WO2013168831A1 - 투명전도성 기판 및 그 제조 방법 - Google Patents

투명전도성 기판 및 그 제조 방법 Download PDF

Info

Publication number
WO2013168831A1
WO2013168831A1 PCT/KR2012/003553 KR2012003553W WO2013168831A1 WO 2013168831 A1 WO2013168831 A1 WO 2013168831A1 KR 2012003553 W KR2012003553 W KR 2012003553W WO 2013168831 A1 WO2013168831 A1 WO 2013168831A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
conductive substrate
forming
base substrate
Prior art date
Application number
PCT/KR2012/003553
Other languages
English (en)
French (fr)
Inventor
윤정흠
이건환
박연현
이성훈
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US14/398,424 priority Critical patent/US20150083465A1/en
Priority to PCT/KR2012/003553 priority patent/WO2013168831A1/ko
Publication of WO2013168831A1 publication Critical patent/WO2013168831A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0041Etching of the substrate by chemical or physical means by plasma etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • the present invention relates to a transparent conductive substrate and a method of manufacturing the same.
  • touch screens have been applied to portable electronic devices such as mobile phones, smartphones, and tablet PCs.
  • touch screens In addition to touch screens, EL backlights, electromagnetic wave protection members, and solar cells have emerged, and the use of polymer-based transparent conductive substrates is increasing.
  • the polymer-based transparent conductive substrate is a substrate on which a transparent conductive layer is coated on a polymer base substrate, and has a transparent optical effect and is a transparent electrode substrate that can pass electricity.
  • An object of the present invention is to provide a transparent conductive substrate having both electrical and optical properties.
  • Another object of the present invention is to provide a transparent conductive substrate having anti-fingerprint characteristics.
  • Still another object of the present invention is to provide a transparent conductive substrate having a function of blocking foreign material permeation and protecting the substrate from an external environment.
  • preparing a base substrate capable of transmitting light Forming a transparent conductive layer on the first surface of the base substrate by deposition of a transparent conductive material; Forming an anti-reflection layer on the second surface of the base substrate, wherein forming the anti-reflection layer comprises forming a plurality of protrusion structures on the second surface of the base substrate by using a dry etching method. step; And forming an antireflective structure that prevents reflection of light on the plurality of protruding structures by deposition of inorganic particles.
  • the anti-reflective transparent conductive layer a continuous conductive layer formed by the deposition of the transparent conductive material; And a conductive antireflective structure.
  • the base substrate may include a reinforcement coating layer.
  • the base substrate is at least one selected from fluorine-based transparent polymer film, acrylic transparent polymer film, polyethylene terephthalate-based transparent polymer film, polycarbonate, polyethylene naphthalate, polyethersulfone, polycycloolefin, CR39 and polyurethane (polyiourethane) It may include.
  • the transparent conductive material may be an oxide including at least one selected from Zn, Cd, In, Ga, Sn, and Ti.
  • the transparent conductive material may be deposited by a sputtering method.
  • the plurality of protrusion structures may be formed using a plasma etching method or an ion beam etching method.
  • At least one gas selected from Ar, O 2 , H 2 , He, and N 2 may be used.
  • the arrangement interval of the plurality of protrusion structures may be adjusted by controlling the etching exposure time.
  • the said etching exposure time can be made into less than 7 minutes.
  • the antireflective structure or the conductive antireflective structure may be formed adjacent to each other.
  • the antireflective structure or the conductive antireflective structure may have a spherical shape.
  • the anti-reflection layer may further include a continuous layer formed by deposition of the inorganic particles between the plurality of protrusion structures and the anti-reflection structure.
  • the anti-reflective structure may be formed by depositing the inorganic particles with a plasma thin film.
  • the inorganic particles, metal material may include at least one selected from oxides (oxides), nitrides of the metal material and magnesium fluoride (Magnesium fluoride).
  • the antireflective structures may be arranged at intervals of 200 nm or less.
  • the method for manufacturing a transparent conductive substrate may further include forming a continuous thin film layer on the anti-reflection layer.
  • the same material as the inorganic particles may be used.
  • the method for manufacturing a transparent conductive substrate may further include forming an anti-fingerprint layer on the anti-reflection layer.
  • the method for manufacturing a transparent conductive substrate may further include forming an anti-fingerprint layer on the continuous thin film layer.
  • the anti-fingerprint layer may include at least one of methyl group (CH 3 ) and carbon fluoride group (CF).
  • the fingerprint layer is cyclomethicone (Cyclomethicone, C 8 H 24 Si 4 O 4 ), hexamethyldiosilane (HMDSO), octamethylcyclotetrasiloxane (OMCTS), 2-fluoro-6-methoxybenzaldehyde, -Fluoro-4 methoxybenzaldehyde, 4-fluoro-3 methoxybenzaldehyde, 5-fluoro-2 methoxybenzaldehyde, 2-fluoro-6 methoxyphenol, 4-fluoro-2 methoxyphenol and 5 It can be formed by depositing at least one of -fluoro-3 methoxysalicylaldehyde.
  • the method for manufacturing a transparent conductive substrate may further include forming a protective layer on the second surface of the base substrate.
  • the protective layer may be formed including at least one of oxides of Si, Al, Zn, and Ti.
  • the method for manufacturing a transparent conductive substrate may further include forming an antireflection layer on a second surface of the base substrate.
  • the forming of the anti-reflection layer may include forming a plurality of protrusion structures on the second surface of the base substrate by using a dry etching method; And forming an antireflection structure, which may prevent reflection of light on the plurality of protrusion structures by deposition of inorganic particles.
  • the method for manufacturing a transparent conductive substrate may further include forming a continuous thin film layer on the anti-reflection layer.
  • the method for manufacturing a transparent conductive substrate may further include forming an anti-fingerprint layer on the anti-reflection layer.
  • the method for manufacturing a transparent conductive substrate may further include forming an anti-fingerprint layer on the continuous thin film layer.
  • the base substrate capable of transmitting light;
  • a transparent conductive layer formed on the first surface of the base substrate by deposition of a transparent conductive material;
  • a transparent conductive substrate comprising an antireflective structure, formed on the plurality of protruding structures.
  • the base substrate capable of transmitting light; And a conductive antireflection layer formed on the first surface of the base substrate, wherein the conductive antireflection layer is formed on the first surface of the base substrate using a dry etching method; And an antireflective transparent conductive layer formed on the plurality of protruding structures by the deposition of the transparent conductive material.
  • the anti-reflective transparent conductive layer a continuous conductive layer formed by the deposition of the transparent conductive material; And it may include a conductive antireflective structure to prevent the reflection of light.
  • the transparent conductive substrate may further include a continuous thin film layer formed on the anti-reflection layer.
  • the transparent conductive substrate may further include an anti-fingerprint layer formed on the anti-reflection layer.
  • the transparent conductive substrate may further include an anti-fingerprint layer formed on the continuous thin film layer.
  • the transparent conductive substrate may further include a protective layer formed on the second surface of the base substrate.
  • the transparent conductive substrate may further include an antireflection layer formed on the second surface of the base substrate.
  • the anti-reflection layer may include a plurality of protrusion structures formed on the second surface of the base substrate using a dry etching method; And an antireflection structure formed on the plurality of protrusion structures by deposition of inorganic particles.
