WO2013168991A1 - Image measurement device and method for measuring deformation of civil structure - Google Patents

Image measurement device and method for measuring deformation of civil structure Download PDF

Info

Publication number
WO2013168991A1
WO2013168991A1 PCT/KR2013/003999 KR2013003999W WO2013168991A1 WO 2013168991 A1 WO2013168991 A1 WO 2013168991A1 KR 2013003999 W KR2013003999 W KR 2013003999W WO 2013168991 A1 WO2013168991 A1 WO 2013168991A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
rod
scale
mounting
digital camera
Prior art date
Application number
PCT/KR2013/003999
Other languages
French (fr)
Korean (ko)
Inventor
손인규
Original Assignee
Son In Gyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Son In Gyu filed Critical Son In Gyu
Publication of WO2013168991A1 publication Critical patent/WO2013168991A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection

Definitions

  • the present invention relates to an image measuring apparatus and a method for measuring deformation of civil structures, and more particularly, to measure deformations that may occur during or after construction of civil structures such as tunnels, roads, and dams by image analysis. It relates to an apparatus and a method.
  • the walls of the tunnels are often torn down while the tunnels are being excavated, which means that the soil that forms the walls of the tunnels will be deformed, which is why It is necessary to periodically measure whether or not it occurs.
  • Figure 1 shows a conventional technique for measuring the deformation of the soil, the gauge is installed on the wall of the tunnel, the distance to the gauge by the laser rangefinder installed in the center of the tunnel.
  • FIG. 2 shows a state in which the tunnel is being excavated.
  • the measurement and recording using a tape measure or the like is required.
  • a mark is installed, and an image photographing means is provided for photographing the mark, and the horizontal and vertical rotation driving means are operated to photograph the mark by the image photographing means.
  • a method of determining the position, separating the mark from the background after photographing the mark and capturing the position change of the mark is disclosed in Korean Patent No. 10-0456524.
  • the method disclosed in the Republic of Korea Patent No. 10-0456524 is that the original position of the mark can be changed according to the control precision of the horizontal and vertical rotary drive means not only a large error, but also detects the deformation between the mark and the mark There are a lot of things that can't be used.
  • the present invention has been made to solve the problems of the prior art as described above, it is not necessary to install a fixed mark, it is not limited to the mark can detect the deformation of the structure as a whole, and also an easy-to-use image measuring device And it aims to provide a civil structural deformation measuring method.
  • An installation rod having the reference scale rod installed at one end;
  • An installation rod fixing part for fixing the other end of the installation rod
  • a first plate disposed on an upper surface of the camera mounting part and the mounting rod fixing part
  • a second plate coupled to the first plate such that the first plate is rotatable from above, and parallel to the first plate;
  • a third plate disposed below the second plate and having a cradle connecting portion at a lower surface thereof;
  • a horizontal adjusting part for adjusting an angle formed between the lower surface of the second plate and the upper surface of the third plate.
  • the reference bar is provided with a pair of mounting rods installed on one side end, the mounting rod fixing portion is fixed to the other end of the pair of mounting rods, respectively, the interval adjusting unit for adjusting the interval between the reference scale rods installed on each of the mounting rods It is also preferable to provide.
  • the level gauge for measuring the inclination of the first plate is provided on the upper surface of the first plate.
  • Step 1-1 comprising the device, mounting the device on the cradle by connecting the cradle connection of the device to the cradle;
  • Step 2 to mount the moving scale rod engraved unit scale at the position of the measurement object
  • step 5 of the unit scale of the reference scale rod and the moving scale rod together with the photographed image in a database And storing step 5 of the unit scale of the reference scale rod and the moving scale rod together with the photographed image in a database.
  • step 1-1 it is also possible to use a step 1-2 for mounting the digital camera on the holder and mounting the reference scale rod at a predetermined distance from the digital camera. If it is not necessary to distinguish between step 1-1 or step 1-2, both step 1-1 and step 1-2 will be referred to as step 1.
  • step 6-2 for selecting an arbitrary point of the measurement object in the image stored in the database in step 5
  • step 8 of calculating the deformation of the measurement object by superimposing the image taken by the step 7.
  • FIG. 2 is a photograph showing an example of a civil structure that is a measurement object.
  • Figure 3 is a perspective view showing the form of one embodiment of the present invention.
  • Figure 4 is a bottom perspective view showing the form of one embodiment of the present invention.
  • FIG. 5 is a perspective view showing the form of another embodiment of the present invention.
  • FIG. 6 illustrates an embodiment method of the present invention.
  • Figure 7 is a photograph showing an embodiment of the present invention method.
  • FIGS. 3 to 5 An example of an apparatus for measuring deformation of a civil structure according to the present embodiment is illustrated in FIGS. 3 to 5. Digital cameras are not shown.
  • FIG. 3 shows the form of the present embodiment device
  • a reference scale rod 10 engraved with a unit scale, an installation rod 20 to which the reference scale rod 10 is installed at one end, and an installation rod fixing portion 30 to fix the other end of the installation rod 20;
  • a camera mounting portion 40 for mounting a digital camera, a first plate 50 for placing the camera mounting portion 40 and the mounting rod fixing portion 30 on the upper surface, and the first plate 50 is on the upper side Coupled to the first plate 50 so as to be rotatable in the second plate 60 and parallel to the first plate 50, disposed below the second plate 60, the cradle connecting portion on the bottom
  • It consists of a third plate 70 having a horizontal control unit 80 for adjusting the angle formed by the lower surface of the second plate 60 and the upper surface of the third plate (70).
  • the unit scale is engraved on the reference scale rod 10.
  • the reference scale rod is made of 10 cm and painted in red to form the unit scale as a whole of the reference scale rod, but in units of 2 cm or 5 cm. It is also possible to engrave the unit scales of different colors.
  • the installation rod 20 has a reference scale rod 10 installed at one end thereof, and the other end thereof is fitted to the installation rod fixing part 30.
  • the length of the mounting rod 20 is set so that the distance between the digital camera and the reference scale rod 10 can be 1 m as will be described later, and the mounting rod 20 to change the position of the reference scale rod 10 when the camera is mounted.
  • reference scale rod 10 is preferably coupled by screwing.
  • the camera mounting part 40 on which the digital camera is to be mounted is disposed on the upper surface of the first plate 50 together with the mounting rod fixing part 30.
  • a second plate 60 is installed below the first plate 50, and the centers of both plates are axially connected so that the first plate 50 can be rotated on the upper portion of the second plate 60. It is also preferable to further include a rotation suppressing unit 90 for suppressing the rotation of the first plate 50 relative to the second plate 60.
  • a rotation suppressing unit 90 for suppressing the rotation of the first plate 50 relative to the second plate 60.
  • the third plate 70 is disposed below the second plate 60 as shown in FIG. 4, and has a cradle connecting portion 110 to be connected to the cradle on its lower surface.
  • the cradle can use a tripod for general cameras.
  • a horizontal adjusting unit 80 is provided to adjust an angle formed between the lower surface of the second plate 60 and the upper surface of the third plate 70.
  • the horizontal adjusting unit 80 is a second plate. It consists of three screws connecting the 60 and the third plate 70, so that the distance between the second plate 60 and the third plate 70 at each screw position can be adjusted by rotating each screw. Will be.
  • the digital camera should be able to shoot in the same height direction, but the tripod for the camera can also rotate the camera, but the same height direction. Since it is not possible to adjust the shooting range of the camera, the horizontal adjustment unit 80, such as the device of the present invention is required.
  • the first and second plates 50 and 60 can be adjusted to be horizontal with the ground.
  • a level gauge 100 is further provided on the upper surface of the first plate 50, and the horizontal adjusting part 80 is adjusted according to the level gauge 100.
  • the first plate 50 may be horizontal. However, even if there is no level gauge, it is also possible to use an independent level gauge on the upper surface of the first plate.
  • the interval adjusting unit for adjusting the interval between the reference scale rods 10 installed on each of the mounting rods 20 It is also preferable to further provide 35. 5 is to remove the camera mounting portion to show the configuration of the spacing adjuster 35.
  • the method of measuring the deformation of the civil structure using the above equipment is as follows.
  • the cradle connecting unit is connected to a cradle such as a camera tripod to mount the device on the cradle, and the digital camera is mounted on the camera cradle of the device (step 1-1).
  • the digital camera may be mounted on the holder instead of the step 1-1, and the reference scale rod may be mounted at a predetermined distance from the digital camera (step 1-2).
  • a moving scale rod engraved with the unit scale at the position of the measurement object (step 2).
  • a digital camera is used to photograph the reference bar, the measurement object, and the moving bar (step 3).
  • the length or deformation of the measurement object can be calculated (step 4), and the unit scale of the reference scale rod and the moving scale rod
  • the length and shooting time are stored in the database together with the captured images (step 5) so that they can be used for further analysis.
  • Figure 6 (a) is a view showing the present embodiment device and the movement scale rod 300 mounted on the holder 200
  • Figure 6 (b) is a view showing the image taken by step 4, the measurement object The form is omitted.
  • S1 is the actual unit length of the reference scale rod
  • S2 is the actual unit length of the moving scale rod 300
  • L1 is the distance between the digital camera 210 and the reference scale rod 10
  • the reference scale appears in the captured image.
  • FIG. 7 is a photograph of actual measurement according to the embodiment of the present embodiment, in which the actual unit length S1 of the reference scale rod 10 (red portion) is 10 cm, and the actual unit length (white portion) S2 of the movement scale rod 300 is 100 cm.
  • the distance L1 of the digital camera and the reference scale rod was 100 cm
  • the unit length K1 of the reference scale rod shown in the captured image was 364 pixels
  • the unit length K2 of the moving scale rod 300 shown in the captured image was 253 pixels.
  • FIG. 8 when the ground of the moving scale rod is locally settled, the position of the moving scale rod is reduced by the height H as compared with the photograph of FIG. 6 (b) stored before the settlement and stored in the database.
  • Figure 8 (c) is a photograph of Figure 6 (b).
  • the civil construction structure having a symmetrical shape and a digital camera can be installed in parallel, such as the tunnel shown in FIG.
  • the shape and size of the cross section can be obtained through a proportional expression as shown in Equation (3).
  • the crack size as shown in FIG. 2 may also be calculated by the above method.
  • the length and position of the reference scale rod and the moving scale rod in the photographed image may be automatically calculated by separating it from other backgrounds through image processing, and the distance between the pixels pointed by the user pointing to the end of each scale rod by enlarging the image It can also be calculated by calculating.
  • FIG. 10 when taking a tunnel picture as shown in FIG. 10 (a), face mapping capable of analyzing the shape, length and width of the crack as shown in FIG. 10 (b) by image analysis.
  • FIG. 10 (c) a diagram as shown in FIG. 10 (c) according to the inspection type regarding the hole displacement and deflection deformation in the conventional tunnel is also possible.
  • deflection deformation occurs between the mark positions in FIG. 1, it is possible to identify and maintain a record of the deformation amount.
  • an arbitrary point (for example, point A of FIG. 12) of the measurement object is selected in the image stored in the database by step 6 (step 6 -2), if starting with step 1-1, remove the reference bar, the installation rod, the moving bar, and if starting with step 1-2, take the measurement object with a digital camera while removing the reference bar and the moving bar,
  • the photographed image is stored in the database together with the photographing time and the position of the arbitrary point selected in step 6-2 (step 7), and the image taken by step 8 is superimposed to calculate the deformation of the measurement object ( According to step 8), the deformation of the civil structure can be continuously monitored while the deformation can be calculated.
  • the remote control server is provided with a control unit for controlling the digital camera's shooting and scaling, and a communication unit for transmitting the captured image to the remote management server at the site where the civil engineering structure is located. It is also desirable to control the control and obtain a photographed image.
  • Such images and measurement data are constructed as a database, which can be used for future maintenance and repair, and it is also desirable that the remote management server be able to manage several civil structures simultaneously.
  • the present invention relates to an image measuring apparatus and a method for measuring deformation of civil engineering structures, and according to the present invention, there is no need for a fixed mark to be fixedly installed, and it is possible to easily detect deformation of the structure as a whole and to simplify use.

