WO2013168852A1 - 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법 - Google Patents

체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법 Download PDF

Info

Publication number
WO2013168852A1
WO2013168852A1 PCT/KR2012/006779 KR2012006779W WO2013168852A1 WO 2013168852 A1 WO2013168852 A1 WO 2013168852A1 KR 2012006779 W KR2012006779 W KR 2012006779W WO 2013168852 A1 WO2013168852 A1 WO 2013168852A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
micro
drug delivery
robot
bubble
Prior art date
Application number
PCT/KR2012/006779
Other languages
English (en)
French (fr)
Inventor
정상국
권준오
양지선
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Publication of WO2013168852A1 publication Critical patent/WO2013168852A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/72Micromanipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems

Definitions

  • the present invention relates to a microrobot for drug delivery in the body, a device for controlling the same, and a method for delivering a drug in the body using the same.
  • a drug delivery system refers to a system designed to efficiently deliver a required amount of drugs in order to minimize side effects and maximize efficacy and effects of existing drugs.
  • Drug delivery can be categorized by delivery route, type of drug, and type of delivery technique, and preferred delivery pathways vary by age. In the 1960s, injection and infusion methods, suppositories in the 1970s, nasal and oral administration in the 1980s, and direct delivery to the skin, lungs, and oral cavity were introduced in the 1990s.
  • the drug delivery system is a field that advanced countries have been actively researching with advanced technology since the 1970s because of about one third reduction and the probability of success is very high compared to the period and cost required for the development of new drugs. Started.
  • Drug delivery systems include sustained drug release systems, controlled release systems, and targeted drug delivery systems. Sustained drug release systems are designed to reduce this problem by slowing the release rate of drugs when bioavailability is low, or when drugs are absorbed too slowly or are lost to the body too quickly. Plasma) is intended to control the actual therapeutic effect, as well as to extend the drug delivery time as in the case of a persistent drug means a system that can reproduce and predict the rate of drug release.
  • Target-oriented drug delivery system has strong toxicity against normal cells when using chemotherapeutic agents that affect cancer cells, thus suppressing unnecessary distribution of drugs such as the method of selectively delivering drugs only to cancer cells. Means to protect the drug and deliver the drug only to the target site.
  • the present invention is to propose a method for delivering a drug to a target site by using a micro robot among the target-oriented system.
  • the present invention provides a drug delivery micro robot and its moving device with improved controllability of position.
  • the present invention also provides a micro robot that enables the capture and release of drugs with precision and ease of operation.
  • Micro robot for intracorporeal drug delivery comprises a body portion to be moved by an external electromagnetic field; And a tow portion for dragging the drug.
  • the body portion may include a magnetic portion that is magnetized in the magnetic field.
  • the towing unit may include a bubble attached to the magnetic unit and vibrating by ultrasonic waves to form a micro flow around the tow to pull a nearby micro object.
  • the magnetic portion may be formed in a porous surface attached to the bubble.
  • the magnetic portion may be formed with a Teflon coating layer on the outside.
  • the bubble may function as a contrast agent during vibration by the ultrasonic wave.
  • the ultrasonic wave may have a frequency corresponding to the resonance frequency of the bubble.
  • the micro-robot control device for drug delivery in the body is A magnetic field generator for generating a magnetic field for moving the magnetic part; And an ultrasonic wave generator for generating ultrasonic waves for vibrating the bubble.
  • the ultrasonic generator may generate ultrasonic waves by the piezo adverse effect.
  • the magnetic field generating unit may include a first magnetic field generating unit generating a magnetic field for moving the micro robot in a first axis direction; And a second magnetic field generating unit generating a magnetic field for moving the micro robot in a direction perpendicular to the first axial direction.
  • a Helmholtz coil may be provided inside the first magnetic field generator and the second magnetic field generator.
  • It may also include a direction control unit for rotating the second magnetic field generating unit about the first axis direction.
  • a method for delivering a drug using a micro-robot for the delivery of the drug in the body including a magnetic part moving by an external electromagnetic field and a bubble attached to the magnetic part and a control device thereof, the body drug according to the present invention includes the following steps.
  • the microrobot is positioned close to the drug by a magnetic field.
  • the ultrasonic generator is turned on to capture the drug by vibrating the bubble.
  • the micro robot is brought close to the target site by the magnetic field.
  • the drug is released by turning off the ultrasonic wave generator so as not to vibrate the bubble.
  • the ultrasonic wave in the second step may correspond to the resonance frequency of the bubble.
  • the magnetic field may further include a first magnetic field generating unit generating a magnetic field for moving the micro robot in a first axis direction; And a second magnetic field generator for generating a magnetic field for moving the microrobot in a direction perpendicular to the first axial direction.
  • the third step includes generating a vector to a moving point. Decomposing the first directional component parallel to the first axis and the second directional component perpendicular to the first axis; And adjusting the intensity of the magnetic field of the first magnetic field generating unit in accordance with the first directional component, rotating the second magnetic field generating unit in accordance with the second direction, and at the same time, according to the second directional component.
  • Step 3-2 to adjust the intensity of the magnetic field may include.
  • the present invention it is possible to more precisely control the position of the micro robot by allowing the position control of the micro robot and the capture and release of the drug to be operated independently.
  • the response is good, precise operation is possible.
  • FIG. 1 is a schematic cross-sectional view showing a micro robot according to an embodiment of the present invention.
  • Figure 2 is a photograph showing the microflow formation test results according to the vibration of the bubble.
  • Figure 3 is a photograph showing the test results for the capture and release of micro-objects according to the vibration of the bubble.
  • FIGS. 4A and 4B are perspective views illustrating a control device of the micro robot according to one embodiment.
  • FIG. 5 is a side view illustrating a control device of a micro robot according to an embodiment.
  • FIG. 6 is a photograph illustrating a test state for moving a micro robot according to an exemplary embodiment.
  • FIGS. 7A to 7D are schematic diagrams sequentially illustrating a drug delivery process according to one embodiment.
  • FIG. 8 is a photograph sequentially illustrating a test of a drug delivery process according to one embodiment.
  • coil HC Helmholtz coil
  • MO Micro Object (Drug)
  • FIGS. 1 to 3 A micro robot according to an embodiment will be described with reference to FIGS. 1 to 3.
  • 1 is a schematic cross-sectional view showing a micro robot according to an embodiment of the present invention
  • Figure 2 is a photograph showing the results of the micro-flow formation test according to the vibration of the bubble
  • Figure 3 is a capture of the micro-objects according to the vibration of the bubble
  • photographs showing the test results for the release
  • the micro robot 100 includes a magnetic part 10 and a bubble 20.
  • the magnetic part 10 is a component for controlling the position of the micro robot 100 for intracorporeal drug delivery.
  • the magnetic part 10 includes a magnet 11 and a porous layer 12.
  • the magnet 11 is moved by an external electromagnetic field, in particular a magnetic field.
  • the porous layer 12 may be formed of a coating layer formed of a porous material.
  • the porous layer 12 has an effect of improving the adhesion to the bubble 20 so that the magnetic portion 10 and the bubble 20 can be easily attached initially, the bubble while the micro robot 100 is moving 20 functions to prevent the departure.
