102、基带电路104、射频(RF)电路106、前端模块(FEM)电路108以及一个或多个天线110,至少如所示那样耦合在一起。
应用电路102可以包括一个或多个应用处理器。例如,应用电路102可以包括诸如但不限于一个或多个单核处理器或多核处理器的电路。处理器可以包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任何组合。处理器可以耦合于和/或可以包括存储器/存储,并且可以配置为:执行存储器/存储中所存储的指令,以使得各种应用和/或操作系统能够运行在系统上。
基带电路104可以包括诸如但不限于一个或多个单核处理器或多核处理器的电路。基带电路104可以包括一个或多个基带处理器和/或控制逻辑,以处理从RF电路106的接收信号路径接收到的基带信号并且生成用于RF电路106的发送信号路径的基带信号。基带电路104可以与应用电路102连接,以用于生成和处理基带信号并且控制RF电路106的操作。例如,在一些实施例中,基带电路104可以包括第二代(2G)基带处理器104a、第三代(3G)基带处理器104b、第四代(4G)基带处理器104c和/或用于其它现有代、开发中的或将要在未来开发的代(例如,第五代(5G)、6G等)的其它基带处理器104d。基带电路104(例如,基带处理器104a-d中的一个或多个)可以处理使得能够进行经由RF电路106与一个或多个无线电网络的通信的各种无线电控制功能。无线电控制功能可以包括但不限于信号调制/解调、编码/解码、无线电频移等。在一些实施例中,基带电路104的调制/解调电路可以包括快速傅立叶变换(FFT)、预编码和/或星座映射/解映射功能。在一些实施例中,基带电路104的编码/解码电路可以包括卷积、咬尾卷积、turbo、维特比和/或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施例不限于这些示例,并且在其他实施例中可以包括其他合适的功能。
在一些实施例中,基带电路104可以包括协议栈的元素,例如演进通用地面无线接入网(EUTRAN)协议的元素,包括例如物理(PHY)元素、媒体接入控制(MAC)元素、无线链路控制(RLC)元素、分组数据汇聚协议(PDCP)元素和/或无线资源控制(RRC)元素。基带电路104的中央处理单元(CPU)104e可以配置为:运行协议栈的元素,以用于PHY、MAC、RLC、PDCP和/或RRC层的信令。在一些实施例中,基带电路可以包括一个或多个音频数字信号处理器(DSP)104f。音频DSP 104f可以包括用于压缩/解压缩和回声消除的元件,并且在其它实施例中可以包括其它合适的处理元件。在一些实施例中,基带电路的组件可以被适当地组合在单个芯片、单个芯片组中,或者被设置在相同的电路板上。在一些实施例中,基带电路104和应用电路102的一些或全部构成组件可以一起实施,例如实施在片上系统(SOC)上。
在一些实施例中,基带电路104可以提供与一种或多种无线电技术兼容的通信。例如,在一些实施例中,基带电路104可以支持与演进通用地面无线接入网(E-UTRAN)和/或其他无线城域网(WMAN)、无线局域网(WLAN)、无线个域网(WPAN)的通信。基带电路104配置为支持多于一种无线协议的无线通信的实施例可以称为多模基带电路。
RF电路106可以使得能够通过非固态介质使用调制的电磁辐射进行与无线网络的通信。在各个实施例中,RF电路106可以包括开关、滤波器、放大器等,以有助于与无线网络的通信。RF电路106可以包括接收信号路径,其可以包括用于下变频从FEM电路108接收到的RF信号并且将基带信号提供给基带电路104的电路。RF电路106可以还包括发送信号路径,其可以包括用于上变频基带电路104所提供的基带信号并且将RF输出信号提供给FEM电路108以用于发送的电路。
在一些实施例中,RF电路106可以包括接收信号路径和发送信号路径。RF电路106的接收信号路径可以包括混频器电路106a、放大器电路106b以及滤波器电路106c。RF电路106的发送信号路径可以包括滤波器电路106c和混频器电路106a。RF电路106可以还包括综合器电路106d,以用于合成接收信号路径和发送信号路径的混频器电路106a使用的频率。在一些实施例中,接收信号路径的混频器电路106a可以配置为:基于综合器电路106d所提供的合成频率来下变频从FEM电路108接收到的RF信号。放大器电路106b可以配置为:放大下变频后的信号,并且滤波器电路106c可以是低通滤波器(LPF)或带通滤波器(BPF),它们配置为:从下变频后的信号移除不想要的信号,以生成输出基带信号。输出基带信号可以提供给基带电路104,以用于进一步处理。在一些实施例中,输出基带信号可以是零频率基带信号,但这并非要求。在一些实施例中,接收信号路径的混频器电路106a可以包括无源混频器,但是实施例的范围不限于此。
在一些实施例中,发送信号路径的混频器电路106a可以配置为:基于综合器电路106d所提供的合成频率来上变频输入基带信号,以生成用于FEM电路108的RF输出信号。基带信号可以由基带电路104提供,并且可以由滤波器电路106c滤波。滤波器电路106c可以包括低通滤波器(LPF),但是实施例的范围不限于此。
在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以包括两个或更多个混频器,并且可以分别被布置用于正交下变频和/或上变频。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以包括两个或更多个混频器,并且可以被布置用于镜像抑制(例如,Hartley镜像抑制)。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以分别被布置用于直接下变频和/或直接上变频。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以配置用于超外差操作。
在一些实施例中,输出基带信号和输入基带信号可以是模拟基带信号,但是实施例的范围不限于此。在一些替代实施例中,输出基带信号和输入基带信号可以是数字基带信号。在这些替代实施例中,RF电路106可以包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路104可以包括数字基带接口,以与RF电路106进行通信。
