WO2017052251A1 - 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 Download PDF

Info

Publication number
WO2017052251A1
WO2017052251A1 PCT/KR2016/010626 KR2016010626W WO2017052251A1 WO 2017052251 A1 WO2017052251 A1 WO 2017052251A1 KR 2016010626 W KR2016010626 W KR 2016010626W WO 2017052251 A1 WO2017052251 A1 WO 2017052251A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
pusch
uci
subframe
nack
Prior art date
Application number
PCT/KR2016/010626
Other languages
English (en)
French (fr)
Inventor
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/762,667 priority Critical patent/US10284351B2/en
Publication of WO2017052251A1 publication Critical patent/WO2017052251A1/ko
Priority to US16/360,706 priority patent/US10587387B2/en
Priority to US16/779,197 priority patent/US10862654B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for transmitting uplink control information in a wireless communication system and an apparatus using the same.
  • 3rd Generation Partnership Project (3GPP) long term evolution-advanced (LTE-A) is a technology that satisfies a maximum bandwidth of 100 MHz and a maximum data rate of 1 Gbps.
  • Carrier aggregation (CA) is one of techniques for increasing the maximum bandwidth by using a plurality of component carriers.
  • One component carrier operates as one serving cell, resulting in a terminal receiving a service from a plurality of serving cells.
  • the feedback information includes channel state information (CSI), hybrid automatic repeat request (HARQ) ACK / NACK, and the like.
  • Physical uplink control channel is defined for transmission of feedback information.
  • 3GPP LTE-A provides various PUCCH formats such as PUCCH format 1 / 1a / 1b, PUCCH format 2 / 2a / 2b, PUCCH format 3, PUCCH format 4, and PUCCH format 5 according to the payload size:
  • a method of transmitting uplink control information is proposed as the number of serving cells supported in a CA environment increases.
  • the present invention provides a method and an apparatus using the same for uplink control information in a wireless communication system.
  • a method for transmitting uplink control information by a wireless device in which a plurality of serving cells is configured in a wireless communication system receives a simultaneous transmission indicator indicating that the wireless device can simultaneously transmit a physical uplink shared channel (PUSCH) and a physical uplink shared channel (PUCCH), and the wireless device transmits uplink data on the PUSCH in a subframe. And transmitting, by the wireless device, uplink control information (UCI) having a hybrid automatic repeat request (HARQ) ACK / NACK and periodic channel state information (CSI) on the PUCCH in the subframe.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink shared channel
  • CSI periodic channel state information
  • an apparatus in which a plurality of serving cells is configured in a wireless communication system includes a transceiver for transmitting and receiving a wireless signal and a processor coupled to the transceiver.
  • the processor receives a simultaneous transmission indicator indicating that simultaneous transmission of a physical uplink shared channel (PUSCH) and a physical uplink shared channel (PUCCH) is possible, transmits uplink data on the PUSCH in a subframe, and HARQ in the subframe.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink shared channel
  • HARQ hybrid automatic repeat request
  • the PUCCH has the same demodulation reference signal (DMRS) location in the PUSCH and the subframe.
  • DMRS demodulation reference signal
  • a wireless device configured with a plurality of serving cells may transmit uplink control information on various types of uplink control channels.
  • 1 shows a subframe structure in 3GPP LTE-A.
  • FIG. 5 shows an example of a channel structure for PUCCH format 5.
  • FIG 6 shows uplink transmission according to an embodiment of the present invention.
  • FIG. 7 shows an example of transmitting a UCI on a PUSCCH.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • Wireless devices may be fixed or mobile, and may include user equipment (UE), mobile station (MS), mobile terminal (MT), user terminal (UT), subscriber station (SS), and personal digital assistant (PDA). ), A wireless modem, a handheld device, or other terms.
  • the wireless device may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station generally refers to a fixed station that communicates with a wireless device, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. Can be.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the present invention is applied based on 3rd Generation Partnership Project (3GPP) long term evolution (LTE) / LTE-A (LTE-Avanced).
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • LTE-Avanced LTE-Avanced
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • the plurality of serving cells may be operated by one base station or may be operated by a plurality of base stations.
  • the plurality of serving cells may be divided into a plurality of cell groups.
  • the serving cell may be divided into a primary cell (PCell) and a secondary cell (SCell).
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • 1 shows a subframe structure in 3GPP LTE-A.
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • the subframe may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM symbol is only for representing one symbol period in the time domain because 3GPP LTE-A uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), and multiple access scheme It does not limit the name.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One subframe includes 14 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 14 OFDM symbols in a normal cyclic prefix (CP) and one subframe includes 12 OFDM symbols in an extended CP.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block may include 7x12 resource elements (REs). Can be.
  • REs resource elements
  • the physical channel of 3GPP LTE-A may be divided into a downlink (DL) physical channel and an uplink (UL) physical channel.
  • the DL physical channel includes a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), a physical hybrid-ARQ indicator channel (PHICH), and a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid-ARQ indicator channel
  • PDSCH physical downlink shared channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the UL physical channel includes a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • PUSCH is allocated by a UL grant on the PDCCH.
  • the fourth OFDM symbol of each slot is used for transmission of a demodulation reference signal (DMRS) for PUSCH.
  • DMRS demodulation reference signal
  • the uplink control information includes at least one of HARQ ACK / NACK, channel state information (CSI), and scheduling request (SR).
  • the CSI is an indicator indicating the state of the DL channel and may include at least one of a channel quality indicator (CQI) and a precoding matrix indicator (PMI).
  • a combination of UCI and PUCCH is defined in a PUCCH format as shown in the following table.
  • PUCCH format 1a / 1b is used to carry 1-bit or 2-bit HARQ ACK / NACK using Binary Phase Shift Keying (BPSK) modulation or Quadrature Phase Shift Keying (QPSK) modulation.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • PUCCH format 3 is used to carry 48 bits of encoded UCI.
  • PUCCH format 3 may carry HARQ ACK / NACK for a plurality of serving cells and CSI report for one serving cell.
  • the wireless device monitors the PDCCH and receives a DL grant including DL resource allocation on the PDCCH 201 (or EPDCCH) in DL subframe n.
  • the wireless device receives the DL transport block through the PDSCH 202 indicated by the DL resource allocation.
  • the wireless device transmits an ACK / NACK signal for the DL transport block on the PUCCH 210 in UL subframe n + 4.
  • the ACK / NACK signal becomes an ACK signal when the DL transport block is successfully decoded, and becomes an NACK signal when the decoding of the DL transport block fails.
  • the base station may perform retransmission of the DL transport block until the ACK signal is received or up to a maximum number of retransmissions.
  • PUCCH format 1 / 1a / 1b PUCCH format 2 / 2a / 2b, PUCCH format 3, PUCCH format 4, PUCCH format 5, etc., to carry an ACK / NACK signal that is a reception acknowledgment for HARQ in 3GPP LTE-A. This is provided. All PUCCH formats use different resource blocks in two slots.
  • One slot includes seven OFDM symbols, the second and sixth OFDM symbols become RS OFDM symbols for DMRS, and the remaining five OFDM symbols become data OFDM symbols for UCI.
  • PUCCH format 3 may carry 24 data symbols d (0) to d (23). If QPSK is used, PUCCH format 3 can carry 48 encoded bits.
  • Time-domain spreading includes w (i) corresponding to each OFDM symbol in a slot.
  • the second twelve data symbols d (12) to d (23) in the second slot are spread in the time domain using the orthogonal code W (j).
  • the time / frequency / code resource used for PUCCH transmission is called a PUCCH resource.
  • a PUCCH resource For example, an orthogonal code index, a cyclic shift index, and a resource block index are required for the PUCCH format 1 / 1a / 1b. Cyclic shift index and resource block index are needed for PUCCH format 2 / 2a / 2b. An orthogonal code index and a resource block index are required for the PUCCH format 2 / 2a / 2b.
  • the resource index is a parameter used to determine the corresponding PUCCH resource.
  • the resource index for PUCCH formats 1a / 1b for ACK / NACK is given by the corresponding DL grant.
  • the resource index for PUCCH format 3 for ACK / NACK is given by the corresponding DL grant, but it is specified within a predetermined set of resource indexes.
