WO2013119015A1 - 상향링크 제어 정보 전송 방법 및 장치 - Google Patents

상향링크 제어 정보 전송 방법 및 장치 Download PDF

Info

Publication number
WO2013119015A1
WO2013119015A1 PCT/KR2013/000907 KR2013000907W WO2013119015A1 WO 2013119015 A1 WO2013119015 A1 WO 2013119015A1 KR 2013000907 W KR2013000907 W KR 2013000907W WO 2013119015 A1 WO2013119015 A1 WO 2013119015A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
uplink control
csi
uplink
channel
Prior art date
Application number
PCT/KR2013/000907
Other languages
English (en)
French (fr)
Inventor
황대성
서동연
김봉회
안준기
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/376,588 priority Critical patent/US9473267B2/en
Publication of WO2013119015A1 publication Critical patent/WO2013119015A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting uplink control information in a wireless communication system.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the uplink channel is used for transmitting various uplink control information such as hybrid automatic repeat request (HARQ) ACK / NACK, channel state information (CSI), and scheduling request (SR).
  • HARQ hybrid automatic repeat request
  • CSI channel state information
  • SR scheduling request
  • Radio resources for the uplink channel is more limited than radio resources for the downlink channel, and transmission error of uplink control information may worsen the quality of service, so the design of the uplink channel needs to consider this.
  • the present invention provides a method for transmitting uplink control information and a wireless device used.
  • a method of transmitting uplink control information in a wireless communication system comprises masking a masking sequence related to the second uplink control information in a cyclic redundancy check (CRC) of the first uplink control information and transmitting the masked first uplink control information on an uplink channel. Steps.
  • CRC cyclic redundancy check
  • the first uplink control information may include channel state information (CSI), and the second uplink control information may include hybrid automatic repeat request (HARQ) ACK / NACK.
  • CSI channel state information
  • HARQ hybrid automatic repeat request
  • a wireless device for transmitting uplink control information in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal, and a processor connected to the RF unit, wherein the processor is configured to perform a first uplink Masking the masking sequence related to the second uplink control information in the cyclic redundancy check (CRC) of the link control information, and transmits the masked first uplink control information on the uplink channel through the RF boot.
  • RF radio frequency
  • CRC cyclic redundancy check
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 shows a structure of an UL subframe in 3GPP LTE.
  • 3 is an exemplary diagram illustrating UCI multiplexing in 3GPP LTE.
  • 5 shows an example of aperiodic CSI reporting in 3GPP LTE.
  • FIG. 6 is a flowchart illustrating a method of transmitting control information according to an embodiment of the present invention.
  • FIG 7 illustrates resource mapping according to an embodiment of the present invention.
  • FIG 8 illustrates resource mapping according to another embodiment of the present invention.
  • FIG 10 illustrates resource mapping according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device may be fixed or mobile and may be called by other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a mobile terminal (MT).
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • DL downlink
  • CC downlink component carrier
  • uplink uplink
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel in 3GPP LTE is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PHICH Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the uplink channel includes a PUSCH, a PUCCH, a Sounding Reference Signal (SRS), and a Physical Random Access Channl (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Random Access Channl
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channl
  • FIG. 2 shows a structure of an UL subframe in 3GPP LTE.
  • the UL subframe may be divided into a control region in which a Physical Uplink Control Channel (PUCCH) is allocated and a data region in which a Physical Uplink Shared Channel (PUSCH) is allocated in the frequency domain.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • m is a position index indicating a logical frequency domain position of an RB pair allocated to a PUCCH in a subframe. It is shown that an RB having the same m value occupies different subcarriers in two slots.
  • PUSCH is allocated by a UL grant on the PDCCH.
  • the fourth OFDM symbol of each slot of the normal CP is used for transmission of a DM RS (Demodualtion Reference Signal) for PUSCH.
  • DM RS Demodualtion Reference Signal
  • Uplink control inforamtion includes HARQ ACK / NACK, Channel State Information (CSI), and Scheduling Request (SR).
  • the CSI is an indicator indicating the state of the DL channel and may include at least one of a channel quality indicator (CQI) and a precoding matrix indicator (PMI).
  • PUCCH is used only for transmission of UCI.
  • PUCCH supports multiple formats.
  • a PUCCH having a different number of bits per subframe may be used according to a modulation scheme dependent on the PUCCH format.
  • PUCCH format 1 is used for transmission of SR
  • PUCCH format 1a / 1b is used for transmission of HARQ ACK / NACK
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is simultaneous (simultaneous) of CQI and ACK / NACK. ) Is used for transmission.
  • PUCCH format 1a / 1b is used when transmitting only ACK / NACK in a subframe
  • PUCCH format 1 is used when SR is transmitted alone.
  • PUCCH format 1 is used, and ACK / NACK is modulated and transmitted on a resource allocated to the SR.
  • UCI may be transmitted on a PUSCH alone or in conjunction with a UL transport block. This is called UCI multiplexing.
  • 3 is an exemplary diagram illustrating UCI multiplexing in 3GPP LTE. It may be referred to section 5 of 3GPP TS 36.212 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • CRC additional bits b 0 , b 1 ,..., B B-1 are split into code block units, and CRC parity bits are added to code block units.
  • the bit sequence output after code block segmentation is called c r0 , c r1 , ..., c r (Kr-1) .
  • Kr is the number of bits for the code block number r.
  • Bit coding for a given code block is performed channel coding.
  • Encoded bits are represented by d (i) r0 , d (i) r1 , ..., d (i) r (D-1) , where D is the number of encoded bits per output stream, i is the encoder output bit stream Is the index of.
  • Encoded bits are rate matched and code block concatenation is performed to generate the data bit sequences f 0 , f 1 ,..., F G-1 .
  • G represents the total number of encoded bits used for transmission except for bits used for transmission of control information when control information is multiplexed on the PUSCH.
  • UCI is independently coded in the form of CSI, Rank Indicator (RI), HARQ ACK / NACK.
  • CSI o 0 , o 1 , ..., o O-1 (O is the number of bits in the CSI) is channel coded to generate the control information bit sequence q 0 , q 1 , ..., q NL QCQI-1 do.
  • N L is the number of layers to which the corresponding UL transport block is mapped, and
  • Q CQI is the number of bits per layer available for CSI.
  • (32, O) block code can be used as the channel coding for CSI.
  • the intermediate sequences b 0 , b 1 , ..., b 31 for CQI channel coding are generated as follows.
  • M i, n is the basis sequence for the (32, O) blockcode.
  • the control information bit sequence q 0 , q 1 , ..., q Q-1 is generated by circularly repeating the intermediate sequences b 0 , b 1 , ..., b 31 as follows.
  • the data bit sequence f 0 , f 1 , ..., f G-1 and the CSI bit sequence are multiplexed into the multiplexed symbol sequence g 0 , g 1 , ..., g H'-1 .
  • the CSI may be placed first in the multiplexed symbol sequence and then the UL transport block may be placed.
  • q i is a modulation symbol in constellation.
  • H ' H / Q m .
  • the channel interleaver implements time first mapping of modulation symbols of the PUSCH.
  • Rmux ⁇ Cmux mapping matrix is defined for the channel interleaver.
  • the punctured modulation symbols of the modulation symbols in the multiplexed symbol sequence are not transmitted. This means that if the punctured modulation symbol corresponds to CSI, it may affect demodulation of CSI by the base station.
  • CSI transmission on PUSCH is called aperidoic CSI reporting in that it is triggered by a request of a base station.
  • CSI reporting may be triggered by a UL grant or a random access response grant.
  • 5 shows an example of aperiodic CSI reporting in 3GPP LTE.
  • the wireless device receives the UL grant including scheduling information for the PUSCH on the PDCCH 510 in subframe n.
  • the UL grant may include a CQI request field.
  • the table below shows an example of a 2-bit CQI request field. The value or number of bits in the CQI request field is only an example.
  • Information about the first and second sets for which the CSI report is triggered may be previously informed by the base station to the wireless device.
  • the wireless device transmits CSI on PUSCH 520 in subframe n + k.
  • k 4, but this is only an example.
  • the reporting mode of the CSI may be preset by the base station to the wireless device.
  • the table below shows an example of the CSI reporting mode in 3GPP LTE.
  • a precoding matrix is selected on the assumption that DL data is transmitted only through the corresponding subband.
