WO2014171661A1 - Facility safety management method by image measurement - Google Patents

Facility safety management method by image measurement Download PDF

Info

Publication number
WO2014171661A1
WO2014171661A1 PCT/KR2014/003035 KR2014003035W WO2014171661A1 WO 2014171661 A1 WO2014171661 A1 WO 2014171661A1 KR 2014003035 W KR2014003035 W KR 2014003035W WO 2014171661 A1 WO2014171661 A1 WO 2014171661A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
camera
measurement
measurement target
image
Prior art date
Application number
PCT/KR2014/003035
Other languages
French (fr)
Korean (ko)
Inventor
손인규
Original Assignee
Son In Gyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Son In Gyu filed Critical Son In Gyu
Publication of WO2014171661A1 publication Critical patent/WO2014171661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present invention relates to a method for safety management of facilities by image measurement, and more particularly, to more precisely and conveniently manage by image measurement when constructing or maintaining civil facilities such as dams, bridges, tunnels, and roads. It is about a method.
  • Korean Patent No. 456524 As a conventional technique for managing a facility, Korean Patent No. 456524 can be given.
  • Patent No. 456524 uses a zoom-in / zoom-out camera to photograph a landmark installed on a construction structure, and analyzes the photographed image to measure the amount of deformation. I'm using. If you use the zoom-in function to capture the landmarks installed on a construction structure, the camera must be panned or tilted by controlling the camera to capture the next landmark, which makes it difficult for the camera to return to the previous shooting position correctly. .
  • the camera driver 2 adjusts the posture of the camera by panning or tilting to photograph other marks (not shown), and then adjusts the posture of the camera to photograph the target mark 10 again.
  • Korean Patent No. 1181706 filed and registered by the present applicant to solve the above problems, is to measure deformation of a facility by installing an image measuring device. There was a difficulty in managing this.
  • the term "facility” includes not only civil facilities that require safety management, such as dams, bridges, tunnels, roads, etc., but also mountains or robbers, which are natural products to be managed to prevent natural disasters.
  • the present invention has been made to solve the problems of the prior art as described above, even when zoom-in / panning / tilting to photograph the landmark installed in the facility, by accurately grasp the position of the landmark to accurately determine the deformation of the facility It is an object of the present invention to provide a method for the safety management of facilities by measuring measurable images.
  • a reference mark installed at the tip position of the camera so as to be moved in the same direction as the direction of the lens of the camera by panning and tilting
  • Step 1 provided at the observation point
  • the step 2 further includes the step 2-1 of installing the second measurement target mark at the second measurement point;
  • the deformation of the facility can be accurately measured by accurately identifying the position of the mark.
  • Figure 2 is a view for explaining the first embodiment of the present invention.
  • FIG 3 is a view for explaining a second embodiment of the present invention.
  • FIG. 4 is a view for explaining a third embodiment of the present invention.
  • 5 to 9 is a view showing a picture implementing the embodiment 1 of the present invention.
  • a reference mark provided at the tip position of the camera is installed at the observation point so as to move in the same direction as the direction of the lens of the camera by panning and tilting.
  • the reference mark 3 is shown in FIGS. 2B and 2D even when panning and tilting are applied by the camera driver 2, that is, even when the pose of the camera changes from FIG. 2A to FIG. 2C.
  • the camera is installed at the camera tip position in the same direction as the lens lens facing so as to appear at the same position in the captured image.
  • the far point mark 4 is assigned to the far point where the absolute position does not change.
  • the far-point marks may designate one point of a structure, such as a bridge, a traffic sign, or an intersection point of a mountain ridge, for example. .
  • the far point where the absolute position does not change means the position where the ground does not sink because it is far from the measurement target point where the deformation occurs.
  • the far point may be a far point that can be identified through image analysis in the photographed image.
  • Step 2 the first measurement target mark 10-1 is installed at the first measurement point to be measured.
  • the first measurement target mark 10-1 is installed at the first measurement point of the slope to be measured.
  • the reference mark (3), the target mark and the long mark (4) can be manufactured in various shapes such as rods, cubes, and tetrahedrons with triangles on the upper and lower sides, and scales or marks to identify the unit length are formed on each side. Can be.
  • the color of the scale or mark displayed on each side is different from the color of each side so that the position of the scale / mark can be detected automatically by image analysis.
  • the mark points in Fig. 2 indicate the markings of (X), (+) and ( ⁇ ) shapes on each side of the cube.
  • the reference marks, the targets to be measured, and the size and marks of the far point may be different.
  • the position value of the first measurement point is acquired.
  • a method of measuring an absolute position value such as longitude / latitude / height of the first measurement target mark 10-1 by surveying may be used.
  • the method for measuring the distance from the image of FIG. 2 (b) to the first measurement target mark 10-1 is as follows.
  • the actual length of the reference mark 3 is S1
  • the actual length of the first measurement target mark 10-1 is S2
  • the distance between the reference mark 3 at the camera 1 is L1
  • the length of the reference mark shown in the image is K2
  • the distance from the camera 1 to the far point 4 can also be calculated in the same manner as above.
  • the change in the distance to the first measurement target mark 10-1 means that the first measurement target mark 10-1 is moved back and forth toward the camera by the changed moving distance.
  • the distance h2 between the first measurement target mark 10-1 and the far mark 4 is measured in the image of FIG. 2 (b).
  • the camera 1 is used for security of the facility, and simultaneously photographs the reference mark, the far point mark, and the first measurement target mark according to a predetermined observation period. (Step 3)
  • the camera 1 is difficult to return to the exact same posture as in FIG. 2 (a) again due to a control error of the camera driving unit 2, for example, to return to the posture as shown in FIG. In this case, an image as shown in FIG. 2 (d) is obtained.
  • the distance between the reference mark of the image of FIG. 2 (d) and the first measurement target mark through the image photographed in step 3 may be recalculated by the form of equation (1).
  • the change in distance from the measurement point to the first measurement target mark can be known.
  • the vertical movement distance of the first measurement target mark is calculated as follows.
  • the coordinates of the far point in the first image of FIG. 2 (b) are referred to as (x1, y1) and the coordinates of the first measurement target point are (x2, y2), and the distance of the far point in the image of FIG.
  • the coordinates are (x1 ', y1') and the coordinates of the first measurement target mark are (x2 ', y2')
  • the interval h2 between the first measurement target mark 10-1 and the far point mark 4 in the image of FIG. 2 (b) is calculated as (y1-y2), and the first measurement target mark 10 in the image of FIG.
  • the distance h2 'between -1) and the far point mark 4 is calculated as (y1'-y2').
  • the vertical movement distance H of the first measurement target mark is determined by the following equation (2).
  • the left and right movement distances of the first measurement target mark may be calculated in a manner with respect to the vertical movement distances.
  • the value becomes an absolute position value and is determined according to the value analyzed in the image by the above formulas (1) and (2). 1
  • the actual position value of the target point to be measured can be calculated
  • Step 4 When the moving distance (deformation amount) is measured by the image based on the position value of the first measurement target mark and the far target mark identified by the first photographed image, the actual moving distance of the first measurement target mark by the relative position value ( Deformation amount) can be measured. (Step 4)
  • the reference mark was designated as the right corner of the red cylinder showing the unit length in white
  • the measurement target mark was indicated by the red rectangle on the square white background
  • the red rectangle was designated as the upper left corner. It was designated as the top edge of the second column of the bridge shown on the right side of the bar on which the mark was placed.
  • FIG. 6 shows that the camera is turned upward by tilting.
  • the reference mark is positioned above the measurement target mark.
  • FIG. 7 shows that the camera faces downward by tilting. In the photographed image, the reference mark is positioned below the measurement target mark and the far point mark.
  • 5 to 7 show that the position and height of the camera and the position and height of the measurement target mark have not changed, but the height of the measurement target mark appears differently on the screen.
  • the image is analyzed, and the y coordinates of the pixels on the image of the reference mark, the measurement target mark, and the far point mark are as follows.
  • the y coordinate of the image is measured from the upper side of the image.
  • Table 1 Table 1. y-coordinate of each landmark pixel of FIGS. 5 to 7 Y coordinate of reference point Y-coordinate of the target point to be measured Coordinates of the far point 5 318 282 350 6 318 341 409 7 318 237 305
  • the Y coordinate of the pixel on the image of the reference mark does not change in FIGS. 5 to 7.
  • the measurement target landmark is downwardly shifted by 59 pixels and the far point landmark is also downward by 59 pixels in comparison with FIG. 5.
  • (h2'-h2) becomes 0, indicating that the target to be measured is not deformed (moved).
  • the measured target mark is 45 pixels up and the far point is 45 pixels up as compared to FIG. 5.
  • (h2'-h2) becomes 0, indicating that the target to be measured is not deformed (moved).
  • Left and right deformation (movement) can also be calculated as described above, it is possible to know the exact amount of deformation in spite of the change in the attitude of the camera by panning / tilting only by using the relationship between the far point and the reference point as in the present invention.
  • FIG. 8 and 9 show yet another application example, in which FIG. 8 shows an initial image taken at an observation point and FIG. 9 shows a form in which a target to be measured is settled.
  • the facility can set up multiple target marks depending on its size or need (step 2-1), while the first target mark should be taken at the same time as the remote mark, while the remaining target marks may be taken at the same time as the remote mark. It may not be taken.
  • the second measurement object is based on the first measurement target mark. It is possible to measure the vertical movement distance (strain) of the target to be measured. You can also use the camera's zoom-in feature to improve measurement accuracy.
  • the reference marks are installed at the front end position of the camera so that they are displayed at a predetermined position in the image taken by the camera, and the reference marks are taken simultaneously with the first and second measurement target marks. 2
  • the distance of the target to be measured can also be grasped. (Step 6)
  • the camera driving unit After photographing the first target mark and the long target mark, the camera driving unit is operated so that the camera captures the first target mark and the second target mark. Operation of the camera driver for this is possible by a predetermined panning / tilting / zoom-in. Alternatively, the camera may be zoomed out to capture the measurement target marks in one image, and then find the second measurement target marks. In this case, the shape of the marks displayed on the measurement target marks may be different.
  • the moving distance (strain) of a large number of measurement target marks is automatically made by image analysis, recorded and stored in the management server, and it is recommended to notify the administrator when the moving distance (strain) exceeds the reference value.
  • Image analysis may be performed by a dedicated device or a management server integrally formed with the camera.
  • Example 2 is an example of monitoring landslides and the like based on the principle of Example 1, which will be described with reference to FIG. 3.
  • the reference mark 300 is installed and photographed at the far point mark 4 and the first measurement target mark 10-1 by the first camera 100 driven by the camera driving unit.
  • the moving distance is measured up, down, left and right, and then, the second measurement target mark 10-2 and the first measurement target mark 10-1 are photographed to measure the front, rear, left, and right movement distances.
  • the front, rear, left, and right moving distances of the measurement target mark that can be measured by the first camera 100 are measured.
  • a second camera 101 provided with a reference mark of reference numeral 301 is installed at the position of the measurement target mark of 10-8.
  • the first camera 100 only the target marks of measurement 10-1, 10-2, ..., 10-8 are observed, and in the second camera 101, the target marks and the measurement target 10-1 are shown.
  • the positions of the second cameras are set so that the target marks of measurement 20-1, 20-2, ..., 20-5 are observed.
  • Each target mark can be identified by recognizing a number formed on the mark or by storing and controlling the pose of the camera with respect to the target marks in the initial setting.
  • the measurement target mark indicated by reference numeral 10-1 which grasps the moving distance (deformation amount) through the first camera 100. It is possible to measure the moving distance (deformation amount) of the target to be measured at 1. Subsequently, the second camera 101 captures the measurement target marks 20-2,..., 20-6 that can be measured together with the reference marks indicated by reference numeral 301 to measure the moving distance (strain). It becomes possible.
  • the third embodiment is an example of monitoring the deformation of the tunnel based on the principle of the first embodiment, which will be described with reference to FIG. 4.
  • the target mark and the far-point mark of 10-1 are installed outside the tunnel 500 by the camera 1 having the reference mark 3 and the reference mark 3 installed and driven by the camera driver. 4) photographed and the position values of the target marks of measurement targets 10-1, 10-2, and 10-3 are measured by the method described in Example 1 above.
  • the camera 1 is preferably installed at a point designed to prevent deformation.
  • the measurement target mark of reference numeral 10-4 and the long target mark of reference numeral 4 ' are photographed for the long target mark of 4' and the position value of the target target measurement of reference numerals 10-4, 10-5, and 10-6. Measure also.
  • the tunnel is long, measuring deformation in the tunnel by installing a camera and a camera driver having a measurement target mark between the measurement target marks as necessary and determining the position value of the measurement target point in the method of the second embodiment. It is possible.
  • the present invention relates to a method for safety management of facilities by image measurement, and more particularly, to more precisely and conveniently manage by image measurement when constructing or maintaining civil facilities such as dams, bridges, tunnels, and roads.
  • the present invention relates to a method for precisely determining the location of a mark and accurately measuring deformation of a facility, and also using the security camera used for securing a facility without installing a separate dedicated camera equipment. It is possible to implement, which can reduce costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A facility safety management method by image measurement according to the present invention comprises: step 1 for arranging, at an observation place, a camera, a reference marking point installed at a front end position of the camera to be displayed at a predetermined position in an image photographed by the camera, and a camera driving unit enabling a posture change of the camera through panning and tilting; step 2 for installing a distant marking point at a distant place having an absolute position which never changes, and a first measurement marking point at a first measurement place; step 3 for acquiring position values of the first measurement place and the distant place; step 4 for simultaneously photographing the reference marking point, the distant marking point, and the first measurement marking point according to a predetermined observation cycle; and step 5 for calculating a position value of the first measurement marking point according to the relationship between the distant marking point and the reference marking point of an image photographed in step 4.