在一些双模实施例中,可以提供单独的无线电IC电路,以用于对每个频谱处理信号,但是实施例的范围不限于此。
在一些实施例中,综合器电路106d可以是小数N综合器或小数N/N+1综合器,但是实施例的范围不限于此,因为其它类型的频率综合器可以是合适的。例如,综合器电路106d可以是Δ-Σ综合器、频率乘法器或包括具有分频器的锁相环的综合器。
综合器电路106d可以配置为:基于频率输入和除法器控制输入来合成RF电路106的混频器电路106a使用的输出频率。在一些实施例中,综合器电路106d可以是小数N/N+1综合器。
在一些实施例中,频率输入可以由压控振荡器(VCO)提供,但这并非要求。取决于期望的输出频率,除法器控制输入可以由基带电路104或应用处理器102提供。在一些实施例中,可以基于应用处理器102所指示的信道,从查找表确定除法器控制输入(例如,N)。
RF电路106的综合器电路106d可以包括除法器、延迟锁相环(DLL)、复用器和相位累加器。在一些实施例中,除法器可以是双模除法器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些实施例中,DMD可以配置为:(例如,基于进位)将输入信号除以N或N+1,以提供小数除法比率。在一些示例实施例中,DLL可以包括一组级联的可调谐的延迟元件、相位检测器、电荷泵和D型触发器。在这些实施例中,延迟元件可以配置为将VCO周期分解为Nd个相等的相位分组,其中,Nd是延迟线中的延迟元件的数量。以此方式,DLL提供负反馈,以帮助确保通过延迟线的总延迟是一个VCO周期。
在一些实施例中,综合器电路106d可以配置为:生成载波频率作为输出频率,而在其它实施例中,输出频率可以是载波频率的倍数(例如,载波频率的两倍、载波频率的四倍),并且与正交生成器和除法器电路结合使用,以在载波频率下生成相对于彼此具有多个不同相位的多个信号。在一些实施例中,输出频率可以是LO频率(fLO)。在一些实施例中,RF电路106可以包括IQ/极坐标转换器。
FEM电路108可以包括接收信号路径,其可以包括配置为对从一个或多个天线110接收到的RF信号进行操作,放大接收到的信号并且将接收信号的放大版本提供给RF电路106以用于进一步处理的电路。FEM电路108可以还包括发送信号路径,其可以包括配置为放大RF电路106所提供的用于发送的信号以用于由一个或多个天线110中的一个或多个进行发送的电路。
在一些实施例中,FEM电路108可以包括TX/RX切换器,以在发送模式与接收模式操作之间进行切换。FEM电路可以包括接收信号路径和发送信号路径。FEM电路的接收信号路径可以包括低噪声放大器(LNA),以放大接收到的RF信号,并且(例如,向RF电路106)提供放大的接收到的RF信号作为输出。FEM电路108的发送信号路径可以包括:功率放大器(PA),用于放大(例如,RF电路106所提供的)输入RF信号;以及一个或多个滤波器,用于生成RF信号,以用于(例如,由一个或多个天线110中的一个或多个进行)随后发送。
在一些实施例中,UE设备100可以包括附加元件,例如存储器/存储、显示器、相机、传感器和/或输入/输出(I/O)接口。
示例机器描述
图6示出示例机器500的框图,可以在其上执行本文讨论的任何一个或多个技术(例如,方法)。在替代实施例中,机器500可以操作为独立设备或可以连接(例如,联网)至其他机器。在联网部署中,机器500可以在服务器-客户机网络环境中以服务器机器、客户机器或两者的角色操作。在示例中,机器500可以用作对等(P2P)(或其他分布式)网络环境中的对等机器。机器500可以是用户设备(UE)、演进节点B(eNB)、Wi-Fi接入点(AP)、Wi-Fi站(STA)、个人计算机(PC)、平板PC、机顶盒(STB)、个人数字助理(PDA)、移动电话、智能电话、网络设备、网络路由器、交换机或桥接器或能够执行指定该机器要采取的动作的指令(顺序或以其他方式)的任何机器。此外,虽然仅示出单个机器,但术语“机器”也应被理解为包括单独或联合执行一组(或多组)指令以执行本文讨论的方法中的任一个或多个方法的任何机器集合,例如云计算、软件即服务(SaaS)、其他计算机集群配置。
如本文所述,示例可以包括逻辑或多个组件、模块或机制,或者可以对其进行操作。模块是能够执行指定操作的有形实体(例如,硬件),并且可以以某种方式进行配置或布置。在示例中,电路可以以指定方式布置(例如,在内部或相对于例如其他电路的外部实体)为模块。在示例中,一个或多个计算机系统(例如,单独的客户端或服务器计算机系统)或一个或多个硬件处理器的全部或一部分可以由固件或软件(例如,指令、应用部分或应用)配置为执行指定操作的模块。在示例中,软件可以存在于机器可读介质上。在示例中,软件在由模块的底层硬件执行时,使硬件执行指定操作。
因此,术语“模块”被理解为包含有形实体,无论是物理构建、具体配置(例如,硬连线)或暂时(例如,临时)配置(例如,编程)为以指定方式操作或执行本文描述的任何操作的部分或全部的实体。考虑暂时配置模块的示例,每个模块都不需要在任何时刻实例化。例如,在模块包括使用软件配置的通用硬件处理器的情况下,通用硬件处理器可以在不同时间处配置为相应不同的模块。软件可以相应地配置硬件处理器,例如在一个时间实例处构成特定模块并且在不同的时间实例处构成不同的模块。
机器(例如,计算机系统)500可以包括硬件处理器502(例如,中央处理单元(CPU)、图形处理单元(GPU)、硬件处理器核心或其任何组合)、主存储器504和静态存储器506,其中的一些或全部可以经由互连链路(例如,总线)508彼此通信。机器500还可以包括显示单元510、字母数字输入设备512(例如,键盘)和用户界面(UI)导航设备514(例如,鼠标)。在示例中,显示单元510、输入设备512和UI导航设备514可以是触摸屏显示器。机器500可以附加地包括存储设备(例如,驱动单元)516、信号生成设备518(例如,扬声器)、网络接口设备520以及一个或多个传感器521,例如全球定位系统(GPS)传感器、指南针、加速度计或其他传感器。机器500可以包括输出控制器528,例如串行(例如,通用串行总线(USB)、并行或其他有线或无线(例如,红外(IR)、近场通信(NFC)等)连接,以与一个或多个外围设备(例如,打印机、读卡器等)进行通信或对其进行控制。