  • the wireless device assumes the selected precoding matrix for the entire band designated by the system band or higher layer signal (referred to as band set S) and generates a CQI (this is called a wideband CQI).
  • the wireless device transmits CSI including wideband CQI and PMI of each subband.
  • the size of each subband may vary depending on the size of the system band.
  • the radio selects the preferred M subbands for the band specified by the system band or higher layer signal (band set S).
  • the wireless device generates a subband CQI under the assumption that data is transmitted in the selected M subbands.
  • the wireless device further generates one wideband CQI for the system band or band set S.
  • the wireless device transmits CSI including information on the selected M subbands, the subband CQI, and the wideband CQI.
  • the wireless device selects a single precoding matrix for the M preferred subbands and the M preferred subbands, assuming that DL data is transmitted through the M preferred subbands.
  • Subband CQIs for M preferred subbands are defined for each codeword.
  • a wideband CQI is generated for the system band or band set S.
  • the wireless device transmits CSI including M preferred subbands, one subband CQI, PMI for M preferred subbands, wideband PMI and wideband CQI.
  • the wireless device transmits the CSI including the wideband CQI and the subband CQI for the configured subband.
  • the wireless device generates a single precoding matrix for the system band or band set S.
  • the wireless device assumes the generated single precoding matrix and generates subband CQI for each codeword.
  • the wireless device may generate a wideband CQI assuming a single precoding matrix.
  • UCI also includes CSI and HARQ ACK / NACK (hereinafter, simply referred to as 'A / N') for each serving cell, the amount of UCI increases.
  • the number of bits of the A / N increases.
  • modulation symbols of the CSI are punctured. This means that as the number of bits of A / N increases, the number of bits of CSI to be punctured increases, which may lead to deterioration of performance of CSI reporting.
  • the first UCI includes CSI and the second UCI exemplarily includes A / N.
  • the first UCI may comprise A / N and the second UCI may comprise CSI.
  • the first UCI may include CSI and the second UCI may include RI.
  • the first UCI may include CSI and the second UCI may include SR.
  • the first UCI may include A / N and the second UCI may include SR.
  • FIG. 6 is a flowchart illustrating a method of transmitting control information according to an embodiment of the present invention.
  • step S610 the wireless device masks a masking sequence related to A / N to a cyclic redundancy check (CRC) of the CSI.
  • Aperiodic CSI may be triggered in the corresponding UL subframe, and A / N may be triggered and multiplexed in one PUSCH.
  • the CSI modulation symbols are simply punctured and A / N is transmitted.
  • the wireless device informs the base station of information regarding whether to transmit A / N using the CRC of the CSI.
  • the CSI to which the CRC is added may be bits before performing channel coding or encoded bits after performing channel coding.
  • the number of bits of the CSI (encoded or unencoded) before adding the CRC may be greater than 11, but is not limited thereto.
  • the number of bits P of the CSI to which the CRC is added and the number of bits of the CRC are M
  • the CSI bit sequence ⁇ b 0 , ..., b P-1 ⁇ , the masking sequence ⁇ x 0 , ..., x M-1 ⁇ , the CRC masked masked CSI sequence m k may be expressed as follows.
  • step S620 the masked CSI is transmitted on the PUSCH.
  • a / N can be multiplexed with CSI and transmitted.
  • the masking sequence may indicate the transmission state of the A / N.
  • the transmission status is whether the A / N is transmitted, the A / N transmission location, the channel on which the A / N is transmitted (e.g., PUCCH or PUSCH), the PUCCH format in which the A / N is transmitted (e.g., PUCCH formats 1a / 1b or PUCCH). Format 3), the number of bits of A / N and combinations thereof.
  • the first and second UCIs may be transmitted in different UL channels, different serving cells, and / or different UL subframes. Can be.
  • the first UCI may be transmitted on the PUSCH and the second UCI may be transmitted on the PUCCH.
  • the first UCI may be transmitted to the primary cell and the second UCI may be transmitted to the secondary cell.
  • the masking sequence may be masked on some or all of the bit sequences of the second UCI.
  • the masking sequence may indicate whether A / N transmission for all serving cells.
  • the table below is an example of a masking sequence.
  • a / N of all cells is DTX. ⁇ 1, 1, 1, 1, 1, 1, 1> A / N is sent. Ex) At least one A / N is ACK or NACK.
  • the masking sequence may indicate whether HARQ ACK / NACK is transmitted for a specific serving cell or a specific serving cell group.
  • the table below is an example of a masking sequence.
  • Table 4 Masking sequence Contents ⁇ 0, 0, 0, 0, 0, 0, 0> A / N not sent. ⁇ 1, 1, 1, 1, 1, 1, 1, 1> A / N transmission for the first serving cell group. ⁇ 1, 1, 1, 1, 0, 0, 0, 0> A / N transmission for the second serving cell group. ⁇ 0, 0, 0, 0, 1, 1, 1, 1> A / N transmission for all serving cell groups.
  • the base station may inform the wireless device of the information about the first and second serving cell groups through an RRC message.
  • Each serving cell group may include one or more serving cells.
  • the table below shows an extension to three serving cell groups.
  • Table 5 Masking sequence Contents ⁇ 0, 0, 0, 0, 0, 0, 0> A / N not sent. ⁇ 1, 1, 1, 1, 1, 1, 1, 1> A / N transmission for the first serving cell group. ⁇ 1, 1, 1, 1, 0, 0, 0, 0> A / N transmission for the first and second serving cell groups. ⁇ 0, 0, 0, 0, 1, 1, 1, 1> A / N transmission for the first, second and third serving cell groups.
  • the first serving cell group since the first serving cell group is always selected, it may include a primary cell.
  • the masking sequence may indicate a transmission state of HARQ ACK / NACK for the primary cell and the secondary cell. This is because the primary cell is used for activation / deactivation of the secondary cell, so its importance may be high.
  • Table 6 Masking sequence Contents ⁇ 1, 1, 1, 1, 1, 1, 1> A / N not sent. ⁇ 0, 0, 0, 0, 0, 0, 0> A / N transmission for the primary cell. ⁇ 1, 0, 1, 0, 1, 0, 1, 0> A / N transmission for primary cell and secondary cell.
  • the masking sequence may be used to distinguish whether to use or allocate PUCCH resources used for A / N transmission.
  • a / N transmission is set to PUCCH format 3
  • a / N transmission in a primary cell uses PUCCH format 3 or PUCCH format 1a / 1b depending on whether resources for PUCCH format 3 are allocated.
  • PUCCH format 3 is used for A / N transmission in a secondary cell.
  • the wireless device may use a masking sequence indicating the use of PUCCH format 3. If the resource allocation for the PUCCH format 3 is not received from the base station, the wireless device may use a masking sequence indicating that the PUCCH format 3 is not used.
  • the base station may attempt to demodulate the modulation symbol corresponding to the A / N, or may give up the demodulation.
  • the base station may not demodulate the modulation symbols corresponding to the A / N. Or, if the detection of the CRC for the CSI fails, the base station may attempt to recover the A / N by demodulating the modulation symbols corresponding to the A / N.
  • the wireless device may inform the base station of the A / N transmission status of the plurality of serving cells using CRC masking. Ambiguity between the base station and the wireless device for the A / N transmission state can be reduced.
  • mapping of the CSI on the PUSCH is described.
  • the channel interleaver matrix is an Rmux ⁇ Cmux mapping matrix used for multiplexing the UL transport block and the UCI.
  • the punctured modulation symbol is present in the middle portion of the CSI symbol sequence.
  • CSI modulation symbols with indices 86, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 107, 110, 111, 114, 115 are punctured.
  • the proposed scheme makes the punctured modulation symbol correspond to the last part of the CSI symbol sequence, so that the base station makes bit collection easier according to whether or not to puncture.
  • the number of OFDM symbols in a subframe, the number / location of OFDM symbols to which a DM RS is transmitted, the number / location of RI OFDM symbols, and the number / location of A / N OFDM symbols are merely examples.
  • FIG 7 illustrates resource mapping according to an embodiment of the present invention.
  • FIG 8 illustrates resource mapping according to another embodiment of the present invention.
  • the mapping order of the A / N OFDM symbols may be defined in various ways. The mapping order of the A / N OFDM symbols may be predefined or the base station may inform the wireless device through an RRC message.
  • the CSI is mapped to RI OFDM symbols and A / N OFDM symbols according to a specific mapping order.
  • a / N is superimposed on A / N OFDM symbol.
  • the mapping order may be predefined or the base station may inform the wireless device through an RRC message.
  • FIG 10 illustrates resource mapping according to another embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
  • the processor 51 may transmit the UL grant on the PDCCH and receive the CSI and / or A / N on the PUSCH.
  • the wireless device 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 61.
  • the processor 61 may implement the control information transmission method according to the embodiment of FIG. 6, and may implement resource mapping of the UCI.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