Description

화상측정에 의한 시설물 안전관리 방법Facility Safety Management Method by Image Measurement
본 발명은 화상측정에 의한 시설물 안전관리 방법에 관한 것으로, 보다 상세하게는 댐, 교량, 터널, 도로 등과 같은 토목 시설물을 건설하거나 유지관리하는 경우에 있어 화상측정에 의해 보다 정밀하고 편리하게 관리하기 위한 방법에 관한 것이다.The present invention relates to a method for safety management of facilities by image measurement, and more particularly, to more precisely and conveniently manage by image measurement when constructing or maintaining civil facilities such as dams, bridges, tunnels, and roads. It is about a method.
통상, 댐, 교량, 터널, 도로 등과 같은 토목 시설물을 건설하는 경우에는 토양의 침하 등의 변형을 주기적으로 관찰하여야 하며, 또한 완공한 후에도 안전을 위하여 시설물의 변형상태를 주기적으로 체크하게 된다.In general, when constructing civil installations such as dams, bridges, tunnels, roads, etc., the deformation of soil, etc. should be periodically observed, and after completion of construction, the deformation state of the facilities is periodically checked for safety.
시설물을 관리하는 종래의 기술로는 대한민국 등록특허 456524호를 그 예로 들 수 있다. As a conventional technique for managing a facility, Korean Patent No. 456524 can be given.
상기 등록특허 456524호에서는 줌-인(zoom-in)/줌-아웃(zoom-out)이 가능한 카메라를 사용하여 건설 구조물에 설치된 표점을 촬영하고, 촬영된 화상을 분석하여 그 변형량을 측정하는 방식을 사용하고 있다. 건설 구조물에 설치된 표점을 촬영하기 위해 줌-인 기능을 사용하면 다음 표점을 촬영하기 위해 카메라를 제어하여 패닝(panning)하거나 틸팅(tilting)하여야 하며, 이때 카메라는 이전 촬영위치로 정확히 복귀하기 힘들게 된다. Patent No. 456524 uses a zoom-in / zoom-out camera to photograph a landmark installed on a construction structure, and analyzes the photographed image to measure the amount of deformation. I'm using. If you use the zoom-in function to capture the landmarks installed on a construction structure, the camera must be panned or tilted by controlling the camera to capture the next landmark, which makes it difficult for the camera to return to the previous shooting position correctly. .
이러한 문제점을 사면에 설치된 측정대상 표점을 촬영하는 것을 예로 들어 보다 상세하게 설명하면 다음과 같다. This problem is described in more detail with an example of taking the measurement target mark installed on the slope as follows.
즉, 도 1(a)와 같이 카메라(1)를 사용하여 최초에 측정대상 표점(10)을 촬영하면 도 1(b)와 같은 화상을 얻게 된다. 그 후 카메라 구동부(2)의 패닝이나 틸팅에 의해 카메라의 자세를 조정하여 다른 표점들(도시하지 않음)을 촬영하고, 다시 측정대상 표점(10)을 촬영하기 위해 카메라의 자세를 조정하게 된다.That is, when the measurement target mark 10 is first photographed using the camera 1 as shown in FIG. 1A, an image as shown in FIG. 1B is obtained. After that, the camera driver 2 adjusts the posture of the camera by panning or tilting to photograph other marks (not shown), and then adjusts the posture of the camera to photograph the target mark 10 again.
카메라의 자세를 조절하기 위해 패닝이나 틸팅을 하게 되면, 패닝이나 틸팅을 제어하는 카메라 구동부(2)의 정밀도 부족에 의해 정확히 최초 측정대상 표점(10)을 촬영하였던 촬영 자세로 돌아오기 힘들게 된다. 측정대상 표점(10)의 위치가 변동되지 않았음에도 불구하고 도 1(c)와 같이 카메라의 자세가 정확히 도 1(a)와 같은 자세로 돌아오지 않는 것에 의해 도 1(d)와 같이 측정대상 표점(10)의 위치가 최초 위치(점선으로 표시된 표점)보다 촬영된 화상에서 L 만큼 변경된 것으로 촬영되게 되기 때문에 오차가 발생하게 된다. When panning or tilting is performed to adjust the posture of the camera, it is difficult to return to the photographing posture in which the target measurement target 10 was accurately photographed due to the lack of precision of the camera driver 2 controlling the panning or tilting. Although the position of the measurement target mark 10 has not changed, the posture of the camera as shown in FIG. 1 (c) does not return to the same posture as in FIG. 1 (a). An error occurs because the position of the mark 10 is taken as being changed by L in the image captured from the initial position (the mark indicated by the dotted line).
바로 이와 같은 이유로 화상 분석 및 측정에 대한 신뢰도가 낮아졌으며, 실제 시설물에 적용될 수 없는 문제점이 있었다. For this very reason, the reliability of image analysis and measurement is low, and there is a problem that cannot be applied to actual facilities.
상기와 같은 문제점을 해결하기 위해 본 출원인이 출원하여 등록받은 대한민국 등록특허 1181706호는 화상측정용 기기를 설치하여 시설물의 변형을 측정하기 위한 것인데, 카메라를 항상 수평으로 거치토록 하여야 하므로 넓거나 큰 시설물을 관리하는데 애로사항이 있었다. Korean Patent No. 1181706, filed and registered by the present applicant to solve the above problems, is to measure deformation of a facility by installing an image measuring device. There was a difficulty in managing this.
본 출원에서 시설물이라 함은 댐, 교량, 터널, 도로 등과 같이 안전관리가 요구되는 토목 시설물 뿐만 아니라, 자연재해를 예방하기 위해 관리되어야 하는 자연물인 산이나 강도 포함하는 것으로 한다.In the present application, the term "facility" includes not only civil facilities that require safety management, such as dams, bridges, tunnels, roads, etc., but also mountains or robbers, which are natural products to be managed to prevent natural disasters.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 시설물에 설치된 표점을 촬영하기 위해 줌-인/패닝/틸팅하는 경우에도, 표점의 위치를 정확히 파악하여 시설물의 변형을 정밀하게 측정할 수 있는 화상측정에 의한 시설물 안전관리 방법을 제공하는 것을 그 목적으로 한다. The present invention has been made to solve the problems of the prior art as described above, even when zoom-in / panning / tilting to photograph the landmark installed in the facility, by accurately grasp the position of the landmark to accurately determine the deformation of the facility It is an object of the present invention to provide a method for the safety management of facilities by measuring measurable images.
본 발명의 화상측정에 의한 시설물 안전관리 방법은,Facility safety management method by the image measurement of the present invention,
카메라와, Camera,
패닝 및 틸팅에 의해 카메라의 자세 변화를 가능하게 하는 카메라 구동부와A camera driver for changing the posture of the camera by panning and tilting;
패닝 및 틸팅에 의해 상기 카메라의 렌즈가 향하는 방향과 동일한 방향으로 이동되도록 카메라 선단 위치에 설치되는 기준 표점을, A reference mark installed at the tip position of the camera so as to be moved in the same direction as the direction of the lens of the camera by panning and tilting,
관찰 지점에 구비하는 단계 1과; Step 1 provided at the observation point;
절대위치가 변하지 않는 원거리 지점에 지정되는 원거리 표점과, 제 1 측정 지점에 제 1 측정대상 표점을 설치하는 단계 2와;A step 2 of installing a far point mark designated at a far point whose absolute position does not change, and a first mark to be measured at the first measurement point;
정해진 관찰 주기에 따라 상기 기준 표점, 원거리 표점, 제 1 측정대상 표점을 동시에 촬영하는 단계 3과;Photographing the reference mark, the far point mark, and the first target mark at the same time according to a predetermined observation period;
단계 3에서 촬영된 화상의 기준 표점 및 원거리 표점 간의 관계에 따라 제 1 측정대상 표점의 위치값을 계산하는 단계 4를; 포함하여 이루어진 것을 특징으로 한다. Calculating a position value of the first measurement target mark according to the relationship between the reference mark and the far point of the image captured in step 3; Characterized in that the made up.
상기 단계 2에서는 제 2 측정지점에 제 2 측정대상 표점을 설치하는 단계 2-1을 더 포함하며;The step 2 further includes the step 2-1 of installing the second measurement target mark at the second measurement point;
정해진 관찰 주기에 따라 상기 기준 표점, 제 1 측정대상 표점 및 제 2 측정대상 표점을 동시에 촬영하는 단계 5와;Photographing the reference mark, the first measurement target mark, and the second measurement target mark simultaneously according to a predetermined observation period;