存储设备516可以包括机器可读介质522,其上存储有体现本文所述的技术或功能中的任一个或多个或由其使用的一组或多组数据结构和指令524(例如,软件)。指令524还可以在其由机器500执行期间完全或至少部分地存在于主存储器504内、静态存储器506内或硬件处理器502内。在示例中,硬件处理器502、主存储器504、静态存储器506和存储设备516中的一个或任何组合可以构成机器可读介质。
虽然机器可读介质522被示出为单个介质,但是术语“机器可读介质”可以包括配置为存储一个或多个指令524的单个介质或多个介质(例如,集中式或分布式数据库和/或相关联的高速缓冲存储器和服务器)。
术语“机器可读介质”可以包括任何介质,其能够存储、编码或携带供机器500执行的指令,并且使机器500执行本公开的技术中的任一个或多个技术,或者能够存储、编码或携带由这些指令使用或与其相关联的数据结构。非限制性机器可读介质示例可以包括固态存储器以及光和磁介质。机器可读介质的具体示例可以包括:非易失性存储器,例如半导体存储器设备(例如,电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))和闪存设备;磁盘,例如内部硬盘和可移动盘;磁光盘;随机存取存储器(RAM);以及CD-ROM和DVD-ROM盘。在一些示例中,机器可读介质可以包括非暂时性机器可读介质。在一些示例中,机器可读介质可以包括不是暂时传播信号的机器可读介质。
还可以经由利用多种传输协议(例如,帧中继、互联网协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)、超文本传输协议(HTTP)等)中的任何一种的网络接口设备520,通过使用传输介质的通信网络526发送或接收指令524。示例性通信网络可以包括局域网(LAN)、广域网(WAN)、分组数据网络(例如,互联网)、移动电话网络(例如,蜂窝网络)、普通老式电话(POTS)网络和无线数据网络(例如,称为
Figure GDA0002425051570000161
的电气和电子工程师协会(IEEE)802.11系列标准、称为
Figure GDA0002425051570000162
的IEEE802.16系列标准)、IEEE 802.15.4系列标准、长期演进(LTE)系列标准、通用移动电信系统(UMTS)系列标准或对等(P2P)网络等。在示例中,网络接口设备520可以包括一个或多个物理插孔(例如,以太网、同轴或电话插孔)或一个或多个天线以连接至通信网络526。在示例中,网络接口设备520可以包括多个天线,以使用单输入多输出(SIMO)、多输入多输出(MIMO)和多输入单输出(MISO)技术中的至少一个进行无线通信。在一些示例中,网络接口设备520可以使用多用户MIMO技术进行无线通信。术语“传输介质”应理解为包括能够存储、编码或携带供机器500执行的指令的任何无形介质,并且包括数字或模拟通信信号或有助于此类软件通信的其他无形介质。
附加说明和示例:
在示例1中,一种用于用户设备(UE)的装置包括:存储器和处理电路;其中,处理电路用于:解调下行链路控制信息(DCI),DCI是通过带有上行链路(UL)资源批准的物理下行链路控制信道(PDCCH)或通过公共PDCCH(cPDCCH)在当前下行链路(DL)子帧中从演进节点B(eNB)接收的,其中,DCI请求在后续UL子帧中通过扩展物理上行链路控制信道(ePUCCH)发送上行链路控制信息(UCI),其中,ePUCCH包括块交织的频分多址(B-IFDMA)交织带;以及利用正交扩频序列将UCI映射到B-IFDMA交织带的资源元素(RE),以允许UCI与来自其他UE的UCI进行码分复用。
在示例2中,本文的任何示例的主题可以可选地包括,其中,正交扩频序列是Hadamard序列、Zadoff-Chu序列、正交覆盖码(OCC)或正交扩频序列的任何组合。
在示例3中,本文的任何示例的主题可以可选地包括,其中,B-IFDMA交织带包括在信道带宽上等间隔的10个资源块(RB)。
在示例4中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:使用长度小于或等于交织带的RB中不用于传输解调参考信号(DMRS)的RE的数量的正交扩频序列来对UCI进行扩频。
在示例5中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:使用长度小于或等于子帧中不用于传输解调参考信号(DMRS)的正交频分复用(OFDM)符号的数量的正交扩频序列来在时域中对UCI进行扩频。
在示例6中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:使用长度小于或等于子帧的资源块中不用于传输解调参考信号(DM-RS)的正交频分复用(OFDM)子载波的数量的正交扩频序列来在频域中对UCI进行扩频。
在示例7中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:使用频域正交扩频序列和时域正交扩频序列来在时域和频域上独立地对UCI进行扩频。
在示例8中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:利用前向纠错码对UCI的信息比特进行编码,并且向其附加循环冗余校验序列;对编码后的信息比特进行速率匹配;将编码和速率匹配后的信息比特调制到一个或多个正交相移键控(QPSK)符号;以及利用正交扩频序列将QPSK符号映射到B-IFDMA交织带的RE。
在示例9中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:将UCI的信息比特分割成一个或多个部分;利用前向纠错码对UCI的每个信息比特部分进行编码,并且向其附加循环冗余校验序列;对每个编码后的信息比特部分进行速率匹配;将每个编码和速率匹配后的信息比特部分调制到一个或多个正交相移键控(QPSK)符号;以及利用正交扩频序列将每个部分的QPSK符号映射到B-IFDMA交织带的RE。