  • the base station pre-specifies four resource indexes for PUCCH format 3 through an RRC message.
  • one of four resource indexes may be designated through a resource indicator in the DL grant (this is called an 'ACK / NACK resource indicator').
  • One slot includes seven OFDM symbols, the middle OFDM symbol (the fourth OFDM symbol) becomes an RS OFDM symbol for DMRS, and the remaining six OFDM symbols become a data OFDM symbol for UCI. If one slot includes six OFDM symbols, the third OFDM symbol becomes an RS OFDM symbol, and the remaining five OFDM symbols become a data OFDM symbol.
  • the extended PUCCH format does not use frequency domain spreading and time domain spreading.
  • 12 data symbols may be transmitted for each OFDM symbol. Accordingly, 144 data symbols d (0) to d 143 may be transmitted in one subframe.
  • the extended PUCCH format may carry 288 encoded bits.
  • FIG. 5 shows an example of a channel structure for PUCCH format 5.
  • the channel structure of FIG. 3 can transmit 144 data symbols, this channel structure can transmit 72 data symbols d (0) to d71. If QPSK is used, the extended PUCCH format may carry 144 encoded bits.
  • CDM 0 is ⁇ + d (0), + d (1), + d (2), + d (3), + d (4), + d (5), + d (0), + d (1), + d (2), + d (3), + d (4), d (5) ⁇ are transmitted
  • CDM 1 is ⁇ + d (0), + d (1), + d (2), + d (3), + d (4), + d (5), -d (0), -d (1), -d (2), -d (3), -d ( 4), -d (5) ⁇ may be transmitted.
  • the cyclic shift value used for DMRS may also vary.
  • PUCCH format 4 may be allocated a plurality of resource blocks. That is, PUCCH 1/2/3 may be allocated only one resource block, but PUCCH format 4 may be allocated one or more resource blocks.
  • the resource configuration for the PUCCH format 4/5 may preset a plurality of candidate resources through an RRC message, and designate one of the plurality of candidate resources through a DL grant.
  • PUCCH formats 4 and 5 provide a large payload and have the same DMRS structure as PUSCH, and thus have characteristics similar to PUSCH transmission.
  • a plurality of cells are set in a wireless device.
  • UCI for a plurality of cells is transmitted on the PUCCH.
  • HARQ ACK / NACK includes ACK / NACK over a plurality of configured cells.
  • the UCI may include HARQ ACK / NACK for a plurality of cells, an SR for scheduling request, and / or CSI reporting for a plurality of cells.
  • simultaneous transmission means that PUSCH and PUCCH are transmitted in one subframe.
  • simultaneous transmission means that PUSCH and PUCCH are transmitted in one subframe.
  • 3GPP LTE-A simultaneous transmission of PUSCH and PUCCH is possible.
  • the base station may transmit a simultaneous transmission indicator indicating whether the simultaneous transmission of the PUSCH and PUCCH to the wireless device. If simultaneous transmission is possible, the wireless device may transmit the PUSCH and the PUCCH in one subframe.
  • the amount of UCI is increased, various PUCCH formats are set, and simultaneous PUCCH-PUSCH transmission is possible, it is required to clarify which PUCCH format the wireless device will use in a specific situation. This is because if a discrepancy of the PUCCH format used between the base station and the wireless device occurs, the UCI carried by the corresponding PUCCH format is lost.
  • the PUCCH format 4/5 through which the DMRS is transmitted at the same position as the DMRS of the PUSCH is collectively referred to as a physical uplink shared control channel (PUSCCH). That PUSCCH is set means that at least one of PUCCH format 4 and PUCCH format 5 is set.
  • PUSCCH physical uplink shared control channel
  • the UE may support the following capabilities and inform the base station whether the corresponding capability is supported.
  • the UE may transmit a PUSCH using an RB cluster separated in the frequency domain in one subframe for one cell.
  • the UE may simultaneously transmit a PUCCH and a PUSCH in one subframe.
  • the base station confirming the support of the capability may instruct the UE to activate the capability.
  • a UE supporting both of the above capabilities may simultaneously transmit a PUSCH and a PUSCCH in one subframe.
  • the simultaneous transmission indicator transmitted by the base station to the UE is information indicating whether the UE can simultaneously transmit the PUCCH and the PUSCH. If the simultaneous transmission indicator indicates that the simultaneous transmission is impossible, the UE piggybacks the UCI to the PUSCH without transmitting the PUCCH in the subframe scheduled PUSCH.
  • PUCCH and / or PUSCCH may always be transmitted only in the primary cell.
  • a UE that indicates that it does not support both MultiClusterPUSCH-WithinCC and Simultaneous PUCCH-PUSCH may also support simultaneous transmission of PUSCCH and PUSCH in one subframe between different cells.
  • the UE supporting the PUSCCH may support simultaneous transmission of the PUSCCH and the PUSCH in the same subframe between different cells. For example, the UE may transmit a PUSCCH in subframe 4 of the first cell and transmit a PUSCH in subframe 4 of the first cell.
  • the UE supporting only the MultiClusterPUSCH may transmit the PUSCCH and the PUSCH in one subframe for one cell.
  • a UE in which a plurality of cells are configured and PUSCH-PUCCH simultaneous transmission is configured transmits UCI on the PUSCCH when the PUSCCH is configured.
  • the UCI is transmitted on the PUSCCH without piggybacking on the PUSCH.
  • FIG 6 shows uplink transmission according to an embodiment of the present invention.
  • This is an example of frequency division duplex (FDD) transmission, but this embodiment may also be applied to time division duplex (TDD) transmission.
  • FDD frequency division duplex
  • TDD time division duplex
  • PUSCCH is set for the wireless device. Given at least one PUCCH format 4 resource and / or a resource for at least one PUCCH format 5, PUSCCH may be configured.
  • the base station may send the information on the setting to the wireless device through the RRC message.
  • the wireless device may be given a multiplexing indicator as to whether ACK / NACK and CSI can be multiplexed on one PUSCCH as UCI. For example, if the multiplexing indicator is FASLE, ACK / NACK and CSI may not be multiplexed on one PUSCCH as UCI. If the multiplexing indicator is TRUE, ACK / NACK and CSI may be multiplexed on one PUSCCH as UCI.
  • the wireless device receives a UL grant for PUSCH scheduling.
  • the wireless device transmits a scheduled PUSCH.
  • the wireless device when the HARQ ACK / NACK and the periodic CSI report is triggered at the same time may operate as follows.
  • operation (3) may be as follows.
  • FIG. 7 shows an example of transmitting a UCI on a PUSCCH.
  • the total number of bits of the HARQ ACK / NACK and the periodic CSI report becomes the UCI payload for the PUSCCH.
  • the UCI payload may have a size of 22 bits or more.
  • the number of resources is only an example.
  • the wireless device selects at least one of the four PUCCH format 4 resources. If the PUCCH format 4 is not configured, the wireless device selects at least one of the four configured PUCCH format 5 resources.
  • the DL grant corresponding to the HARQ ACK / NACK may include a resource indicator indicating which of the plurality of PUCCH resources is selected.
  • the wireless device may determine whether to piggyback part of the UCI to the PUSCH in consideration of the UCI payload and the number of RBs allocated to the PUSCH / PUSCCH.
  • a part of UCI can be piggybacked to PUSCH, and the rest can be transmitted to PUSSCH.
  • a part of UCI can be piggybacked to PUSCH and the rest can be transmitted to PUSSCH.
  • the size of the UCI payload exceeds the payload size of the PUSSCH, a portion of the UCI may be piggybacked on the PUSCH.
  • the portion of the UCI piggybacked to the PUSCH may include CSI.
  • the UCI code rate may be calculated based on the number of RBs and the UCI payload size. If the code rate of the UCI to be transmitted in the PUSCH is a predetermined value or more, all the UCI can be transmitted in the PUSCCH. Alternatively, if the code rate of the UCI to be transmitted on the PUSCCH is a predetermined value or more, a portion of the UCI may be piggybacked on the PUSCH. The UCI payload to be transmitted in the PUSCH may be determined in consideration of the code rate of the UCI to be transmitted in the PUSCCH.
  • the UCI may be preferentially transmitted to the PUSCCH.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the memory 52 is connected to the processor 51 and stores various instructions executed by the processor 51.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 51. When the above-described embodiment is implemented as software instructions, the instructions may be stored in the memory 52 and executed by the processor 51 to perform the above-described operations.
  • Base station 60 includes a processor 61, a memory 62, and a transceiver 63.
  • Base station 60 may operate in an unlicensed band.
  • the memory 62 is connected to the processor 61 and stores various instructions executed by the processor 61.
  • the transceiver 63 is connected to the processor 61 to transmit and / or receive a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 복수의 서빙셀이 설정된 무선기기가 상향링크 제어 정보를 전송하는 방법이 제공된다. 상기 무선기기가 서브프레임에서 상향링크 데이터를 PUSCH(physical uplink shared channel) 상으로 전송하고, 상기 서브프레임에서 HARQ(hybrid automatic repeat request) ACK/NACK과 주기적 CSI(channel state information)을 갖는 UCI(uplink control information)을 PUCCH(physical uplink shared channel) 상으로 전송한다. 상기 PUCCH와 상기 PUSCH와 상기 서브프레임 내에서 동일한 DMRS(demodulation reference signal) 위치를 갖는다.