  • the porous layer 12 may be formed of a porous material such as Teflon. Teflon forms a very stable compound due to the strong chemical bonding of fluorine and carbon, and thus has almost perfect chemical inertness and heat resistance, non-tackiness, excellent insulation stability, and low coefficient of friction.
  • the porous layer 12 in the present embodiment is formed to surround the outer portion of the magnet 11, but is not limited thereto.
  • the porous layer 12 should be formed at least at the adhesion portion A1 of the magnetic portion 10 and the bubble 20 for its function and purpose.
  • the bubble 20 is attached to the magnetic portion 10.
  • the bubble 20 vibrates by ultrasonic waves applied from the outside.
  • the vibration of the bubble 20 is demonstrated.
  • FIG. 2A ultrasonic waves of resonant frequency were applied to bubbles having a diameter of 600 ⁇ m.
  • FIG. 2B it was found that a micro flow was formed around the bubble.
  • ultrasonic waves were applied in a state in which glass beads having a diameter of about 80 ⁇ m were distributed around the bubbles as shown in FIG. 3A.
  • the glass marbles were pulled toward the bubble and clustered in a cloud shape as shown in FIG. 3B.
  • the application of the ultrasonic wave was stopped, it was confirmed that the glass beads captured as shown in FIG. 3C were released from the bubbles in their original state.
  • FIGS. 4A to 6 A control apparatus of the micro robot described above with reference to FIGS. 4A to 6 will be described.
  • 4A and 4B are perspective views illustrating a control device of a micro robot according to an embodiment
  • FIG. 5 is a side view illustrating a control device of a micro robot according to an embodiment
  • FIG. 6 illustrates a micro robot according to an embodiment. This is a picture showing the test to move.
  • the control device of the micro robot can be largely divided into a device for controlling the micro robot to move to a target point in the body and a device for controlling the traction of the micro object.
  • the magnetic field generator 40 that controls the movement of the micro robot will be described.
  • the magnetic field generator 40 includes a vertical magnetic field generator 43 for controlling the magnetic field in the vertical direction and a horizontal magnetic field generator 44 for controlling the magnetic field in the horizontal direction, as shown in FIGS. 4A and 4B.
  • the vertical magnetic field generator 43 and the horizontal magnetic field generator 44 are provided in a fixed state to the direction controller 42.
  • the direction adjuster 42 is fixed to the rotatable state in the horizontal direction on the fixing part 41.
  • the horizontal magnetic field generating unit 44 also rotates in the horizontal direction as shown in FIG. 4B, and the horizontal magnetic field generating unit 44 rotates in the horizontal direction.
  • the direction also changes while rotating in the horizontal direction.
  • the vertical magnetic field generator 43 includes a Helmholtz coil pair HC and a first coil pair 431. That is, as shown in FIG. 5, helmholtz coil pairs HC are provided on the upper and lower portions of the work area A2, and a first coil pair 431 is provided on the outer side of the helmholtz coils.
  • the first coil pair 431 is a component for forming a magnetic field gradient having a desired size
  • the Helmholtz coil pair (HC) is a component for uniformly forming a magnetic field inside the first coil pair 431. to be.
  • the Helmholtz coil pair HC when two coils having the same diameter and the same turns ratio flow the same current at a distance r, a uniform magnetic field is formed between the two coils.
  • the first coil pair 431 is provided outside the Helmholtz coil HC, and is provided to have the same winding ratio at the same diameter. Currents in opposite directions flow through the first coil pair. Due to the magnetic field gradient generated in the first coil pair 431, the magnetized or magnetized object in the magnetic field may move in the vertical direction.
  • the horizontal magnetic field generator 44 includes a Helmholtz coil pair HC and a second coil pair 441. That is, as shown in FIG. 5, helmholtz coil pairs HC are provided on both side surfaces of the work area A2, and second coil pairs 441 are provided on the outer side of the helmholtz coils.
  • the second coil pair 431 is a component for forming a magnetic field gradient having a desired size, and the Helmholtz coils HC are formed of the second coil pair 441. It is a structure part for forming a magnetic field uniformly in an inside.
  • the Helmholtz coil pair HC when two coils having the same diameter and the same turns ratio flow the same current at a distance r, a uniform magnetic field is formed between the two coils.
  • the second coil pair 441 is provided outside the Helmholtz coil HC and is provided to have the same winding ratio at the same diameter. Currents in opposite directions flow through the second coil pair 441. Due to the magnetic field gradient generated in the second coil pair 441, the magnetized or magnetized object in the magnetic field may move in the horizontal direction.
  • B, M, and V represent the magnetic flux density of the magnetic field, the magnetization of the object, and the volume of the object, respectively. That is, the magnetic body provided in the work area A2 is moved by the force according to the vector sum of the forces generated by the respective magnetic fields generated by the vertical magnetic field generating unit 43 and the horizontal magnetic field generating unit 44.
  • the traction of the micro-object is controlled by using an ultrasonic generator, for example, a piezo actuator.
  • Piezo actuators are solid state actuators using a piezo-inverse effect, and correspond to a kind of mechanical motor. Piezo actuators can be positioned or displaced with a resolution of several nanometers, making them suitable for a variety of applications. Detailed description of the configuration of the piezo actuator is omitted.
  • FIG. 6 the propulsion and direction control of the magnetic sphere-shaped spherical robot in the T-shaped circular cylinder channel was tested.
  • 6A1 to 6A3 illustrate control experiments of continuously moving the small robot in a direction coinciding with the initial traveling direction
  • FIGS. 6B1 to 6B3 convert the traveling direction of the small robot along the T-shaped branch from the initial traveling direction. The control experiment is shown.
  • FIG. 6 it was possible to control to move to different outlets by controlling the currents applied to the respective components of the magnetic field generating unit described above.
  • FIGS. 7A to 8 a drug delivery process according to an embodiment will be described.
  • 7A to 7D are schematic diagrams sequentially illustrating a drug delivery process according to an embodiment
  • FIG. 8 is a photograph sequentially illustrating a drug delivery process according to an embodiment.
  • the micro robot 100 is positioned close to the micro object MO, and the ultrasonic wave generator 30 is turned on to generate ultrasonic waves.
  • the bubble 20 is excited to vibrate and form a micro flow in the vicinity to attract and capture the micro object MO.
  • the ultrasonic generator 30 is maintained in an on state, and the magnetic field generator 40 is operated to generate a magnetic field.
  • the micro robot 10 moves toward the target site (D1) by the generated magnetic field.
  • the magnetic field generator 40 is turned off.
  • the control of the magnetic field can be subdivided as follows.
  • the vector to the moving point is decomposed into the vertical component and the horizontal component perpendicular to the vertical component.
  • the magnetic field strength of the vertical magnetic field generator is adjusted according to the size of the vertical component
  • the degree of rotation and the intensity of the magnetic field of the horizontal magnetic field generator are adjusted according to the direction and size of the horizontal component.
  • Contrast media is an artificially enlarged X-ray absorption difference of each tissue so that tissues or blood vessels can be easily seen during radiographs such as magnetic resonance imaging (MRI) or computed tomography (CT) imaging. It is a drug that increases the contrast.
  • MRI magnetic resonance imaging
  • CT computed tomography
  • the experiment was conducted to deliver 800 ⁇ m sized fish eggs to a specific location, and the result is shown in FIG. 8.
  • the bubble (a) which was spaced apart from the fish egg, was moved to control to approach the fish egg and the bubble was excited (b).
  • the micro robot is moved by the magnetic field (d). Even in this case, the pig egg did not escape from the bubble.
  • the fish egg By moving the fish egg to the target site and turning off the ultrasonic waves (e), it was confirmed that the fish egg was separated from the bubble and seated on the target site (f).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