Abstract

The present invention relates to an image measurement device and to a method for measuring a deformation of a civil structure. The image measurement device of the present invention comprises: a digital camera; a yardstick rod having unit marks marked thereon; an installation rod at one end of which the yardstick rod is installed; an installation rod fixing unit for fixing the other end of the installation rod; a camera support unit for supporting the digital camera; a first plate having an upper surface on which the camera support unit and the installation rod fixing unit are placed; a second plate coupled to the first plate such that the first plate is rotatable on an upper surface of the second plate, the second plate being parallel to the first plate; a third plate arranged below the second plate and having a lower surface with a support connection part; and a horizontal adjusting unit for adjusting the angle formed between a lower surface of the second plate and an upper surface of the third plate.

Description

화상측정용 기기 및 토목 구조물 변형 측정 방법Image measuring instrument and method of measuring deformation of civil structure
본 발명은 화상측정용 기기 및 토목 구조물 변형 측정 방법에 관한 것으로, 보다 상세하게는 터널, 도로, 댐과 같은 토목 구조물에 대하여 건설중 또는 후에 발생할 수 있는 변형을 화상분석에 의해 측정하기 위해 사용되는 기기 및 방법에 관한 것이다. The present invention relates to an image measuring apparatus and a method for measuring deformation of civil structures, and more particularly, to measure deformations that may occur during or after construction of civil structures such as tunnels, roads, and dams by image analysis. It relates to an apparatus and a method.
통상, 터널, 도로, 댐과 같은 토목 구조물을 건설하는 경우, 토양의 침하 등의 변형을 주기적으로 관찰하여야 한다. In general, when constructing civil structures such as tunnels, roads, and dams, periodic changes should be observed such as soil subsidence.
예를 들어, 터널의 경우, 터널을 굴착하는 동안 굴착된 터널의 벽이 허물어지는 경우가 종종 발생하게 되는데, 이는 곧 터널의 벽을 이루는 토양이 변형을 일으키게 되는 것을 의미하므로, 이러한 토양의 변형이 일어나는지 여부 및 그 정도를 주기적으로 계측할 필요가 있다. For example, in tunnels, the walls of the tunnels are often torn down while the tunnels are being excavated, which means that the soil that forms the walls of the tunnels will be deformed, which is why It is necessary to periodically measure whether or not it occurs.
도 1은 이러한 토양의 변형을 측정하기 위한 종래의 기술을 나타낸 것으로, 터널의 벽에 표점을 설치하고, 터널의 중앙에 설치한 레이저 거리계에 의해 표점까지의 거리를 측정하게 된다. Figure 1 shows a conventional technique for measuring the deformation of the soil, the gauge is installed on the wall of the tunnel, the distance to the gauge by the laser rangefinder installed in the center of the tunnel.
그러나, 굴착중인 터널의 벽에 표점을 설치하는 것이 쉽지 않고, 표점을 설치하는 작업에 의해 터널 벽이 또 다시 허물어지는 경우가 종종 있으며, 표점과 표점 사이의 구간이 변형되는 경우 이를 감지할 수 없으며, 발파작업 중 파편 등에 의해 표점이 손상되는 문제점이 있었다. However, it is not easy to install the mark on the wall of the tunnel under excavation, and the tunnel wall is often collapsed by installing the mark, and if the section between the mark and the mark is deformed, it cannot be detected. There is a problem that the mark is damaged by debris during blasting work.
또한 도 2의 사진은 터널 굴착중인 상태를 나타낸 것으로, 측정 대상물인 토목 구조물 벽면의 균열 길이를 측정하기 위해서는 일일이 줄자 등을 사용하여 계측하고 기록하여야 하는 문제점이 있었다. In addition, the photograph of FIG. 2 shows a state in which the tunnel is being excavated. In order to measure the crack length of the wall of the civil structure, which is a measurement target, there is a problem in that the measurement and recording using a tape measure or the like is required.
토목 구조물이 완성된 후 변형을 측정하기 위해서는 표점을 설치하고, 표점을 촬영하기 위한 영상촬상수단을 구비하며, 상기 영상촬상수단에 의해 표점을 촬영하기 위해 수평 및 수직 회전구동수단을 작동시켜 표점의 위치를 파악하고, 표점 촬영후 표점과 배경을 분리한 뒤 표점의 위치변화를 파악하는 방법이 대한민국 등록특허 10-0456524호에 개시되어 있다. In order to measure the deformation after the civil structure is completed, a mark is installed, and an image photographing means is provided for photographing the mark, and the horizontal and vertical rotation driving means are operated to photograph the mark by the image photographing means. A method of determining the position, separating the mark from the background after photographing the mark and capturing the position change of the mark is disclosed in Korean Patent No. 10-0456524.
상기 대한민국 등록특허 10-0456524호에 개시된 방법은 수평 및 수직 회전구동수단의 제어 정밀도에 따라 표점의 원래 위치가 변경될 수 있는 것이어서 오차가 클 뿐만 아니라, 표점과 표점 사이에 변형이 발생할 경우 이를 감지할 수 없어 실제 사용에 많은 무리가 있다. The method disclosed in the Republic of Korea Patent No. 10-0456524 is that the original position of the mark can be changed according to the control precision of the horizontal and vertical rotary drive means not only a large error, but also detects the deformation between the mark and the mark There are a lot of things that can't be used.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 표점을 고정설치하지 않아도 무방하며, 표점에 국한되지 않고 구조물의 변형을 전체적으로 감지할 수 있으며, 또한 사용이 간편한 화상측정용 기기 및 토목 구조물 변형 측정 방법을 제공하는 것을 그 목적으로 한다. The present invention has been made to solve the problems of the prior art as described above, it is not necessary to install a fixed mark, it is not limited to the mark can detect the deformation of the structure as a whole, and also an easy-to-use image measuring device And it aims to provide a civil structural deformation measuring method.
본 발명의 화상측정용 기기는, Image measuring apparatus of the present invention,
디지털 카메라와,With a digital camera,
단위눈금이 새겨진 기준 척도봉과,The standard scale bar with the unit scale,
상기 기준 척도봉이 일측 단부에 설치되는 설치봉과,An installation rod having the reference scale rod installed at one end;
상기 설치봉의 타측 단부를 고정하는 설치봉 고정부와,An installation rod fixing part for fixing the other end of the installation rod;
디지털 카메라를 거치하기 위한 카메라 거치부와,A camera holder for mounting a digital camera,
상기 카메라 거치부 및 설치봉 고정부를 상면에 배치하는 제 1 플레이트와,A first plate disposed on an upper surface of the camera mounting part and the mounting rod fixing part;
상기 제 1 플레이트가 상측에서 회전가능하도록 제 1 플레이트와 결합되며, 제 1 플레이트와 평행을 이루는 제 2 플레이트와,A second plate coupled to the first plate such that the first plate is rotatable from above, and parallel to the first plate;