상향링크 제어 정보 전송 방법 및 무선기기가 제공된다. 무선기기는 제1 상향링크 제어 정보의 CRC(Cyclic Redundancy Check)에 제2 상향링크 제어 정보에 관련되는 마스킹 시퀀스를 마스킹하고, 상기 마스킹된 제1 상향링크 제어 정보를 상향링크 채널 상으로 전송한다.

Description

상향링크 제어 정보 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 장치에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
상향링크 채널은 HARQ(hybrid automatic repeat request) ACK/NACK, CSI(Channel State Information), SR(scheduling request)와 같은 다양한 상향링크 제어 정보의 전송에 사용된다.
상향링크 채널을 위한 무선 자원은 하향링크 채널을 위한 무선 자원보다 제한적이고, 상향링크 제어 정보의 전송 오류는 서비스 품질을 악화시킬 수 있으므로, 상향링크 채널의 설계는 이를 고려할 필요가 있다.
본 발명은 상향링크 제어 정보를 전송하는 방법 및 이용한 무선기기를 제공한다.
일 양태에서, 무선 통신 시스템에서 상향링크 제어 정보 전송 방법이 제공된다. 상기 방법은 제1 상향링크 제어 정보의 CRC(Cyclic Redundancy Check)에 제2 상향링크 제어 정보에 관련되는 마스킹 시퀀스를 마스킹하는 단계 및 상기 마스킹된 제1 상향링크 제어 정보를 상향링크 채널 상으로 전송하는 단계를 포함한다.
상기 제1 상향링크 제어 정보는 CSI(Channel State Information)를 포함하고, 상기 제2 상향링크 제어 정보는 HARQ(hybrid automatic repeat request) ACK/NACK을 포함할 수 있다.
다른 양태에서, 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 무선기기는 무선 신호를 송신 및 수신하는 RF(radio frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 상향링크 제어 정보의 CRC(Cyclic Redundancy Check)에 제2 상향링크 제어 정보에 관련되는 마스킹 시퀀스를 마스킹하고 및 상기 마스킹된 제1 상향링크 제어 정보를 상기 RF 부틀 통해 상향링크 채널 상으로 전송한다.
다양한 상향링크 제어 정보의 전송 신뢰성을 높일 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 3GPP LTE에서 UL 서브프레임의 구조를 나타낸다.
도 3은 3GPP LTE에서 UCI 다중화를 나타낸 예시도이다.
도 4는 PUSCH 상의 자원 맵핑의 일 예를 나타낸다.
도 5는 3GPP LTE에서 비주기적 CSI 보고의 일 예를 나타낸다.
도 6은 본 발명의 일 실시예에 따른 제어 정보 전송 방법을 나타낸 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 자원 맵핑을 나타낸다.
도 8은 본 발명의 다른 실시예에 따른 자원 맵핑을 나타낸다.
도 9는 본 발명의 또 다른 실시예에 따른 자원 맵핑을 나타낸다.
도 10은 본 발명의 또 다른 실시예에 따른 자원 맵핑을 나타낸다.
도 11은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, 단말(User Equipment, UE), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다.
서빙셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 3GPP LTE에서 DL 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V10.4.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V10.4.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
3GPP TS 36.211 V10.4.0에 의하면, 상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channl)을 포함한다.
도 2는 3GPP LTE에서 UL 서브프레임의 구조를 나타낸다.
UL 서브 프레임은 주파수 영역에서 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. m은 서브프레임 내에서 PUCCH에 할당된 RB 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다. 동일한 m 값을 갖는 RB이 2개의 슬롯에서 서로 다른 부반송파를 차지하고 있음을 보이고 있다.
PUSCH는 PDCCH 상의 UL 그랜트에 의해 할당된다. 도면에는 나타내지 않았지만, 노멀 CP의 각 슬롯의 4번째 OFDM 심벌은 PUSCH를 위한 DM RS(Demodualtion Reference Signal)의 전송에 사용된다.
UCI(uplink control inforamtion)는 HARQ ACK/NACK, CSI(Channel State Information) 및 SR(Scheduling Request)를 포함한다. 이하에서, CSI는 DL 채널의 상태를 나타내는 지표로, CQI(Channel Qualoty Indicator) 및 PMI(Precoding Matrix Indicator) 중 적어도 어느 하나를 포함할 수 있다.
UCI를 전송하기 위해 다양한 방법이 사용된다.
PUCCH는 UCI의 전송에만 사용된다. 이를 위해, PUCCH는 다중 포맷을 지원한다. PUCCH 포맷에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 PUCCH를 사용할 수 있다. PUCCH 포맷 1은 SR의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ ACK/NACK의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 ACK/NACK의 동시(simultaneous) 전송에 사용된다. 서브프레임에서 ACK/NACK 만을 전송할 때 PUCCH 포맷 1a/1b이 사용되고, SR이 단독으로 전송될 때, PUCCH 포맷 1이 사용된다. SR과 ACK/NACK을 동시에 전송할 때에는 PUCCH 포맷 1이 사용되고, SR에 할당된 자원에 ACK/NACK를 변조하여 전송한다.