본 발명은 체내 약물전달용 마이크로 로봇과 이를 제어하는 장치 및 이들을 이용하여 체내에서 약물을 전달하는 방법에 관한 것으로서, 구체적으로 본 발명에 따른 체내 약물전달을 위한 마이크로 로봇은 외부의 전자기장에 의하여 이동하는 마그네틱부; 및 상기 마그네틱부에 부착되고, 초음파에 의하여 진동하여 주위에 마이크로 플로우를 형성시켜 인근의 미소물체를 견인하는 버블;을 포함한다. 본 발명에 따르면, 마이크로 로봇의 위치 제어와 약물의 포획, 릴리즈를 독립적으로 조작할 수 있도록 함으로써 마이크로 로봇의 위치 제어를 보다 정밀하게 할 수 있다.

Description

체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법
본 발명은 체내 약물전달용 마이크로 로봇과 이를 제어하는 장치 및 이들을 이용하여 체내에서 약물을 전달하는 방법에 관한 것이다.
약물전달 시스템(DDS, drug delivery system)이란 기존 의약품의 부작용을 최소화하고 효능 및 효과를 극대화하기 위하여 필요한 양의 약물을 효율적으로 전달할 수 있도록 설계된 시스템을 의미한다.
약물전달은 전달경로, 약물의 종류 및 전달기술의 형태에 따라 구분될 수 있으며, 선호되는 전달경로는 연대별로 다르다. 1960년대에는 주사 및 주입하는 방식, 1970년대에는 좌약식, 1980년대에는 비강 및 구강으로 투여하는 방식, 1990년대에는 피부, 폐 및 구강으로 직접 전달하는 방식 등이 개발되었다.
약물전달 시스템은 새로운 신약개발에 필요한 기간과 비용에 비해 약 1/3이 단축되고 성공 확률도 매우 높기 때문에 70년대부터 선진국들이 첨단기술로 활발히 연구하고 있는 분야로서, 국내에서는 90년부터 본격적인 연구가 시작되었다.
약물전달 시스템에는 지속성 약물방출 시스템, 제어방출 시스템, 표적지향적 약물전달시스템이 있다. 지속성 약물방출시스템은 생체이용률이 낮거나 약물이 너무 서서히 흡수되거나 지나치게 빨리 체외로 소실되는 경우, 약물의 방출속도를 늦춤으로써 이러한 문제점을 줄이고자 설계된 제형이며, 제어방출시스템은 표적부위의 농도(주로 혈장)를 제어함으로써 실제의 치료효과를 조절하는 것을 목적으로 하며, 지속성 제제의 경우처럼 약물전달시간을 연장할 뿐만 아니라 약물방출속도의 재현 및 예측이 가능한 시스템을 의미한다. 표적지향적 약물전달시스템은 암세포에 영향을 미치는 화학요법제의 사용 시 정상세포에 대하여도 강한 독성을 나타내므로 암세포에만 선택적으로 약물을 전달하도록 시도하는 방법과 같이 약물의 불필요한 분포를 억제하여 비표적부위를 보호하고 표적부위로만 약물을 전달하는 방법을 의미한다.
이하 본 발명은 표적지향형 시스템 중에서도 마이크로 로봇을 이용하여 표적부위에 약물을 전달할 수 있는 방법을 제안하고자 한다.
본 발명은 위치의 제어성이 향상된 약물전달용 마이크로 로봇 및 그 이동장치를 제공한다.
또한 본 발명은 정밀하고 조작성이 간편한 약물의 포획 및 릴리즈를 가능하게 하는 마이크로 로봇을 제공한다.
본 발명에 따른 체내 약물전달을 위한 마이크로 로봇은 외부의 전자기장에 의하여 이동하는 몸체부; 및 약물을 견인하는 견인부를 포함한다.
또한 상기 몸체부는 자기장 내에서 자화되는 마그네틱부를 포함할 수 있다.
나아가 상기 견인부는 상기 마그네틱부에 부착되고, 초음파에 의하여 진동하여 주위에 마이크로 플로우를 형성시켜 인근의 미소물체를 견인하는 버블을 포함할 수 있다.
또한 상기 마그네틱부는 상기 버블과 부착되는 면이 다공성으로 형성될 수 있다.
또한 상기 마그네틱부는 외부에 테프론 코팅층이 형성될 수 있다.
또한 상기 버블은 상기 초음파에 의하여 진동 시 조영제로서 기능할 수 있다.
또한 상기 초음파는 상기 버블의 공진 주파수에 해당하는 주파수를 가질 수 있다.
한편, 외부의 전자기장에 의하여 이동하는 마그네틱부와 상기 마그네틱부에 부착된 버블을 포함하는 체내 약물전달을 위한 마이크로 로봇을 제어하는 장치로서, 본 발명에 따른 체내 약물전달을 위한 마이크로 로봇 제어장치는 상기 마그네틱부를 이동시키는 자기장을 발생시키는 자기장 발생부; 및 상기 버블을 진동시키기 위한 초음파를 발생시키는 초음파 발생부;를 포함한다.
또한 상기 초음파 발생부는 피에조 역효과에 의하여 초음파를 발생시킬 수 있다.
또한 상기 자기장 발생부는, 상기 마이크로 로봇을 제1 축 방향으로 이동시키는 자기장을 생성하는 제1 자기장 발생부; 및 상기 마이크로 로봇을 상기 제1 축 방향에 수직인 방향으로 이동시키는 자기장을 생성하는 제2 자기장 발생부;를 포함할 수 있다.
또한 상기 제1 자기장 발생부 및 제2 자기장 발생부의 내측에는 각각 헬름홀츠 코일이 구비될 수 있다.
또한 상기 제2 자기장 발생부를 상기 제1 축 방향을 중심으로 회전시키는 방향조절부를 포함할 수 있다.