정해진 관찰 주기에 따라 기준표점과 제 1 측정대상 표점 간의 관계에 따라 제 2 측정대상 표점의 위치값을 계산하는 단계 6을; 더 포함하여 이루어지는 것도 바람직하다.Calculating a position value of the second measurement target mark according to the relationship between the reference mark and the first measurement target mark according to a predetermined observation period; It is also preferable to further comprise.
상기와 같은 구성으로 이루어진 화상측정에 의한 시설물 안전관리 방법에 의하면 시설물에 설치된 표점을 촬영하기 위해 줌-인/패닝/틸팅하는 경우에도, 표점의 위치를 정확히 파악하여 시설물의 변형을 정밀하게 측정할 수 있으며, 또한 별도의 전용 카메라 장비를 설치하지 않고 통상 시설물 보안에 사용되는 보안용 카메라를 이용하여서도 본 발명을 구현하는 것이 가능하므로 비용을 절감할 수 있는 효과가 있다. According to the method of facility safety management by image measurement having the above configuration, even when zoom-in / panning / tilting to photograph the mark installed in the facility, the deformation of the facility can be accurately measured by accurately identifying the position of the mark. In addition, it is possible to implement the present invention using a security camera that is usually used for security facilities without installing a separate dedicated camera equipment, there is an effect that can reduce the cost.
도 1은 종래 기술을 설명하기 위한 도.1 is a view for explaining the prior art.
도 2는 본 발명 실시예 1을 설명하기 위한 도.Figure 2 is a view for explaining the first embodiment of the present invention.
도 3은 본 발명 실시예 2를 설명하기 위한 도.3 is a view for explaining a second embodiment of the present invention.
도 4는 본 발명 실시예 3을 설명하기 위한 도.4 is a view for explaining a third embodiment of the present invention.
도 5 내지 도 9는 본 발명 실시예 1을 구현한 사진을 나타낸 도.5 to 9 is a view showing a picture implementing the embodiment 1 of the present invention.
이하, 본 발명을 그 실시예에 따라 도면을 참조하여 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
<실시예 1><Example 1>
본 실시예에서는 도 1과 동일한 형태의 시설물(사면)에 대한 측정대상 표점을 그 예로 들어 도 2를 참고하여 그 방법을 설명하기로 한다. In this embodiment, the method will be described with reference to FIG. 2 by taking a measurement target mark on a facility (slope) having the same shape as that of FIG. 1.
먼저 카메라(1)와, 패닝/틸팅에 의해 카메라의 자세 변화가 가능한 카메라 구동부(2)와, 상기 카메라(1)로 찍은 화상에서 일정위치에 표시되기 위해 카메라 선단 위치에 설치되는 기준 표점(3)과, First, the camera 1, the camera driver 2 capable of changing the posture of the camera by panning / tilting, and the reference mark 3 installed at the camera tip position to be displayed at a predetermined position in the image taken by the camera 1 )and,
패닝 및 틸팅에 의해 상기 카메라의 렌즈가 향하는 방향과 동일한 방향으로 이동되도록 카메라 선단 위치에 설치되는 기준 표점을, 관찰 지점에 설치한다.(단계 1)A reference mark provided at the tip position of the camera is installed at the observation point so as to move in the same direction as the direction of the lens of the camera by panning and tilting. (Step 1)
관찰지점으로 지반의 침하나 융기가 발생하지 않는 견고한 지반을 선정하여 카메라를 설치한다. As the observation point, install the camera by selecting the solid ground where the ground does not settle or rise.
기준 표점(3)은 카메라 구동부(2)에 의해 패닝 및 틸팅이 적용되더라도, 즉 카메라의 자세가 도 2(a)에서 도 2(c)로 바뀌더라도, 도 2(b) 및 도 2(d)에 나타나는 바와 같이 촬영된 화상에서 동일 위치에 나타나도록 카메라의 렌즈가 향하는 방향과 동일한 방향으로 카메라 선단 위치에 설치된다. The reference mark 3 is shown in FIGS. 2B and 2D even when panning and tilting are applied by the camera driver 2, that is, even when the pose of the camera changes from FIG. 2A to FIG. 2C. As shown in Fig. 1, the camera is installed at the camera tip position in the same direction as the lens lens facing so as to appear at the same position in the captured image.
다음으로 절대위치가 변하지 않는 원거리 지점에 원거리 표점(4)을 지정하게 된다. 도 2 내지 도 4에 도시된 도면에서는 원거리 표점으로 인공적으로 제작된 표점을 사용하였지만, 원거리 표점은 원거리 지점에 있는 교량, 교통표지판 등과 같은 구조물의 한 점 또는 산의 능선의 교차점 등을 지정할 수 있다. Next, the far point mark 4 is assigned to the far point where the absolute position does not change. In the drawings shown in FIGS. 2 to 4, although artificially manufactured marks are used as far-point marks, the far-point marks may designate one point of a structure, such as a bridge, a traffic sign, or an intersection point of a mountain ridge, for example. .
절대위치가 변하지 않는 원거리 지점이란 변형이 발생하는 측정대상 지점과 원거리 이격되어 지반의 침하가 일어나지 않는 위치를 의미한다. The far point where the absolute position does not change means the position where the ground does not sink because it is far from the measurement target point where the deformation occurs.
원거리 표점은 촬영된 화상에서 화상분석을 통하여 식별될 수 있는 원거리 지점이면 족하다. The far point may be a far point that can be identified through image analysis in the photographed image.
다음으로 측정하고자 하는 제 1 측정 지점에 제 1 측정대상 표점(10-1)을 설치하게 된다.(단계 2)Next, the first measurement target mark 10-1 is installed at the first measurement point to be measured. (Step 2)
제 1 측정대상 표점(10-1)은 측정하고자 하는 사면의 제 1 측정 지점에 설치되게 된다. The first measurement target mark 10-1 is installed at the first measurement point of the slope to be measured.
기준 표점(3), 측정대상 표점 및 원거리 표점(4)은 봉, 육면체, 상하면이 삼각형인 5면체 등 다양한 형상으로 제작될 수 있으며, 각 면에는 단위길이를 식별할 수 있는 눈금 또는 표식이 형성될 수 있다. 또한 각 면에 표시된 눈금 또는 표식의 색상은 각 면의 색상과 달리하여 화상분석에 의해 눈금/표식의 위치를 자동으로 파악할 수 있도록 한다. 도 2의 표점들은 육면체의 각 면에 (X), (+), (^) 형상의 표식을 표시한 것을 나타내고 있는 것이다. 기준 표점, 측정대상 표점, 원거리 표점의 크기 및 표식이 서로 달라도 무방하다.The reference mark (3), the target mark and the long mark (4) can be manufactured in various shapes such as rods, cubes, and tetrahedrons with triangles on the upper and lower sides, and scales or marks to identify the unit length are formed on each side. Can be. In addition, the color of the scale or mark displayed on each side is different from the color of each side so that the position of the scale / mark can be detected automatically by image analysis. The mark points in Fig. 2 indicate the markings of (X), (+) and (^) shapes on each side of the cube. The reference marks, the targets to be measured, and the size and marks of the far point may be different.
원거리 표점(4)을 지정하거나 설치하고 제 1 측정대상 표점(10-1)을 설치한 후에는 제 1 측정지점의 위치값을 획득한다.(단계 3)After specifying or installing the far point mark 4 and installing the first measurement target mark 10-1, the position value of the first measurement point is acquired.
위치값을 획득하는 방법으로서는 여러가지가 있을 수 있다. 통상 사용되는 바와 같이 측량에 의해 제 1 측정대상 표점(10-1)의 경도/위도/높이와 같은 절대적인 위치값을 측정하는 방법을 사용할 수 있을 것이다. There may be various methods for obtaining the position value. As commonly used, a method of measuring an absolute position value such as longitude / latitude / height of the first measurement target mark 10-1 by surveying may be used.
본 발명을 통하여 구현하고자 하는 것은 측량에 의해 절대적인 위치값을 얻겠다는 것이 아니라 시설물의 변형을 감시하여 안전관리를 하겠다는 것이므로, 최초 위치로부터의 변형량을 측정하는 것으로 족하다. What is intended to be implemented through the present invention is not to obtain the absolute position value by surveying, but to monitor the deformation of the facility to perform safety management, it is sufficient to measure the amount of deformation from the initial position.