在示例10中,本文的任何示例的主题可以可选地包括,其中,前向纠错码是咬尾卷积码(TBCC)或Reed-Mueller(RM)码。
在示例11中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:利用由包含在DCI中的起始和结束索引指定的正交扩频序列,来将UCI映射到B-IFDMA交织带的RE。
在示例12中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:利用由包含在DCI中的频域和时域正交扩频序列的起始和结束索引指定的正交扩频序列,来将UCI映射到B-IFDMA交织带的RE。
在示例13中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:利用由识别包含在DCI中的多个正交扩频序列之一的索引所指定的正交扩频序列,来将UCI映射到B-IFDMA交织带的RE。
在示例14中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:基于UCI的类型来隐式地确定UCI传输所需的扩频序列的数量。
在示例15中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:利用由包含在DCI中的识别多个频域正交扩频序列之一和识别多个时域正交扩频序列之一的索引所指定的扩频序列,来将UCI映射到B-IFDMA交织带的RE。
在示例16中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:当ePUCCH由请求发送UCI的cPDCCH触发时,利用由无线资源控制(RRC)信令半统计地配置的正交扩频序列来将UCI映射到B-IFDMA交织带的资源元素(RE)。
在示例17中,一种用于演进节点B(eNB)的装置包括:存储器和处理电路,该处理电路配置为:对下行链路控制信息(DCI)进行编码,以便通过带有上行链路(UL)资源批准的物理下行链路控制信道(PDCCH)或通过公共PDCCH(cPDCCH)在当前下行链路(DL)子帧中发送到用户设备(UE),其中,DCI请求在后续UL子帧中通过扩展物理上行链路控制信道(ePUCCH)发送上行链路控制信息(UCI),其中,ePUCCH包括块交织的频分多址(B-IFDMA)交织带;以及从B-IFDMA交织带的资源元素(RE)中解码UCI,其中,该UCI已被利用正交扩频序列映射到该资源元素以允许UCI与来自其他UE的UCI进行码分复用。
在示例18中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:对DCI进行编码,以包含UE用于将UCI映射到B-IFDMA交织带的RE的正交扩频序列的起始索引和结束索引。
在示例19中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:对DCI进行编码,以包含UE用于将UCI映射到B-IFDMA交织带的RE的频域和时域正交扩频序列的起始索引和结束索引。
在示例20中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:对DCI进行编码,以包含识别UE用于将UCI映射到B-IFDMA交织带的RE的多个正交扩频序列之一的索引。
在示例21中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:对DCI进行编码,以包含识别UE用于将UCI映射到B-IFDMA交织带的RE的多个频域正交扩频序列之一和识别UE用于将UCI映射到B-IFDMA交织带的RE的多个时域正交扩频序列之一的索引。
在示例22中,本文的任何示例的主题可以可选地包括,其中,处理电路用于:通过无线资源控制(RRC)信令半统计地配置特定正交扩频序列,以便UE响应于经由cPDCCH的UCI请求而使用。
在示例23中,一种用于用户设备(UE)的装置包括:存储器和处理电路,该处理电路配置为:解调下行链路控制信息(DCI),DCI是通过带有上行链路(UL)资源批准的物理下行链路控制信道(PDCCH)在当前下行链路(DL)子帧中从演进节点B(eNB)接收的,该DCI请求在后续UL子帧中通过物理上行链路共享信道(PUSCH)发送上行链路控制信息(UCI),其中,PUSCH在免授权频谱中包括块交织的频分多址(B-IFDMA)交织带;以及按DCI所指示的那样,将UCI与上行链路共享信道(UL-SCH)数据复用或者不复用。
在示例24中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由DCI中的三比特字段的一个比特来指示。
在示例25中,本文的任何示例的主题可以可选地包括,其中,UCI不与UL-SCH数据复用的指示由DCI中的两比特字段的特定值来指示。
在示例26中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由eNB所发送的小区特定参考信号(CRS)的相移来指示。
在示例27中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由UL资源批准所批准的资源大小来指示。
在示例28中,一种用于演进节点B(eNB)的装置包括:存储器和处理电路,该处理电路配置为:对下行链路控制信息(DCI)进行编码,以便通过带有上行链路(UL)资源批准的物理下行链路控制信道(PDCCH)在当前下行链路(DL)子帧中发送到用户设备(UE),该DCI请求在后续UL子帧中通过物理上行链路共享信道(PUSCH)发送上行链路控制信息(UCI),其中,PUSCH在免授权频谱中包括块交织的频分多址(B-IFDMA)交织带;以及在DCI中指示UCI是否应与上行链路共享信道(UL-SCH)数据复用。
在示例29中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由DCI中的三比特字段的一个比特来指示。
在示例30中,本文的任何示例的主题可以可选地包括,其中,UCI不与UL-SCH数据复用的指示由DCI中的两比特字段的特定值来指示。
在示例31中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由eNB所发送的小区特定参考信号(CRS)的相移来指示。