다른 한편, 외부의 전자기장에 의하여 이동하는 마그네틱부와 상기 마그네틱부에 부착된 버블을 포함하는 체내 약물전달을 위한 마이크로 로봇 및 이의 제어장치를 이용하여 약물을 전달하는 방법으로서, 본 발명에 따른 체내 약물전달 방법은 다음과 같은 단계를 포함한다. 제1 단계에서는 상기 마이크로 로봇을 자기장에 의하여 약물에 근접하도록 위치시킨다. 제2 단계에서는 초음파 발생부를 온상태로 전환하여 상기 버블을 진동시킴으로써 상기 약물을 포획한다. 제3 단계에서는 상기 마이크로 로봇을 자기장에 의하여 표적부위에 근접시킨다. 제4 단계에서는 초음파 발생부를 오프상태로 전환하여 상기 버블을 진동하지 않도록 함으로써 상기 약물을 릴리즈한다.
또한 상기 제2 단계에서의 상기 초음파는 상기 버블의 공진주파수에 해당할 수 있다.
또한 상기 자기장은, 상기 마이크로 로봇을 제1 축 방향으로 이동시키는 자기장을 생성하는 제1 자기장 발생부; 및 상기 마이크로 로봇을 상기 제1 축 방향에 수직인 방향으로 이동시키는 자기장을 생성하는 제2 자기장 발생부;를 포함하는 자기장 발생부에 의해 발생되고, 상기 제3 단계는, 이동 지점까지의 벡터를 상기 제1 축에 평행한 제1 방향 성분 및 상기 제1 축과 수직인 제2 방향 성분으로 분해하는 제3-1 단계; 및 상기 제1 방향 성분에 따라 상기 제1 자기장 발생부의 자기장의 세기를 조절하고, 상기 제2 방향에 맞추어 상기 제2 자기장 발생부를 회전하며, 동시에 상기 제2 방향 성분에 따라 상기 제2 자기장 발생부의 자기장의 세기를 조절하는 제3-2 단계;를 포함할 수 있다.
본 발명에 따르면, 마이크로 로봇의 위치 제어와 약물의 포획, 릴리즈를 독립적으로 조작할 수 있도록 함으로써 마이크로 로봇의 위치 제어를 보다 정밀하게 할 수 있다.
또한 본 발명에 따르면 초음파를 이용하여 약물의 포획 및 릴리즈 등의 조작을 함으로써 응답성이 좋고, 정밀한 조작이 가능하다.
도 1은 본 발명의 일 실시예에 따른 마이크로 로봇을 나타내는 개략적인 단면도이다.
도 2는 버블의 진동에 따른 마이크로 플로우 형성 테스트 결과를 나타내는 사진이다.
도 3은 버블의 진동에 따른 미소물체의 포획 및 릴리즈에 관한 테스트 결과를 나타내는 사진이다.
도 4a 및 도 4b는 일 실시예에 따른 마이크로 로봇의 제어장치를 나타내는 사시도이다.
도 5는 일 실시예에 따른 마이크로 로봇의 제어장치를 나타내는 측면도이다.
도 6은 일 실시예에 따른 마이크로 로봇을 이동시키기 위한 테스트 모습을 나타내는 사진이다.
도 7a 내지 도 7d는 일 실시예에 따른 약물전달 프로세스를 순차적으로 나타내는 모식도이다.
도 8은 일 실시예에 따른 약물전달 프로세스의 테스트를 순차적으로 나타내는 사진이다.
[부호의 설명]
10: 마그네틱부 11: 마그넷
12: 다공성 레이어 20: 버블
30: 초음파 발생부 40: 자기장 발생부
41: 고정부 42: 방향조절부
43: 제1 자기장 발생부 44: 제2 자기장 발생부
431, 441: 코일 HC: 헬름홀츠 코일
MO: 미소물체(약물)
이하 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다. 특별한 정의나 언급이 없는 경우에 본 설명에 사용하는 방향을 표시하는 용어는 도면에 표시된 상태를 기준으로 한다. 또한 각 실시예를 통하여 동일한 도면부호는 동일한 부재를 가리킨다. 한편, 도면상에서 표시되는 각 구성은 설명의 편의를 위하여 그 두께나 치수가 과장될 수 있으며, 실제로 해당 치수나 구성간의 비율로 구성되어야 함을 의미하지는 않는다.
도 1 내지 도 3을 참조하여 일 실시에에 따른 마이크로 로봇을 설명한다. 도 1은 본 발명의 일 실시예에 따른 마이크로 로봇을 나타내는 개략적인 단면도이고, 도 2는 버블의 진동에 따른 마이크로 플로우 형성 테스트 결과를 나타내는 사진이며, 도 3은 버블의 진동에 따른 미소물체의 포획 및 릴리즈에 관한 테스트 결과를 나타내는 사진이다.
마이크로 로봇(100)은 마그네틱부(10)와 버블(20)을 포함한다. 마그네틱부(10)는 체내 약물전달을 위하여 마이크로 로봇(100)의 위치를 제어하기 위한 구성부이다. 마그네틱부(10)는 마그넷(11)과 다공성 레이어(12)를 포함한다.
마그넷(11)은 외부의 전자기장, 특히 자기장에 의하여 이동된다. 다공성 레이어(12)는 다공성 재질로 형성된 코팅층으로 형성될 수 있다. 다공성 레이어(12)는 버블(20)과의 부착력을 향상시켜 초기에 마그네틱부(10)와 버블(20)이 용이하게 부착될 수 있도록 하는 효과가 있으며, 마이크로 로봇(100)이 이동하는 중에 버블(20)이 이탈하는 것을 방지하는 기능을 한다. 다공성 레이어(12)로는 테프론 등과 같은 다공성 재질로 형성될 수 있다. 테프론은 불소와 탄소의 강력한 화학적 결합으로 인해 매우 안정된 화합물을 형성함으로써 거의 완벽한 화학적 비활성 및 내열성, 비점착성, 우수한 절연 안정성, 낮은 마찰계수 등의 특성들을 가지고 있다. 한편, 본 실시예에 있어서의 다공성 레이어(12)는 마그넷(11)의 외측부를 감싸도록 형성되어 있으나, 이에 한정되지 않는다. 다공성 레이어(12)는 그 기능 및 목적상 적어도 마그네틱부(10)와 버블(20)의 접착부위(A1)에 형성되어야 한다.