본 실시예에서는 최초 위치로부터의 변형량을 측정하는 것에 대하여 설명한다. In this embodiment, the measurement of the deformation amount from the initial position will be described.
도 2(a)와 같이 최초 촬영을 하게 되면 도 2 (b)와 같은 형태의 화상을 얻을 수 있게 된다.  When the first photographing is performed as shown in FIG. 2 (a), an image having the form as shown in FIG.
도 2(b) 화상으로부터 제 1 측정대상 표점(10-1)까지의 거리를 측정하기 위한 방법은 다음과 같다. 기준 표점(3)의 실제 길이를 S1, 제 1 측정대상 표점(10-1)의 실제 길이를 S2, 카메라(1)에서 기준 표점(3)사이의 거리를 L1, 화상에 나타난 기준 표점의 길이를 K1, 화상에 나타난 제 1 측정대상 표점(10-1)의 길이를 K2라고 할 때, 카메라(1)에서 제 1 측정대상 표점(10-1)까지의 거리 L2는,The method for measuring the distance from the image of FIG. 2 (b) to the first measurement target mark 10-1 is as follows. The actual length of the reference mark 3 is S1, the actual length of the first measurement target mark 10-1 is S2, the distance between the reference mark 3 at the camera 1 is L1, the length of the reference mark shown in the image. When K1 and the length of the first measurement target mark 10-1 shown in the image are K2, the distance L2 from the camera 1 to the first measurement target mark 10-1 is
L2 = K1/K2 × L1 × S2/S1 -----(1)L2 = K1 / K2 × L1 × S2 / S1 ----- (1)
위 식 (1)과 같이 계산될 수 있다.It can be calculated as in Equation (1) above.
원거리 표점의 크기를 알 수 있다면, 카메라(1)에서 원거리 표점(4)까지의 거리 역시 위와 같은 형태로 계산될 수 있다. If the size of the far point can be known, the distance from the camera 1 to the far point 4 can also be calculated in the same manner as above.
제 1 측정대상 표점(10-1)까지의 거리가 변한다는 것은 변화된 이동거리 만큼 제 1 측정대상 표점(10-1)이 카메라 쪽을 향해 전후로 이동된 것을 의미하게 되는 것이다. The change in the distance to the first measurement target mark 10-1 means that the first measurement target mark 10-1 is moved back and forth toward the camera by the changed moving distance.
화상에서 표점을 분리 식별하여 크기 등을 측정하는 것은 여러가지 알려진 화상분석 방법 중 하나를 사용하면 되는 것이므로, 이에 대한 설명은 생략한다.Since it is only necessary to use one of various known image analysis methods by separating and identifying the mark in the image, the description thereof will be omitted.
또한, 도 2(b)의 화상에서 제 1 측정대상 표점(10-1)과 원거리 표점(4)의 간격 h2를 측정하게 된다. In addition, the distance h2 between the first measurement target mark 10-1 and the far mark 4 is measured in the image of FIG. 2 (b).
이후, 카메라(1)는 시설물의 보안을 위해 사용되다가, 정해진 관찰 주기에 따라 상기 기준 표점, 원거리 표점, 제 1 측정대상 표점을 동시에 촬영하게 된다. (단계 3)After that, the camera 1 is used for security of the facility, and simultaneously photographs the reference mark, the far point mark, and the first measurement target mark according to a predetermined observation period. (Step 3)
이때, 카메라(1)는 카메라 구동부(2)의 제어 오차 등에 의해 다시 정확하게 도 2(a)와 동일한 자세로 정확하게 돌아오기 힘들며, 예를 들어 도 2(b)와 같은 자세로 돌아와 다시 촬영을 하게 되면 도 2(d)와 같은 화상을 얻게 된다. At this time, the camera 1 is difficult to return to the exact same posture as in FIG. 2 (a) again due to a control error of the camera driving unit 2, for example, to return to the posture as shown in FIG. In this case, an image as shown in FIG. 2 (d) is obtained.
상기 단계 3에서 촬영된 화상(도 2(d))을 통해 도 2(d) 화상의 기준 표점과 제 1 측정대상 표점 간의 거리는 식(1)의 형태에 의해 다시 계산될 수 있는 것이며, 이에 따라 측정지점에서 제 1 측정대상 표점까지의 거리 변화를 알 수 있게 된다. The distance between the reference mark of the image of FIG. 2 (d) and the first measurement target mark through the image photographed in step 3 (FIG. 2 (d)) may be recalculated by the form of equation (1). The change in distance from the measurement point to the first measurement target mark can be known.
제 1 측정대상 표점의 상하 이동 거리는 다음과 같이 계산된다. The vertical movement distance of the first measurement target mark is calculated as follows.
최초 촬영된 도 2(b) 화상에서 원거리 표점의 좌표를 (x1,y1), 제 1 측정대상 표점의 좌표를 (x2, y2)라 하고, 다시 촬영된 도 2(d) 화상에서 원거리 표점의 좌표를 (x1',y1'), 제 1 측정대상 표점의 좌표를 (x2', y2')이라 했을 때, The coordinates of the far point in the first image of FIG. 2 (b) are referred to as (x1, y1) and the coordinates of the first measurement target point are (x2, y2), and the distance of the far point in the image of FIG. When the coordinates are (x1 ', y1') and the coordinates of the first measurement target mark are (x2 ', y2'),
도 2(b) 화상에서 제 1 측정대상 표점(10-1)과 원거리 표점(4)의 간격 h2는 (y1-y2) 로 계산되며, 도 2(d) 화상에서 제 1 측정대상 표점(10-1)과 원거리 표점(4)의 간격 h2'는 (y1'-y2')로 계산된다. The interval h2 between the first measurement target mark 10-1 and the far point mark 4 in the image of FIG. 2 (b) is calculated as (y1-y2), and the first measurement target mark 10 in the image of FIG. The distance h2 'between -1) and the far point mark 4 is calculated as (y1'-y2').
제 1 측정대상 표점의 상하 이동 거리 H는 다음 식 (2)에 의해 결정되게 된다. The vertical movement distance H of the first measurement target mark is determined by the following equation (2).
H = (h2'-h2)/K2 * S2 -----(2)H = (h2'-h2) / K2 * S2 ----- (2)
제 1 측정대상 표점의 좌우 이동거리는 상기 상하 이동거리에 대한 방식으로 계산될 수 있음은 물론이다. The left and right movement distances of the first measurement target mark may be calculated in a manner with respect to the vertical movement distances.
만일, 기준 표점, 제 1 측정대상 표점, 원거리 표점의 위치값을 측량 등에 의해 측정하였다면, 그 값은 절대 위치값이 되어 상기 식 (1),(2)에 의해 화상에서 분석된 값에 따라 제 1 측정대상 표점의 실제 위치값이 계산될 수 있음은 물론이고,If the position values of the reference mark, the first measurement target mark, and the far point mark are measured by surveying or the like, the value becomes an absolute position value and is determined according to the value analyzed in the image by the above formulas (1) and (2). 1 Of course, the actual position value of the target point to be measured can be calculated,
최초 촬영된 화상에 의해 파악되는 제 1 측정대상 표점, 원거리 표점의 위치값을 기준으로 화상에 의해 그 이동거리(변형량)를 측정하면, 상대적인 위치값을 통해 제 1 측정대상 표점의 실제 이동거리(변형량)를 측정하는 것이 가능한 것이다. (단계 4)When the moving distance (deformation amount) is measured by the image based on the position value of the first measurement target mark and the far target mark identified by the first photographed image, the actual moving distance of the first measurement target mark by the relative position value ( Deformation amount) can be measured. (Step 4)
이하, 도 5 내지 도 7에 따라 본 실시예에 따른 적용예를 설명한다. Hereinafter, an application example according to the present embodiment will be described with reference to FIGS. 5 to 7.
도 5는 관찰지점에서 촬영한 최초 화상을 나타낸 것이다. 기준 표점은 흰색으로 단위길이를 표시한 붉은색 원기둥에서 우측 모서리로 지정하였으며, 측정대상 표점은 사각형 흰색 바탕에 붉은색 사각형을 나타낸 것에서 붉은색 사각형은 좌상측 모서리로 지정하였으며, 원거리 표점은 측정대상 표점을 설치한 막대의 사진상 우측에 나타난 교량의 둘째 기둥의 최상측 모서리로 지정하였다. 5 shows an initial image taken at an observation point. The reference mark was designated as the right corner of the red cylinder showing the unit length in white, and the measurement target mark was indicated by the red rectangle on the square white background, and the red rectangle was designated as the upper left corner. It was designated as the top edge of the second column of the bridge shown on the right side of the bar on which the mark was placed.