상기 제 2 플레이트의 하측에 배치되며, 그 하면에 거치대 연결부를 구비한 제 3 플레이트와,A third plate disposed below the second plate and having a cradle connecting portion at a lower surface thereof;
상기 제 2 플레이트의 하면과 상기 제 3 플레이트의 상면이 이루는 각도를 조절하기 위한 수평 조절부를 포함하여 이루어진 것을 특징으로 한다. And a horizontal adjusting part for adjusting an angle formed between the lower surface of the second plate and the upper surface of the third plate.
상기 기준 척도봉이 일측단부에 설치된 설치봉을 한 쌍으로 구비하고, 상기 설치봉 고정부는 상기 한 쌍의 설치봉의 타측 단부를 각각 고정하며, 상기 각 설치봉에 설치된 기준 척도봉 사이의 간격를 조절하는 간격 조절부를 더 구비하는 것도 바람직하다. The reference bar is provided with a pair of mounting rods installed on one side end, the mounting rod fixing portion is fixed to the other end of the pair of mounting rods, respectively, the interval adjusting unit for adjusting the interval between the reference scale rods installed on each of the mounting rods It is also preferable to provide.
상기 제 1 플레이트의 기울기를 측정하는 수준계가 제 1 플레이트의 상면에 구비되는 것도 바람직하다. It is also preferable that the level gauge for measuring the inclination of the first plate is provided on the upper surface of the first plate.
상기 기기를 구비하여 토목구조물의 변형을 측정하는 방법은 The method for measuring the deformation of the civil structure with the device
상기 기기를 구비하고, 거치대에 상기 기기의 거치대 연결부를 연결시켜 거치대에 상기 기기를 장착하는 단계 1-1과,Step 1-1 comprising the device, mounting the device on the cradle by connecting the cradle connection of the device to the cradle;
측정대상물의 위치에 단위눈금이 새겨진 이동 척도봉을 거치시키는 단계 2와,Step 2 to mount the moving scale rod engraved unit scale at the position of the measurement object,
디지털 카메라를 사용하여 상기 기기의 기준 척도봉, 측정대상물 및 이동 척도봉을 촬영하는 단계 3과,Step 3 of photographing the reference bar, the measuring object and the moving bar of the device using a digital camera,
촬영된 화상에 나타난 기준 척도봉의 단위 눈금의 길이 및 이동 척도봉의 단위 눈금의 길이를 측정하여 측정대상물의 길이 또는 변형을 산출하는 단계 4와,Step 4 of calculating the length or deformation of the measurement object by measuring the length of the unit scale of the reference scale rod and the length of the unit scale of the moving scale rod shown in the photographed image;
상기 기준 척도봉과 이동 척도봉의 단위 눈금의 길이 및 촬영시간을 촬영된 화상과 함께 데이터 베이스에 저장하는 단계 5를 포함하여 이루어지는 것을 특징으로 한다. And storing step 5 of the unit scale of the reference scale rod and the moving scale rod together with the photographed image in a database.
상기 단계 1-1 대신 거치대에 디지털 카메라를 장착하고, 디지털 카메라로 부터 정해진 거리에 기준 척도봉을 거치시키는 단계 1-2를 사용하는 것도 가능하다. 이하 단계 1-1 또는 단계 1-2를 구분할 필요가 없는 경우에는 단계 1-1과 단계 1-2를 모두 단계 1로 표기하기로 한다. Instead of the step 1-1, it is also possible to use a step 1-2 for mounting the digital camera on the holder and mounting the reference scale rod at a predetermined distance from the digital camera. If it is not necessary to distinguish between step 1-1 or step 1-2, both step 1-1 and step 1-2 will be referred to as step 1.
단계 5에 의해 데이터 베이스에 저장된 화상들을 중첩시키는 단계 6-1을 더 포함하는 것도 바람직하다. It is also preferable to further include step 6-1 of superimposing the images stored in the database by step 5.
또한 단계 5에 의해 데이터 베이스에 저장된 화상에서 측정대상물의 임의 지점을 선정하는 단계 6-2와, In addition, step 6-2 for selecting an arbitrary point of the measurement object in the image stored in the database in step 5,
기준 척도봉, 설치봉, 이동 척도봉을 제거한 상태에서 디지털 카메라로 측정대상물을 촬영하여, 촬영시간, 단계 6-2에서 선정된 임의 지점의 위치와 함께 촬영된 화상을 데이터 베이스에 저장하는 단계 7과,Step 7 of taking a measurement object with a digital camera with the reference scale rod, installation rod, and moving scale rod removed, and storing the captured image in the database along with the shooting time and the position of the arbitrary point selected in step 6-2. ,
상기 단계 7에 의해 촬영된 화상을 중첩시켜 측정대상물의 변형을 산출하는 단계 8를 포함하는 것도 바람직하다. It is also preferable to include the step 8 of calculating the deformation of the measurement object by superimposing the image taken by the step 7.
본 발명에 의하면, 고정 설치되는 표점이 필요 없으며, 간편하게 구조물의 변형을 전체적으로 감지할 수 있으며, 또한 사용이 간편한 효과가 있다. According to the present invention, there is no need for a fixed mark installed, it is possible to easily detect the deformation of the structure as a whole, and there is an effect that is easy to use.
도 1은 종래 기술의 일례를 나타낸 도.1 shows an example of the prior art;
도 2는 측정대상물인 토목 구조물의 일례를 나타낸 사진.2 is a photograph showing an example of a civil structure that is a measurement object.
도 3은 본 발명 일 실시예 기기의 형태를 나타낸 사시도.Figure 3 is a perspective view showing the form of one embodiment of the present invention.
도 4는 본 발명 일 실시예 기기의 형태를 나타낸 저면 사시도.Figure 4 is a bottom perspective view showing the form of one embodiment of the present invention.
도 5는 본 발명 다른 실시예 기기의 형태를 나타낸 사시도.5 is a perspective view showing the form of another embodiment of the present invention.
도 6은 본 발명 일 실시예 방법을 나타낸 도.Figure 6 illustrates an embodiment method of the present invention.
도 7은 본 발명 일 실시예 방법을 나타낸 사진.Figure 7 is a photograph showing an embodiment of the present invention method.
도 8은 본 발명의 다른 실시예 방법을 나타낸 도.8 illustrates another embodiment method of the present invention.
도 9 내지 도 12는 본 발명의 또 다른 실시예 방법을 나타낸 사진.9 to 12 are photographs showing another embodiment method of the present invention.
이하, 본 발명을 그 실시예에 따라 도면을 참조하여 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
본 실시예에 따른 토목 구조물의 변형 측정을 위한 기기의 일례는 도 3 내지 도 5에 도시하였으며. 디지털 카메라는 도시를 생략하였다.An example of an apparatus for measuring deformation of a civil structure according to the present embodiment is illustrated in FIGS. 3 to 5. Digital cameras are not shown.
도 3은 본 실시예 기기의 형태를 나타낸 것으로, Figure 3 shows the form of the present embodiment device,