버블(20)은 마그네틱부(10)에 부착된다. 버블(20)은 외부에서 인가되는 초음파에 의하여 진동한다. 도 2를 참조하여 버블(20)의 진동에 대하여 설명한다. 도 2a에 도시된 바와 같이 600μm 직경의 버블에 공진 주파수의 초음파를 인가하였다. 그 결과 도 2b에 도시된 바와 같이 버블의 주위에 마이크로 플로우가 형성되는 것을 알 수 있었다. 또한 마이크로 플로우와 진동하는 버블이 주위의 미소물체에 미치는 영향을 테스트하기 위하여 도 3a에 도시된 바와 같이 버블의 주변에 직경이 약 80μm 크기의 유리 구슬들이 분포된 상태에서 초음파를 인가하였다. 그 결과 유리 구슬들은 도 3b에 도시된 바와 같이 버블쪽으로 견인되어 구름 형상으로 군집해 있는 것을 알 수 있었다. 다음으로 초음파의 인가를 중단한 경우에는 도 3c에 도시된 바와 같이 포획되어 있던 유리 구슬들이 원래 상태대로 버블로부터 릴리즈 되는 것을 확인할 수 있었다.
도 4a 내지 도 6을 참조하여 상술한 마이크로 로봇의 제어장치를 설명한다. 도 4a 및 도 4b는 일 실시예에 따른 마이크로 로봇의 제어장치를 나타내는 사시도이고, 도 5는 일 실시예에 따른 마이크로 로봇의 제어장치를 나타내는 측면도이며, 도 6은 일 실시예에 따른 마이크로 로봇을 이동시키기 위한 테스트 모습을 나타내는 사진이다.
마이크로 로봇의 제어장치는 크게 마이크로 로봇을 체내의 표적지점까지 이동시키기 위하여 제어하는 장치와 미소 물체의 견인을 제어하는 장치로 구분할 수 있다.
먼저 마이크로 로봇의 이동을 제어하는 자기장 발생부(40)를 설명한다. 자기장 발생부(40)는 도 4a 및 도 4b에 도시된 바와 같이 수직 방향으로 자기장을 제어하는 수직 자기장 발생부(43)와 수평 방향으로 자기장을 제어하는 수평 자기장 발생부(44)를 포함한다. 수직 자기장 발생부(43)와 수평 자기장 발생부(44)는 방향조절부(42)에 고정된 상태로 구비된다. 방향조절부(42)는 고정부(41) 상에 수평방향으로 회전가능한 상태로 고정된다. 방향조절부(42)가 수평방향으로 회전함에 따라 수평 자기장 발생부(44) 또한 도 4b에 도시된 바와 같이 수평방향으로 회전하게 되고, 수평 자기장 발생부(44)가 회전함에 따라 발생하는 자기장의 방향도 수평 방향으로 회전하며 변하게 된다.
한편, 수직 자기장 발생부(43)는 헬름홀츠 코일쌍(HC)과 제1 코일쌍(431)을 포함한다. 즉, 도 5에 도시된 바와 같이 작업영역(A2)의 상부 및 하부에 각각 헬름홀츠 코일 쌍(HC)을 구비하고, 헬름홀츠 코일의 외측에는 제1 코일쌍(431)을 구비한다. 제1 코일쌍(431)은 원하는 크기의 자기장 구배를 형성하기 위한 구성부이고, 헬름홀츠 코일쌍(HC; Helmholtz coils)은 제1 코일쌍(431)의 내측에서 자기장을 균일하게 형성하기 위한 구성부이다. 헬름홀츠 코일쌍(HC)은 동일한 직경에 동일한 권선비를 가지는 두 개의 코일이 반경 r만큼의 거리를 두고 동일한 전류를 흘려주면 두 코일 사이에는 균일한 자기장이 형성된다. 제1 코일쌍(431)은 헬름홀쯔 코일(HC) 외곽에 구비되며, 동일한 직경에 동일한 권선비를 갖도록 구비된다. 제1 코일쌍에는 서로 반대 방향의 전류를 흘려준다. 제1 코일쌍(431)에서 발생되는 자기장 구배(gradient)로 인하여 자기장 내에서 자화된 또는 자성을 띤 물체가 수직방향으로 이동할 수 있다.
한편, 수평 자기장 발생부(44)는 헬름홀츠 코일쌍(HC)과 제2 코일쌍(441)을 포함한다. 즉, 도 5에 도시된 바와 같이 작업영역(A2)의 양 측면에는 각각 헬름홀츠 코일 쌍(HC)을 구비하고, 헬름홀츠 코일의 외측에는 제2 코일쌍(441)을 구비한다. 앞서 설명한 수직 자기장 발생부(43)와 마찬가지로 제2 코일쌍(431)은 원하는 크기의 자기장 구배를 형성하기 위한 구성부이고, 헬름홀츠 코일쌍(HC; Helmholtz coils)은 제2 코일쌍(441)의 내측에서 자기장을 균일하게 형성하기 위한 구성부이다. 헬름홀츠 코일쌍(HC)은 동일한 직경에 동일한 권선비를 가지는 두 개의 코일이 반경 r만큼의 거리를 두고 동일한 전류를 흘려주면 두 코일 사이에는 균일한 자기장이 형성된다. 제2 코일쌍(441)은 헬름홀쯔 코일(HC) 외곽에 구비되며, 동일한 직경에 동일한 권선비를 갖도록 구비된다. 제2 코일쌍(441)에는 서로 반대 방향의 전류를 흘려준다. 제2 코일쌍(441)에서 발생되는 자기장 구배(gradient)로 인하여 자기장 내에서 자화된 또는 자성을 띤 물체가 수평 방향으로 이동할 수 있다.