在示例32中,本文的任何示例的主题可以可选地包括,其中,UCI是否要与UL-SCH数据复用由UL资源批准所批准的资源大小来指示。
在示例33中,一种用于操作用户设备(UE)的方法,包括执行如本文的任何示例中所述的存储器和处理电路的功能。
在示例34中,一种用户设备(UE),包括用于执行如本文的任何示例中所述的存储器和处理电路的功能的模块。
在示例35中,一种计算机可读介质,包括指令,在由用户设备(UE)的处理电路执行指令时,指令使UE执行如本文的任何示例中所述的存储器和处理电路的功能。
在示例36中,一种用于操作演进节点B(eNB)的方法,包括执行如本文的任何示例中所述的存储器和处理电路的功能。
在示例37中,一种演进节点B(eNB),包括用于执行如本文的任何示例中所述的存储器和处理电路的功能的模块。
在示例38中,一种计算机可读介质,包括指令,在由演进节点B(eNB)的处理电路执行指令时,指令使eNB执行如本文的任何示例中所述的存储器和处理电路的功能。
在示例39中,本文的任何示例的主题还可以包括连接到存储器和处理电路的无线电收发机。
以上详细描述包括对形成详细描述的一部分的附图的参考。作为说明,附图示出可以实践的具体实施例。这些实施例在本文中也被称为“示例”。这样的示例可以包括除了所示或所述的那些之外的元件。然而,也可以设想包括所示或所述元件的示例。此外,还可以设想使用关于特定示例(或其一个或多个方面)或关于本文所示或所述的其他示例(或其一个或多个方面)所示或所述的那些元件(或其一个或多个方面)的任何组合或置换的示例。
本文中涉及的出版物、专利和专利文件通过引用整体并入本文,如同单独通过引用并入。如果本文件与通过引用并入的那些文件之间的用法不一致,则所并入的参考文献中的用法是对本文件的用法的补充;对于不可调和的不一致,以本文件中的用法为准。
在本文件中,如在专利文件中常见的那样,使用词语“一”或“一个”来包括一个或一个以上,独立于“至少一个”或“一个或多个”的任何其他实例或用法。除非另有说明,否则在本文中,词语“或”用于指非排他性的“或”,使得“A或B”包括“A,而非B”、“B,而非A”以及“A和B”。在所附权利要求中,词语“包括”和“其中”用作相应词语“包含”和“在其中”的等同用语。而且,在所附权利要求中,词语“包括”和“包含”是开放式的;即,包括除权利要求中的这样的词语之后列出的要素之外的系统、设备、物品或处理仍然被认为落入该权利要求的范围内。此外,在所附权利要求中,词语“第一”、“第二”和“第三”等仅被用作标注,并不旨在暗示其对象的数字顺序。
如上所述的实施例可以以各种硬件配置来实施,该硬件配置可以包括用于执行实现所描述的技术的指令的处理器。这样的指令可以包含在例如合适的存储介质或存储器或其他处理器可执行介质的机器可读介质中。
这里描述的实施例可以在例如无线局域网(WLAN)、第三代合作伙伴项目(3GPP)通用陆地无线接入网(UTRAN)或长期演进(LTE)或长期演进(LTE)通信系统的一部分的多种环境中来实施,但是本发明的范围在这方面不受限制。示例性LTE系统包括由LTE规范定义为用户设备(UE)的多个移动站,其与由LTE规范定义为eNB的基站进行通信。
本文中引用的天线可以包括一个或多个定向或全向天线,包括例如偶极天线、单极天线、贴片天线、环形天线、微带天线或适用于传输RF信号的其他类型的天线。在一些实施例中,代替两个或更多个天线,可以使用具有多个孔的单个天线。在这些实施例中,每个孔可以被认为是单独的天线。在一些多输入多输出(MIMO)实施例中,可以有效地分离天线以利用空间分集和可能在每个天线与发射站的天线之间产生的不同信道特性。在一些MIMO实施例中,天线可以分离多达1/10波长或更多。
在一些实施例中,如本文所述的接收机可以配置为根据指定通信标准接收信号,例如包括IEEE 802.11标准的电气和电子工程师协会(IEEE)标准和/或针对WLAN的所提出的规范,但是本发明的范围在这方面不受限制,因为它们也可以适合于根据其他技术和标准来发送和/或接收通信。在一些实施例中,接收器可以配置为接收根据用于无线城域网(WMAN)的IEEE 802.16-2004、IEEE 802.16(e)和/或IEEE 802.16(m)标准(包括其变化和演进)来接收信号,但是本发明的范围在这方面不受限制,因为它们也可以适合于根据其他技术和标准来发送和/或接收通信。在一些实施例中,接收器可以配置为根据通用陆地无线接入网络(UTRAN)LTE通信标准来接收信号。有关IEEE 802.11和IEEE 802.16标准的更多信息,请参阅“IEEE Standards for Information Technology--Telecommunications andInformation Exchange between Systems”--局域网--具体要求--第11部分“WirelessLAN Medium Access Control(MAC)and Physical Layer(PHY),ISO/IEC 8802-11:1999”以及城域网--具体要求--第16部分:“Air Interface for Fixed Broadband WirelessAccess Systems”2005年5月及相关修改/版本。有关UTRAN LTE标准的更多信息,请参阅UTRAN-LTE的第三代合作伙伴项目(3GPP)标准,包括其变化和演进。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或多个方面)可以与其他示例组合使用。例如本领域的普通技术人员在查看以上描述时,可以使用其他实施例。摘要是为了让读者快速确定技术公开的性质。提交时的理解是,它不会被用来解释或限制权利要求的范围或含义。而且,在上面的详细描述中,各种特征可以组合在一起以简化本公开。然而,权利要求可能没有阐述本文公开的每个特征,这是因为实施例可能以所述特征的子集为特征。此外,实施例可以包括比在特定示例中公开的那些更少的特征。因此,在此所附的权利要求包括在具体实施方式中,其中权利要求可以基于其本身,作为单独实施例。本文公开的实施例的范围将参考所附权利要求以及这些权利要求的等同物的全部范围来确定。