Description

무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 이용한 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) LTE-A(long term evolution-advanced)는 최대 100MHz 대역폭과 최대 1Gbps 데이터 레이트를 만족하는 기술이다. CA(carrier aggregation)은 복수의 요소 반송파(component carrier)를 이용하여 최대 대역폭을 증가시키기 위한 기술 중 하나이다. 하나의 요소 반송파는 하나의 서빙셀로 동작하여, 이에 따라 단말이 복수의 서빙셀로부터 서비스를 제공받는 결과가 된다.
지원되는 서빙셀의 개수가 증가함에 따라, 단말이 보고하는 피드백 정보의 양도 증가한다. 피드백 정보는 CSI(channel state information), HARQ(hybrid automatic repeat request) ACK/NACK 등을 포함한다.
피드백 정보의 전송을 위해 PUCCH(physical uplink control channel)가 정의된다. 3GPP LTE-A는 페이로드의 크기에 따라 PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b, PUCCH 포맷 3, PUCCH 포맷 4, PUCCH 포맷 5 등 다양한 PUCCH 포맷을 제공한다: .
CA 환경에서 지원되는 서빙셀의 갯수가 증가함에 따라 상향링크 제어 정보를 전송하는 방법이 제안된다.
본 발명은 무선 통신 시스템에서 상향링크 제어 정보를 방법 및 이를 이용한 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 복수의 서빙셀이 설정된 무선기기가 상향링크 제어 정보를 전송하는 방법이 제공된다. 상기 방법은 상기 무선기기가 PUSCH(physical uplink shared channel)와 PUCCH(physical uplink shared channel)의 동시 전송이 가능함을 나타내는 동시 전송 지시자를 수신하고, 상기 무선기기가 서브프레임에서 상향링크 데이터를 PUSCH 상으로 전송하고, 상기 무선기기가 상기 서브프레임에서 HARQ(hybrid automatic repeat request) ACK/NACK과 주기적 CSI(channel state information)을 갖는 UCI(uplink control information)을 PUCCH 상으로 전송하는 것을 포함한다. 상기 PUCCH는 상기 PUSCH와 상기 서브프레임 내에서 동일한 DMRS(demodulation reference signal) 위치를 가진다.
다른 양태에서, 무선 통신 시스템에서 복수의 서빙셀이 설정된 장치는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 PUSCH(physical uplink shared channel)와 PUCCH(physical uplink shared channel)의 동시 전송이 가능함을 나타내는 동시 전송 지시자를 수신하고, 서브프레임에서 상향링크 데이터를 PUSCH 상으로 전송하고, 상기 서브프레임에서 HARQ(hybrid automatic repeat request) ACK/NACK과 주기적 CSI(channel state information)을 갖는 UCI(uplink control information)을 PUCCH 상으로 전송한다. 상기 PUCCH는 상기 PUSCH와 상기 서브프레임 내에서 동일한 DMRS(demodulation reference signal) 위치를 갖는다.
복수의 서빙셀이 설정된 무선기기가 상향링크 제어 정보를 다양한 종류의 상향링크 제어채널 상으로 전송할 수 있다.
도 1은 3GPP LTE-A에서 서브프레임 구조를 보여준다.
도 2는 HARQ를 수행하는 일 예를 보여준다.
도 3은 PUCCH 포맷 3을 위한 채널 구조의 일 예를 보여준다.
도 4은 PUCCH 포맷 4을 위한 채널 구조의 일 예를 보여준다.
도 5는 PUCCH 포맷 5을 위한 채널 구조의 일 예를 보여준다.
도 6은 본 발명의 일 실시예에 따른 상향링크 전송을 보여준다.
도 7은 PUSCCH 상으로 UCI를 전송하는 예를 보여준다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(wireless device)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base station, BS)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) LTE(long term evolution)/LTE-A(LTE-advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다. 복수의 서빙셀은 하나의 기지국에 의해 운영될 수도 있고, 또는 복수의 기지국에 의해 운영될 수도 있다. 복수의 서빙셀은 복수의 셀그룹으로 나뉠 수 있다.
서빙셀은 1차 셀(primary cell,PCell)과 2차 셀(secondary cell, SCell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 3GPP LTE-A에서 서브프레임 구조를 보여준다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE-A가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 서브프레임은 14 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP LTE-A에 의하면, 정규 CP(Cyclic Prefix)에서 1 서브프레임은 14 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 12 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7x12개의 자원요소(resource element, RE)를 포함할 수 있다.
3GPP LTE-A의 물리채널(physical channel)은 DL(downlink) 물리채널과 UL(uplink) 물리 채널로 구분될 수 있다. DL 물리채널은 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PDSCH(Physical Downlink Shared Channel)를 포함한다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
UL 물리채널은 PUCCH(Physical Uplink Control Channel)와 PUSCH(Physical Uplink Shared Channel)를 포함한다. PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUSCH는 PDCCH 상의 UL 그랜트에 의해 할당된다. 노멀 CP에서, 각 슬롯의 4번째 OFDM 심벌은 PUSCH를 위한 DMRS(Demodulation Reference Signal)의 전송에 사용된다.
UCI(uplink control information)는 HARQ ACK/NACK, CSI(Channel State Information) 및 SR(Scheduling Request) 중 적어도 어느 하나를 포함한다. 이하에서, CSI는 DL 채널의 상태를 나타내는 지표로, CQI(Channel Quality Indicator) 및 PMI(Precoding Matrix Indicator) 중 적어도 어느 하나를 포함할 수 있다.
다양한 UCI를 PUCCH 상으로 전송하기 위해 UCI와 PUCCH 간의 조합을 다음 표와 같이 PUCCH 포맷으로 정의한다.
PUCCH 포맷 전송되는 UCI
PUCCH 포맷 1 긍정적(positive) SR