  • the transparent conductive substrate may further include a continuous thin film layer formed on the anti-reflection layer.
  • the transparent conductive substrate may further include an anti-fingerprint layer formed on the anti-reflection layer.
  • the transparent conductive substrate may further include forming an anti-fingerprint layer on the continuous thin film layer.
  • the present invention has the effect of easily controlling the optical and physical properties of the transparent conductive substrate.
  • the present invention has the effect of having a water-repellent function to flow down without being absorbed when water is buried, and a fingerprint function to prevent the fingerprint of the user from being buried.
  • the present invention also has the effect of protecting the base substrate and strengthening the hardness of the substrate itself.
  • FIG. 1 is a schematic view of a transparent conductive substrate according to an embodiment of the present invention.
  • FIG. 2 is a view showing the actual structure of the anti-reflection layer according to an embodiment of the present invention.
  • Figure 3 is a graph showing the light transmission characteristics according to the etching exposure time of the antireflective layer according to an embodiment of the present invention.
  • FIG. 4 shows the actual spacing of the antireflective structure over time of etching exposure in accordance with one embodiment of the present invention.
  • FIG. 5 illustrates an antireflective structure arranged adjacent to each other in accordance with an embodiment of the present invention.
  • FIG. 6 is a view showing the durability measurement results of the transparent conductive substrate according to an embodiment of the present invention.
  • FIG. 7 is a view showing the durability measurement results of a known transparent conductive substrate.
  • FIG. 8 is a schematic view of a transparent conductive substrate according to another embodiment of the present invention.
  • FIG. 9 is a view showing the actual structure of the conductive anti-reflection layer according to an embodiment of the present invention.
  • FIG. 10 is a graph showing the light transmission characteristics according to the thickness of the anti-reflective transparent conductive layer according to an embodiment of the present invention.
  • FIG. 11 is a graph showing light transmission characteristics according to etching exposure time of a conductive antireflective layer according to an embodiment of the present invention.
  • FIG. 12 illustrates the actual spacing of a conductive antireflective structure with etch exposure time in accordance with one embodiment of the present invention.
  • FIG. 13 is a schematic view showing a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method of manufacturing a transparent conductive substrate according to an embodiment of the present invention in order.
  • 15 is a process diagram sequentially showing a method of manufacturing a transparent conductive substrate according to an embodiment of the present invention.
  • 16 is a graph showing the degree to which the light transmission characteristic is improved by the anti-reflection layer according to an embodiment of the present invention.
  • 17 is a flowchart illustrating a method of manufacturing a transparent conductive substrate according to another embodiment of the present invention in order.
  • FIG. 18 is a process diagram sequentially showing a method of manufacturing a transparent conductive substrate according to another embodiment of the present invention.
  • 19 is a graph showing the degree to which the light transmission characteristic is improved by the conductive anti-reflection layer according to an embodiment of the present invention.
  • FIG. 20 is a flowchart sequentially showing a method of manufacturing a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention.
  • 21 is a process diagram sequentially showing a method of manufacturing a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention.
  • FIG. 22 is a graph showing the degree of improvement in the light transmission characteristics of the transparent conductive substrate of the double-sided structure according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a schematic diagram of a transparent conductive substrate according to an embodiment of the present invention
  • Figure 2 is a view showing the actual structure of the anti-reflection layer according to an embodiment of the present invention.
  • a transparent conductive substrate includes a base substrate 100, a transparent conductive layer 110, an antireflection layer 120, a continuous thin film layer 150, and an anti-fingerprint layer 160. do.
  • the transparent conductive layer 110 is a layer formed by depositing a transparent conductive material on the first surface of the base substrate 100.
  • the transparent electroconductive material forming the transparent conductive layer 110 may be an oxide made of an oxide of Zn, Cd, In, Ga, Sn, and Ti or a compound between these materials.
  • the transparent conductive layer 110 mainly used includes indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), and gallium znic oxide (GZO). Can be.
  • Transparent conductive substrate in order to be used as a transparent electrode of a general display or a solar cell, the transparent conductive layer 110 may be formed to a thickness of 10nm or more and 500nm or less.
  • the sheet resistance of the transparent conductive layer 110 may be controlled at 10 ⁇ / ⁇ or more and 200 ⁇ / ⁇ or less.
  • the anti-reflection layer 120 is formed on the second surface of the base substrate 100 and includes a plurality of protrusion-type structures 130 and the anti-reflection structure 140.
  • the anti-reflection layer 120 may be formed continuously between the plurality of protrusion structures 130 and the anti-reflection structure 140 by uniformly depositing an inorganic material on the plurality of protrusion structures 130. It may further include a continuous layer 135.
  • the plurality of protruding structures 130 are protruding structures formed on the second surface of the base substrate 100 using a dry etching method.
  • the antireflection structure 140 is a structure formed on each of the protrusion structures 130 by depositing inorganic particles on the plurality of protrusion structures 130 formed by the dry etching method on the second surface of the base substrate 100. to be.
  • the inorganic particles forming the antireflective structure 140 may be formed of a metal material (Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Oxides and nitrides of Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, Yb, and oxide-nitride compounds (AlN, SiON) and magnesium fluoride (MagneSium fluoride) ) May include at least one.
  • the anti-reflection layer 120 formed through the above-described inorganic particles may prevent reflection of light, thereby improving light transmittance.
  • the continuous thin film layer 150 is a layer that further improves physical properties such as strength, hardness, and durability of the transparent conductive substrate, and has a continuous surface.
  • the continuous thin film layer 150 may be formed on the antireflection layer 120.
  • the continuous thin film layer 150 may be formed to a thickness of 5nm or more and 100nm or less for controlling the optical characteristics.
  • the anti-fingerprint layer 160 has a water repellent function that allows water to flow down without being absorbed into the substrate when water is applied to the transparent conductive substrate, and has a fingerprint-proof function so that the fingerprint of the user is not buried.
  • the anti-fingerprint layer 160 may be formed on the anti-reflection layer 120 or the continuous thin film layer 150.
  • Anti-fingerprint layer 160 is cyclomethicone (C 8 H 24 Si 4 O 4 ), hexamethyldioxane (HMDSO), octamethylcyclotetrasiloxane (OMCTS), 2-fluoro-6-methoxybenzaldehyde, 3-fluoro-4 methoxybenzaldehyde, 4-fluoro-3 methoxybenzaldehyde, 5-fluoro-2 methoxybenzaldehyde, 2-fluoro-6 methoxyphenol, 4-fluoro-2 methoxyphenol and It can be formed by depositing at least one of 5-fluoro-3 methoxysalicylaldehyde.
  • the fingerprint layer 160 may include at least one of methyl group (CH 3 ) and carbon fluoride group (CF).
  • the light transmission characteristics of the transparent conductive substrate is controlled by the diameter and the arrangement interval of the antireflective structure 140 included in the antireflective layer 120.
  • the diameter of the antireflective structure 140 may be adjusted through control of process conditions and time during the process of forming the antireflective structure 140.
  • the arrangement interval of the antireflective structure 140 may be adjusted through control of the interval of the plurality of protrusion-type structures 130 on which the antireflective structure 140 is formed.
  • the spacing of the plurality of protrusion structures 130 may be controlled by adjusting plasma power or etching exposure time.
  • the etching exposure time refers to a time for etching the base substrate 100 by exposing the base substrate 100 to plasma.