Claims (24)

1.一种用于用户设备UE的装置,所述装置包括:
存储器和处理电路;
其中,所述处理电路用于:
解调下行链路控制信息DCI,所述DCI是通过带有上行链路UL资源批准的物理下行链路控制信道PDCCH在当前下行链路DL子帧中从基站接收的,其中,所述DCI触发在免授权频谱中在后续UL子帧中通过扩展物理上行链路控制信道ePUCCH发送上行链路控制信息UCI;
其中,所述ePUCCH包括块交织的频分多址B-IFDMA交织带;以及
将所述UCI映射到所述B-IFDMA交织带,
其中,所述处理电路用于执行以下操作以将所述UCI映射到所述B-IFDMA交织带:
利用前向纠错码对所述UCI的信息比特进行编码并且向信息比特附加循环冗余校验序列;
对编码后的信息比特进行速率匹配;
将编码和速率匹配后的信息比特调制到一个或多个正交相移键控QPSK符号;
由一组可用正交扩频序列确定多个正交扩频序列;以及
将所述多个正交扩频序列应用于所述一个或多个QPSK符号并将所述QPSK符号映射到所述B-IFDMA交织带。
2.根据权利要求1所述的装置,其中,所述正交扩频序列是Hadamard序列、Zadoff-Chu序列、正交覆盖码OCC或各正交扩频序列的任何组合。
3.根据权利要求1所述的装置,其中,所述B-IFDMA交织带包括在信道带宽上等间隔的10个资源块RB。
4.根据权利要求1所述的装置,其中,所述处理电路用于:
使用长度小于或等于所述交织带的RB中不用于传输解调参考信号DMRS的资源元素RE的数量的正交扩频序列来对所述UCI进行扩频。
5.根据权利要求1所述的装置,其中,所述处理电路用于:
使用长度小于或等于所述子帧中不用于传输解调参考信号DMRS的正交频分复用OFDM符号的数量的正交扩频序列来在时域中对所述UCI进行扩频。
6.根据权利要求1所述的装置,其中,所述处理电路用于:
使用长度小于或等于所述子帧的资源块中不用于传输解调参考信号DMRS的正交频分复用OFDM子载波的数量的正交扩频序列来在频域中对所述UCI进行扩频。
7.根据权利要求1所述的装置,其中,所述处理电路用于:
使用频域正交扩频序列和时域正交扩频序列来在时域和频域上独立地对所述UCI进行扩频。
8.根据权利要求1所述的装置,其中,所述存储器和处理电路用于:
将所述UCI的信息比特分割成一个或多个部分;
利用前向纠错码对所述UCI的每个信息比特部分进行编码,并且向每个信息比特部分附加循环冗余校验序列;
对每个编码后的信息比特部分进行速率匹配;
将每个编码和速率匹配后的信息比特部分调制到一个或多个QPSK符号;以及
利用正交扩频序列将每个部分的QPSK符号映射到所述B-IFDMA交织带的资源元素RE。
9.根据权利要求1所述的装置,其中,所述前向纠错码是咬尾卷积码TBCC或Reed-Mueller即RM码。
10.根据权利要求1至7中任一项所述的装置,其中,所述处理电路用于:利用由包含在所述DCI中的起始索引和结束索引所指定的正交扩频序列,来将所述UCI映射到所述B-IFDMA交织带的资源元素RE。
11.根据权利要求1至7中任一项所述的装置,其中,所述处理电路用于:利用由包含在所述DCI中的频域和时域正交扩频序列的起始索引和结束索引所指定的正交扩频序列,来将所述UCI映射到所述B-IFDMA交织带的资源元素RE。
12.根据权利要求1至7中任一项所述的装置,其中,
所述多个正交扩频序列包含在所述DCI中。
13.根据权利要求12所述的装置,其中,所述处理电路用于:
基于所述UCI的类型来隐式地确定UCI传输所需的扩频序列的数量。
14.根据权利要求1至7中任一项所述的装置,其中,所述处理电路用于:利用由包含在所述DCI中的识别多个频域正交扩频序列之一和识别多个时域正交扩频序列之一的索引所指定的扩频序列,来将所述UCI映射到所述B-IFDMA交织带的资源元素RE。
15.根据权利要求1至7中任一项所述的装置,其中,所述存储器用于:存储由无线资源控制RRC信令半统计地配置的正交扩频序列,并且其中,所述处理电路用于:当所述ePUCCH由请求发送UCI的公共PDCCH即cPDCCH触发时,利用存储的正交扩频序列来将所述UCI映射到所述B-IFDMA交织带的资源元素RE。