단위눈금이 새겨진 기준 척도봉(10)과, 상기 기준 척도봉(10)이 일측 단부에 설치되는 설치봉(20)과, 상기 설치봉(20)의 타측 단부를 고정하는 설치봉 고정부(30)와, 디지털 카메라를 거치하기 위한 카메라 거치부(40)와, 상기 카메라 거치부(40) 및 설치봉 고정부(30)를 상면에 배치하는 제 1 플레이트(50)와, 상기 제 1 플레이트(50)가 상측에서 회전가능하도록 제 1 플레이트(50)와 결합되며, 제 1 플레이트(50)와 평행을 이루는 제 2 플레이트(60)와, 상기 제 2 플레이트(60)의 하측에 배치되며, 그 하면에 거치대 연결부를 구비한 제 3 플레이트(70)와, 상기 제 2 플레이트(60)의 하면과 상기 제 3 플레이트(70)의 상면이 이루는 각도를 조절하기 위한 수평조절부(80)로 이루어져 있다. A reference scale rod 10 engraved with a unit scale, an installation rod 20 to which the reference scale rod 10 is installed at one end, and an installation rod fixing portion 30 to fix the other end of the installation rod 20; A camera mounting portion 40 for mounting a digital camera, a first plate 50 for placing the camera mounting portion 40 and the mounting rod fixing portion 30 on the upper surface, and the first plate 50 is on the upper side Coupled to the first plate 50 so as to be rotatable in the second plate 60 and parallel to the first plate 50, disposed below the second plate 60, the cradle connecting portion on the bottom It consists of a third plate 70 having a horizontal control unit 80 for adjusting the angle formed by the lower surface of the second plate 60 and the upper surface of the third plate (70).
기준 척도봉(10)에는 단위눈금이 새겨져 있는데, 본 실시예에서는 기준 척도봉을 10㎝로 제작하여 붉은 색을 도색함으로 기준 척도봉 전체로서 단위눈금을 이룬 것이지만, 2 ㎝ 또는 5 ㎝ 단위로 서로 색상을 달리하는 단위눈금을 새기는 것도 가능하다. The unit scale is engraved on the reference scale rod 10. In the present embodiment, the reference scale rod is made of 10 cm and painted in red to form the unit scale as a whole of the reference scale rod, but in units of 2 cm or 5 cm. It is also possible to engrave the unit scales of different colors.
설치봉(20)은 일측 단부에 기준 척도봉(10)이 설치되고, 타측 단부는 설치봉 고정부(30)에 끼워지게 된다. 설치봉(20)의 길이는 후술하는 바와 같이 디지털 카메라와 기준 척도봉(10)간의 거리가 1m가 될 수 있도록 설정하며, 카메라 장착시 기준 척도봉(10)의 위치를 변경할 수 있도록 설치봉(20)과 기준 척도봉(10)은 나사 조임에 의해 결합되는 것이 바람직하다. The installation rod 20 has a reference scale rod 10 installed at one end thereof, and the other end thereof is fitted to the installation rod fixing part 30. The length of the mounting rod 20 is set so that the distance between the digital camera and the reference scale rod 10 can be 1 m as will be described later, and the mounting rod 20 to change the position of the reference scale rod 10 when the camera is mounted. And reference scale rod 10 is preferably coupled by screwing.
본 실시예 기기는 디지털 카메라를 거치할 카메라 거치부(40)가 설치봉 고정부(30)와 함께 제 1 플레이트(50)의 상면에 배치된다. In the present exemplary embodiment, the camera mounting part 40 on which the digital camera is to be mounted is disposed on the upper surface of the first plate 50 together with the mounting rod fixing part 30.
제 1 플레이트(50)의 하측에는 제 2 플레이트(60)가 설치되는데, 제 1 플레이트(50)가 제 2 플레이트(60)의 상부에서 회전될 수 있도록 양 플레이트의 중심이 축 연결되어 있다. 또한 제 2 플레이트(60)에 대한 제 1 플레이트(50)의 상대적인 회전을 억제하기 위한 회전 억제부(90)를 더 구비하는 것도 바람직하다. 본 실시예에서는 제 1 플레이트(50)에 고정된 브라켓의 하단에 나사를 설치하여, 상기 나사가 제 2 플레이트(60)의 측면을 가압함으로써, 제 1 플레이트(50)의 회전을 억제할 수 있도록 되어 있다. A second plate 60 is installed below the first plate 50, and the centers of both plates are axially connected so that the first plate 50 can be rotated on the upper portion of the second plate 60. It is also preferable to further include a rotation suppressing unit 90 for suppressing the rotation of the first plate 50 relative to the second plate 60. In this embodiment, by installing a screw on the lower end of the bracket fixed to the first plate 50, the screw to press the side of the second plate 60, so that the rotation of the first plate 50 can be suppressed It is.
제 3 플레이트(70)는 도 4와 같이 제 2 플레이트(60)의 하측에 배치되며, 그 하면에 거치대와 연결될 거치대 연결부(110)를 구비하고 있다. 거치대는 일반적인 카메라용 삼각대를 사용할 수 있다.The third plate 70 is disposed below the second plate 60 as shown in FIG. 4, and has a cradle connecting portion 110 to be connected to the cradle on its lower surface. The cradle can use a tripod for general cameras.
제 2 플레이트(60)의 하면과 제 3 플레이트(70)의 상면이 이루는 각도를 조절하기 위한 수평 조절부(80)가 구비되는데, 도 3 및 도 4에 수평 조절부(80)는 제 2 플레이트(60)와 제 3 플레이트(70)를 연결하는 3개의 나사로 이루어져 있으며, 각 나사를 회전시킴에 따라 각 나사 위치에서의 제 2 플레이트(60)와 제 3 플레이트(70) 간의 거리를 조절할 수 있게 되는 것이다. A horizontal adjusting unit 80 is provided to adjust an angle formed between the lower surface of the second plate 60 and the upper surface of the third plate 70. In FIG. 3 and FIG. 4, the horizontal adjusting unit 80 is a second plate. It consists of three screws connecting the 60 and the third plate 70, so that the distance between the second plate 60 and the third plate 70 at each screw position can be adjusted by rotating each screw. Will be.
이후 설명되지만, 본 발명 토목구조물의 변형측정을 위한 방법에서는 제 1 플레이트(50)가 회전하더라도 디지털 카메라는 동일한 높이방향으로 촬영이 가능하여야 하는데, 카메라용 삼각대 역시 카메라를 회전시킬 수 있지만 동일한 높이 방향으로 카메라의 촬영범위를 조절할 수 없으므로, 본 발명의 기기와 같이 수평조절부(80)가 필요하게 되는 것이다. Although described later, in the method for measuring deformation of the civil engineering structure of the present invention, even if the first plate 50 is rotated, the digital camera should be able to shoot in the same height direction, but the tripod for the camera can also rotate the camera, but the same height direction. Since it is not possible to adjust the shooting range of the camera, the horizontal adjustment unit 80, such as the device of the present invention is required.
이와 같은 수평 조절부(80)에 의해 제 1,2 플레이트(50,60)가 지면과 수평을 이루도록 조절할 수 있게 된다. By the horizontal adjusting unit 80 as described above, the first and second plates 50 and 60 can be adjusted to be horizontal with the ground.
제 1 플레이트(50)가 수평을 이루고 있는지를 확인하기 위해서는 제 1 플레이트(50)의 상면에 수준계(100)를 더 구비하고, 수준계(100)에 따라 수평 조절부(80)를 조절하여 제 1 플레이트(50)가 수평을 이루도록 할 수 있다. 그러나 수준계가 없더라도 제 1 플레이트의 상면에 독립적인 수준계를 거치하여 사용하는 것도 가능하다. In order to check whether the first plate 50 is horizontal, a level gauge 100 is further provided on the upper surface of the first plate 50, and the horizontal adjusting part 80 is adjusted according to the level gauge 100. The first plate 50 may be horizontal. However, even if there is no level gauge, it is also possible to use an independent level gauge on the upper surface of the first plate.
또한, 도 5와 같이 설치봉(20)을 한 쌍으로 구비하여 설치봉 고정부(30)에 각각 고정하고, 상기 각 설치봉(20)에 설치된 기준 척도봉(10) 사이의 간격을 조절하는 간격 조절부(35)를 더 구비하는 것도 바람직하다. 도 5는 간격 조절부(35)의 구성을 나타내기 위해 카메라 거치부를 제거한 것이다. In addition, as shown in Figure 5 is provided with a pair of mounting rods 20 fixed to the mounting rod fixing portion 30, respectively, the interval adjusting unit for adjusting the interval between the reference scale rods 10 installed on each of the mounting rods 20 It is also preferable to further provide 35. 5 is to remove the camera mounting portion to show the configuration of the spacing adjuster 35.