패러데이의 유도 법칙(Faraday's law of induction)에 의해 전류가 도선을 따라 흐를 때 그 도선 주변으로 자기장이 발생하게 되며, 이때 주변에 자화된 물체가 받는 힘(F)은 하기의 식 1과 같다.
수학식 1
Figure PCTKR2012006779-appb-M000001
여기서 B, M, V는 각각 자기장의 자속밀도, 물체의 자화, 물체의 부피를 나타낸다. 즉, 작업 영역(A2)에 구비된 자성체는 수직 자기장 발생부(43)와 수평 자기장 발생부(44)에 의하여 발생하는 각각의 자기장에 의한 힘의 벡터합에 따른 힘에 의하여 이동하게 된다.
한편, 본 실시예에서는 초음파 발생부, 예를 들면 피에조 엑츄에이터(piezo actuator)를 이용하여 미소 물체의 견인을 제어한다. 피에조 엑츄에이터는 피에조 역효과를 이용한 고체상태의 엑츄에이터를 말하며, 일종의 기계적 모터에 해당한다. 피에조 엑츄에이터는 수 나노메터의 분해능으로 위치제어 또는 변위가 가능하여 다양한 어플리케이션에 이용된다. 피에조 엑츄에이터의 구성에 관한 상세한 설명은 생략한다.
인가한 접압에 따라 피에조 엑츄레이터(Piezo-actuator)에서 발생되는 초음파의 주파수가 유체 내 버블의 공진 주파수와 일치되면 버블이 여기되어 버블의 주위에 마이크로 플로우가 형성된다.
한편, 도 6에 도시된 바와 같이 T 형상의 원형 실린더 채널 내에서 자성을 띤 구형 소형 로봇의 추진 및 방향 제어를 실험하였다. 도 6a1 내지 도 6a3는 초기 진행방향과 일치하는 방향으로 계속하여 소형 로봇을 이동시키는 제어 실험을 나타내고 있으며, 도 6b1 내지 도 6b3은 초기 진행방향으로부터 T 형상의 지류를 따라 소형 로봇의 진행방향을 변환시키는 제어 실험을 나타내고 있다. 도 6에 도시된 바와 같이 앞서 설명한 자기장 발생부의 각 구성부에 인가되는 전류를 제어함으로써 각각 다른 출구로 이동시키는 제어를 수행할 수 있었다.
도 7a 내지 도 8을 참조하여 일 실시예에 따른 약물전달 프로세스를 설명한다. 도 7a 내지 도 7d는 일 실시예에 따른 약물전달 프로세스를 순차적으로 나타내는 모식도이고, 도 8은 일 실시예에 따른 약물전달 프로세스를 순차적으로 나타내는 사진이다.
먼저 도 7a에 도시된 바와 같이 마이크로 로봇(100)을 미소 물체(MO)에 근접하도록 위치시키고, 초음파 발생부(30)를 온상태로 전환하여 초음파를 발생시킨다. 초음파가 발생하면, 버블(20)이 여기 되어 진동하고 주변에 마이크로 플로우를 형성시킴으로써 미소물체(MO)를 견인 및 포획한다. 다음으로 초음파 발생부(30)가 온 상태로 유지되고, 자기장 발생부(40)를 작동시켜 자기장을 발생시킨다. 이어서 발생한 자기장에 의하여 마이크로 로봇(10)이 표적부위를 향하여(D1) 이동하게 된다. 마이크로 로봇(10)이 표적 부위에 근접하게 되면 자기장 발생부(40)를 오프 상태로 전환한다. 이 때 자기장의 제어는 다음과 같이 세분화 될 수 있다. 즉, 이동 지점까지의 벡터를 상기 수직 성분 및 수직 성분과 직각인 수평 성분으로 분해한다. 앞서 설명한 바와 같이 수직 자기장 발생부의 자기장 세기를 수직 성분의 크기에 따라 조절하고, 수평 자기장 발생부의 회전 정도 및 자기장의 세기를 수평 성분의 방향 및 크기에 따라 조절한다. 마지막으로 초음파 발생부(30)를 오프상태로 전환하여 버블(20)이 더이상 진동하지 않도록 제어하면, 미소 물체(MO)가 버블(20)로부터 분리 및 릴리즈 된다.
한편, 여기된 버블의 유동은 세포막을 약화시킬 수 있어 해당 세포에 좀 더 원활한 약물 전달을 할 수 있으며, 여기된 버블 자체는 조영제의 기능을 하는 효과가 있다. 조영제(造影劑, contrast media)란 자기공명영상(MRI) 촬영이나 컴퓨터단층(CT) 촬영과 같은 방사선 검사 때에 조직이나 혈관을 잘 볼 수 있도록 각 조직의 X선 흡수차를 인위적으로 크게 함으로써 영상의 대조도를 크게 해주는 약품을 말한다.
이러한 약물 전달 프로세스를 테스트 하기 위하여 800μm 크기의 피쉬 에그를 특정 위치까지 전달하는 실험을 진행하였으며, 그 결과 사진을 도 8에 도시하였다. 도 8에 도시된 바와 같이, 피쉬 에그로부터 이격되어 있던 버블(a)을 이동시켜 피쉬 에그에 근접하도록 제어하고 버블을 여기 시켰다(b). 여기 된 버블에 의하여 피쉬 에그가 버블에 부착된 후(c), 자기장에 의하여 마이크로 로봇을 이동시켰다(d). 이 경우에도 피위 에그는 버블로부터 이탈되지 않았다. 표적 부위에 피쉬 에그를 이동시킨 후 초음파를 오프 시키면(e), 피쉬 에그가 버블로부터 분리되어 표적 부위에 안착(f)하는 것을 확인할 수 있었다.
이상 본 발명의 바람직한 실시예에 대하여 설명하였으나, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 인체 내 약물전달용 마이크로 로봇, 그의 이동장치 및 이를 이용한 약물전달 방법으로 구현될 수 있다.