16.一种用于基站的装置,所述装置包括:
存储器和处理电路,被配置为:
对下行链路控制信息DCI进行编码,以便通过带有上行链路UL资源批准的物理下行链路控制信道PDCCH在当前下行链路DL子帧中发送到用户设备UE,其中,所述DCI触发在免授权频谱中在后续UL子帧中通过扩展物理上行链路控制信道ePUCCH从所述UE发送上行链路控制信息UCI;
其中,所述ePUCCH包括块交织的频分多址B-IFDMA交织带;以及
从所述B-IFDMA交织带中解码所述UCI,其中,所述UCI已被利用一组可用正交扩频序列中的多个正交扩频序列在时域映射到所述B-IFDMA交织带,并且
其中,所述UCI的信息比特已被利用前向纠错码进行编码并附加有循环冗余校验序列,并且编码后的信息比特已被进行速率匹配,并且其中,编码和速率匹配后的信息比特已被调制到一个或多个正交相移键控QPSK符号,所述多个正交扩频序列已被应用于所述一个或多个QPSK符号并且所述QPSK符号已被映射到所述B-IFDMA交织带。
17.根据权利要求16所述的装置,其中,所述处理电路用于:
对所述DCI进行编码,以包含所述UE用于将所述UCI映射到所述B-IFDMA交织带的资源元素RE的正交扩频序列的起始索引和结束索引。
18.根据权利要求16所述的装置,其中,所述处理电路用于:
对所述DCI进行编码,以包含所述UE用于将所述UCI映射到所述B-IFDMA交织带的资源元素RE的频域和时域正交扩频序列的起始索引和结束索引。
19.根据权利要求16所述的装置,其中,所述处理电路用于:
对所述DCI进行编码,以包含识别所述UE用于将所述UCI映射到所述B-IFDMA交织带的资源元素RE的所述多个正交扩频序列中的一个或多个的索引。
20.根据权利要求16所述的装置,其中,所述处理电路用于:
对所述DCI进行编码,以包含识别所述UE用于将所述UCI映射到所述B-IFDMA交织带的资源元素RE的多个频域正交扩频序列中的一个或多个和识别所述UE用于将所述UCI映射到所述B-IFDMA交织带的RE的多个时域正交扩频序列之一的索引。
21.根据权利要求16所述的装置,其中,所述处理电路用于:
通过无线资源控制RRC信令半统计地配置特定正交扩频序列,以供所述UE传输UCI。
22.一种用于操作用户设备UE的方法,包括:
解调下行链路控制信息DCI,所述DCI是通过带有上行链路UL资源批准的物理下行链路控制信道PDCCH在当前下行链路DL子帧中从基站接收的,其中,所述DCI触发在免授权频谱中在后续UL子帧中通过扩展物理上行链路控制信道ePUCCH发送上行链路控制信息UCI;
其中,所述ePUCCH包括块交织的频分多址B-IFDMA交织带;以及
利用多个正交扩频序列将所述UCI映射到所述B-IFDMA交织带,并且
其中,所述映射包括:
利用前向纠错码对所述UCI的信息比特进行编码并且向信息比特附加循环冗余校验序列;
对编码后的信息比特进行速率匹配;
将编码和速率匹配后的信息比特调制到一个或多个正交相移键控QPSK符号;
由一组可用正交扩频序列确定多个正交扩频序列;以及
将所述多个正交扩频序列应用于所述一个或多个QPSK符号并将所述QPSK符号映射到所述B-IFDMA交织带。
23.根据权利要求22所述的方法,其中,所述正交扩频序列是Hadamard序列、Zadoff-Chu序列、正交覆盖码OCC或各正交扩频序列的任何组合。
24.一种计算机可读介质,包括指令,在由用户设备UE的处理电路执行所述指令时,所述指令使所述UE执行如权利要求22-23中任一项所述的方法。
CN201680083390.0A 2016-03-11 2016-12-28 用于用户设备的装置及操作方法、用于基站的装置及介质 Active CN108781124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011233720.4A CN112332944A (zh) 2016-03-11 2016-12-28 上行链路控制信息的码分复用