  • the light transmissive property of the transparent conductive substrate is the maximum when the etching exposure time is about 3 minutes, and when the plasma exposure time is 7 minutes or more, it is similar to the case where it is not exposed to the plasma.
  • the etching exposure time of the base substrate 100 is preferably controlled to less than seven minutes.
  • FIG 4 is a view showing the actual spacing of the antireflective structure according to the etching exposure time according to an embodiment of the present invention.
  • the intervals of the antireflective structure 140 measured when the etching exposure time is 1 minute, 3 minutes, and 7 minutes are shown in the following table.
  • the plasma intensity was 200W (1.1W / cm 2 ) at an RF frequency of 13.56 MHz. Under these experimental conditions, it was measured that 3.1 x 10 17 ions were reached with an energy of 102 eV in the area of the base substrate 100 surface of 1 cm x 1 cm per minute.
  • the antireflection structure 140 when the etching exposure time at the same plasma power is controlled to less than seven minutes, the antireflection structure 140 may be arranged at intervals of 200 nm or less. Therefore, in order to increase the transmission efficiency of light and to prevent the reflection of light, it is preferable that the antireflection structure 140 is set to an interval of 200 nm or less.
  • FIG. 5 is a view showing an antireflective structure arranged adjacent to each other according to an embodiment of the present invention. As shown in FIG. 5, when the antireflective structures 140 are disposed adjacent to each other, the optical characteristics of the antireflective layer 120 are increased as compared with the case where the antireflective structures 140 are not adjacent to each other.
  • FIG. 6 is a view showing the durability measurement results of the transparent conductive substrate according to an embodiment of the present invention
  • Figure 7 is a view showing the durability measurement results of a known transparent conductive substrate. 6 and 7, when the antireflective structures 140 are disposed adjacent to each other, it may be seen that physical properties of the antireflective layer 120 are also increased as compared to otherwise.
  • FIG. 6 a transparent conductive substrate on which antireflective structures 140 are disposed adjacent to each other is set as an experimental group, and in FIG. 7, a substrate including a coating layer that is simply continuously formed without forming an antireflective structure 140 is set as a control.
  • the tester conditions were to set the type of rubber eraser (1/4 in diameter) as the friction, the load was set to 500 grams, the test speed 40 times / min and the number of tests 1500 times, the analysis of the results of the anti-reflection layer 120 and coating layer respectively
  • the water-repellent properties were evaluated by measuring the contact angle of H 2 O before and after the eraser wear test.
  • the antireflective layer 120 including the antireflective structure 140 disposed adjacent to each other has a variation in the contact angle of H 2 O even after the eraser wear test than the continuous coating layer shown in FIG. 7. Since it is small, it turns out that the result is more excellent in physical characteristics, such as strength and durability.
  • FIG 8 is a schematic view of a transparent conductive substrate according to another embodiment of the present invention
  • Figure 9 is a view showing the actual structure of the conductive anti-reflection layer according to an embodiment of the present invention.
  • a transparent conductive substrate includes a base substrate 100, a conductive antireflection layer 220, and a protective layer 270.
  • the base substrate 100 is a polymer substrate made of a material capable of transmitting light, and is the same as described with reference to FIG. 1.
  • the conductive antireflective layer 220 is formed on the first surface of the base substrate 100 and includes a plurality of protrusion-like structures 230 and an antireflective transparent conductive layer 240.
  • the plurality of protrusion structures 230 are structures formed on the first surface of the base substrate 100 using a dry etching method.
  • the anti-reflective transparent conductive layer 240 may include a continuous conductive layer 250 continuously formed on the plurality of protrusion structures and a conductive anti-reflective structure 260 to prevent reflection of light. have.
  • the transparent electroconductive material forming the antireflective transparent conductive layer 240 may be an oxide of Zn, Cd, In, Ga, Sn and Ti or an oxide made of a compound between these materials.
  • the antireflective transparent conductive layer 240 mainly used includes ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum Zinc Oxide), GZO (Gallium Znic Oxide), and the like. It can be formed as.
  • FIG. 10 is a graph showing the light transmission characteristics according to the thickness of the anti-reflective transparent conductive layer according to an embodiment of the present invention.
  • the visible light region exhibiting light transmission characteristics of the transparent conductive substrate moves in a longer wavelength as the thickness of the antireflective transparent conductive layer 240 increases, and the thickness of the antireflective transparent conductive layer 240 is 110 nm. If abnormal, only visible light of 600 nm wavelength or more is transmitted.
  • the thickness of the anti-reflective transparent conductive layer 240 is 114 nm or more, the visible light region to be transmitted is extremely limited, and thus the light transmission characteristics of the transparent conductive substrate are lost.
  • the antireflective transparent conductive layer 240 may be formed to have a thickness of 30 nm or more and 110 nm or less.
  • the transparent conductive substrate including the anti-reflective transparent conductive layer 240 formed to the thickness is suitable for use in a touch screen or the like.
  • the sheet resistance of the anti-reflective transparent conductive layer 240 may be controlled at 100 ⁇ / ⁇ or more and 1000 ⁇ / ⁇ or less.
  • the continuous conductive layer 250 is a layer continuously formed by a transparent conductive material between the plurality of protrusion structures 230 and the conductive antireflective structure 260.
  • the continuous conductive layer 250 allows the entire antireflective transparent conductive layer 240 to have conductivity.
  • the conductive antireflective structure 260 is a structure formed on the plurality of protrusion structures 230 and the continuous conductive layer 250.
  • the conductive antireflective structure 260 may be formed in a spherical shape.
  • the protective layer 270 prevents permeation of the foreign material, which may contaminate the base substrate 100 such as oxygen, water, or the like, and may cause a defect of the transparent conductive substrate, and enhance the hardness of the transparent conductive substrate itself, thereby providing transparent conductivity.
  • the layer protects the substrate.
  • the protective layer 270 may be formed on the second surface of the base substrate 100.
  • the optical properties of the transparent conductive substrate is controlled by the diameter and the arrangement interval of the conductive antireflective structure 260 included in the conductive antireflective layer 220.
  • the diameter of the conductive antireflective structure 260 may be adjusted through control of process conditions and time during the process of forming the conductive antireflective structure 260.
  • the arrangement interval of the conductive antireflective structure 260 may be adjusted through the control of the interval between the plurality of protrusion-like structure 230 in which the conductive antireflective structure 260 is formed.
  • the spacing of the plurality of protrusion structures 230 may be controlled by adjusting plasma power or etching exposure time.
  • the etching exposure time refers to a time for etching the base substrate 100 by exposing the base substrate 100 to plasma.
  • FIG. 11 is a graph illustrating light transmission characteristics according to the etching exposure time of the conductive antireflective layer according to the embodiment of the present invention.
  • the region of visible light exhibiting light transmission characteristics of the transparent conductive substrate is the widest when the etching exposure time is 3 minutes and the narrowest when the etching exposure time is 7 minutes.
  • the etching time is 7 minutes or more, light transmission characteristics appear only at long wavelengths (about 650 nm or more).
  • the etching exposure time of the base substrate 100 is preferably controlled to less than seven minutes.
  • FIG. 12 is a view showing the actual spacing of the conductive antireflective structure according to the etching exposure time according to an embodiment of the present invention. Referring to FIG. 12, it can be seen that when the etching exposure time is set to 1 minute, 3 minutes, and 7 minutes, the distance between the conductive antireflective structures 260 is changed.