상기와 같은 기기를 사용하여 토목 구조물의 변형을 측정하는 방법은 다음과 같다. The method of measuring the deformation of the civil structure using the above equipment is as follows.
먼저 상기 설명한 기기를 구비하고, 카메라 삼각대와 같은 거치대에 거치대 연결부를 연결시켜 거치대에 상기 기기를 장착하고, 상기 기기의 카메라 거치부에 디지털 카메라를 장착하게 된다(단계 1-1). 또는 상기 단계 1-1 대신 거치대에 디지털 카메라를 장착하고, 디지털 카메라로 부터 정해진 거리에 기준 척도봉을 거치시켜도 된다(단계 1-2). 또한, 측정대상물의 위치에 단위 눈금이 새겨진 이동 척도봉을 거치시키고(단계 2). 디지털 카메라를 사용하여 기준 척도봉, 측정 대상물 및 이동 척도봉을 촬영하게 된다(단계 3).First, the device described above is provided, and the cradle connecting unit is connected to a cradle such as a camera tripod to mount the device on the cradle, and the digital camera is mounted on the camera cradle of the device (step 1-1). Alternatively, the digital camera may be mounted on the holder instead of the step 1-1, and the reference scale rod may be mounted at a predetermined distance from the digital camera (step 1-2). In addition, a moving scale rod engraved with the unit scale at the position of the measurement object (step 2). A digital camera is used to photograph the reference bar, the measurement object, and the moving bar (step 3).
촬영된 화상에 나타난 기준 척도봉의 단위 눈금의 길이 및 이동 척도봉의 단위 눈금의 길이를 측정하면 측정대상물의 길이 또는 변형을 산출할 수 있으며(단계 4), 상기 기준 척도봉 및 이동 척도봉의 단위 눈금의 길이, 촬영시간을 촬영된 화상과 함께 데이터 베이스에 저장하여(단계 5) 추후 분석에도 사용할 수 있도록 한다. By measuring the length of the unit scale of the reference scale rod and the length of the unit scale of the moving scale rod shown in the photographed image, the length or deformation of the measurement object can be calculated (step 4), and the unit scale of the reference scale rod and the moving scale rod The length and shooting time are stored in the database together with the captured images (step 5) so that they can be used for further analysis.
위 방법을 사용하여 측정대상물까지의 거리를 측정하는 방법을 도 6을 참조하여 보다 상세하게 설명한다. 도 6(a)는 거치대(200)에 거치된 본 실시예 기기 및 이동 척도봉(300)을 나타낸 도이며, 도 6(b)는 단계 4에 의해 촬영된 화상을 나타낸 도로써, 측정대상물의 형태는 생략한 것이다. The method of measuring the distance to the measurement object using the above method will be described in more detail with reference to FIG. 6. Figure 6 (a) is a view showing the present embodiment device and the movement scale rod 300 mounted on the holder 200, Figure 6 (b) is a view showing the image taken by step 4, the measurement object The form is omitted.
기준 척도봉(10)의 실제 단위길이를 S1, 이동 척도봉(300)의 실제 단위길이를 S2, 디지털 카메라(210)와 기준 척도봉(10)의 거리를 L1 , 촬영된 화상에 나타난 기준 척도봉(10)의 단위길이를 K1, 촬영된 화상에 나타난 이동 척도봉(300)의 단위길이를 K2라 하였을 때, 카메라로부터 이동 척도봉(즉, 측정 대상물)까지의 거리 L2는,S1 is the actual unit length of the reference scale rod 10, S2 is the actual unit length of the moving scale rod 300, L1 is the distance between the digital camera 210 and the reference scale rod 10, and the reference scale appears in the captured image. When the unit length of the rod 10 is K1 and the unit length of the moving scale rod 300 shown in the photographed image is K2, the distance L2 from the camera to the moving scale rod (that is, the measurement object) is
L2 = K1/K2 × L1 × S2/S1 ---- (1)L2 = K1 / K2 × L1 × S2 / S1 ---- (1)
식(1)과 같이 계산 될 수 있으며,Can be calculated as shown in equation (1),
기준 척도봉의 실제 단위길이 S1과 이동 척도봉의 실제 단위길이 S2가 같을 경우, 카메라로부터 이동 척도봉(즉, 측정 대상물)까지의 거리 L2는,If the actual unit length S1 of the reference scale rod and the actual unit length S2 of the movement scale rod are the same, the distance L2 from the camera to the movement scale rod (ie the measurement object) is
L2 = K1/K2 × L1 ---- (2)L2 = K1 / K2 × L1 ---- (2)
식(2)와 같이 계산될 수 있다. It can be calculated as Equation (2).
도 7은 본 실시예의 형태에 따라 실제 측정을 한 사진으로써, 기준 척도봉(10, 적색 부분)의 실제 단위길이 S1은 10cm, 이동 척도봉(300)의 실제 단위길이(흰색 부분) S2는 100cm, 디지털 카메라와 기준 척도봉의 거리 L1은 100cm, 촬영된 화상에 나타난 기준 척도봉의 단위길이 K1은 364 픽셀, 촬영된 화상에 나타난 이동 척도봉(300)의 단위길이 K2는 253 픽셀 이었다. 7 is a photograph of actual measurement according to the embodiment of the present embodiment, in which the actual unit length S1 of the reference scale rod 10 (red portion) is 10 cm, and the actual unit length (white portion) S2 of the movement scale rod 300 is 100 cm. The distance L1 of the digital camera and the reference scale rod was 100 cm, the unit length K1 of the reference scale rod shown in the captured image was 364 pixels, and the unit length K2 of the moving scale rod 300 shown in the captured image was 253 pixels.
이에 따라 카메라로부터 이동 척도봉(즉, 측정 대상물)까지의 거리 L2는Accordingly, the distance L2 from the camera to the moving scale rod (ie the measurement object)
L2= 364/253 × 100 × 100/10 = 1438cm 로 구해졌으며, L2 = 364/253 × 100 × 100/10 = 1438 cm
실측된 거리와 동일하게 계산되었다. Calculated equal to the measured distance.
또한 도 8에 도시한 바와 같이 이동 척도봉의 지반이 국부적으로 침하되면, 침하량은 침하되기 전 촬영하여 데이터베이스에 저장된 도 6(b) 사진과 대비하여 이동 척도봉의 위치는 높이 H만큼 감소하게 된다. 도 8(c)는 도 6(b) 사진이다. In addition, as shown in FIG. 8, when the ground of the moving scale rod is locally settled, the position of the moving scale rod is reduced by the height H as compared with the photograph of FIG. 6 (b) stored before the settlement and stored in the database. Figure 8 (c) is a photograph of Figure 6 (b).
데이터 베이스에 저장된 화상과 대비하기 위해서는 서로 중첩시켜 관찰하는 것도 가능하다(단계 6-1).In order to contrast with the image stored in the database, it is also possible to superimpose each other (step 6-1).
이때 침하량 H는, 촬영된 화상을 대비하여 차이가 나는 길이 h, 촬영된 화상에 나타난 이동 척도봉(300)의 단위길이 K2, 이동 척도봉(300)의 실제 단위길이 S2를 통해 At this time, the settlement amount H, through the length h, which differs from the photographed image, the unit length K2 of the moving scale rod 300 shown in the captured image, the actual unit length S2 of the moving scale rod 300
H= h/K2 * S2 ---- (3)H = h / K2 * S2 ---- (3)
식(3)과 같이 계산된다. It is calculated as Equation (3).