도 6은 틸팅에 의해 카메라가 위로 향하게 된 것으로, 촬영된 화상에서 기준표점은 측정대상 표점보다 위쪽에 위치한다. 또한 도 7은 틸팅에 의해 카메라가 아래로 향하게 된 것으로, 촬영된 화상에서 기준표점은 측정대상 표점 및 원거리 표점보다 아래쪽에 위치한다.6 shows that the camera is turned upward by tilting. In the photographed image, the reference mark is positioned above the measurement target mark. In addition, FIG. 7 shows that the camera faces downward by tilting. In the photographed image, the reference mark is positioned below the measurement target mark and the far point mark.
도 5 내지 도 7은 카메라의 위치 및 높이, 측정대상 표점의 위치 및 높이가 변하지 않은 것이지만, 화면상으로는 측정대상 표점의 높이가 다르게 나타난다. 5 to 7 show that the position and height of the camera and the position and height of the measurement target mark have not changed, but the height of the measurement target mark appears differently on the screen.
먼저 화상을 분석해 보면, 기준표점, 측정대상 표점, 원거리 표점의 화상상 픽셀의 y좌표는 각각 다음과 같다. 화상의 y좌표는 화상의 상측으로부터 측정한 것이다. First, the image is analyzed, and the y coordinates of the pixels on the image of the reference mark, the measurement target mark, and the far point mark are as follows. The y coordinate of the image is measured from the upper side of the image.
표 1 표 1. 도 5 내지 도 7의 각 표점 픽셀의 y좌표
기준 표점의 y좌표 측정대상 표점의 y좌표 원거리 표점의 좌표
도 5 318 282 350
도 6 318 341 409
도 7 318 237 305
Table 1 Table 1. y-coordinate of each landmark pixel of FIGS. 5 to 7
Y coordinate of reference point Y-coordinate of the target point to be measured Coordinates of the far point
5 318 282 350
6 318 341 409
7 318 237 305
기준 표점의 화상상 픽셀의 Y좌표는 도 5 내지 도 7에서 변하지 않는 것은 당연하다. 도 6에서는 도 5에 비해 측정대상 표점이 59 픽셀 만큼 아래로, 원거리 표점도 59픽셀 만큼 아래로 동시에 변형하여. 식(2)에서 (h2'-h2)는 0이 되어 측정대상 표점이 변형(이동)되지 않은 것임을 알 수 있다. Naturally, the Y coordinate of the pixel on the image of the reference mark does not change in FIGS. 5 to 7. In FIG. 6, the measurement target landmark is downwardly shifted by 59 pixels and the far point landmark is also downward by 59 pixels in comparison with FIG. 5. In (2), (h2'-h2) becomes 0, indicating that the target to be measured is not deformed (moved).
마찬가지로 도 7에서는 도 5에 비해 측정대상 표점이 45 픽셀 만큼 위로, 원거리 표점도 45픽셀 만큼 위로 동시에 변형하여. 식(2)에서 (h2'-h2)는 0이 되어 측정대상 표점이 변형(이동)되지 않은 것임을 알 수 있다.Similarly, in FIG. 7, the measured target mark is 45 pixels up and the far point is 45 pixels up as compared to FIG. 5. In (2), (h2'-h2) becomes 0, indicating that the target to be measured is not deformed (moved).
좌우 변형(이동)도 위와 같이 계산될 수 있는 것이며, 본 발명과 같이 원거리 표점과 기준표점의 관계를 이용하여야만 패닝/틸팅에 의한 카메라의 자세변화에도 불구하고 정확한 변형량을 알 수 있게 된다. Left and right deformation (movement) can also be calculated as described above, it is possible to know the exact amount of deformation in spite of the change in the attitude of the camera by panning / tilting only by using the relationship between the far point and the reference point as in the present invention.
도 8 및 도 9는 또 다른 적용예로서, 도 8은 관찰지점에서 촬영한 최초 화상을 나타낸 것이며 도 9는 측정대상 표점이 침하한 형태를 나타낸 것이다.8 and 9 show yet another application example, in which FIG. 8 shows an initial image taken at an observation point and FIG. 9 shows a form in which a target to be measured is settled.
도 8 및 도 9에서 기준 표점의 화상상 픽셀의 y좌표는 변하지 않는 것은 당연한 것이고, 원거리 표점의 y좌표도 변하지 않는다.It is natural that the y-coordinate of the pixel on the image of the reference mark in Figs. 8 and 9 does not change, and the y-coordinate of the far point mark does not change.
표 2 표 2. 도 8 및 도 9의 각 표점 픽셀의 y좌표
기준 표점의 y좌표 측정대상 표점의 y좌표 원거리 표점의 좌표
도 8 340 282 350
도 9 340 316 350
TABLE 2 Table 2. y-coordinate of each landmark pixel in FIGS. 8 and 9
Y coordinate of reference point Y-coordinate of the target point to be measured Coordinates of the far point
8 340 282 350
9 340 316 350
따라서, 측정대상 표점의 y좌표 만이 33픽셀만큼 아래로 하강한 것이므로, 식(2)에서 h2'는 34, h2는 68을 대입하여 상하이동거리를 계산하면 된다. Therefore, since only the y-coordinate of the target to be measured is lowered by 33 pixels, h2 'is 34 and h2 is 68 in Eq. (2).
시설물은 그 크기 또는 필요에 따라 여러 개의 측정대상 표점을 설치할 수 있는데(단계 2-1), 제 1 측정대상 표점은 원거리 표점과 동시에 촬영되어야 하지만, 나머지 측정대상 표점들은 위치에 따라 원거리 표점과 동시에 촬영되지 않을 수 있다.The facility can set up multiple target marks depending on its size or need (step 2-1), while the first target mark should be taken at the same time as the remote mark, while the remaining target marks may be taken at the same time as the remote mark. It may not be taken.
제 1 측정대상 표점의 이동거리(변형량)을 이미 파악하고 있으므로, 카메라 구동부를 통해 제 1 측정대상 표점과 제 2 측정대상 표점을 촬영하면(단계 5), 제 1 측정대상 표점을 기준으로 제 2 측정대상 표점의 상하 좌우 이동거리(변형량)을 측정할 수 있게 된다. 측정 정밀도 향상을 위해서는 카메라의 줌-인 기능을 사용할 수도 있는 것이다.  Since the moving distance (deformation amount) of the first measurement target mark is already known, when the first measurement target mark and the second measurement target mark are photographed through the camera driving unit (step 5), the second measurement object is based on the first measurement target mark. It is possible to measure the vertical movement distance (strain) of the target to be measured. You can also use the camera's zoom-in feature to improve measurement accuracy.
제 1,2 측정대상 표점을 촬영하는 경우에도 기준 표점은 카메라로 찍은 화상에서 일정위치에 표시되도록 카메라 선단 위치에 설치되어 있고, 기준 표점은 제 1,2 측정대상 표점과 동시에 촬영되게 되므로, 제 2 측정대상 표점의 거리도 파악할 수 있게 된다. (단계 6)Even when the first and second measurement target marks are taken, the reference marks are installed at the front end position of the camera so that they are displayed at a predetermined position in the image taken by the camera, and the reference marks are taken simultaneously with the first and second measurement target marks. 2 The distance of the target to be measured can also be grasped. (Step 6)
제 1 측정대상 표점과 원거리 표점을 촬영한 후, 카메라가 제 1 측정대상 표점 및 제 2 측정대상 표점을 촬영하기 위해 카메라 구동부가 작동하게 된다. 이를 위한 카메라 구동부의 작동은 미리 정해진 패닝/틸팅/줌-인 등에 의하여 가능하다. 또는 카메라를 줌-아웃하여 측정대상 표점들을 하나의 화상에 촬영한 후 제 2 측정대상 표점을 찾아내는 것도 가능한데, 이 경우에는 각 측정대상 표점에 표시된 표식의 형상을 다르게 하여 구현될 수 있다. After photographing the first target mark and the long target mark, the camera driving unit is operated so that the camera captures the first target mark and the second target mark. Operation of the camera driver for this is possible by a predetermined panning / tilting / zoom-in. Alternatively, the camera may be zoomed out to capture the measurement target marks in one image, and then find the second measurement target marks. In this case, the shape of the marks displayed on the measurement target marks may be different.
상기와 같이 제 1 측정대상 표점을 기준으로 제 2 측정대상 표점의 이동거리(변형량)을 측정한 후 다시 제 2 측정대상 표점을 기준으로 제 3 측정대상 표점의 이동거리(변형량)을 측정하는 형태로 순차적으로 많은 수의 측정 대상 표점의 이동거리(변형량)을 측정할 수 있게 된다. As described above, after measuring the moving distance (deformation amount) of the second measurement target mark on the basis of the first measurement target mark, and again measuring the moving distance (strain) of the third measurement target mark on the basis of the second measurement target mark. As a result, it is possible to measure the moving distance (strain) of a large number of measurement target marks sequentially.