  • the spacing of the conductive antireflective structure 260 may be controlled by adjusting the etching exposure time.
  • the distance between the conductive antireflective structure 260 is different, since the density of the antireflective transparent conductive layer 240 is different, the refractive index of the antireflective transparent conductive layer 240 may be different. Therefore, the light transmission characteristic of the transparent conductive substrate may be controlled by adjusting the gap of the conductive antireflective structure 260.
  • the interval of the conductive antireflective structure 260 may be 200 nm or less in order to increase the light transmission efficiency of the transparent conductive substrate.
  • the conductive antireflective structures 260 may be arranged adjacent to each other. When the conductive antireflective structures 260 are disposed adjacent to each other, the optical characteristics of the conductive antireflective layer 220 may be increased as compared with the other cases.
  • a transparent conductive substrate according to another embodiment of the present invention may include a base substrate 100, an antireflection layer 120, a continuous thin film layer 150, an anti-fingerprint layer 160, and a conductive antireflection layer 220. It may include.
  • the base substrate 100, the antireflection layer 120, the continuous thin film layer 150, and the fingerprint prevention layer 160 have been described with reference to FIG. 1.
  • the conductive antireflection layer 220 is as described with reference to FIG. 2.
  • FIG. 14 is a flowchart illustrating a method of manufacturing a transparent conductive substrate in accordance with an embodiment of the present invention
  • FIG. 15 is a flowchart illustrating a method of manufacturing a transparent conductive substrate in accordance with an embodiment of the present invention.
  • a method of manufacturing a transparent conductive substrate includes preparing a base substrate 100 (S100), forming a transparent conductive layer 110 (S200), and an anti-reflection layer. (120) forming step (S300), the continuous thin film layer 150 forming step (S400) and the anti-fingerprint layer 160 forming step (S450).
  • the base substrate 100 preparing step (S100) is a step of preparing the base substrate 100 made of a polymer material capable of transmitting light.
  • a transparent conductive material is deposited on the first surface of the base substrate 100 to continuously form the transparent conductive layer 110.
  • the method of forming the transparent conductive layer 110 by depositing a transparent conductive material may be a sputtering method, and the steps of the method are as follows.
  • the base substrate 100 is mounted in a vacuum chamber.
  • a vacuum degree in the vacuum chamber is maintained at 2x10 -5 torr.
  • Ar working gas is then injected and the working vacuum reaches 2x10 -3 torr.
  • power is applied to a plasma generating power source connected to the sputtering target to which the transparent conductive material is attached, and plasma is generated to deposit the transparent conductive material on the first surface of the base substrate 100.
  • the transparent conductive substrate may have electrical conductivity.
  • the anti-reflection layer 120 forming step S300 may include forming a plurality of the protruding structures 130 (S310) and forming the anti-reflective structure 140 (S320).
  • Forming the plurality of protrusion structures 130 is a step of forming the plurality of protrusion structures 130 on the second surface of the base substrate 100 using a dry etching method.
  • the dry etching method may control the formation of the plurality of protrusion structures 130 more precisely and accurately than in the case of using the wet etching method.
  • the dry etching method may be a plasma etching method.
  • the material used in the plasma etching method may include one or more of at least one gas selected from Ar, O 2 , H 2 , He, and N 2 .
  • the second surface of the base substrate 100 may be etched to form a plurality of protrusion structures 130. .
  • the continuous layer 135 is formed by uniformly depositing inorganic particles in a valley between the plurality of protrusion structures 130 and the plurality of protrusion structures 130 at the initial stage of vapor deposition of the inorganic particles.
  • the deposition of inorganic particles results in a shadow effect. That is, the inorganic particles reaching the second surface of the base substrate 100 are covered by the plurality of protrusion structures 130 and the continuous layer 135 formed on the plurality of protrusion structures 230, thereby forming a plurality of protrusions. It is impossible to reach the valley between the structures 130. As a result, the inorganic particles are deposited only on the continuous layer 135 formed on the plurality of protrusion structures 130 to form the antireflection structure 140 having a unit particle structure. At this time, the antireflection structure 140 may be formed in a spherical shape.
  • a method of depositing inorganic particles may use chemical vapor deposition (CVD) and physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the transparent conductive substrate provided with the antireflective layer 120 has a higher light transmittance than the transparent conductive substrate without the antireflective layer 120.
  • the transparent conductive layer 110 is formed using ITO, and the antireflective layer 120 is formed to a thickness of 90 nm using SiOx.
  • the forming of the continuous thin film layer 150 refers to forming the continuous thin film layer 150 on the anti-reflection layer 120.
  • the continuous thin film layer 150 may be formed by deposition of inorganic particles. Chemical vapor deposition, physical vapor deposition, etc. may be used as a method of depositing the inorganic particles.
  • the inorganic particles forming the continuous thin film layer 150 may be the same as the inorganic particles used to form the antireflection structure 140.
  • the continuous thin film layer 150 is made of the same material as the antireflective structure 140, it is easy to control optical characteristics such as refraction of light, and the cumbersomeness in the manufacturing process may be reduced.
  • the continuous thin film layer 150 may be formed by a sol-gel method or dipping. That is, the continuous thin film layer 150 may be formed by applying liquid inorganic particles to the space between the antireflective structures 140.
  • Fingerprint layer 160 forming step (S450) is a step of forming a fingerprint layer 160 having a water repellent function and a fingerprint function in the continuous thin film layer 150.
  • the anti-fingerprint layer 160 may be formed by applying a dry coating method or a wet process coating method. Among them, chemical vapor deposition or physical vapor deposition may be used as the dry coating method.
  • the anti-fingerprint layer 160 may be formed on the anti-reflection layer 120 instead of the continuous thin film layer 150. That is, the continuous thin film layer 150 is not formed on the reflective ring layer 120, and the anti-fingerprint layer 160 may be formed immediately.
  • the transparent conductive layer 110 is continuously formed on the first surface of the base substrate 100, and the anti-reflection layer 120, the continuous thin film layer 150, and the fingerprint prevention layer are formed on the second surface of the base substrate 100.
  • the 160 By forming the 160, a transparent conductive substrate having excellent electrical, optical and anti-fingerprint properties can be provided.
  • FIG. 17 is a flowchart illustrating a method of manufacturing a transparent conductive substrate according to another embodiment of the present invention
  • FIG. 18 is a flowchart illustrating a method of manufacturing a transparent conductive substrate according to another embodiment of the present invention.
  • a method of manufacturing a transparent conductive substrate may include preparing a base substrate 100 (S100), forming a conductive antireflection layer 220 (S500), and forming a protective layer 270 (S600). It includes.
  • the base substrate 100 preparing step (S100) is a step of preparing the base substrate 100 made of a material capable of transmitting light.
  • Forming the conductive antireflection layer 220 includes forming a plurality of protrusion structures 230 (S510) and forming an anti-reflective transparent conductive layer 240 (S520).
  • the plurality of protrusion structures 230 may be formed on the first surface of the base substrate 100 by using a dry etching method.
  • the dry etching method can precisely and accurately control the formation of the plurality of protrusion structures 230.
  • the dry etching method may be an ion beam etching method used in a sputtering process. The steps of the method are as follows.