UCI는 단독으로 또는 UL 전송 블록(transport block)과 함께 PUSCH 상으로 전송될 수 있다. 이를 UCI 다중화(multiplexing)이라 한다.
도 3은 3GPP LTE에서 UCI 다중화를 나타낸 예시도이다. 이는 3GPP TS 36.212 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)"의 5절을 참조할 수 있다.
매 TTI마다 데이터 비트들 a0, a1, ..., aA-1 는 하나의 전송 블록(transport block) 형태로 주어진다. 먼저, 데이터 비트들 a0, a1, ..., aA-1 에 CRC(Cyclic Redundancy Check) 패리티 비트들 p0, p1, ..., pL-1 이 부가되어, CRC 부가 비트들 b0, b1, ..., bB-1 이 생성된다. 여기서, B=A+L이다.
CRC 부가 비트들 b0, b1, ..., bB-1 이 코드 블록(code block) 단위로 쪼개지고, 코드 블록 단위로 다시 CRC 패리티 비트들이 부가된다. 코드 블록 분할(segmentation) 후의 비트 시퀀스 출력을 cr0, cr1, ..., cr(Kr-1) 이라 한다. 여기서, 코드 블록들의 총 갯수를 C라 할 때, r 코드 블록 번호(code block number), Kr은 코드 블록 번호 r에 대한 비트 수를 말한다.
주어진 코드 블록에 대한 비트 시퀀스는 채널 코딩이 수행된다. 인코딩된 비트들을 d(i) r0, d(i) r1, ..., d(i) r(D-1) 로 나타내며, D는 출력 스트림당 인코딩된 비트들의 갯수, i는 인코더 출력 비트 스트림의 인덱스이다.
인코딩된 비트들은 레이트 매칭(rate matching)이 수행되고, 코드 블록 연결(concatenation)이 수행되어, 데이터 비트 시퀀스 f0, f1,..., fG-1을 생성한다. 여기서, G는 제어 정보가 PUSCH 상에서 다중화될 때, 제어 정보 전송에 사용되는 비트들을 제외한 전송에 사용되는 인코딩된 비트들의 총 수를 나타낸다.
UCI는 CSI, RI(Rank Indicator), HARQ ACK/NACK의 형태로 독립적으로 코딩된다.
이하에서, CSI의 코딩에 대해 설명한다.
CSI o0, o1, ..., oO-1 (O는 CSI의 비트 수)는 채널 코딩이 수행되어 제어정보 비트 시퀀스 q0, q1, ..., qNL QCQI-1이 생성된다. NL은 대응하는 UL 전송 블록이 맵핑되는 계층(layer)의 갯수, QCQI는 CSI를 위해 사용가능한 계층 당 비트수이다.
예를 들어, CSI를 위한 채널 코딩으로 (32, O)블록코드가 사용될 수 있다.
CQI 채널 코딩에 대한 중간 시퀀스 b0, b1, ..., b31은 다음과 같이 생성된다.
수학식 1
Figure PCTKR2013000907-appb-M000001
Mi,n은 (32, O)블록코드를 위한 베이시스 시퀀스(basis sequence)이다.
제어정보 비트 시퀀스 q0, q1, ..., qQ-1는 중간 시퀀스 b0, b1, ..., b31를 다음과 같이 순환 반복시켜 생성된다.
수학식 2
Figure PCTKR2013000907-appb-M000002
데이터 비트 시퀀스 f0, f1,..., fG-1와 CSI 비트 시퀀스가 다중화된 심벌 시퀀스 g0, g1, ..., gH'-1로 다중화된다. 다중화된 심벌 시퀀스 내에서 CSI가 먼저 배치되고, 이후로 UL 전송 블록이 배치될 수 있다. H는 PUSCH에 할당된 총 비트 수로, H=G+NLQCQI이다. 여기서, qi는 성상(constellation)상의 변조 심벌이다. H'=H/Qm이다. Qm은 변조 방식에 대한 변조 심벌당 비트 수이다. 예를 들어, 변조 방식으로 QPSK(Qaudrature Phase Shift Keying)를 사용하는 경우 Qm=2 이다.
채널 인터리버(channel interleaver)는 PUSCH의 변조 심벌의 시간-우선 맵핑(time first mapping)을 구현한다.
도 4는 PUSCH 상의 자원 맵핑의 일 예를 나타낸다.
노멀 CP에서, 하나의 슬롯은 7 OFDM 심벌을 포함하고, 각 슬롯에서 4번째 OFDM 심벌은 DM RS의 전송에 사용된다. 따라서, 하나의 서브프레임에서 PUSCH에 사용되는 OFDM 심벌들의 수 NPUSCH sym=12이다. l=0, 1, ..., 11은 PUSCH에 할당되는 OFDM 심벌의 인덱스를 나타낸다.
채널 인터리버를 위해 Rmux×Cmux 맵핑 행렬이 정의된다. Cmux는 열(column)의 개수로 Cmux=NPUSCH sym 이다. Rmux는 행(row)의 개수로, k=0,1,..., R PUSCH에 할당되는 부반송파의 개수와 관련된다. 각 변조 심벌이 맵핑되는 맵핑 행렬의 요소 (k,l), k=0,1,...,Rmux-1, l=0, 1, ..., Cmux이다.
설명을 간단히 하기 위해, 도 4는 Rmux=12, Cmux=12 인 경우를 나타낸다.
(1) 단계 1 : RI의 변조 심벌을 l=1, 4, 7, 10인 OFDM 심벌에 맵핑한다.
(2) 단계 2: 다중화된 심벌 시퀀스 g0, g1, ..., gH'-1을 k=0 부터 l이 증가하는 방향으로 맵핑한다. 이를 시간 우선 맵핑이라 한다.
(3) 단계 3: l=2, 3, 8, 9인 OFDM 심벌에 HARQ ACK/NACK의 변조 심벌을 맵핑한다. 이는 단계 2에서 맵핑된 다중화된 심벌 시퀀스를 겹쳐쓰는(overwrite) 것을 의미한다. 자원요소에 이미 맵핑되는 변조 시퀀스를 겹쳐쓰는 것을 천공(puncturing)이라고도 한다.
다중화된 심벌 시퀀스내의 변조 심벌 중 천공된 변조 심벌은 전송되지 못한다. 이는 천공되는 변조 심벌이 CSI에 해당되면, 기지국에 의한 CSI의 복조에 영향을 미칠 수 있음을 의미한다.
이제 PUSCH 상의 CSI 전송에 대해 기술한다. PUSCH 상의 CSI 전송은 기지국의 요청에 의해 트리거(trigger)되는 점에서 비주기적(aperidoic) CSI 보고라 한다. CSI 보고는 UL 그랜트 또는 랜덤 액세스 응답 그랜트에 의해 트리거링될 수 있다.
도 5는 3GPP LTE에서 비주기적 CSI 보고의 일 예를 나타낸다.
무선기기는 서브프레임 n에서 PDCCH(510)으로 PUSCH에 대한 스케줄링 정보를 포함하는 UL 그랜트를 수신한다. UL 그랜트는 CQI 요청 필드가 포함될 수 있다. 아래 표는 2비트의 CQI 요청 필드의 일 예를 보여준다. CQI 요청 필드의 값 이나 비트 수는 예시에 불과하다.
표 1
CQI 요청 필드의 값 내용
00 CSI 보고가 트리거되지 않음