PUCCH 포맷 1a/1b 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 2 CSI 보고
PUCCH 포맷 2a/2b CSI 보고 및 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 3/4/5 HARQ ACK/NACK, SR, CSI
PUCCH 포맷 1a/1b는 BPSK(Binary Phase Shift Keying) 변조 또는 QPSK(Quadrature Phase Shift Keying) 변조를 이용하여 1 비트 또는 2 비트 HARQ ACK/NACK를 나르는데 사용된다.
PUCCH 포맷 3는 48 비트의 인코딩된 UCI를 나르는데 사용된다. PUCCH 포맷 3는 복수의 서빙셀에 대한 HARQ ACK/NACK 및 하나의 서빙셀에 대한 CSI 보고를 나를 수 있다.
도 2는 HARQ를 수행하는 일 예를 보여준다.
무선기기는 PDCCH를 모니터링하여, DL 서브프레임 n에서 PDCCH(201)(또는 EPDCCH) 상으로 DL 자원 할당을 포함하는 DL 그랜트를 수신한다. 무선기기는 DL 자원 할당에 의해 지시되는 PDSCH(202)를 통해 DL 전송 블록(transport block)을 수신한다.
무선기기는 UL 서브프레임 n+4에서 PUCCH(210) 상으로 상기 DL 전송 블록에 대한 ACK/NACK 신호를 전송한다. ACK/NACK 신호는 상기 DL 전송 블록이 성공적으로 디코딩되면 ACK 신호가 되고, 상기 DL 전송 블록의 디코딩에 실패하면 NACK 신호가 된다. 기지국은 NACK 신호가 수신되면, ACK 신호가 수신되거나 최대 재전송 횟수까지 상기 DL 전송 블록의 재전송를 수행할 수 있다.
3GPP LTE-A에서 HARQ를 위한 수신 확인(reception acknowledgement)인 ACK/NACK 신호를 나르기 위해 PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b, PUCCH 포맷 3, PUCCH 포맷 4, PUCCH 포맷 5 등이 제공된다. 모든 PUCCH 포맷은 2개의 슬롯에서 서로 다른 자원블록을 사용한다.
도 3은 PUCCH 포맷 3을 위한 채널 구조의 일 예를 보여준다.
하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 두번째와 여섯번째 OFDM 심벌은 DMRS를 위한 RS OFDM 심벌이 되고, 나머지 5개의 OFDM 심벌은 UCI를 위한 데이터 OFDM 심벌이 된다.
PUCCH 포맷 3는 24개의 데이터 심벌 d(0)~d(23)을 나를 수 있다. QPSK가 사용되면, PUCCH 포맷 3는 48의 인코딩된 비트를 나를 수 있다.
제1 슬롯에서 첫번째 12개의 데이터 심벌 d(0)~d(11)은 직교 코드 W(j)={w(0), w(1), w(2), w(3), w(4)}를 이용하여 시간 영역에서 확산된다. 시간 영역 확산은 슬롯 내 각 OFDM 심벌에 w(i)가 대응하는 것을 포함한다. 제2 슬롯에서 두번째 12개의 데이터 심벌 d(12)~d(23)은 직교 코드 W(j)를 이용하여 시간 영역에서 확산된다.
PUCCH 전송에 사용되는 시간/주파수/코드 자원을 PUCCH 자원이라 한다. 예를 들어, PUCCH 포맷 1/1a/1b를 위해 직교 코드 인덱스, 순환 쉬프트 인덱스 및 자원 블록 인덱스가 필요하다. PUCCH 포맷 2/2a/2b를 위해 순환 쉬프트 인덱스 및 자원 블록 인덱스가 필요하다. PUCCH 포맷 2/2a/2b를 위해 직교 코드 인덱스 및 자원 블록 인덱스가 필요하다. 자원 인덱스는 해당되는 PUCCH 자원을 결정하는데 사용되는 파라이터이다.
ACK/NACK을 위한 PUCCH 포맷 1a/1b을 위한 자원 인덱스는 해당 DL 그랜트에 의해 주어진다. ACK/NACK을 위한 PUCCH 포맷 3을 위한 자원 인덱스는 해당 DL 그랜트에 의해 주어지지만, 이는 미리 지정된 자원 인덱스 집합 내에서 지정된다. 예를 들어, 기지국은 RRC 메시지를 통해 PUCCH 포맷 3를 위한 4개의 자원 인덱스를 미리 지정한다. 그리고, DL 그랜트 내의 자원 지시자(이를 'ARI(ACK/NACK resource indicator)'라고 함)를 통해 4개의 자원 인덱스를 중 하나를 지정할 수 있다.
도 4은 PUCCH 포맷 4을 위한 채널 구조의 일 예를 보여준다.
하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 가운데 OFDM 심벌(네번째 OFDM 심벌)은 DMRS를 위한 RS OFDM 심벌이 되고, 나머지 6개의 OFDM 심벌은 UCI를 위한 데이터 OFDM 심벌이 된다. 만약 하나의 슬롯이 6개의 OFDM 심벌을 포함하면, 세번째 OFDM 심벌이 RS OFDM 심벌이 되고, 나머지 5개의 OFDM 심벌이 데이터 OFDM 심벌이 된다.
확장 PUCCH 포맷은 주파수 영역 확산 및 시간 영역 확산을 사용하지 않는다. 하나의 자원블록이 확장 PUCCH 포맷에 할당된다고 할 때, 각 OFDM 심벌 마다 12 데이터 심벌이 전송될 수 있다. 따라서, 하나의 서브프레임에는 144개의 데이터 심벌 d(0)~d(143)이 전송될 수 있다. QPSK가 사용되면, 확장 PUCCH 포맷은 288의 인코딩된 비트를 나를 수 있다.
도 5는 PUCCH 포맷 5을 위한 채널 구조의 일 예를 보여준다.
도 3의 채널 구조와 비교하여, 각 OFDM 심벌 마다 하나의 자원 블록내에서 6개의 데이터 심벌이 반복된다. 예를 들어, 첫번째 OFDM 심벌에서는 {d(0), d(1), d(2), d(3), d(4), d(5), d(0), d(1), d(2), d(3), d(4), d(5)}가 전송된다. 따라서, 도 3의 채널 구조가 144개의 데이터 심벌을 전송할 수 있지만, 이 채널 구조는 72개의 데이터 심벌 d(0)~d(71)을 전송할 수 있다. QPSK가 사용되면, 확장 PUCCH 포맷는 144의 인코딩된 비트를 나를 수 있다.
다중 사용자의 멀티플렉싱을 지원하기 위해, 각 OFDM 심벌에서의 반복되는 데이터 심벌에 CDM(code division multiplexing)이 지원될 수 있다. 예를 들어, CDM 0은 {+d(0), +d(1), +d(2), +d(3), +d(4), +d(5), +d(0), +d(1), +d(2), +d(3), +d(4), d(5)}이 전송되고, CDM 1은 {+d(0), +d(1), +d(2), +d(3), +d(4), +d(5), -d(0), -d(1), -d(2), -d(3), -d(4), -d(5)}이 전송될 수 있다. CDM에 따라 DMRS에 사용되는 순환 쉬프트 값도 달라질 수 있다.
PUCCH 포맷 4에게는 복수의 자원블록이 할당될 수 있다. 즉, PUCCH 1/2/3은 단지 하나의 자원블록이 할당될 수 있었으나, PUCCH 포맷 4는 하나 또는 그 이상의 자원블록이 할당될 수 있다.
PUCCH 포맷 3의 설정과 유사하게, PUCCH 포맷 4/5에 관한 자원 설정은 RRC 메시지를 통해 복수의 후보 자원을 미리 설정하고, DL 그랜트를 통해 복수의 후보 자원 중 하나를 지정할 수 있다.
PUCCH 포맷 4 및 5는 큰 페이로드를 제공하고, PUSCH와 동일한 DMRS 구조를 가지므로, PUSCH 전송과 유사한 특성을 가진다.
CA 환경에서 무선기기에게 복수의 셀이 설정된다. 복수의 셀에 대한 UCI가 PUCCH 상으로 전송된다. HARQ ACK/NACK은 설정된 복수의 셀 전체에 걸친 ACK/NACK을 포함한다. UCI는 복수의 셀에 대한 HARQ ACK/NACK, 스케줄링 요청을 위한 SR 및/또는 복수의 셀에 대한 CSI 보고를 포함할 수 있다.
기존 3GPP LTE는 무선기기의 전송 파워 제한으로 인해 PUSCH와 PUCCH의 동시 전송이 금지되었다. 여기서, 동시 전송이란 하나의 서브프레임에서 PUSCH와 PUCCH가 전송되는 것을 의미한다. 하지만, 3GPP LTE-A에서는 PUSCH와 PUCCH의 동시 전송이 가능하다. 기지국은 무선기기에게 PUSCH와 PUCCH의 동시 전송이 가능한지 여부를 알려주는 동시 전송 지시자를 전송할 수 있다. 동시 전송이 가능하면, 무선기기는 하나의 서브프레임에서 PUSCH와 PUCCH를 전송할 수 있다.