  • the base substrate 100 is mounted in a vacuum chamber.
  • the vacuum degree in the vacuum chamber is maintained at 1x10 -5 torr.
  • the ion beam apparatus operates to remove the adsorption gas particles and the contaminants present on the base substrate 100.
  • the ion beam apparatus may operate by using an end-hall method that emits hot electrons from the filament to generate a plasma, and accelerates and releases ions present in the plasma.
  • an Ar mixed gas is injected into the vacuum chamber to maintain a vacuum degree of 5x10 -5 torr to 5x10 -4 torr, and the power of the filament is about 400W (20A x 20V).
  • the power is set to 180W (2A x 90V) and can be run in less than 10 minutes.
  • the dry etching method may be a plasma etching method.
  • the material used in the plasma etching method may include at least one of at least one gas selected from Ar, O 2 , H 2 , He, and N 2 .
  • the first surface of the base substrate 100 may be etched to form a plurality of protrusion structures 230.
  • the plurality of protrusion structures 230 are formed by the plasma etching method, they are formed in a chamber different from the antireflective transparent conductive layer 240 to be described later.
  • the plurality of protrusion structures 230 are deposited by depositing a transparent conductive material on the plurality of protrusion structures 230 formed on the first surface of the base substrate 100.
  • the continuous conductive layer 250 and the conductive antireflection structure 260 are formed in succession.
  • the entire antireflective transparent conductive layer 240 may have conductivity.
  • the continuous conductive layer 250 and the conductive antireflection structure 260 may be formed at the same time.
  • a method of forming the anti-reflective transparent conductive layer 240 by depositing a transparent conductive material may be a sputtering method, and the steps of the method are as follows.
  • the base substrate 100 is mounted in a vacuum chamber.
  • a vacuum degree in the vacuum chamber is maintained at 2x10 -5 torr.
  • Ar working gas is then injected and the working vacuum reaches 2x10 -3 torr.
  • power is applied to a plasma generating power source connected to the sputtering target to which the transparent conductive material is attached, and plasma is generated to deposit the transparent conductive material on the first surface of the base substrate 100.
  • the continuous conductive layer 250 is formed by depositing a transparent conductive material uniformly in a valley between the plurality of protrusion structures 230 and the plurality of protrusion structures 230 at the beginning of the deposition of the transparent conductive material.
  • the shadow effect occurs over time as the transparent conductive material is deposited. That is, the transparent conductive material that reaches the base substrate 100 is covered by the plurality of protrusion structures 230 and the continuous conductive layer 250 formed on the plurality of protrusion structures 230 and thus the plurality of protrusion structures 230. You will not reach the valley between them. As a result, the inorganic particles are deposited only on top of the continuous conductive layer 250 formed on the plurality of protrusion structures 230 to form the conductive antireflection structure 260. In this case, the conductive antireflection structure 260 may be formed in a spherical shape.
  • FIG. 19 is a graph showing the degree to which light transmission characteristics are improved by the conductive anti-reflection layer according to an embodiment of the present invention.
  • the anti-reflective transparent conductive layer 240 when the anti-reflective transparent conductive layer 240 is formed on the base substrate 100, the degree of light transmission is higher than that when the transparent conductive material is formed of a continuous thin film having the same thickness. It is possible to provide a transparent conductive substrate having improved light transmission characteristics.
  • the antireflective transparent conductive layer 240 was formed to a thickness of 90 nm using ITO.
  • the protective layer 270 protecting the base substrate 100 from an external environment is etched on the second surface of the base substrate 100. It is a step of forming continuously without a process.
  • the protective layer 270 may be formed by depositing an oxide of Si, Al, Zn, Ti, or the like by using chemical vapor deposition or physical vapor deposition.
  • the plurality of protrusion structures 230 are formed on the first surface of the polymer base substrate 100, and a transparent conductive material is deposited to form the continuous conductive layer 250 and the conductive antireflection structure 260.
  • a transparent conductive material is deposited to form the continuous conductive layer 250 and the conductive antireflection structure 260.
  • the anti-reflective transparent conductive layer 240 is formed, since the conductive anti-reflective layer 220 can be easily controlled, a transparent conductive substrate having improved optical characteristics can be provided, and a second surface of the base substrate 100 is provided.
  • a transparent conductive substrate having a protective function may be provided by having a protective layer thereon.
  • FIG. 20 is a flowchart illustrating a method of manufacturing a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention
  • Figure 21 is a sequence of a method of manufacturing a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention It is a process chart as shown.
  • a method of manufacturing a transparent conductive substrate may include preparing a base substrate 100 (S100), forming an anti-reflection layer 120 (S300), and a continuous thin film layer. (150) forming step (S400), anti-fingerprint layer 160 forming step (S450), and forming a conductive antireflection layer 220 (S500).
  • Base substrate 100 preparing step (S100), anti-reflection layer 120 forming step (S300), continuous thin film layer 150 forming step (S400), fingerprint prevention layer 160 forming step (S450) is shown in Figs. As described with reference. In addition, the forming of the conductive anti-reflection layer 220 (S500) is as described with reference to FIGS. 17 and 18.
  • FIG. 22 is a graph showing the degree to which light transmission characteristics of a transparent conductive substrate having a double-sided structure according to an embodiment of the present invention are improved.
  • the transparent conductive substrate having improved light transmission characteristics is more improved than in the case of the single-sided structure.
  • transparent conductive substrates having ITO formed of a 70 nm thick continuous thin film were used as a control, and transparent conductive substrates formed of a double-sided structure were compared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)

Abstract

투명전도성 기판 및 그 제조방법이 개시된다. 본 발명에 의하면, 빛의 투과가 가능한 베이스 기판; 투명전도성 물질의 증착에 의해 형성되는, 투명전도층; 및 반사방지층을 포함하되, 상기 반사방지층은, 건식 에칭 방법을 이용하여 형성되는, 복수의 돌기형 구조체 및 무기물 입자의 증착에 의해 형성되는 반사방지 구조체를 포함하는 것을 특징으로 하는 투명전도성 기판 및 그 제조 방법이 제공된다.

Description

투명전도성 기판 및 그 제조 방법
본 발명은 투명전도성 기판 및 그 제조 방법에 관한 것이다.
최근 터치스크린은 휴대폰, 스마트폰, 태블릿 PC와 같은 휴대용 전자 기기에 많이 적용되고 있다. 터치스크린과 더불어 EL 백라이트, 전자파 보호 부재, 태양 전지 등이 등장하면서, 폴리머를 기반으로 하는 투명전도성 기판의 사용이 증대되고 있다.
폴리머 기반 투명전도성 기판은, 폴리머 베이스 기판에 투명전도층이 코팅된 기판으로, 투명한 광학적 효과를 가지면서도 전기가 통할 수 있는 투명 전극 기판이다.
이러한 폴리머 기반 투명전도성 기판에 대하여 전기적 전도성 및 높은 광학적 투명성이 요구되고 있으나, 현재로서는 이러한 전기적 특성 및 광학적 특성을 동시에 구현하기에는 다소 무리가 있는 실정이다.
이와 관련된 기술로 공개특허 제1010-0136515호(2011.12.21 공개. 염료감응 태양전지 단위 셀 및 이를 이용한 염료감응 태양전지모듈의 제작 방법)가 있다.