01 서빙셀에 대한 CSI 보고가 트리거됨
10 서빙셀의 제1 집합에 대한 CSI 보고가 트리거됨
11 서빙셀의 제2 집합에 대한 CSI 보고가 트리거됨
CSI 보고가 트리거되는 제1 및 제2 집합에 대한 정보는 기지국이 무선기기에게 미리 알려줄 수 있다.
CSI 보고가 트리거되면, 서브프레임 n+k에서 무선기기는 CSI를 PUSCH(520) 상으로 전송한다. 여기서, k=4이나, 이는 예시에 불과하다.
CSI의 보고 모드(reporting mode)는 기지국이 무선기기에게 미리 지정할 수 있다.
아래 표는 3GPP LTE에서 CSI 보고 모드의 일 예를 나타낸다.
표 2
PMI 피드백 타입
No PMI Single PMI Multiple PMI
광대역 CQI 모드 1-2
선택적 서브밴드 CQI 모드 2-0 모드 2-2
설정된 서브밴드 CQI 모드 3-0 모드 3-1
(1) 모드 1-2(Mode 1-2)
각 서브밴드(subband)에 대해서 DL 데이터가 해당 서브밴드만을 통해서 전송된다는 가정하에 프리코딩 행렬을 선택한다. 무선기기는 시스템 대역 또는 상위 계층 신호에 의해 지정된 대역(이를 대역 집합 S라 칭함) 전체에 대해서 선택한 프리코딩 행렬을 가정하고 CQI(이를 광대역(wideband) CQI 라 함)를 생성한다.
무선기기는 광대역 CQI와 각 서브밴드의 PMI을 포함하는 CSI를 전송한다. 이 때 각 서브밴드의 크기는 시스템 대역의 크기에 따라 달라질 수 있다.
(2) 모드 2-0
무선기기는 시스템 대역 또는 상위 계층 신호에 의해 지정된 대역(대역 집합 S)에 대해서 선호하는 M개의 서브밴드를 선택한다. 무선기기는 선택된 M개의 서브밴드에서 데이터가 전송되었다는 가정 하에 서브밴드 CQI를 생성한다. 무선기기는 추가로 시스템 대역 또는 대역 집합 S에 대해서 하나의 광대역 CQI를 생성한다.
무선기기는 선택된 M개의 서브밴드에 대한 정보, 서브밴드 CQI, 광대역 CQI를 포함하는 CSI를 전송한다.
(3) 모드 2-2
무선기기는 M개의 선호하는 서브밴드를 통하여 DL 데이터를 전송한다는 가정하에 M개의 선호 서브밴드와 M개의 선호 서브밴드에 대한 단일 프리코딩 행렬을 선택한다.
M개의 선호 서브밴드에 대한 서브밴드 CQI는 코드워드마다 정의된다. 추가로 시스템 대역 또는 대역 집합 S에 대해서 광대역 CQI를 생성한다.
무선기기는 M개의 선호하는 서브밴드, 하나의 서브밴드 CQI, M개의 선호하는 서브밴드에 대한 PMI, 광대역 PMI 및 광대역 CQI를 포함하는 CSI를 전송한다.
(4) 모드 3-0
무선기기는 광대역 CQI와 설정된 서브밴드에 대한 서브밴드 CQI를 포함하는 CSI를 전송한다.
(5) 모드 3-1
무선기기는 시스템 대역 또는 대역 집합 S에 대해서 단일 프리코딩 행렬을 생성한다. 무선기기는 생성한 단일 프리코딩 행렬을 가정하고 코드워드 별로 서브밴드 CQI를 생성한다. 무선기기는 단일 프리코딩 행렬을 가정하고 광대역 CQI를 생성할 수 있다.
기존 3GPP LTE는 릴리이즈 10 부터 복수의 서빙셀을 도입하고 있다. 따라서, UCI도 각 서빙셀에 대한 CSI, HARQ ACK/NACK(이하에서는 간단히 'A/N'으로 표시함)를 포함함에 따라, UCI의 양이 증가한다.
예를 들어, 2개의 서빙셀이 있고, 2개의 서빙셀에 대한 A/N을 하나의 PUSCH에서 전송한다고 할 때, A/N의 비트수는 증가한다. 전술한 바와 같이, PUSCH 상에서 CSI와 A/N이 다중화되면, CSI의 변조 심벌이 천공된다. 이는 A/N의 비트수는 증가하면, 천공되는 CSI의 비트 수가 증가하고, 이는 CSI 보고의 성능의 열화를 가져올 수 있다.
이하에서, 제1 UCI는 CSI를 포함하고, 제2 UCI는 A/N을 포함하는 것을 예시적으로 기술한다. 당업자라면 다양한 UCI에 본 발명에 의한 실시예를 적용할 수 있다. 예를 들어, 제1 UCI는 A/N를 포함하고, 제2 UCI는 CSI을 포함할 수 있다. 제1 UCI는 CSI를 포함하고, 제2 UCI는 RI을 포함할 수 있다. 제1 UCI는 CSI를 포함하고, 제2 UCI는 SR을 포함할 수 있다. 제1 UCI는 A/N를 포함하고, 제2 UCI는 SR을 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따른 제어 정보 전송 방법을 나타낸 흐름도이다.
단계 S610에서, 무선기기는 CSI의 CRC(Cyclic Redundancy Check)에 A/N에 관련되는 마스킹 시퀀스를 마스킹한다. 해당 UL 서브프레임에서 비주기적 CSI가 트리거링되고, 또한 A/N이 트리거링되어 하나의 PUSCH에서 다중화될 수 있다. 기존 기술에 의하면, CSI의 변조 심벌들을 단순히 천공하고 A/N을 전송한다. 제안된 기술에 의하면, CSI의 CRC를 이용하여 A/N의 전송 여부에 관련된 정보를 무선기기가 기지국에 알려준다.
CRC가 부가되는 CSI는 채널 코딩을 수행하기 전의 비트들 또는 채널 코딩을 수행한 후의 인코딩된 비트들 일 수 있다. CRC 부가 전 (인코딩된 또는 인코딩되지 않은) CSI의 비트 수는 11 보다 클 수 있으나, 이에 제한이 있는 것은 아니다.
예를 들어, CRC가 부가된 CSI의 비트 수 P, CRC의 비트 수를 M이라 하고, CSI 비트 시퀀스 {b0, ..., bP-1}, 마스킹 시퀀스 {x0, ..., xM-1}이라고 할 때, CRC 마스킹된 마스킹된 CSI 시퀀스 mk는 다음과 같이 나타낼 수 있다.
수학식 3
Figure PCTKR2013000907-appb-M000003
단계 S620에서, 마스킹된 CSI를 PUSCH 상으로 전송한다. 상기 PUSCH에서 A/N이 CSI와 함께 다중화되어, 전송될 수 있다.
마스킹 시퀀스는 A/N의 전송 상태를 나타낼 수 있다. 전송 상태는 A/N의 전송 여부, A/N의 전송 위치, A/N이 전송되는 채널(예, PUCCH 또는 PUSCH), A/N이 전송되는 PUCCH 포맷(예, PUCCH 포맷 1a/1b 또는 PUCCH 포맷 3), A/N의 비트 수 및 이들의 조합을 포함할 수 있다.
상기의 실시예는 제1 및 제2 UCI가 PUSCH 상에 다중화되어 전송되는 것을 예시적으로 기술하지만, 제1 및 제2 UCI가 다른 UL 채널, 다른 서빙셀 및/또는 다른 UL 서브프레임에서 전송될 수 있다. 예를 들어, 제1 UCI는 PUSCH로 전송되고, 제2 UCI는 PUCCH로 전송될 수 있다. 또는, 제1 UCI는 1차셀로 전송되고, 제2 UCI는 2차셀로 전송될 수 있다.