복수의 셀이 설정되고, UCI의 양이 커지고, 다양한 PUCCH 포맷이 설정되고, PUCCH-PUSCH 동시 전송이 가능해짐에 따라, 특정 상황에서 무선기기가 어느 PUCCH 포맷을 사용할지 명확히 하는 것이 요구된다. 기지국과 무선기기 간에 사용되는 PUCCH 포맷의 불일치가 발생하면, 해당 PUCCH 포맷이 나르는 UCI가 손실되기 때문이다.
이하에서 PUSCH의 DMRS와 동일한 위치에서 DMRS가 전송되는 PUCCH 포맷 4/5를 총칭하여 PUSCCH(physical uplink shared control channel)이라 한다. PUSCCH가 설정된다함은 PUCCH 포맷 4 및 PUCCH 포맷 5 중 적어도 어느 하나가 설정되는 것을 의미한다.
UE는 다음과 같은 역량(capability)들을 지원할 수 있으며 기지국에게 해당 역량의 지원 여부를 알려줄 수 있다.
- multiClusterPUSCH-WithinCC : UE는 하나의 셀에 대한 하나의 서브프레임에서 주파수 영역에서 분리된 RB 클러스터를 이용하여 PUSCH를 전송할 수 있다.
- Simultaneous PUCCH-PUSCH : UE는 하나의 서브프레임에서 PUCCH와 PUSCH를 동시 전송할 수 있다.
상기 역량을 지원함을 확인한 기지국은 UE에게 해당 역량의 활성화를 지시할 수 있다. 상기 2개의 역량을 모두 지원하는 UE는 하나의 서브프레임에서 PUSCH와 PUSCCH를 동시 전송할 수 있다.
기지국이 UE에게 전송하는 동시 전송 지시자는 실제로 UE가 PUCCH와 PUSCH를 동시 전송할 수 있는지 여부를 알려주는 정보이다. 동시 전송 지시자가 동시 전송 불가를 지시하면, UE는 PUSCH가 스케줄된 서브프레임에서 PUCCH를 전송하지 않고, UCI를 PUSCH에 피기백(piggyback)한다.
PUCCH 및/또는 PUSCCH는 항상 1차셀에서만 전송될 수 있다.
PUSCH-PUCCH/PUSCCH 동시 전송과 관련하여 다음과 같은 동작이 제안된다.
제1 실시예에서, MultiClusterPUSCH-WithinCC와 Simultaneous PUCCH-PUSCH 양자 모두를 지원하지 않음을 알려준 UE도 서로 다른 셀 간에는 하나의 서브프레임에서의 PUSCCH와 PUSCH의 동시 전송을 지원할 수 있다. PUSCCH를 지원하는 UE는 서로 다른 셀 간에는 동일 서브프레임에서의 PUSCCH와 PUSCH의 동시 전송을 지원할 수 있다. 예를 들어, UE는 제1 셀의 서브프레임 4에서 PUSCCH를 보내고, 제1 셀의 서브프레임 4에서 PUSCH를 전송할 수 있다.
제2 실시예에서, MultiClusterPUSCH 만을 지원하는 UE는 하나의 셀에 대한 하나의 서브프레임에서 PUSCCH와 PUSCH를 전송할 수 있다.
제3 실시예에서, 복수의 셀이 설정되고, PUSCH-PUCCH 동시 전송이 설정된 UE는 PUSCCH가 설정되면 UCI를 PUSCCH 상으로 전송한다. 기존 3GPP LTE와 같이, UCI를 PUSCH에 피기백하지 않고 PUSCCH 상으로 전송한다.
도 6은 본 발명의 일 실시예에 따른 상향링크 전송을 보여준다. 이는 FDD(frequency division duplex) 전송의 예이나, 본 실시예는 TDD(time division duplex) 전송에도 적용될 수 있다.
무선기기에게는 복수의 서빙셀이 설정되고, PUSCH-PUCCH 동시 전송 여부가 주어진다고 하자. 무선기기에게는 PUSCCH가 설정된다. 적어도 하나의 PUCCH 포맷 4 자원 및/또는 적어도 하나의 PUCCH 포맷 5를 위한 자원이 주어지면, PUSCCH가 설정될 수 있다. 기지국은 상기 설정에 관한 정보를 RRC 메시지를 통해 무선기기에게 보낼 수 있다.
무선기기에게는 ACK/NACK과 CSI가 UCI로써 하나의 PUSCCH에 다중화될 수 있는지에 관한 다중화 지시자(multiplexing indicator)가 주어질 수 있다. 예를 들어, 다중화 지시자가 FASLE이면, ACK/NACK과 CSI가 UCI로써 하나의 PUSCCH에 다중화될 수 없고, 다중화 지시자가 TRUE이면, ACK/NACK과 CSI가 UCI로써 하나의 PUSCCH에 다중화될 수 있다.
먼저, 서브프레임 n에서 무선기기는 PUSCH 스케줄링을 위한 UL 그랜트를 수신한다. 서브프레임 n+4에서 무선기기는 스케줄링된 PUSCH를 전송한다. 이 때, 서브프레임 n+4에서, HARQ ACK/NACK과 주기적 CSI 보고가 동시에 트리거링될 때 다음과 같이 동작할 수 있다.
(1) PUSCH-PUCCH 동시 전송이 설정되지 않으면, HARQ ACK/NACK과 주기적 CSI 보고를 PUSCH에 피기백한다.
(2) PUSCH-PUCCH 동시 전송이 설정되고, PUSCCH가 설정되지 않으면 HARQ ACK/NACK은 PUCCH로 전송하고, 주기적 CSI 보고를 PUSCH에 피기백한다.
(3) PUSCH-PUCCH 동시 전송이 설정되고, PUSCCH가 설정되면, HARQ ACK/NACK과 주기적 CSI 보고를 PUSCCH에서 전송한다.
다중 셀이 설정된 상황에서 PUSCH와 PUCCH의 동시 전송이 트리거링될 때, UCI를 항상 PUSCCH 상으로 보내도록 하여, 기지국과 무선기기간 채널 포맷의 불일치를 방지할 수 있다
추가로, 다중화 지시자가 주어지면, 동작 (3)은 다음과 같을 수 있다.
(3-1) PUSCH-PUCCH 동시 전송이 설정되고, PUSCCH가 설정되고, 다중화 지시자가 FASLE이면, HARQ ACK/NACK은 PUCCH 또는 PUSCCH로 전송되고, 주기적 CSI 보고는 PUSCH에 피기백된다.
(3-1) PUSCH-PUCCH 동시 전송이 설정되고, PUSCCH가 설정되고, 다중화 지시자가 TRUE이면, HARQ ACK/NACK과 주기적 CSI 보고가 PUSCCH에서 전송된다.
도 7은 PUSCCH 상으로 UCI를 전송하는 예를 보여준다.
전술한 (3-1) 동작에서, PUSCH-PUCCH 동시 전송이 설정되고, PUSCCH가 설정되고, 다중화 지시자가 TRUE이면, HARQ ACK/NACK과 주기적 CSI 보고가 PUSCCH에서 전송된다.
HARQ ACK/NACK과 주기적 CSI 보고의 총 비트수가 PUSCCH를 위한 UCI 페이로드가 된다. UCI 페이로드는 22 비트 이상의 크기를 가질 수 있다.
PUCCH 포맷 4를 위한 자원 4개 또는 PUCCH 포맷 5를 위한 자원 4개가 설정될 수 있다. 자원의 개수는 예시에 불과하다. 무선기기는 PUCCH 포맷 4가 설정되면, 설정된 4개의 PUCCH 포맷 4 자원 중 적어도 어느 하나를 선택한다. 무선기기는 PUCCH 포맷 4가 설정되지 않으면, 설정된 4개의 PUCCH 포맷 5 자원 중 적어도 어느 하나를 선택한다. HARQ ACK/NACK에 대응하는 DL 그랜트는 복수의 PUCCH 자원 중 어느 것이 선택되는지를 지정하는 자원 지시자를 포함할 수 있다.
한편, 무선기기는 UCI 페이로드 및 PUSCH/PUSCCH에 할당된 RB의 수를 고려하여 UCI의 일부를 PUSCH에 피기백할지 여부를 결정할 수 있다.
UCI 전송에 사용되는 PUSCH RB의 개수와 전송해야 할 UCI의 페이로드 크기를 고려하여, UCI의 일부를 PUSCH에 피기백할 수 있고, 나머지를 PUSSCH로 전송할 수 있다. 또는, UCI 전송에 사용되는 PUSCCH RB의 개수와 전송해야 할 UCI의 페이로드 크기를 고려하여, UCI의 일부를 PUSCH에 피기백할 수 있고, 나머지를 PUSSCH로 전송할 수 있다. 예를 들어, UCI 페이로드의 크기가 PUSSCH의 페이로드 크기를 초과하면, UCI의 일부가 PUSCH에 피기백될 수 있다. PUSCH에 피기백되는 UCI의 일부는 CSI를 포함할 수 있다.