본 발명의 목적은 전기적 특성 및 광학적 특성을 동시에 가지는 투명전도성 기판을 제공함에 있다.
본 발명의 다른 목적은 지문 방지 특성을 가지는 투명전도성 기판을 제공함에 있다.
본 발명의 또 다른 목적은 이물질 투과를 차단하고 외부 환경으로부터 기판을 보호하는 기능을 가지는 투명전도성 기판을 제공함에 있다.
본 발명의 일 측면에 따르면, 빛의 투과가 가능한 베이스 기판을 준비하는 단계; 상기 베이스 기판 제1면에, 투명전도성 물질의 증착에 의해, 투명전도층을 형성하는 단계; 상기 베이스 기판 제2면에, 반사방지층을 형성하는 단계를 포함하되, 상기 반사방지층을 형성하는 단계는, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에, 복수의 돌기형 구조체를 형성하는 단계; 및 무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에, 빛의 반사를 방지하는 반사방지 구조체를 형성하는 단계를 포함하는 것을 특징으로 하는 투명전도성 기판 제조 방법이 제공된다.
본 발명의 다른 측면에 따르면, 빛의 투과가 가능한 베이스 기판을 준비하는 단계; 및 상기 베이스 기판 제1면에, 전도성 반사방지층을 형성하는 단계를 포함하되, 상기 전도성 반사방지층을 형성하는 단계는, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제1면에, 복수의 돌기형 구조체를 형성하는 단계; 및 투명전도성 물질의 증착에 의해, 상기 복수의 돌기형 구조체 상에, 반사방지 투명전도층을 형성하는 단계를 포함하는 것을 특징으로 하는 투명전도성 기판 제조 방법이 제공된다.
바람직하게는, 반사방지 투명전도층은, 상기 투명전도성 물질의 증착에 의해 형성되는 연속전도층; 및 전도성 반사방지 구조체를 포함할 수 있다.
상기 베이스 기판은, 강화코팅층을 포함할 수 있다.
상기 베이스 기판은, 불소계 투명 폴리머 필름, 아크릴계 투명 폴리머필름, 폴리에틸렌 테레프탈레이트계열 투명 폴리머 필름, 폴리카보네이트, 폴리에틸렌 나프탈레이트, 폴리에테르설폰, 폴리시클로올레핀, CR39 및 폴리우레탄(polyiourethane)에서 선택된 적어도 어느 하나를 포함할 수 있다.
상기 투명전도성 물질은, Zn, Cd, In, Ga, Sn 및 Ti에서 선택된 적어도 어느 하나를 포함하는 산화물일 수 있다.
상기 투명전도성 물질은, 스퍼터링(sputtering) 방법으로 증착될 수 있다.
상기 복수의 돌기형 구조체는, 플라즈마 에칭 방법 또는 이온빔 에칭 방법을 이용하여 형성될 수 있다.
상기 건식 에칭 방법은, Ar, O2, H2, He 및 N2에서 선택된 적어도 어느 하나의 기체를 사용할 수 있다.
상기 복수의 돌기형 구조체의 배열 간격은 에칭 노출 시간을 제어하여 조절될 수 있다.
상기 에칭 노출 시간은 7분 미만으로 할 수 있다.
상기 반사방지 구조체 또는 상기 전도성 반사방지 구조체는, 서로 인접하게 배치하여 형성될 수 있다.
상기 반사방지 구조체 또는 상기 전도성 반사방지 구조체는, 구 형상일 수 있다.
상기 반사방지층은, 상기 복수의 돌기형 구조체와 상기 반사방지 구조체 사이에 상기 무기물 입자의 증착에 의해 형성되는, 연속층을 더 포함할 수 있다.
상기 반사방지 구조체는, 상기 무기물 입자를 플라즈마 박막 증착하여 형성될 수 있다.
상기 무기물 입자는, 금속물질(Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, Yb)의 산화물(oxide), 상기 금속물질의 질화물(nitride) 및 불화 마그네슘(Magnesium fluoride)에서 선택된 적어도 어느 하나를 포함할 수 있다.
상기 반사방지 구조체는 200nm 이하의 간격으로 배열될 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 반사방지층에 연속박막층을 형성하는 단계를 더 포함할 수 있다.
상기 연속박막층을 형성하는 단계는, 상기 무기물 입자와 동일한 물질을 이용할 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 반사방지층에 지문방지층을 형성하는 단계를 더 포함할 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함할 수 있다.
상기 지문방지층은, 메틸기(CH3) 또는 불화탄소기(CF) 중 적어도 어느 하나를 포함하여 형성될 수 있다.
상기 지문방지층은, 사이클로메티콘(Cyclomethicone, C8H24Si4O4), 헥사메틸디옥실란(HMDSO), 옥타메틸사이클로테트라실록산(OMCTS), 2-플루오로-6-메톡시벤즈알데히드, 3-플루오로-4 메톡시벤즈알데히드, 4-플루오로-3 메톡시벤즈알데히드, 5-플루오로-2 메톡시벤즈알데히드, 2-플루오로-6 메톡시페놀, 4-플루오로-2 메톡시페놀 및 5-플루오로-3 메톡시살리실알데히드 중 적어도 어느 하나를 증착하여 형성될 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 베이스 기판의 제2면에 보호층을 형성하는 단계를 더 포함할 수 있다.
상기 보호층은, Si, Al, Zn 및 Ti의 산화물 중 적어도 어느 하나 이상을 포함하여 형성될 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 베이스 기판의 제2면에 반사방지층을 형성하는 단계를 더 포함할 수 있다.
더 바람직하게는, 상기 반사방지층을 형성하는 단계는, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 복수의 돌기형 구조체를 형성하는 단계; 및 무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 빛의 반사를 방지할 수 있는, 반사방지 구조체를 형성하는 단계를 포함할 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 반사방지층에 연속박막층을 형성하는 단계를 더 포함할 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 반사방지층에 지문방지층을 형성하는 단계를 더 포함할 수 있다.
바람직하게는, 투명전도성 기판 제조 방법은, 상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 측면에 따르면, 빛의 투과가 가능한 베이스 기판; 상기 베이스 기판 제1면에, 투명전도성 물질의 증착에 의해 형성되는, 투명전도층; 상기 베이스 기판 제2면에 형성되는 반사방지층을 포함하되, 상기 반사방지층은, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 형성되는, 복수의 돌기형 구조체 및 무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는, 반사방지 구조체를 포함하는 것을 특징으로 하는 투명전도성 기판이 제공된다.
본 발명의 또 다른 측면에 따르면, 빛의 투과가 가능한 베이스 기판; 및 상기 베이스 기판 제1면에 형성되는 전도성 반사방지층을 포함하되, 상기 전도성 반사방지층은, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제1면에 형성되는, 복수의 돌기형 구조체; 및 투명전도성 물질의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는, 반사방지 투명전도층을 포함하는 것을 특징으로 하는 투명전도성 기판이 제공된다.
바람직하게는, 상기 반사방지 투명전도층은, 상기 투명전도성 물질의 증착에 의해 형성되는 연속전도층; 및 빛의 반사를 방지하는 전도성 반사방지 구조체를 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 반사방지층에 형성되는 연속박막층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 반사방지층에 형성되는 지문방지층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 연속박막층에 형성되는 지문방지층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 베이스 기판의 제2면에 형성되는 보호층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 베이스 기판의 제2면에 형성되는 반사방지층을 더 포함할 수 있다.