상기 마스킹 시퀀스는 제2 UCI의 비트 시퀀스의 일부 또는 전부에 마스킹될 수도 있다.
이하에서, M=8인 8비트 CRC에 대한 다양한 마스킹 시퀀스의 예를 기술한다. 마스킹 시퀀스가 나타내는 전송 상태 및/또는 그 비트 수는 예시에 불과하다.
제1 실시예에서, 마스킹 시퀀스는 모든 서빙셀에 대한 A/N의 전송 여부를 나타낼 수 있다. 아래 표는 마스킹 시퀀스의 예시이다.
표 3
마스킹 시퀀스 내용
<0, 0, 0, 0, 0, 0, 0, 0> A/N이 전송되지 않음. 예) 모든 셀의 A/N이 DTX 임.
<1, 1, 1, 1, 1, 1, 1, 1> A/N이 전송됨. 예) 적어도 하나의 A/N이 ACK 또는 NACK 임.
제2 실시예에서, 마스킹 시퀀스는 특정 서빙셀 또는 특정 서빙셀 그룹에 대한 HARQ ACK/NACK의 전송 여부를 나타낼 수 있다. 아래 표는 마스킹 시퀀스의 예시이다.
표 4
마스킹 시퀀스 내용
<0, 0, 0, 0, 0, 0, 0, 0> A/N이 전송되지 않음.
<1, 1, 1, 1, 1, 1, 1, 1> 제1 서빙셀 그룹에 대한 A/N 전송.
<1, 1, 1, 1, 0, 0, 0, 0> 제2 서빙셀 그룹에 대한 A/N 전송.
<0, 0, 0, 0, 1, 1, 1, 1> 모든 서빙셀 그룹에 대한 A/N 전송.
상기 제1 및 제2 서빙셀 그룹에 관한 정보는 기지국이 무선기기에게 RRC 메시지 등을 통해 알려줄 수 있다. 각 서빙셀 그룹은 하나 또는 그 이상의 서빙셀을 포함할 수 있다. 아래 표는 3개의 서빙 셀 그룹으로 확장한 경우이다.
표 5
마스킹 시퀀스 내용
<0, 0, 0, 0, 0, 0, 0, 0> A/N이 전송되지 않음.
<1, 1, 1, 1, 1, 1, 1, 1> 제1 서빙셀 그룹에 대한 A/N 전송.
<1, 1, 1, 1, 0, 0, 0, 0> 제1 및 제2 서빙셀 그룹에 대한 A/N 전송.
<0, 0, 0, 0, 1, 1, 1, 1> 제1, 제2 및 제3 서빙셀 그룹에 대한 A/N 전송.
표 4 및 표 5의 실시예에서, 제1 서빙셀 그룹은 항상 선택되므로, 1차셀을 포함할 수 있다.
제3 실시예에서, 마스킹 시퀀스는 1차셀과 2차셀에 관한 HARQ ACK/NACK의 전송 상태를 나타낼 수 있다. 1차셀은 2차셀의 활성화/비활성화에 사용되므로 그 중요도가 높다고 할 수 있기 때문이다.
표 6
마스킹 시퀀스 내용
<1, 1, 1, 1, 1, 1, 1, 1> A/N이 전송되지 않음.
<0, 0, 0, 0, 0, 0, 0, 0> 1차셀에 대한 A/N 전송.
<1, 0, 1, 0, 1, 0, 1, 0> 1차셀 및 2차셀에 대한 A/N 전송.
마스킹 시퀀스는 A/N의 전송에 사용되는 PUCCH 자원의 사용 여부 또는 할당 여부를 구분하는 데 사용될 수 있다. A/N 전송이 PUCCH 포맷 3로 설정될 때, 1차셀에서의 A/N 전송은 PUCCH 포맷 3를 위한 자원의 할당되는 여부에 따라 PUCCH 포맷 3 또는 PUCCH 포맷 1a/1b가 사용된다. 2차셀에서의 A/N 전송은 PUCCH 포맷 3이 사용된다. PUCCH 포맷 3를 위한 자원 할당을 기지국으로부터 수신하면, 무선기기는 PUCCH 포맷 3의 사용을 나타내는 마스킹 시퀀스를 사용할 수 있다. PUCCH 포맷 3를 위한 자원 할당을 기지국으로부터 수신하지 못하면, 무선기기는 PUCCH 포맷 3의 사용하지 않음을 나타내는 마스킹 시퀀스를 사용할 수 있다.
기지국이 마스킹된 CSI를 수신할 때의 동작은 다음과 같다.
기지국은 CRC 검출에 실패할 경우에 A/N에 대응되는 변조 심벌의 복조를 시도할 수도 있고, 또는 복조를 포기할 수도 있다.
CSI에 대한 CRC의 검출에 실패할 경우, 기지국은 A/N에 대응되는 변조 심볼에 대해서 복조를 수행하지 않을 수 있다. 또는, CSI에 대한 CRC의 검출에 실패할 경우, 기지국은 A/N에 대응되는 변조 심볼에 대해서 복조를 수행하여 해당 A/N을 복원을 시도할 수 있다.
CRC 마스킹을 이용하여 복수의 서빙셀에 대한 A/N의 전송 상태를 무선기기가 기지국에게 알려줄 수 있다. A/N 전송 상태에 대한 기지국과 무선기기간의 모호성(ambiguity)를 감소시킬 수 있다.
이제 PUSCH 상에서의 CSI의 맵핑에 대해 기술한다.
도 4 및 관련 설명에서 기술한 바와 같이, CSI의 변조 심벌을 맵핑한 후, 이어서 A/N의 변조 심벌을 겹쳐쓰는 방식이 사용된다. 채널 인터리버 행렬은 UL 전송 블록과 UCI를 다중화하기 위해 사용되는 Rmux×Cmux 맵핑 행렬이다.
기존 방식에 의하면, CSI는 시간 우선 맵핑됨에 따라 천공되는 변조 심벌은 CSI 심벌 시퀀스의 중간 부분에 존재하게 된다. 도 4의 예제에 의하면, 0~116의 인덱스를 갖는 CSI 변조 심벌 중 50, 51, 56, 57, 61, 62, 66, 67, 70, 71, 74, 75, 78. 79, 82, 83, 86, 87, 90, 91, 94, 95, 98, 99, 102, 103, 106, 107, 110, 111, 114, 115의 인덱스를 갖는 CSI 변조 심벌이 천공된다.
제안된 방식은 천공되는 변조 심벌이 CSI 심벌 시퀀스의 마지막 부분에 해당되도록하여, 기지국이 천공 여부에 따라 비트 정정(bit collection)을 보다 용이하게 하도록 한다.
이하에서는, Rmux=12, Cmux=12, 하나의 서브프레임은 14 OFDM 심벌을 포함한다고 가정한다. DM-RS가 전송되는 OFDM 심벌을 제외하고, RI가 전송되는 OFDM 심벌을 l=1, 4, 7, 10인 OFDM 심벌(이를 RI OFDM 심벌이라고 함)이라고 하고, A/N이 전송되는 전송되는 OFDM 심벌을 l=2, 3, 8, 9인 OFDM 심벌(이를 A/N OFDM 심벌이라고 함)이라고 한다. 서브프레임내 OFDM 심벌의 수, DM RS가 전송되는 OFDM 심벌의 수/위치, RI OFDM 심벌의 수/위치, A/N OFDM 심벌의 수/위치는 예시에 불과하다.
도 7은 본 발명의 일 실시예에 따른 자원 맵핑을 나타낸다.
RI를 먼저 맵핑한 후, A/N OFDM 심벌을 제외하고 k=0 부터 l이 증가하는 방향으로 CSI를 맵핑한다. 그리고, A/N이 맵핑되는 OFDM 심벌의 역순(l=3, 8, 9, 2)으로 CSI를 A/N OFDM 심벌에 맵핑한다. 마지막으로 A/N을 A/N OFDM 심벌에 겹쳐 맵핑한다.
도 8은 본 발명의 다른 실시예에 따른 자원 맵핑을 나타낸다.