RB 개수와 UCI 페이로드 크기에 기반하여 UCI 코드율(code rate)가 계산될 수 있다. PUSCH로 전송될 UCI의 코드율이 일정 값 이상이면, PUSCCH로 모든 UCI가 전송될 수 있다. 또는, PUSCCH로 전송될 UCI의 코드율이 일정 값 이상이면 PUSCH로 UCI의 일부가 피기백될 수 있다. PUSCH로 전송할 UCI 페이로드는 PUSCCH로 전송할 UCI의 코드율을 고려하여 결정될 수 있다.
PUSCCH로 전송할 UCI의 코드율과 PUSCH로 전송할 UCI의 코드율이 모두 일정 값 이상이면 우선적으로 UCI를 PUSCCH로 전송할 수 있다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(50)는 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(transceiver, 53)를 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(51)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(52)에 저장되고, 프로세서(51)에 의해 실행되어 전술한 동작이 수행될 수 있다.
기지국(60)는 프로세서(61), 메모리(62) 및 송수신기(63)를 포함한다. 기지국(60)은 비면허 대역에서 운용될 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에 의해 실행되는 다양한 명령어를 저장한다. 송수신기(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 무선 통신 시스템에서 복수의 서빙셀이 설정된 무선기기가 상향링크 제어 정보를 전송하는 방법에 있어서,
    상기 무선기기가 PUSCH(physical uplink shared channel)와 PUCCH(physical uplink shared channel)의 동시 전송이 가능함을 나타내는 동시 전송 지시자를 수신하고;
    상기 무선기기가 서브프레임에서 상향링크 데이터를 PUSCH 상으로 전송하고;
    상기 무선기기가 상기 서브프레임에서 HARQ(hybrid automatic repeat request) ACK/NACK과 주기적 CSI(channel state information)을 갖는 UCI(uplink control information)을 PUCCH 상으로 전송하는 것을 포함하되,
    상기 PUCCH는 상기 PUSCH와 상기 서브프레임 내에서 동일한 DMRS(demodulation reference signal) 위치를 갖는 방법.
  2. 제 1 항에 있어서,
    상기 UCI의 페이로드 크기는 22비트보다 큰 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 무선기기가 상기 HARQ ACK/NACK과 상기 주기적 CSI가 상기 PUCCH로 다중화될 수 있음을 지시하는 다중화 지시자를 수신하는 것을 더 포함하는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 다중화 지시자가 상기 HARQ ACK/NACK과 상기 주기적 CSI가 상기 PUCCH로 다중화될 수 없음을 지시하면, 상기 주기적 CSI는 상기 PUSCH 상으로 전송되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 PUCCH는 PUCCH 포맷 4 또는 PUCCH 포맷 5 인 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 PUCCH 포맷 4를 위한 자원이 미리 설정되면, 상기 UCI는 상기 PUCCH 포맷 4를 통해 전송되고,
    상기 PUCCH 포맷 5를 위한 자원이 미리 설정되면, 상기 UCI는 상기 PUCCH 포맷 5를 통해 전송되는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 복수의 서빙셀이 설정된 장치에 있어서,
    무선 신호를 송신 및 수신하는 송수신기;와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    PUSCH(physical uplink shared channel)와 PUCCH(physical uplink shared channel)의 동시 전송이 가능함을 나타내는 동시 전송 지시자를 수신하고;
    서브프레임에서 상향링크 데이터를 PUSCH 상으로 전송하고;
    상기 서브프레임에서 HARQ(hybrid automatic repeat request) ACK/NACK과 주기적 CSI(channel state information)을 갖는 UCI(uplink control information)을 PUCCH 상으로 전송하되,
    상기 PUCCH는 상기 PUSCH와 상기 서브프레임 내에서 동일한 DMRS(demodulation reference signal) 위치를 갖는 장치.
  8. 제 7 항에 있어서,
    상기 UCI의 페이로드 크기는 22비트 보다 큰 것을 특징으로 하는 장치.
  9. 제 7 항에 있어서,
    상기 프로세서는 상기 HARQ ACK/NACK과 상기 주기적 CSI가 상기 PUCCH로 다중화될 수 있음을 지시하는 다중화 지시자를 수신하는 것을 특징으로 하는 장치.
  10. 제 9 항에 있어서,
    상기 다중화 지시자가 상기 HARQ ACK/NACK과 상기 주기적 CSI가 상기 PUCCH로 다중화될 수 없음을 지시하면, 상기 주기적 CSI는 상기 PUSCH 상으로 전송되는 것을 특징으로 하는 장치.
PCT/KR2016/010626 2015-09-24 2016-09-23 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치 WO2017052251A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/762,667 US10284351B2 (en) 2015-09-24 2016-09-23 Method and apparatus for transmitting uplink control information (UCI) in wireless communication system
US16/360,706 US10587387B2 (en) 2015-09-24 2019-03-21 Method and apparatus for transmitting uplink control information (UCI) in wireless communication system
US16/779,197 US10862654B2 (en) 2015-09-24 2020-01-31 Method and apparatus for transmitting uplink control information (UCI) in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562232408P 2015-09-24 2015-09-24
US62/232,408 2015-09-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/762,667 A-371-Of-International US10284351B2 (en) 2015-09-24 2016-09-23 Method and apparatus for transmitting uplink control information (UCI) in wireless communication system
US16/360,706 Continuation US10587387B2 (en) 2015-09-24 2019-03-21 Method and apparatus for transmitting uplink control information (UCI) in wireless communication system