이와 같이 많은 수의 측정대상 표점의 이동거리(변형량)은 화상분석에 의해 자동으로 이루어지며, 관리서버에 기록되어 저장되며, 이동거리(변형량)가 기준치 이상으로 발생하는 경우 관리자에게 통지하도록 하는 것이 바람직하다. 화상분석은 카메라와 일체로 형성된 전용장치 또는 관리서버에 의해 이루어질 수 있는 것이다. As such, the moving distance (strain) of a large number of measurement target marks is automatically made by image analysis, recorded and stored in the management server, and it is recommended to notify the administrator when the moving distance (strain) exceeds the reference value. desirable. Image analysis may be performed by a dedicated device or a management server integrally formed with the camera.
<실시예 2><Example 2>
실시예 2는 상기 실시예 1의 원리를 바탕으로 산사태 등을 감시하는 것을 예로 든 것으로, 도 3을 참고하여 설명한다.Example 2 is an example of monitoring landslides and the like based on the principle of Example 1, which will be described with reference to FIG. 3.
기준 표점(300)이 설치되며 카메라 구동부에 의해 구동되는 제 1 카메라 (100)에서 원거리 표점(4)과 제 1 측정대상 표점(10-1)을 촬영하고, 실시예 1에서 설명한 바와 같이 전후/상하/좌우 이동거리를 측정하고, 다음으로 제 2 측정대상 표점(10-2)와 제 1 측정대상 표점(10-1)을 촬영하여 전후/상하/좌우 이동거리를 측정하게 된다. 각 측정대상 표점에 대하여 상기 과정을 반복하게 되면 제 1 카메라(100)으로 측정할 수 있는 측정대상 표점의 전후/상하/좌우 이동거리를 모두 측정하게 된다. The reference mark 300 is installed and photographed at the far point mark 4 and the first measurement target mark 10-1 by the first camera 100 driven by the camera driving unit. The moving distance is measured up, down, left and right, and then, the second measurement target mark 10-2 and the first measurement target mark 10-1 are photographed to measure the front, rear, left, and right movement distances. When the above process is repeated for each measurement target mark, the front, rear, left, and right moving distances of the measurement target mark that can be measured by the first camera 100 are measured.
다음으로 도면부호 10-8의 측정대상 표점의 위치에는 도면부호 301의 기준표점이 구비된 제 2 카메라(101)가 설치된다. 제 1 카메라(100)에서는 도면부호 10-1,10-2,...,10-8 의 측정대상 표점 만이 관찰되며, 제 2 카메라(101)에서는 도면부호 10-1의 측정대상 표점과 도면부호 20-1,20-2,...,20-5의 측정대상 표점이 관찰되도록 제 2 카메라의 위치를 설정한다. 각 측정대상 표점들은 표점에 형성된 숫자를 인식하거나 초기 세팅시 각 측정대상 표점들에 대한 카메라의 자세를 기억하여 제어하는 것에 의해 식별이 가능하다. Next, a second camera 101 provided with a reference mark of reference numeral 301 is installed at the position of the measurement target mark of 10-8. In the first camera 100, only the target marks of measurement 10-1, 10-2, ..., 10-8 are observed, and in the second camera 101, the target marks and the measurement target 10-1 are shown. The positions of the second cameras are set so that the target marks of measurement 20-1, 20-2, ..., 20-5 are observed. Each target mark can be identified by recognizing a number formed on the mark or by storing and controlling the pose of the camera with respect to the target marks in the initial setting.
제 1 카메라(100)를 통해 이동거리(변형량)을 파악하고 있는 도면부호 10-1의 측정대상 표점을 기준으로, 도면부호 10-1, 20-1의 측정대상 표점을 촬영하여 도면부호 20-1의 측정대상 표점의 이동거리(변형량)을 측정할 수 있게 된다. 이후, 제 2 카메라(101)가 측정가능한 도면부호 20-2,...,20-6의 측정대상 표점을 중첩시키면서 도면부호 301의 기준표점과 함께 촬영하여 그 이동거리(변형량)을 측정할 수 있게 된다. Based on the measurement target mark indicated by reference numeral 10-1, which grasps the moving distance (deformation amount) through the first camera 100, the measurement target mark indicated by reference numerals 10-1 and 20-1 is taken. It is possible to measure the moving distance (deformation amount) of the target to be measured at 1. Subsequently, the second camera 101 captures the measurement target marks 20-2,..., 20-6 that can be measured together with the reference marks indicated by reference numeral 301 to measure the moving distance (strain). It becomes possible.
이후, 동일한 방식으로 제 2,3,4,5,6 카메라(102,103,104,105,106)를 사용하여 산 전체를 감시하는 것이 가능하게 된다. It is then possible to monitor the entire mountain using the second, third, fourth, fifth and sixth cameras 102, 103, 104, 105 and 106 in the same manner.
<실시예 3><Example 3>
실시예 3은 상기 실시예 1의 원리를 바탕으로 터널의 변형을 감시하는 것을 예로 든 것으로, 도 4를 참고하여 설명한다.The third embodiment is an example of monitoring the deformation of the tunnel based on the principle of the first embodiment, which will be described with reference to FIG. 4.
터널(500) 외부에 도면부호 4의 원거리 표점을 설치하고, 기준 표점(3)이 설치되어 있고 카메라 구동부에 의해 구동되는 카메라(1)에 의해 도면부호 10-1의 측정대상 표점과 원거리 표점(4)를 촬영하고 도면부호 10-1, 10-2, 10-3의 측정대상 표점의 위치값을 상기 실시예 1에서 설명한 방법으로 측정한다. 이 경우, 카메라(1)는 변형발생이 방지되도록 설계된 지점에 설치하는 것이 바람직하다. 이후 도면부호 4'의 원거리 표점에 대해 도면부호 10-4의 측정대상 표점과 도면부호 4'의 원거리 표점을 촬영하여 도면부호 10-4, 10-5, 10-6의 측정대상 표점의 위치값도 측정한다. The target mark and the far-point mark of 10-1 are installed outside the tunnel 500 by the camera 1 having the reference mark 3 and the reference mark 3 installed and driven by the camera driver. 4) photographed and the position values of the target marks of measurement targets 10-1, 10-2, and 10-3 are measured by the method described in Example 1 above. In this case, the camera 1 is preferably installed at a point designed to prevent deformation. Afterwards, the measurement target mark of reference numeral 10-4 and the long target mark of reference numeral 4 'are photographed for the long target mark of 4' and the position value of the target target measurement of reference numerals 10-4, 10-5, and 10-6. Measure also.
터널이 긴 경우에는 필요에 따라 측정대상 표점들 사이에 측정대상 표점을 구비한 카메라 및 카메라 구동부를 설치하여 상기 실시예 2의 방식으로 측정대상 지점의 위치값을 파악함으로써 터널 내의 변형을 측정하는 것도 가능하다. If the tunnel is long, measuring deformation in the tunnel by installing a camera and a camera driver having a measurement target mark between the measurement target marks as necessary and determining the position value of the measurement target point in the method of the second embodiment. It is possible.
또한, 터널 외부에 기준 표점이 구비된 카메라 및 카메라 구동부를 설치하는 것도 가능하다. In addition, it is also possible to install a camera and a camera driver provided with a reference mark outside the tunnel.
본 발명은 화상측정에 의한 시설물 안전관리 방법에 관한 것으로, 보다 상세하게는 댐, 교량, 터널, 도로 등과 같은 토목 시설물을 건설하거나 유지관리하는 경우에 있어 화상측정에 의해 보다 정밀하고 편리하게 관리하기 위한 방법에 관한 것으로, 표점의 위치를 정확히 파악하여 시설물의 변형을 정밀하게 측정할 수 있으며, 또한 별도의 전용 카메라 장비를 설치하지 않고 통상 시설물 보안에 사용되는 보안용 카메라를 이용하여서도 본 발명을 구현하는 것이 가능하므로 비용을 절감할 수 있다. The present invention relates to a method for safety management of facilities by image measurement, and more particularly, to more precisely and conveniently manage by image measurement when constructing or maintaining civil facilities such as dams, bridges, tunnels, and roads. The present invention relates to a method for precisely determining the location of a mark and accurately measuring deformation of a facility, and also using the security camera used for securing a facility without installing a separate dedicated camera equipment. It is possible to implement, which can reduce costs.