Claims (15)

  1. 외부의 전자기장에 의하여 이동하는 몸체부; 및
    약물을 견인하는 견인부:를 포함하는 체내 약물전달을 위한 마이크로 로봇.
  2. 제1항에 있어서,
    상기 몸체부는 자기장 내에서 자화되는 마그네틱부를 포함하는 체내 약물전달을 위한 마이크로 로봇.
  3. 제2항에 있어서,
    상기 견인부는 상기 마그네틱부에 부착되고, 초음파에 의하여 진동하여 주위에 마이크로 플로우를 형성시켜 인근의 미소물체를 견인하는 버블;을 포함하는 체내 약물전달을 위한 마이크로 로봇.
  4. 제3항에 있어서,
    상기 마그네틱부는 상기 버블과 부착되는 면이 다공성으로 형성되는 체내 약물전달을 위한 마이크로 로봇.
  5. 제3항에 있어서,
    상기 마그네틱부는 외부에 테프론 코팅층이 형성되는 체내 약물전달을 위한 마이크로 로봇.
  6. 제3항에 있어서,
    상기 버블은 상기 초음파에 의하여 진동 시 조영제로서 기능하는 체내 약물전달을 위한 마이크로 로봇.
  7. 제3항에 있어서,
    상기 초음파는 상기 버블의 공진 주파수에 해당하는 주파수를 갖는 체내 약물전달을 위한 마이크로 로봇.
  8. 외부의 전자기장에 의하여 이동하는 마그네틱부와 상기 마그네틱부에 부착된 버블을 포함하는 체내 약물전달을 위한 마이크로 로봇을 제어하는 장치로서,
    상기 마그네틱부를 이동시키는 자기장을 발생시키는 자기장 발생부; 및
    상기 버블을 진동시키기 위한 초음파를 발생시키는 초음파 발생부;를 포함하는 체내 약물전달을 위한 마이크로 로봇 제어장치.
  9. 제8항에 있어서,
    상기 초음파 발생부는 피에조 역효과에 의하여 초음파를 발생시키는 체내 약물전달을 위한 마이크로 로봇 제어장치.
  10. 제8항에 있어서,
    상기 자기장 발생부는,
    상기 마이크로 로봇을 제1 축 방향으로 이동시키는 자기장을 생성하는 제1 자기장 발생부; 및
    상기 마이크로 로봇을 상기 제1 축 방향에 수직인 방향으로 이동시키는 자기장을 생성하는 제2 자기장 발생부;를 포함하는 체내 약물전달을 위한 마이크로 로봇 제어장치.
  11. 제10항에 있어서,
    상기 제1 자기장 발생부 및 제2 자기장 발생부의 내측에는 각각 헬름홀츠 코일이 구비되는 체내 약물전달을 위한 마이크로 로봇 제어장치.
  12. 제10항에 있어서,
    상기 제2 자기장 발생부를 상기 제1 축 방향을 중심으로 회전시키는 방향조절부를 포함하는 체내 약물전달을 위한 마이크로 로봇 제어장치.
  13. 외부의 전자기장에 의하여 이동하는 마그네틱부와 상기 마그네틱부에 부착된 버블을 포함하는 체내 약물전달을 위한 마이크로 로봇 및 이의 제어장치를 이용하여 약물을 전달하는 방법으로서,
    상기 마이크로 로봇을 자기장에 의하여 약물에 근접하도록 위치시키는 제1 단계;
    초음파 발생부를 온상태로 전환하여 상기 버블을 진동시킴으로써 상기 약물을 포획하는 제2 단계;
    상기 마이크로 로봇을 자기장에 의하여 표적부위에 근접시키는 제3 단계; 및
    초음파 발생부를 오프상태로 전환하여 상기 버블을 진동하지 않도록 함으로써 상기 약물을 릴리즈하는 제4 단계;를 포함하는 체내 약물전달 방법.
  14. 제13항에 있어서,
    상기 제2 단계에서의 상기 초음파는 상기 버블의 공진주파수에 해당하는 주파수를 갖는 체내 약물전달 방법.
  15. 제13항에 있어서,
    상기 자기장은, 상기 마이크로 로봇을 제1 축 방향으로 이동시키는 자기장을 생성하는 제1 자기장 발생부; 및
    상기 마이크로 로봇을 상기 제1 축 방향에 수직인 방향으로 이동시키는 자기장을 생성하는 제2 자기장 발생부;를 포함하는 자기장 발생부에 의해 발생되고,
    상기 제3 단계는,
    이동 지점까지의 벡터를 상기 제1 축에 평행한 제1 방향 성분 및 상기 제1 축과 수직인 제2 방향 성분으로 분해하는 제3-1 단계; 및
    상기 제1 방향 성분에 따라 상기 제1 자기장 발생부의 자기장의 세기를 조절하고, 상기 제2 방향에 맞추어 상기 제2 자기장 발생부를 회전하며, 동시에 상기 제2 방향 성분에 따라 상기 제2 자기장 발생부의 자기장의 세기를 조절하는 제3-2 단계;를 포함하는 체내 약물전달 방법.
PCT/KR2012/006779 2012-05-08 2012-08-24 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법 WO2013168852A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0048488 2012-05-08
KR1020120048488A KR101441739B1 (ko) 2012-05-08 2012-05-08 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법

Publications (1)

Publication Number Publication Date
WO2013168852A1 true WO2013168852A1 (ko) 2013-11-14

Family

ID=49550871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006779 WO2013168852A1 (ko) 2012-05-08 2012-08-24 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법

Country Status (2)