더 바람직하게는, 상기 반사방지층은, 건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 형성되는 복수의 돌기형 구조체; 및 무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는 반사방지 구조체를 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 반사방지층에 형성되는 연속박막층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 반사방지층에 형성되는 지문방지층을 더 포함할 수 있다.
바람직하게는, 투명전도성 기판은, 상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함할 수 있다.
본 발명은, 투명전도성 기판의 광학적 특성 및 물리적 특성을 용이하게 제어할 수 있는 효과가 있다.
또한, 본 발명은, 물이 묻는 경우 흡수되지 않고 흘러내리도록 하는 발수 기능과 사용자의 지문이 묻어나지 않도록 하는 내지문 기능을 가지는 효과가 있다.
또한, 본 발명은, 베이스 기판을 보호하고, 기판 자체의 경도를 강화시키는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 투명전도성 기판의 개략도.
도 2는 본 발명의 일 실시예에 따른 반사방지층의 실제 구조를 나타낸 도면.
도 3은 본 발명의 일 실시예에 따른 반사방지층의 에칭 노출 시간에 따른 광투과 특성을 도시한 그래프.
도 4는 본 발명의 일 실시예에 따른 에칭 노출 시간에 따른 반사방지 구조체의 실제 간격을 나타낸 도면.
도 5는 본 발명의 일 실시예에 따른 서로 인접하게 배열된 반사방지 구조체를 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 투명전도성 기판의 내구성 측정 결과를 도시한 도면.
도 7은 공지의 투명전도성 기판의 내구성 측정 결과를 도시한 도면.
도 8은 본 발명의 다른 실시예에 따른 투명전도성 기판의 개략도.
도 9는 본 발명의 일 실시예에 따른 전도성 반사방지층의 실제 구조를 나타낸 도면.
도 10은 본 발명의 일 실시예에 따른 반사방지 투명전도층의 두께에 따른 광투과 특성을 도시한 그래프.
도 11은 본 발명의 일 실시예에 따른 전도성 반사방지층의 에칭 노출 시간에 따른 광투과 특성을 도시한 그래프.
도 12는 본 발명의 일 실시예에 따른 에칭 노출 시간에 따른 전도성 반사방지 구조체의 실제 간격을 나타낸 도면.
도 13은 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 나타낸 개략도.
도 14은 본 발명의 일 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도.
도 15는 본 발명의 일 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도.
도 16는 본 발명의 일 실시예에 따른 반사방지층에 의해 광투과 특성이 향상된 정도를 도시한 그래프.
도 17은 본 발명의 다른 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도.
도 18은 본 발명의 다른 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도.
도 19는 본 발명의 일 실시예에 따른 전도성 반사방지층에 의해 광투과 특성이 향상된 정도를 도시한 그래프.
도 20은 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도.
도 21은 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도.
도 22는 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판의광투과 특성이 향상된 정도를 도시한 그래프.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 투명전도성 기판 및 그 제조 방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 투명전도성 기판의 개략도이고, 도 2는 본 발명의 일 실시예에 따른 반사방지층의 실제 구조를 나타낸 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 투명전도성 기판은 베이스 기판(100), 투명전도층(110), 반사방지층(120), 연속박막층(150) 및 지문방지층(160)을 포함한다.
투명전도층(110)은 베이스 기판(100)의 제1면에 투명전도성 물질을 증착하여 형성되는 층이다.
투명전도층(110)을 형성하는 투명전도성 물질(transparent electroconductive material)은 Zn, Cd, In, Ga, Sn 및 Ti의 산화물이나 이들 물질간의 화합물로 이루어진 산화물일 수 있다. 주로 사용되는 투명전도층(110)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), AZO(Aluminum Zinc Oxide), GZO(Gallium Znic Oxide) 등이 있으며, 두 물질 이상의 산화물이 다층구조로 형성될 수 있다.
투명전도층(110)의 두께가 증가할수록 투명전도성 기판의 전기 전도성은 향상되나, 빛 투과도는 감소하는 경향을 나타낸다. 본 발명의 일 실시예에 따른 투명전도성 기판은 일반 디스플레이나 태양전지의 투명전극으로 사용되기 위하여, 투명전도층(110)은 10nm 이상 500nm 이하의 두께로 형성될 수 있다.
한편 투명전도층(110)의 면저항이 낮을수록 투명전도성 기판의 전기 전도성이 좋다는 것을 의미한다. 본 발명의 일 실시예에 따른 투명전도성 기판이 일반 디스플레이나 태양전지의 투명전극으로 사용되기 위하여, 투명전도층(110)의 면저항은 10Ω/□ 이상 200Ω/□ 이하에서 제어될 수 있다.
반사방지층(120)은 베이스 기판(100)의 제2면에 형성되며, 복수의 돌기형 구조체(130)와 반사방지 구조체(140)를 포함한다.
도 2를 참조하면, 반사방지층(120)은, 복수의 돌기형 구조체(130)에 무기물이 균일하게 증착하여 상기 복수의 돌기형 구조체(130)와 반사방지 구조체(140) 사이에 연속적으로 형성되는, 연속층(135)을 더 포함할 수 있다.
복수의 돌기형 구조체(130)는 건식 에칭 방법을 이용하여 베이스 기판(100)의 제2면에 형성된 돌기형의 구조체이다.
반사방지 구조체(140)는, 베이스 기판(100)의 제2면에 건식 에칭 방법에 의하여 형성된 복수의 돌기형 구조체(130)에 무기물 입자를 증착시킴으로써, 각각의 돌기형 구조체(130)에 형성된 구조체이다.
반사방지 구조체(140)를 형성하는 무기물 입자는, 금속물질(Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, Yb)의 산화물(oxide)과 질화물(nitride), 그리고 산화물-질화물의 화합물(oxynitride: AlON, SiON) 및 불화 마그네슘(MagneSium fluoride)에서 적어도 어느 하나를 포함할 수 있다. 상술한 무기물 입자를 통하여 형성된 반사방지층(120)은 빛의 반사를 방지하여, 빛의 투과율을 향상시킬 수 있다.
연속박막층(150)은 투명전도성 기판의 강도, 경도, 내구성 등의 물리적 특성을 보다 향상시키는 층으로 연속적인 면을 가진다. 연속박막층(150)은 반사방지층(120)에 형성될 수 있다. 또한 연속박막층(150)은 광학적 특성의 제어를 위하여 5nm 이상 100nm 이하의 두께로 형성될 수 있다.
지문방지층(160)은 투명전도성 기판에 물이 묻는 경우, 물이 기판 내부로 흡수되지 않고 흘러내리도록 하는 발수 기능을 가지고, 사용자의 지문이 묻어나지 않도록 내지문 기능을 갖는 층이다. 지문방지층(160)은 반사방지층(120) 또는 연속박막층(150)에 형성될 수 있다.
지문방지층(160)은 사이클로메티콘(Cyclomethicone, C8H24Si4O4), 헥사메틸디옥실란(HMDSO), 옥타메틸사이클로테트라실록산(OMCTS), 2-플루오로-6-메톡시벤즈알데히드, 3-플루오로-4 메톡시벤즈알데히드, 4-플루오로-3 메톡시벤즈알데히드, 5-플루오로-2 메톡시벤즈알데히드, 2-플루오로-6 메톡시페놀, 4-플루오로-2 메톡시페놀 및 5-플루오로-3 메톡시살리실알데히드 중 적어도 어느 하나를 증착하여 형성될 수 있다.