Publications (1)

Publication Number Publication Date
WO2017052251A1 true WO2017052251A1 (ko) 2017-03-30

Family

ID=58386423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010626 WO2017052251A1 (ko) 2015-09-24 2016-09-23 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치

Country Status (2)

Country Link
US (3) US10284351B2 (ko)
WO (1) WO2017052251A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154911A (zh) * 2017-07-19 2017-09-12 珠海市魅族科技有限公司 解调参考信号的配置方法及配置装置、网络侧设备和终端
WO2018219203A1 (en) * 2017-05-27 2018-12-06 Qualcomm Incorporated Signaling design for joint uplink data and channel state information feedback
CN109150417A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 发送和接收上行信息的方法和装置
WO2019032954A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated MODIFICATION OF CSI TRANSMISSIONS ON SHARED UPLINK RESOURCES
WO2019050355A1 (ko) * 2017-09-10 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
CN110650545A (zh) * 2018-04-04 2020-01-03 华为技术有限公司 一种发送、接收上行控制信息的方法及装置
WO2020047079A1 (en) * 2018-08-28 2020-03-05 Qualcomm Incorporated Uplink channel multiplexing and piggybacking
US20230155871A1 (en) * 2019-02-25 2023-05-18 Huawei Technologies Co., Ltd. Systems and Methods for Transmission of Uplink Control Information over Multiple Carriers in Unlicensed Spectrum