Claims (2)

  1. 카메라와, Camera,
    패닝 및 틸팅에 의해 카메라의 자세 변화를 가능하게 하는 카메라 구동부와A camera driver for changing the posture of the camera by panning and tilting;
    패닝 및 틸팅에 의해 상기 카메라의 렌즈가 향하는 방향과 동일한 방향으로 이동되도록 카메라 선단 위치에 설치되는 기준 표점을, A reference mark installed at the tip position of the camera so as to be moved in the same direction as the direction of the lens of the camera by panning and tilting,
    관찰 지점에 구비하는 단계 1과;Step 1 provided at the observation point;
    절대위치가 변하지 않는 원거리 지점에 지정되는 원거리 표점과, 제 1 측정 지점에 제 1 측정대상 표점을 설치하는 단계 2와;A step 2 of installing a far point mark designated at a far point whose absolute position does not change, and a first mark to be measured at the first measurement point;
    정해진 관찰 주기에 따라 상기 기준 표점, 원거리 표점, 제 1 측정대상 표점을 동시에 촬영하는 단계 3과;Photographing the reference mark, the far point mark, and the first target mark at the same time according to a predetermined observation period;
    단계 3에서 촬영된 화상의 기준 표점 및 원거리 표점 간의 관계에 따라 제 1 측정대상 표점의 위치값을 계산하는 단계 4를; 포함하여 이루어진 것을 특징으로 하는 화상측정에 의한 시설물 안전관리 방법.Calculating a position value of the first measurement target mark according to the relationship between the reference mark and the far point of the image captured in step 3; Facility safety management method by the image measurement, characterized in that made.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 단계 2에서는 제 2 측정지점에 제 2 측정대상 표점을 설치하는 단계 2-1을 더 포함하며;The step 2 further includes the step 2-1 of installing the second measurement target mark at the second measurement point;
    정해진 관찰 주기에 따라 상기 기준 표점, 제 1 측정대상 표점 및 제 2 측정대상 표점을 동시에 촬영하는 단계 5와;Photographing the reference mark, the first measurement target mark, and the second measurement target mark simultaneously according to a predetermined observation period;
    정해진 관찰 주기에 따라 기준표점과 제 1 측정대상 표점 간의 관계에 따라 제 2 측정대상 표점의 위치값을 계산하는 단계 6을; 더 포함하여 이루어지는 것을 특징으로 하는 화상측정에 의한 시설물 안전관리 방법.Calculating a position value of the second measurement target mark according to the relationship between the reference mark and the first measurement target mark according to a predetermined observation period; Facility safety management method by the image measurement, characterized in that further comprises.
PCT/KR2014/003035 2013-04-17 2014-04-08 Facility safety management method by image measurement WO2014171661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130041979A KR101379237B1 (en) 2013-04-17 2013-04-17 Infrastructure safety management method by image analysis
KR10-2013-0041979 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014171661A1 true WO2014171661A1 (en) 2014-10-23