데이터 베이스에 저장된 토목 구조물의 형태는 변하지 않은 것으로 확인됨에도 불구하고 침하 또는 융기된 것으로 관찰되는 경우가 있는데, 이는 본 발명의 기기를 설치한 위치가 융기 또는 침하된 것으로 해석하는 것도 가능하다. Although the shape of the civil engineering structure stored in the database has been confirmed to be unchanged, it is sometimes observed to have been settled or raised, which may be interpreted as being raised or settled at the location where the device of the present invention is installed.
앞서 설명한 바와 같이, 기기에 기준 척도봉이 2개 설치되는 경우는, 도 9에 도시된 터널과 같이 대칭 형상을 가진 토목 구조물과 디지털 카메라가 평행하게 설치될 수 있도록 해주는 것이며, 이동 척도봉이 설치된 터널의 단면의 형상 및 크기등을 상기 식(3)과 같은 비례식을 통해 얻을 수 있게 된다. 도 2와 같은 균열의 크기 역시 상기 방법에 의해 산출할 수 있다. As described above, when two reference scale rods are installed in the device, the civil construction structure having a symmetrical shape and a digital camera can be installed in parallel, such as the tunnel shown in FIG. The shape and size of the cross section can be obtained through a proportional expression as shown in Equation (3). The crack size as shown in FIG. 2 may also be calculated by the above method.
촬영된 화상에서 기준 척도봉과 이동 척도봉의 길이 및 위치는 이미지 프로세싱을 통하여 다른 배경과 분리하여 자동으로 산출할 수도 있고, 화상을 확대하여 사용자가 각 척도봉의 끝 부분을 포인팅하여 포인팅된 픽셀사이의 거리를 계산함에 의해 산출할 수도 있는 것이다. The length and position of the reference scale rod and the moving scale rod in the photographed image may be automatically calculated by separating it from other backgrounds through image processing, and the distance between the pixels pointed by the user pointing to the end of each scale rod by enlarging the image It can also be calculated by calculating.
예를 들어 도 10에 도시한 바와 같이, 도 10(a)와 같은 터널 사진을 촬영하게 되면, 화상분석에 의해 도 10(b)와 같이 균열의 형태, 길이 및 폭을 분석할 수 있는 페이스 매핑(Face Mapping)자료를 얻을 수 있을 뿐만 아니라, 도 1에 도시된 바와 같이 종래의 터널 내의 내공변위 및 처짐변형에 관한 검사 형식에 따른 도 10(c)와 같은 선도의 작성도 가능하다. 특히 도 1의 표점 위치 사이에서 처짐 변형이 발생하는 경우에도 이를 식별하고 그 변형량에 대해 기록을 유지 관리할 수 있게 되는 것이다. For example, as shown in FIG. 10, when taking a tunnel picture as shown in FIG. 10 (a), face mapping capable of analyzing the shape, length and width of the crack as shown in FIG. 10 (b) by image analysis. In addition to obtaining (Face Mapping) data, as shown in FIG. 1, a diagram as shown in FIG. 10 (c) according to the inspection type regarding the hole displacement and deflection deformation in the conventional tunnel is also possible. In particular, even when deflection deformation occurs between the mark positions in FIG. 1, it is possible to identify and maintain a record of the deformation amount.
또한, 댐과 같은 사면의 경우에는 도 11과 같이, 그 기울기(도 11의 두꺼운 직선 부분)의 측정도 가능함은 물론이다. In addition, in the case of a slope such as a dam, of course, the slope (thick straight line portion of FIG. 11) can be measured as shown in FIG. 11.
그리고, 토목 구조물의 크기가 방대한 경우, 본 발명 기기를 회전시키면서 촬영하게 되면 전체적인 토목구조물의 형태를 일정높이에서의 화상으로 확보하여 분석하는 것도 가능하다.In addition, when the size of the civil engineering structure is enormous, it is also possible to secure and analyze the shape of the overall civil structure as an image at a certain height when photographing while rotating the device of the present invention.
또한, 토목 구조물이 완공된 후에는 상기 단계 1 내지 단계 5을 거친 후, 단계 6에 의해 데이터 베이스에 저장된 화상에서 측정대상물의 임의 지점(예를 들어 도 12의 지점 A)을 선정하고(단계 6-2), 단계 1-1로 시작한 경우 기준 척도봉, 설치봉, 이동 척도봉을 제거하고, 단계 1-2로 시작한 경우 기준 척도봉과 이동 척도봉을 제거한 상태에서 디지털 카메라로 측정대상물을 촬영하여, 촬영시간 및 단계 6-2에서 선정된 임의 지점의 위치와 함께 촬영된 화상을 데이터 베이스에 저장하며(단계 7), 상기 단계 8에 의해 촬영된 화상을 중첩시켜 측정대상물의 변형을 산출하도록 함(단계 8)에 따라 토목 구조물의 변형을 지속으로 감시하면서 변형이 발생하는 경우 변형량을 산출할 수도 있는 것이다. In addition, after the civil structure is completed, after passing through Steps 1 to 5, an arbitrary point (for example, point A of FIG. 12) of the measurement object is selected in the image stored in the database by step 6 (step 6 -2), if starting with step 1-1, remove the reference bar, the installation rod, the moving bar, and if starting with step 1-2, take the measurement object with a digital camera while removing the reference bar and the moving bar, The photographed image is stored in the database together with the photographing time and the position of the arbitrary point selected in step 6-2 (step 7), and the image taken by step 8 is superimposed to calculate the deformation of the measurement object ( According to step 8), the deformation of the civil structure can be continuously monitored while the deformation can be calculated.
즉 지점 A까지의 거리, 지점 A를 포함하는 단면의 형상 및 크기를 알고 있으면, 지점 A가 아닌 부분으로서 이격된 거리에 있는 토목 구조물의 크기/변형량 역시 거리에 비례하여 화상에 그 크기가 나타나는 것이므로, 산출이 가능한 것이다. In other words, if the distance to point A, the shape and size of the cross section including point A are known, then the size / strain of the civil structure at a distance apart as part other than point A is also proportional to the distance, so the size appears in the image. The calculation is possible.
원격 관리서버에서 디지털 카메라의 촬영 및 배율 조절이 가능하도록 제어할 수 있는 제어부와, 촬영된 화상을 원격 관리서버로 송신할 수 있는 통신부를 토목구조물이 위치한 현장에 구비하여, 원격 관리서버에서 디지털 카메라를 제어하며 촬영된 화상을 입수할 수 있도록 하는 것도 바람직하다. The remote control server is provided with a control unit for controlling the digital camera's shooting and scaling, and a communication unit for transmitting the captured image to the remote management server at the site where the civil engineering structure is located. It is also desirable to control the control and obtain a photographed image.
이와 같은 화상 및 측정자료는 데이터 베이스로 구축되어, 향후 유지관리 및 보수에 사용될 수 있는 것이며, 원격 관리서버는 여러 개소의 토목 구조물을 동시에 관리할 수 있도록 하는 것도 바람직하다. Such images and measurement data are constructed as a database, which can be used for future maintenance and repair, and it is also desirable that the remote management server be able to manage several civil structures simultaneously.
본 발명은 화상측정용 기기 및 토목 구조물 변형 측정 방법에 관한 것으로, 본 발명에 의하면, 고정 설치되는 표점이 필요 없으며, 간편하게 구조물의 변형을 전체적으로 감지할 수 있으며, 또한 사용이 간편하게 된다. The present invention relates to an image measuring apparatus and a method for measuring deformation of civil engineering structures, and according to the present invention, there is no need for a fixed mark to be fixedly installed, and it is possible to easily detect deformation of the structure as a whole and to simplify use.