도 7의 실시예와 비교하여, CSI가 맵핑되는 A/N OFDM 심벌의 순서를 다르게 한 것이다. 도 7의 실시예가 l=3, 8, 9, 2의 순이라면, 이는 l=2, 3, 8, 9의 순이다. A/N OFDM 심벌의 맵핑 순서는 다양하게 정의될 수 있다. A/N OFDM 심벌의 맵핑 순서는 미리 정의되거나, 기지국이 무선기기에게 RRC 메시지 등을 통해 알려줄 수 있다.
도 9는 본 발명의 또 다른 실시예에 따른 자원 맵핑을 나타낸다.
RI를 먼저 맵핑한 후, RI OFDM 심벌과 A/N OFDM 심벌을 제외하고 k=0 부터 l이 증가하는 방향으로 CSI를 맵핑한다. 즉, l=1,2,3,4,7,8,9,10의 OFDM 심벌에는 CSI를 맵핑하지 않는다. 그리고, 특정 맵핑 순서에 따라 CSI를 RI OFDM 심벌과 A/N OFDM 심벌에 맵핑한다. 여기서, 맵핑 순서는 l=4,7,10,1,3,8,9,2 이다. 마지막으로 A/N을 A/N OFDM 심벌에 겹쳐 맵핑한다.
상기 맵핑 순서는 미리 정의되거나, 기지국이 무선기기에게 RRC 메시지 등을 통해 알려줄 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 자원 맵핑을 나타낸다.
도 9의 실시예와 비교하여, 맵핑 순서를 l=1,2,3,4,7,8,9,10으로 한 예이다.
도 11은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다. 프로세서(51)는 UL 그랜트를 PDCCH 상으로 전송하고, CSI 및/또는 A/N을 PUSCH 상으로 수신할 수 있다.
무선기기(60)는 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(61)에 의해 구현될 수 있다. 프로세서(61)는 도 6의 실시예에 따른 제어 정보 전송 방법을 구현할 수 있고, UCI의 자원 맵핑을 구현할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 무선 통신 시스템에서 상향링크 제어 정보 전송 방법에 있어서,
    제1 상향링크 제어 정보의 CRC(Cyclic Redundancy Check)에 제2 상향링크 제어 정보에 관련되는 마스킹 시퀀스를 마스킹하는 단계; 및
    상기 마스킹된 제1 상향링크 제어 정보를 상향링크 채널 상으로 전송하는 단계를 포함하는 상향링크 제어 정보 전송 방법.
  2. 제 1 항에서, 상기 제1 상향링크 제어 정보는 CSI(Channel State Information)를 포함하고, 상기 제2 상향링크 제어 정보는 HARQ(hybrid automatic repeat request) ACK/NACK을 포함하는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  3. 제 2 항에서, 상기 마스킹 시퀀스는 설정된 모든 서빙셀에 대한 HARQ ACK/NACK이 상기 상향링크 채널에 다중화되는지 여부를 나타내는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  4. 제 2 항에서, 상기 마스킹 시퀀스는 적어도 하나의 서빙셀에 대한 HARQ ACK/NACK이 상기 상향링크 채널에 다중화되는지 여부를 나타내는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  5. 제 2 항에서, 상기 마스킹 시퀀스는 적어도 하나의 서빙셀에 대한 HARQ ACK/NACK을 나타내는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  6. 제 2 항에서, 상기 CSI는 기지국의 요청에 의해 트리거링되는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  7. 제 1 항에서, 상기 마스킹 시퀀스는 상기 상향링크 채널에 상기 제2 상향링크 제어 정보가 다중화되는지 여부를 나타내는 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  8. 제 1 항에서, 상기 상향링크 채널은 PUSCH(Physical Uplink Shared Channel) 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  9. 제 1 항에서, 상기 제1 상향링크 제어 정보의 비트 수는 11 보다 큰 것을 특징으로 하는 상향링크 제어 정보 전송 방법.
  10. 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 무선기기에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    제1 상향링크 제어 정보의 CRC(Cyclic Redundancy Check)에 제2 상향링크 제어 정보에 관련되는 마스킹 시퀀스를 마스킹하고; 및
    상기 마스킹된 제1 상향링크 제어 정보를 상기 RF 부틀 통해 상향링크 채널 상으로 전송하는 무선기기.
  11. 제 10 항에서, 상기 제1 상향링크 제어 정보는 CSI(Channel State Information)를 포함하고, 상기 제2 상향링크 제어 정보는 HARQ(hybrid automatic repeat request) ACK/NACK을 포함하는 것을 특징으로 하는 무선기기.
  12. 제 11 항에서, 상기 마스킹 시퀀스는 설정된 모든 서빙셀에 대한 HARQ ACK/NACK이 상기 상향링크 채널에 다중화되는지 여부를 나타내는 것을 특징으로 하는 무선기기.
  13. 제 11 항에서, 상기 마스킹 시퀀스는 적어도 하나의 서빙셀에 대한 HARQ ACK/NACK이 상기 상향링크 채널에 다중화되는지 여부를 나타내는 것을 특징으로 하는 무선기기.
PCT/KR2013/000907 2012-02-06 2013-02-05 상향링크 제어 정보 전송 방법 및 장치 WO2013119015A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/376,588 US9473267B2 (en) 2012-02-06 2013-02-05 Method and apparatus for transmitting uplink control information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261595621P 2012-02-06 2012-02-06
US61/595,621 2012-02-06
US201261645061P 2012-05-10 2012-05-10
US61/645,061 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013119015A1 true WO2013119015A1 (ko) 2013-08-15