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662307197P 2016-03-11 2016-03-11
US62/307,197 2016-03-11
US201662326409P 2016-04-22 2016-04-22
US62/326,409 2016-04-22
PCT/US2016/068982 WO2017155591A1 (en) 2016-03-11 2016-12-28 Code division multiplexing of uplink control information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011233720.4A Division CN112332944A (zh) 2016-03-11 2016-12-28 上行链路控制信息的码分复用

Publications (2)

Publication Number Publication Date
CN108781124A CN108781124A (zh) 2018-11-09
CN108781124B true CN108781124B (zh) 2020-11-03

Family

ID=59790821

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680083390.0A Active CN108781124B (zh) 2016-03-11 2016-12-28 用于用户设备的装置及操作方法、用于基站的装置及介质
CN202011233720.4A Pending CN112332944A (zh) 2016-03-11 2016-12-28 上行链路控制信息的码分复用

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202011233720.4A Pending CN112332944A (zh) 2016-03-11 2016-12-28 上行链路控制信息的码分复用

Country Status (2)

Country Link
CN (2) CN108781124B (zh)
WO (1) WO2017155591A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313413A1 (en) * 2018-04-06 2019-10-10 Mediatek Inc. Interlace Design For New Radio Unlicensed Spectrum Operation
CN110971337B (zh) 2018-09-28 2021-02-23 华为技术有限公司 信道编码方法及装置
US20220166586A1 (en) * 2019-03-29 2022-05-26 Apple Inc. Resource allocation and user multiplexing capacity enhancements for interlace based physical uplink control channel formats in new radio (nr)-unlicensed
US11070245B1 (en) * 2020-08-21 2021-07-20 Huawei Technologies Co., Ltd. System and method for single-carrier multiple access transmission
WO2022267020A1 (zh) * 2021-06-25 2022-12-29 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN116318552B (zh) * 2023-03-15 2023-09-22 归芯科技(深圳)有限公司 Turbo码的交织或解交织方法及其器件、通信芯片和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048190A2 (ko) * 2011-10-01 2013-04-04 주식회사 팬택 송수신 포인트, 송수신 포인트의 기준 신호 설정 방법, 단말, 및 단말의 기준 신호 전송 방법
WO2013169085A1 (ko) * 2012-05-10 2013-11-14 엘지전자 주식회사 무선통신 시스템에서 인코딩 방법 및 인코딩 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823040B2 (en) * 2006-10-11 2010-10-26 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for optimal redundancy version (RV) selection for UMTS HSDPA transmissions
US8989291B2 (en) * 2009-02-10 2015-03-24 Nokia Solutions And Networks Oy Spatial pre-coding for transmitting data within a mobile telecommunication network
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
CN104378178B (zh) * 2013-08-16 2018-09-11 电信科学技术研究院 一种确认信息的传输方法及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048190A2 (ko) * 2011-10-01 2013-04-04 주식회사 팬택 송수신 포인트, 송수신 포인트의 기준 신호 설정 방법, 단말, 및 단말의 기준 신호 전송 방법
WO2013169085A1 (ko) * 2012-05-10 2013-11-14 엘지전자 주식회사 무선통신 시스템에서 인코딩 방법 및 인코딩 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《3GPP TSG RAN WG1 Meeting #84 R1-160419》UL waveform for eLAA: B-IFDMA;Intel Corporation;《3GPP TSG RAN WG1 Meeting》;20160206;第2节-第5节 *

Also Published As

Publication number Publication date
CN112332944A (zh) 2021-02-05
WO2017155591A1 (en) 2017-09-14
CN108781124A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US11510187B2 (en) OFDMA-based multiplexing of uplink control information
US10897756B2 (en) Transmission of uplink control information in wireless systems
US11115241B2 (en) DM-RS grouping and CSI reporting for CoMP
US11122580B2 (en) Evolved node-b (ENB), user equipment (UE) and methods for flexible duplex communication
CN107925523B (zh) 无线系统中的上行链路控制信息的传输
CN108781149B (zh) 用于非授权上行链路和所调度的传输的共存的装置
CN108781124B (zh) 用于用户设备的装置及操作方法、用于基站的装置及介质
WO2018064582A1 (en) Grant-free uplink non-orthogonal multiple access transmissions
WO2018038758A1 (en) Transmission of control information after uplink grant
CN108604967B (zh) 对非调度上行链路传输的传输检测
CN109314872B (zh) 无线通信网络中的装置及计算机可读存储介质
TWI703831B (zh) 通道狀態資訊回饋通道

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1261805

Country of ref document: HK

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200408

Address after: California, USA

Applicant after: Apple Inc.

Address before: California, USA

Applicant before: INTEL Corp.

Effective date of registration: 20200408

Address after: California, USA

Applicant after: INTEL Corp.

Address before: California, USA

Applicant before: INTEL IP Corp.

GR01 Patent grant
GR01 Patent grant