Claims (7)

  1. 디지털 카메라와;A digital camera;
    단위눈금이 새겨진 기준 척도봉과;A standard scale bar engraved with a unit scale;
    상기 기준 척도봉이 일측 단부에 설치되는 설치봉과;An installation rod having the reference scale rod installed at one end;
    상기 설치봉의 타측 단부를 고정하는 설치봉 고정부와;An installation rod fixing part for fixing the other end of the installation rod;
    디지털 카메라를 거치하기 위한 카메라 거치부와;A camera holder for mounting a digital camera;
    상기 카메라 거치부 및 설치봉 고정부를 상면에 배치하는 제 1 플레이트와;A first plate disposed on an upper surface of the camera mounting portion and the mounting rod fixing portion;
    상기 제 1 플레이트가 상측에서 회전가능하도록 제 1 플레이트와 결합되며, 제 1 플레이트와 평행을 이루는 제 2 플레이트와;A second plate coupled to the first plate such that the first plate is rotatable from above, and parallel to the first plate;
    상기 제 2 플레이트의 하측에 배치되며, 그 하면에 거치대 연결부를 구비한 제 3 플레이트와;A third plate disposed below the second plate and having a cradle connecting portion at a lower surface thereof;
    상기 제 2 플레이트의 하면과 상기 제 3 플레이트의 상면이 이루는 각도를 조절하기 위한 수평 조절부를 포함하여 이루어진 것을 특징으로 하는 화상측정용 기기. And a horizontal adjusting unit for adjusting an angle formed between the lower surface of the second plate and the upper surface of the third plate.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 기준 척도봉이 일측단부에 설치된 설치봉을 한 쌍으로 구비하고, 상기 설치봉 고정부는 상기 한 쌍의 설치봉의 타측 단부를 각각 고정하며, 상기 각 설치봉에 설치된 기준 척도봉 사이의 간격를 조절하는 간격 조절부를 더 구비하는 것을 특징으로 하는 화상측정용 기기. The reference bar is provided with a pair of mounting rods installed on one side end, the mounting rod fixing portion is fixed to the other end of the pair of mounting rods, respectively, the interval adjusting unit for adjusting the interval between the reference scale rods installed on each of the mounting rods An image measuring apparatus, characterized in that provided.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 플레이트의 기울기를 측정하는 수준계가 제 1 플레이트의 상면에 구비되는 것을 특징으로 하는 화상측정용 기기. An image measuring device, characterized in that the level gauge for measuring the inclination of the first plate is provided on the upper surface of the first plate.
  4. 디지털 카메라와,With a digital camera,
    단위눈금이 새겨진 기준 척도봉과,The standard scale bar with the unit scale,
    상기 기준 척도봉이 일측 단부에 설치되는 설치봉과,An installation rod having the reference scale rod installed at one end;
    상기 설치봉의 타측 단부를 고정하는 설치봉 고정부와,An installation rod fixing part for fixing the other end of the installation rod;
    디지털 카메라를 거치하기 위한 카메라 거치부와,A camera holder for mounting a digital camera,
    상기 카메라 거치부 및 설치봉 고정부를 상면에 배치하는 제 1 플레이트와,A first plate disposed on an upper surface of the camera mounting part and the mounting rod fixing part;
    상기 제 1 플레이트가 상측에서 회전가능하도록 제 1 플레이트와 결합되며, 제 1 플레이트와 평행을 이루는 제 2 플레이트와,A second plate coupled to the first plate such that the first plate is rotatable from above, and parallel to the first plate;
    상기 제 2 플레이트의 하측에 배치되며, 그 하면에 거치대 연결부를 구비한 제 3 플레이트와,A third plate disposed below the second plate and having a cradle connecting portion at a lower surface thereof;
    상기 제 2 플레이트의 하면과 상기 제 3 플레이트의 상면이 이루는 각도를 조절하기 위한 수평 조절부를 포함하여 이루어진 기기를 구비하며, It is provided with a device comprising a horizontal adjustment for adjusting the angle formed between the lower surface of the second plate and the upper surface of the third plate,
    거치대에 상기 기기의 거치대 연결부를 연결시켜 거치대에 상기 기기를 장착하는 단계 1-1과;Mounting the device on a cradle by connecting a cradle connection of the device to a cradle;
    측정대상물의 위치에 단위눈금이 새겨진 이동 척도봉을 거치시키는 단계 2와;Step 2 and mounting a moving scale rod engraved unit scale at the position of the measurement object;
    디지털 카메라를 사용하여 상기 기기의 기준 척도봉, 측정대상물 및 이동 척도봉을 촬영하는 단계 3과;Photographing a reference bar, a measurement object, and a moving bar of the device by using a digital camera;
    촬영된 화상에 나타난 기준 척도봉의 단위 눈금의 길이 및 이동 척도봉의 단위 눈금의 길이를 측정하여 측정대상물의 길이 또는 변형을 산출하는 단계 4와;Calculating a length or deformation of the measurement object by measuring the length of the unit scale of the reference scale rod and the length of the unit scale of the moving scale rod shown in the photographed image;
    상기 기준 척도봉과 이동 척도봉의 단위 눈금의 길이 및 촬영시간을 촬영된 화상과 함께 데이터 베이스에 저장하는 단계 5를 포함하여 이루어지는 것을 특징으로 하는 토목 구조물 변형 측정 방법. And a step 5 of storing the length and the shooting time of the unit scale of the reference scale rod and the moving scale rod together with the photographed image in a database.
  5. 디지털 카메라와,With a digital camera,
    단위눈금이 새겨진 기준 척도봉과,The standard scale bar with the unit scale,
    상기 기준 척도봉이 일측 단부에 설치되는 설치봉과,An installation rod having the reference scale rod installed at one end thereof;
    상기 설치봉의 타측 단부를 고정하는 설치봉 고정부와,An installation rod fixing part for fixing the other end of the installation rod;
    디지털 카메라를 거치하기 위한 카메라 거치부와,A camera holder for mounting a digital camera,
    상기 카메라 거치부 및 설치봉 고정부를 상면에 배치하는 제 1 플레이트와,A first plate disposed on an upper surface of the camera mounting part and the mounting rod fixing part;
    상기 제 1 플레이트가 상측에서 회전가능하도록 제 1 플레이트와 결합되며, 제 1 플레이트와 평행을 이루는 제 2 플레이트와,A second plate coupled to the first plate such that the first plate is rotatable from above, and parallel to the first plate;
    상기 제 2 플레이트의 하측에 배치되며, 그 하면에 거치대 연결부를 구비한 제 3 플레이트와,A third plate disposed below the second plate and having a cradle connecting portion at a lower surface thereof;
    상기 제 2 플레이트의 하면과 상기 제 3 플레이트의 상면이 이루는 각도를 조절하기 위한 수평 조절부를 포함하여 이루어진 기기를 구비하며, It is provided with a device comprising a horizontal adjustment for adjusting the angle formed between the lower surface of the second plate and the upper surface of the third plate,
    거치대에 디지털 카메라를 장착하고, 디지털 카메라로 부터 정해진 거리에 기준 척도봉을 거치시키는 단계 1-2와;Mounting a digital camera on the cradle, and mounting the reference scale rod at a predetermined distance from the digital camera;
    측정대상물의 위치에 단위눈금이 새겨진 이동 척도봉을 거치시키는 단계 2와;Step 2 and mounting a moving scale rod engraved unit scale at the position of the measurement object;
    디지털 카메라를 사용하여 상기 기기의 기준 척도봉, 측정대상물 및 이동 척도봉을 촬영하는 단계 3과;Photographing a reference bar, a measurement object, and a moving bar of the device by using a digital camera;
    촬영된 화상에 나타난 기준 척도봉의 단위 눈금의 길이 및 이동 척도봉의 단위 눈금의 길이를 측정하여 측정대상물의 길이 또는 변형을 산출하는 단계 4와;Calculating a length or deformation of the measurement object by measuring the length of the unit scale of the reference scale rod and the length of the unit scale of the moving scale rod shown in the photographed image;
    상기 기준 척도봉과 이동 척도봉의 단위 눈금의 길이 및 촬영시간을 촬영된 화상과 함께 데이터 베이스에 저장하는 단계 5를 포함하여 이루어지는 것을 특징으로 하는 토목 구조물 변형 측정 방법. And a step 5 of storing the length and the shooting time of the unit scale of the reference scale rod and the moving scale rod together with the photographed image in a database.
  6. 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5,
    상기 단계 5에 의해 데이터 베이스에 저장된 화상들을 중첩시키는 단계 6-1을 더 포함하는 것을 특징으로 하는 토목 구조물 변형 측정 방법. The method of claim 6, further comprising the step 6-1 of overlapping the images stored in the database by the step 5.
  7. 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5,
    상기 단계 5에 의해 데이터 베이스에 저장된 화상에서 측정대상물의 임의 지점을 선정하는 단계 6-2와, Step 6-2 for selecting an arbitrary point of the measurement object in the image stored in the database by the step 5,
    단계 1-1로 시작한 경우 기준 척도봉, 설치봉, 이동 척도봉을 제거하고, 단계 1-2로 시작한 경우 기준 척도봉과 이동 척도봉을 제거한 상태에서 디지털 카메라로 측정대상물을 촬영하여, 촬영시간, 단계 6-2에서 선정된 임의 지점의 위치와 함께 촬영된 화상을 데이터 베이스에 저장하는 단계 7과,If you started with step 1-1, remove the reference bar, the installation rod, and the moving bar, and if starting with step 1-2, take the measurement object with a digital camera while removing the reference bar and the moving bar, Step 7 of storing the captured image in the database along with the position of the arbitrary point selected in 6-2,
    상기 단계 7에 의해 촬영된 화상을 중첩시켜 측정대상물의 변형을 산출하는 단계 8을 더 포함하는 것을 특징으로 하는 토목 구조물 변형 측정 방법. And a step 8 of calculating the deformation of the measurement object by superimposing the image photographed by the step 7.
PCT/KR2013/003999 2012-05-11 2013-05-08 Image measurement device and method for measuring deformation of civil structure WO2013168991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0050095 2012-05-11
KR1020120050095A KR101181706B1 (en) 2012-05-11 2012-05-11 Device for image analysis and method for measuring deformation of civil structure