Country Link
KR (1) KR101441739B1 (ko)
WO (1) WO2013168852A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715845A (zh) * 2022-02-25 2023-02-28 中国科学院深圳先进技术研究院 血管介入机器人系统
US11621110B2 (en) 2019-05-08 2023-04-04 City University Of Hong Kong Electromagnetic device for manipulating a magnetic-responsive robotic device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538862B1 (ko) * 2013-12-02 2015-07-22 명지대학교 산학협력단 자기력으로 구동되는 이송 디바이스, 이를 포함하는 미소물체 제어시스템 및 그 제어방법
KR101458938B1 (ko) * 2014-05-16 2014-11-10 한양대학교 산학협력단 자기장 구동형 마이크로 로봇 및 그 시스템
KR101609387B1 (ko) 2014-06-10 2016-04-06 재단법인대구경북과학기술원 자기장 제어 가능한 이동식 생체 전달체 및 그 제조방법
KR101672593B1 (ko) * 2014-10-27 2016-11-03 명지대학교 산학협력단 마이크로 로봇, 그의 제작 방법 및 그를 이용한 바이오 셀의 핵 적출 방법
KR101642022B1 (ko) 2015-08-03 2016-07-22 원광대학교산학협력단 치료용 이동 로봇 및 이의 제어 시스템
KR102045986B1 (ko) * 2016-03-21 2019-11-18 재단법인대구경북과학기술원 자기장 제어 가능한 이동식 생체 전달체 및 그 제조방법
KR102045988B1 (ko) * 2016-03-21 2019-11-18 재단법인대구경북과학기술원 자기장 제어 가능한 이동식 생체 전달체 및 그 제조방법
GB201716237D0 (en) * 2017-10-05 2017-11-22 Univ Oxford Innovation Ltd Magnetic-acoustic device
KR102200394B1 (ko) * 2018-12-06 2021-01-11 재단법인대구경북과학기술원 마이크로 로봇의 조향을 위한 자기-음향 시스템 및 이를 이용한 마이크로 로봇의 조향 방법
KR102456899B1 (ko) * 2020-10-19 2022-10-21 재단법인 한국마이크로의료로봇연구원 혈관 시뮬레이터의 구동 시험을 위한 전자기 구동 장치 및 이의 구동 방법
CN114601509B (zh) * 2020-12-08 2023-08-08 长春工业大学 一种磁驱动微纳米机器人的设计及其制备方法和驱动方式

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776165B2 (en) * 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
KR100615881B1 (ko) * 2004-06-21 2006-08-25 한국과학기술연구원 캡슐형 내시경 조종 시스템
JP2009039225A (ja) * 2007-08-07 2009-02-26 Aloka Co Ltd 造影用カプセル
KR101083345B1 (ko) * 2008-05-26 2011-11-15 전남대학교산학협력단 혈관치료용 마이크로 로봇 및 마이크로 로봇 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081045A (ja) 1999-09-11 2001-03-27 Yasuto Takeuchi カーボンマイクロコイルを用いた超音波薬剤放出システム
US20050260189A1 (en) * 2002-07-11 2005-11-24 Klibanov Alexander L Microbubble compositions, and methods for preparing and using same
JP4153845B2 (ja) 2003-08-11 2008-09-24 オリンパス株式会社 医療装置誘導システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776165B2 (en) * 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
KR100615881B1 (ko) * 2004-06-21 2006-08-25 한국과학기술연구원 캡슐형 내시경 조종 시스템
JP2009039225A (ja) * 2007-08-07 2009-02-26 Aloka Co Ltd 造影用カプセル
KR101083345B1 (ko) * 2008-05-26 2011-11-15 전남대학교산학협력단 혈관치료용 마이크로 로봇 및 마이크로 로봇 시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621110B2 (en) 2019-05-08 2023-04-04 City University Of Hong Kong Electromagnetic device for manipulating a magnetic-responsive robotic device
CN115715845A (zh) * 2022-02-25 2023-02-28 中国科学院深圳先进技术研究院 血管介入机器人系统

Also Published As

Publication number Publication date
KR101441739B1 (ko) 2014-09-19
KR20130125054A (ko) 2013-11-18

Similar Documents

Publication Publication Date Title
WO2013168852A1 (ko) 체내 약물전달용 마이크로 로봇, 그의 제어장치 및 이를 이용한 약물전달 방법
JP7437338B2 (ja) 磁気カプセルをナビゲートする外部磁気制御システムの作動方法
US10702132B2 (en) System and method for using a capsule device
JP7197684B2 (ja) マイクロナノスケールロボット、医療器具および埋め込み可能デバイスの遠隔制御のためのハイブリッド電磁デバイス
KR101096532B1 (ko) 3차원 전자기 구동장치
AU2013348680B2 (en) Operation control system of capsule type endoscope, and capsule type endoscope system comprising same
US20050182315A1 (en) Magnetic resonance imaging and magnetic navigation systems and methods
JP2001522623A (ja) 可動結合化された磁気的誘導システム及び装置、及び、磁気を補助利用した手術のためにこれを用いる方法
WO2020171443A1 (ko) 마이크로 로봇 구동장치
KR101084720B1 (ko) 3차원 입체 전자기 구동장치
KR101084723B1 (ko) 2차원 평면 전자기 구동장치 및 구동방법
Mathieu et al. Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels
KR101382856B1 (ko) 혈전 파괴를 위한 마이크로 로봇 시스템 및 이를 이용한 혈전 파괴 방법
KR20100046321A (ko) 마이크로 로봇 제어를 위한 코일 시스템 구조 및 이를 이용한 2차원 평면 전자기 구동 시스템
WO2018236081A1 (ko) 자석 배열을 이용한 치료제 표적화 및 고정 의료장치
KR20200101286A (ko) 마이크로 로봇 구동장치
JP6652608B2 (ja) 磁気感応体の集団化および制御
Le et al. Electromagnetic actuation system for focused capturing of magnetic particles with a half of static saddle potential energy configuration
US20160243377A1 (en) Medical imaging systems and methods for performing motion-corrected image reconstruction
WO2021080092A1 (ko) 마이크로 로봇 제어장치
RU2683204C1 (ru) Устройство управления движением инородного тела внутри пациента внешним магнитным полем
Nguyen et al. Design, Fabrication, and Wireless Control of 3D-microprinted Robots for Biomedical Applications
Khalil et al. Near surface effects on the flagellar propulsion of soft robotic sperms
KR102555162B1 (ko) 개방형 자성체의 구동 및 위치인식 통합 시스템
Chah et al. Strategy for haptic-based guidance of soft magnetic particles in the cochlea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876453

Country of ref document: EP

Kind code of ref document: A1