Family

ID=50656073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003035 WO2014171661A1 (en) 2013-04-17 2014-04-08 Facility safety management method by image measurement

Country Status (2)

Country Link
KR (1) KR101379237B1 (en)
WO (1) WO2014171661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834435A (en) * 2021-08-11 2021-12-24 金钱猫科技股份有限公司 Method, device and system for detecting deformation of foundation pit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390625A (en) * 2014-11-24 2015-03-04 国家电网公司 Exterior three-dimensional deformation monitoring method of street power station
KR102270553B1 (en) 2021-01-18 2021-06-29 헬리오센 주식회사 System of management infrastructure with maintenance by using 3 dimensional information based on AI

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447026B1 (en) * 2000-05-03 2004-09-07 한국표준과학연구원 Measuring/monitoring system for structures using network
KR100993873B1 (en) * 2008-12-31 2010-11-11 한국건설기술연구원 Measuring Method using Digging face Visual Information Measuring System
KR101028136B1 (en) * 2010-12-30 2011-04-08 윤홍식 System and method for disaster alarm of structure by displacement based on single photogrammetry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447026B1 (en) * 2000-05-03 2004-09-07 한국표준과학연구원 Measuring/monitoring system for structures using network
KR100993873B1 (en) * 2008-12-31 2010-11-11 한국건설기술연구원 Measuring Method using Digging face Visual Information Measuring System
KR101028136B1 (en) * 2010-12-30 2011-04-08 윤홍식 System and method for disaster alarm of structure by displacement based on single photogrammetry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834435A (en) * 2021-08-11 2021-12-24 金钱猫科技股份有限公司 Method, device and system for detecting deformation of foundation pit
CN113834435B (en) * 2021-08-11 2023-11-14 金钱猫科技股份有限公司 Foundation pit deformation detection method, device and system

Also Published As

Publication number Publication date
KR101379237B1 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4169282B2 (en) Photogrammetry system and photogrammetry method
WO2011074759A1 (en) Method for extracting 3-dimensional object information out of a single image without meta information
WO2020101103A1 (en) Apparatus and method for measuring flow velocity of stream by using optical flow image processing
JP4681856B2 (en) Camera calibration method and camera calibration apparatus
JP4356050B2 (en) Surveyor and electronic storage medium
JP5586765B2 (en) Camera calibration result verification apparatus and method
WO2021118013A1 (en) Crane collision prevention apparatus and method
WO2014171661A1 (en) Facility safety management method by image measurement
WO2012091326A2 (en) Three-dimensional real-time street view system using distinct identification information
CN103791892B (en) Shipborne view field adjustable sea level observation device and method
WO2013168991A1 (en) Image measurement device and method for measuring deformation of civil structure
WO2017022994A1 (en) Method for providing putting-on-green information
WO2015170879A1 (en) Monorail inspection apparatus
JP2003050107A (en) Camera calibration device
KR100458290B1 (en) Method for Measuring Displacement of Structural Members
JP2017181374A (en) Surface height display method
WO2020071573A1 (en) Location information system using deep learning and method for providing same
JP2001264059A (en) Method of measuring displacement quantity of measured object
KR101015236B1 (en) Measurement system using vehicle-based multi sensor and the using method thereof
KR20220013757A (en) Measuring system for crack
JP2004053374A (en) Method for measuring deviation of track and system for measuring deviation of track used for the same
JP4683516B2 (en) Crack displacement measurement method for structures using a digital camera
WO2020130209A1 (en) Method and apparatus for measuring vehicle speed by using image processing
WO2012074174A1 (en) Augmented reality implementation system using original identification information
WO2017007077A1 (en) Monitoring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14785566

Country of ref document: EP

Kind code of ref document: A1