Family

ID=48947737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000907 WO2013119015A1 (ko) 2012-02-06 2013-02-05 상향링크 제어 정보 전송 방법 및 장치

Country Status (2)

Country Link
US (1) US9473267B2 (ko)
WO (1) WO2013119015A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182378A1 (ko) * 2015-05-13 2016-11-17 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 무선기기
US10798685B2 (en) * 2015-05-27 2020-10-06 Qualcomm Incorporated Cyclic redundancy check for uplink control information on control and data channels
CN107852321B (zh) * 2015-07-30 2021-03-16 苹果公司 上行链路控制信息的基于ofdma的复用
WO2017048057A1 (ko) * 2015-09-20 2017-03-23 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
AU2016334149B2 (en) * 2016-07-20 2020-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Method for facilitating random access, network node and terminal device
US10506468B2 (en) 2017-09-08 2019-12-10 At&T Intellectual Property I, L.P. Reporting hybrid automatic repeat request-acknowledgements in wireless communication systems
US11606170B2 (en) * 2018-01-05 2023-03-14 Lenovo (Beijing) Limited Method and apparatus for HARQ-ACK and SR transmission
CN116094679A (zh) * 2018-07-24 2023-05-09 大唐移动通信设备有限公司 一种信息传输方法、终端及基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090099469A (ko) * 2008-03-17 2009-09-22 엘지전자 주식회사 그룹 ack/nack 전송방법
KR20100065865A (ko) * 2008-12-09 2010-06-17 삼성전자주식회사 멀티 인풋 멀티 아웃풋 시스템의 하향링크 컨트롤 정보 송수신 방법 및 장치
KR20100086920A (ko) * 2009-01-23 2010-08-02 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
KR20100088554A (ko) * 2009-01-30 2010-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 및 전송 방법 및 장치
WO2011013986A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100073976A (ko) * 2008-12-23 2010-07-01 엘지전자 주식회사 상향링크 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2011085230A2 (en) * 2010-01-08 2011-07-14 Interdigital Patent Holdings, Inc. Channel state information transmission for multiple carriers
KR20110113484A (ko) * 2010-04-09 2011-10-17 주식회사 팬택 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법
US8582638B2 (en) * 2010-04-30 2013-11-12 Blackberry Limited System and method for channel state feedback in carrier aggregation
US8549374B2 (en) * 2011-02-11 2013-10-01 Sharp Laboratories Of America, Inc. Dual Reed-Muller (RM) code segmentation for uplink control information (UCI)
GB2496458A (en) * 2011-11-14 2013-05-15 Renesas Mobile Corp Transmission of channel state information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090099469A (ko) * 2008-03-17 2009-09-22 엘지전자 주식회사 그룹 ack/nack 전송방법
KR20100065865A (ko) * 2008-12-09 2010-06-17 삼성전자주식회사 멀티 인풋 멀티 아웃풋 시스템의 하향링크 컨트롤 정보 송수신 방법 및 장치
KR20100086920A (ko) * 2009-01-23 2010-08-02 엘지전자 주식회사 무선 통신 시스템에서 제어정보 전송 방법 및 장치
KR20100088554A (ko) * 2009-01-30 2010-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 및 전송 방법 및 장치
WO2011013986A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system

Also Published As

Publication number Publication date
US9473267B2 (en) 2016-10-18
US20150016373A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2018084488A1 (ko) 무선 통신 시스템에서 동적 가변 사이즈의 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치
WO2011139064A2 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2013119015A1 (ko) 상향링크 제어 정보 전송 방법 및 장치
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2011162568A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2010101411A2 (en) Method and apparatus for transmitting harq ack/nack signal in multi-antenna system
WO2017116120A1 (en) Method and apparatus for transmitting ack/nack for nb-iot in wireless communication system
WO2011031059A2 (en) Method and apparatus for controlling transmit power in wireless communication system
WO2011013968A2 (ko) 무선 통신 시스템에서 수신 확인 수신 방법 및 장치
WO2012044045A1 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2012108688A2 (ko) 스케줄링 정보 모니터링 방법 및 장치
WO2018226033A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 하향링크 제어 채널 수신 방법 및 상기 방법을 이용하는 단말
WO2011078568A2 (ko) 무선 통신 시스템에서 상향링크 harq 수행 장치 및 방법
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2014123378A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2011052949A2 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2018128200A1 (ko) Noma 기반 시스템에서 harq 동작을 수행하는 방법 및 이를 위한 장치
WO2013066083A2 (ko) 제어채널 모니터링 방법 및 무선기기
WO2013077677A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2010013961A2 (en) Method and apparatus of monitoring pdcch in wireless communication system
WO2010140828A2 (ko) 무선 통신 시스템에서 자원 매핑 방법 및 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2013137682A1 (ko) 상향링크 제어정보 전송 방법 및 장치
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2014142623A1 (ko) 무선 통신 시스템에서 디스커버리 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376588

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746667

Country of ref document: EP

Kind code of ref document: A1