Publications (1)

Publication Number Publication Date
WO2013168991A1 true WO2013168991A1 (en) 2013-11-14

Family

ID=47113415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003999 WO2013168991A1 (en) 2012-05-11 2013-05-08 Image measurement device and method for measuring deformation of civil structure

Country Status (2)

Country Link
KR (1) KR101181706B1 (en)
WO (1) WO2013168991A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091770A (en) * 2015-05-22 2015-11-25 北京路桥瑞通科技发展有限公司 Bridge support deformation disease detection system
CN105716583A (en) * 2016-01-26 2016-06-29 河海大学 Exploration hole geological record base drawing generation method based on parallel photography
CN108027948A (en) * 2015-09-16 2018-05-11 富士胶片株式会社 Integrity decision maker, integrity decision method and integrity decision procedure
CN110736447A (en) * 2019-09-25 2020-01-31 武汉大学 method for checking horizontal position of integrated image acquisition equipment in vertical direction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820122B1 (en) * 2017-07-19 2018-01-18 (주)해강 Horizontality maintenance apparatus of stereo camera for geodetic surveying
CN108534701B (en) * 2018-06-25 2024-04-16 中国电建集团中南勘测设计研究院有限公司 Structure and method for monitoring photogrammetry by converging cavern

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020261A (en) * 2002-08-30 2004-03-09 한창수 Apparatus for detecting crack in structure by input an image and method of the same
KR20040043558A (en) * 2002-11-19 2004-05-24 한국항공우주연구원 Movable Speed Calibration Method and Equipment for Aircraft
KR100456524B1 (en) * 2002-03-25 2004-11-16 한국건설기술연구원 Apparatus and method for monitoring construction image and construction monitoring system using it
KR20050022655A (en) * 2003-08-29 2005-03-08 삼성전자주식회사 Apparatus For Calibrating Probe Station
JP4811567B2 (en) * 2005-06-08 2011-11-09 学校法人金沢工業大学 Stress measurement method for structures using photographed images

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456524B1 (en) * 2002-03-25 2004-11-16 한국건설기술연구원 Apparatus and method for monitoring construction image and construction monitoring system using it
KR20040020261A (en) * 2002-08-30 2004-03-09 한창수 Apparatus for detecting crack in structure by input an image and method of the same
KR20040043558A (en) * 2002-11-19 2004-05-24 한국항공우주연구원 Movable Speed Calibration Method and Equipment for Aircraft
KR20050022655A (en) * 2003-08-29 2005-03-08 삼성전자주식회사 Apparatus For Calibrating Probe Station
JP4811567B2 (en) * 2005-06-08 2011-11-09 学校法人金沢工業大学 Stress measurement method for structures using photographed images

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091770A (en) * 2015-05-22 2015-11-25 北京路桥瑞通科技发展有限公司 Bridge support deformation disease detection system
CN105091770B (en) * 2015-05-22 2017-11-24 北京路桥瑞通科技发展有限公司 Bridge pad deforms Defect inspection system
CN108027948A (en) * 2015-09-16 2018-05-11 富士胶片株式会社 Integrity decision maker, integrity decision method and integrity decision procedure
EP3352129A4 (en) * 2015-09-16 2018-08-08 FUJI-FILM Corporation Soundness determination device, soundness determination method and soundness determination program
US11118998B2 (en) 2015-09-16 2021-09-14 Fujifilm Corporation Soundness determination device, soundness determination method, and soundness determination program
CN105716583A (en) * 2016-01-26 2016-06-29 河海大学 Exploration hole geological record base drawing generation method based on parallel photography
CN105716583B (en) * 2016-01-26 2018-03-30 河海大学 A kind of exploration adit geological record base map generation method based on parallel photography
CN110736447A (en) * 2019-09-25 2020-01-31 武汉大学 method for checking horizontal position of integrated image acquisition equipment in vertical direction

Also Published As

Publication number Publication date
KR101181706B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2013168991A1 (en) Image measurement device and method for measuring deformation of civil structure
WO2020101103A1 (en) Apparatus and method for measuring flow velocity of stream by using optical flow image processing
WO2013077623A1 (en) Structure displacement measurement system and method
KR101406326B1 (en) Measuring device for crack from long distance and measuring method thereof
WO2014101281A1 (en) Device and method for detecting optical-axis offset of lens in apparatus
WO2015170879A1 (en) Monorail inspection apparatus
WO2014178637A1 (en) Method for measuring tunnel displacement using buried displacement meter
WO2012150846A2 (en) Wall-climbing printing method and system
WO2020059979A1 (en) Device for checking manhole
WO2010050714A2 (en) Apparatus for measuring ground displacement
WO2015016460A1 (en) Automatic optical photographing system for ocean pillar drilling core specimen and photographing method therefor
CN105865349A (en) Large-scale building displacement monitoring method
KR101280960B1 (en) Apparatus for measuring tunnel convergence displacements
WO2016039545A1 (en) Camera having function of checking underground facilities for underground construction, and safety inspection method for checking installation state of underground facilities using excavating screw having metal detector mounted therein
KR101181382B1 (en) Method of measuring tunnel convergence displacements
KR100458290B1 (en) Method for Measuring Displacement of Structural Members
WO2015167262A1 (en) System and method for correcting distortion image due to curved surface
WO2014171661A1 (en) Facility safety management method by image measurement
WO2011021831A2 (en) Apparatus and method for detecting a corona
WO2020105820A1 (en) Intelligent device installed in marine resource production system for remote monitoring
JP3468255B2 (en) Surveillance camera positioning control device and indicator reading device
JP3732653B2 (en) Appearance measuring method and apparatus by two-dimensional image comparison
CN108534701B (en) Structure and method for monitoring photogrammetry by converging cavern
WO2020138664A1 (en) System for constructing three-dimensional pipeline electronic map and automatically creating electronic ledger
JP3597832B2 (en) Trajectory error measurement method and trajectory error measurement system used for the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13787518

Country of ref document: EP

Kind code of ref document: A1