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492213B2 (en) * 2016-03-02 2019-11-26 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
US10708938B2 (en) 2016-10-31 2020-07-07 Samsung Electronics Co., Ltd. Transmission of UL control channels with dynamic structures
US11540257B2 (en) 2018-03-23 2022-12-27 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U)
EP4218336A4 (en) * 2020-09-25 2024-05-15 Qualcomm Inc MULTIPLEXING OF UPLINK CONTROL INFORMATION (UCI) AND CONFIGURED AUTHORIZATION UCI (CG-UCI) OF DIFFERENT PRIORITIES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140281A1 (en) * 2010-12-07 2014-05-22 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (csi) reporting with carrier aggregation
WO2015020440A1 (en) * 2013-08-06 2015-02-12 Lg Electronics Inc. The method and apparatus for wireless communication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912430B2 (en) * 2012-07-06 2018-03-06 Samsung Electronics Co. Ltd. Method and apparatus for channel state information feedback reporting
KR102284453B1 (ko) * 2014-01-29 2021-08-02 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140281A1 (en) * 2010-12-07 2014-05-22 Sharp Kabushiki Kaisha Prioritizing multiple channel state information (csi) reporting with carrier aggregation
WO2015020440A1 (en) * 2013-08-06 2015-02-12 Lg Electronics Inc. The method and apparatus for wireless communication

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA NETWORKS: "On PUCCH Format 4 Design", R1-1 54647, 3GPP TSG-RAN WG1 MEETING #82, 14 August 2015 (2015-08-14), Beijing, China, XP050992911 *
NTT DOCOMO, INC.: "PUCCH Formats for CA with up to 32 CCs", R1-154428, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050994300 *
SHARP: "Multiplexing of Multiple Periodic CSIs for CA beyond 5 Carriers", R1-154061, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050992056 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219203A1 (en) * 2017-05-27 2018-12-06 Qualcomm Incorporated Signaling design for joint uplink data and channel state information feedback
US11757514B2 (en) 2017-05-27 2023-09-12 Qualcomm Incorporated Signaling design for joint uplink data and channel state information feedback
US11394442B2 (en) 2017-05-27 2022-07-19 Qualcomm Incorporated Signaling design for joint uplink data and channel state information feedback
CN109150417B (zh) * 2017-06-16 2020-11-03 华为技术有限公司 发送和接收上行信息的方法和装置
CN109150417A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 发送和接收上行信息的方法和装置
CN107154911A (zh) * 2017-07-19 2017-09-12 珠海市魅族科技有限公司 解调参考信号的配置方法及配置装置、网络侧设备和终端
WO2019032954A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated MODIFICATION OF CSI TRANSMISSIONS ON SHARED UPLINK RESOURCES
TWI826389B (zh) * 2017-08-11 2023-12-21 美商高通公司 修改上行鏈路共享資源上的csi傳輸
US11140575B2 (en) 2017-08-11 2021-10-05 Qualcomm Incorporated Modifying CSI transmissions over uplink shared resources
KR102034831B1 (ko) * 2017-09-10 2019-11-08 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
KR20190029508A (ko) * 2017-09-10 2019-03-20 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2019050355A1 (ko) * 2017-09-10 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
US11445485B2 (en) 2017-09-10 2022-09-13 Lg Electronics Inc. Method for transmitting uplink control information of terminal in wireless communication system and terminal using method
US11910393B2 (en) 2018-04-04 2024-02-20 Huawei Technologies Co., Ltd. Uplink control information sending, uplink control information receiving method, and apparatus
CN110650545B (zh) * 2018-04-04 2020-07-24 华为技术有限公司 一种发送、接收上行控制信息的方法及装置
CN110650545A (zh) * 2018-04-04 2020-01-03 华为技术有限公司 一种发送、接收上行控制信息的方法及装置
US11483854B2 (en) 2018-04-04 2022-10-25 Huawei Technologies Co., Ltd. Uplink control information sending, uplink control information receiving method, and apparatus
US11234252B2 (en) 2018-08-28 2022-01-25 Qualcomm Incorporated Uplink channel multiplexing and piggybacking
TWI802745B (zh) * 2018-08-28 2023-05-21 美商高通公司 上行鏈路通道多工和捎帶
US11758533B2 (en) 2018-08-28 2023-09-12 Qualcomm Incorporated Uplink channel multiplexing and piggybacking
WO2020047079A1 (en) * 2018-08-28 2020-03-05 Qualcomm Incorporated Uplink channel multiplexing and piggybacking
CN112602285A (zh) * 2018-08-28 2021-04-02 高通股份有限公司 上行链路信道复用和捎带
CN112602285B (zh) * 2018-08-28 2024-04-26 高通股份有限公司 上行链路信道复用和捎带
US20230155871A1 (en) * 2019-02-25 2023-05-18 Huawei Technologies Co., Ltd. Systems and Methods for Transmission of Uplink Control Information over Multiple Carriers in Unlicensed Spectrum
US12009956B2 (en) * 2019-02-25 2024-06-11 Huawei Technologies Co., Ltd. Systems and methods for transmission of uplink control information over multiple carriers in unlicensed spectrum

Also Published As

Publication number Publication date
US10587387B2 (en) 2020-03-10
US10284351B2 (en) 2019-05-07
US20200169373A1 (en) 2020-05-28
US20180278398A1 (en) 2018-09-27
US20190222397A1 (en) 2019-07-18
US10862654B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2017052251A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101517310B1 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2017099556A1 (ko) 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2010114233A2 (en) Method for allocating resource to uplink control signal in wireless communication system and apparatus therefor
WO2010110598A2 (en) Method and apparatus of transmitting ack/nack
WO2011021878A2 (en) Method and system for assigning physical uplink control channel (pucch) resources
WO2010123267A2 (ko) 무선 통신 시스템에서 제어 신호 송신 방법 및 이를 위한 장치
WO2015105291A1 (ko) 무선통신 시스템에서 수신확인 전송 방법 및 장치
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018143621A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
WO2010110561A2 (en) Method and apparatus for transmitting ack/nack
WO2010128817A2 (en) Method and apparatus for transmitting ack/nack
WO2011074885A2 (ko) 무선 통신 시스템에서 채널 품질 보고 방법 및 장치
WO2013002562A2 (ko) Tdd 시스템에서 통신 방법 및 장치
WO2010131897A2 (ko) 다중 반송파 시스템에서 통신 방법 및 장치
WO2011162568A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2014098520A1 (en) Inter-enb coordination methods to support inter-enb carrier aggregation for lte-advanced
WO2013133607A1 (ko) 신호 전송 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2015050417A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2013058585A1 (ko) 협력 다중점을 위한 통신 방법 및 이를 이용한 무선기기
WO2010126247A2 (ko) 무선 통신 시스템에서 상향링크 제어 신호 송신 방법 및 이를 위한 장치
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2016182242A1 (ko) 채널 상태 정보 보고 방법 및 이를 이용한 장치
WO2013015590A2 (ko) 무선통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 장치
WO2016003216A1 (ko) Ack/nack 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762667

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848976

Country of ref document: EP

Kind code of ref document: A1