지문방지층(160)은, 메틸기(CH3) 또는 불화탄소기(CF) 중 적어도 어느 하나를 포함하여 형성될 수 있다.
한편, 투명전도성 기판의 광투과 특성은 반사방지층(120)에 포함된 반사방지 구조체(140)의 직경 및 배열 간격에 의해 제어된다. 반사방지 구조체(140)의 직경은 반사방지 구조체(140)가 형성되는 과정 중의 공정 조건과 시간의 제어를 통해 조절될 수 있다. 또한, 반사방지 구조체(140)의 배열 간격은 반사방지 구조체(140)가 형성되는 복수의 돌기형 구조체(130)의 간격의 제어를 통해 조절될 수 있다.
복수의 돌기형 구조체(130)의 간격은, 플라즈마 파워 또는 에칭 노출 시간을 조절하여 제어될 수 있다. 에칭 노출 시간은 베이스 기판(100)을 플라즈마에 노출하여 베이스 기판(100)을 에칭하는 시간을 말한다.
도 3은 본 발명의 일 실시예에 따른 반사방지층의 에칭 노출 시간에 따른 광투과 특성을 도시한 그래프이다. 도 3을 참조하면, 투명전도성 기판의 광투과 특성은 에칭 노출 시간이 3분 내외인 경우에 최대치를 나타내며, 플라즈마 노출 시간이 7분 이상이 되면 플라즈마에 노출되지 않은 경우와 유사하게 된다.
따라서, 본 발명의 일 실시예에 따라 제공되는 복수의 돌기형 구조체(130)를 형성하기 위하여, 베이스 기판(100)의 에칭 노출 시간은 7분미만으로 제어하는 것이 바람직하다.
도 4는 본 발명의 일 실시예에 따른 에칭 노출 시간에 따른 반사방지 구조체의 실제 간격을 나타낸 도면이다. 에칭 노출 시간이 1분, 3분, 7분일 때 각각 측정된 반사방지 구조체(140)의 간격은 아래의 표와 같다.
표 1
에칭 노출 시간 1분 3분 7분
반사방지 구조체 간격 76.4nm ~ 99.2nm 108nm ~ 143nm 193nm ~ 195nm
실험 조건은 Ar 플라즈마를 이용하였고, 플라즈마 강도는 RF 주파수 13.56 MHz에서 200W(1.1W/cm2)로 하였다. 이와 같은 실험 조건에서, 1분당 1cm x 1cm의 베이스 기판(100) 표면의 면적에 3.1 x 1017개의 이온들이 102 eV의 에너지를 가지고 도달되는 것으로 측정되었다.
도 4를 참조하면, 동일한 플라즈마 파워에서의 에칭 노출 시간을 7분미만으로 제어하였을 때, 반사방지 구조체(140)는 200nm 이하의 간격으로 배열됨을 확인할 수 있다. 따라서 빛의 투과 효율을 증가시키고, 빛의 반사를 방지하기 위하여, 반사방지 구조체(140)를 200nm 이하의 간격으로 하는 것이 바람직하다.
도 5는 본 발명의 일 실시예에 따른 서로 인접하게 배열된 반사방지 구조체를 나타낸 도면이다. 도 5에 도시된 바와 같이, 반사방지 구조체(140)가 서로 인접하게 배치되면, 그렇지 않은 경우에 비하여, 반사방지층(120)의 광학적 특성이 증대된다.
도 6은 본 발명의 일 실시예에 따른 투명전도성 기판의 내구성 측정 결과를 도시한 도면, 도 7은 공지의 투명전도성 기판의 내구성 측정 결과를 도시한 도면이다. 도 6 및 도 7을 참조하면, 반사방지 구조체(140)가 서로 인접하게 배치되었을 때, 그렇지 않은 경우에 비하여, 반사방지층(120)의 물리적 특성 역시 증대됨을 알 수 있다.
도 6에는 반사방지 구조체(140)가 서로 인접하여 배치되는 투명전도성 기판을 실험군으로 설정하고, 도 7에는 대조군으로 반사방지 구조체(140)의 형성 없이 단순히 연속적으로 형성되는 코팅층을 포함하는 기판을 설정하여 지우개 마모 시험기(rubbing tester)를 이용한 내마모 시험기 신뢰성 테스터를 수행한 결과를 도시하고 있다.
테스터 조건은, 타이핑 고무 지우개 (직경 1/4 in)를 마찰자로 하고, 하중은 500gram, 시험 속도 40회/min 및 시험 횟수 1500회로 설정되었으며, 결과의 분석은 각각의 반사방지층(120) 및 코팅층의 지우개 마모 시험 전후 H2O의 접촉각을 측정하여 발수 특성을 평가하였다.
도 6에 도시된 것과 같이, 서로 인접하게 배치된 반사방지 구조체(140)를 포함하는 반사방지층(120)이, 도 7에 도시된 연속적인 코팅층보다 지우개 마모 시험 후에도 H2O의 접촉각의 편차가 작으므로, 강도 및 내구성과 같은 물리적 특성에 있어서, 보다 우수하다는 결과를 알 수 있다.
도 8은 본 발명의 다른 실시예에 따른 투명전도성 기판의 개략도이고, 도 9는 본 발명의 일 실시예에 따른 전도성 반사방지층의 실제 구조를 나타낸 도면이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 투명전도성 기판은 베이스 기판(100), 전도성 반사방지층(220) 및 보호층(270)을 포함한다.
베이스 기판(100)은 빛의 투과가 가능한 재질로 이루어진 폴리머 기판으로, 도 1을 참조하여 설명한 바와 동일하다.
전도성 반사방지층(220)은 베이스 기판(100)의 제1면에 형성되며, 복수의 돌기형 구조체(230) 및 반사방지 투명전도층(240)을 포함한다.
복수의 돌기형 구조체(230)는 건식 에칭 방법을 이용하여 베이스 기판(100)의 제1면에 형성된 구조체이다.
도 9를 참조하면, 반사방지 투명전도층(240)은 상기 복수의 돌기형 구조에 연속적으로 형성되는 연속전도층(250)과 빛의 반사를 방지하는 전도성 반사방지 구조체(260)를 포함할 수 있다.
반사방지 투명전도층(240)을 형성하는 투명전도성 물질(transparent electroconductive material)은 Zn, Cd, In, Ga, Sn 및 Ti의 산화물이나 이들 물질간의 화합물로 이루어진 산화물일 수 있다. 주로 사용되는 반사방지 투명전도층(240)은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), AZO(Aluminum Zinc Oxide), GZO(Gallium Znic Oxide) 등이 있으며, 두 물질 이상의 산화물이 다층구조로 형성될 수 있다.
도 10은 본 발명의 일 실시예에 따른 반사방지 투명전도층의 두께에 따른 광투과 특성을 도시한 그래프이다. 도 10을 참조하면, 투명전도성 기판의 광투과 특성이 나타나는 가시광선 영역은, 반사방지 투명전도층(240)의 두께가 증가할수록 장파장대로 이동하고, 반사방지 투명전도층(240)의 두께가 110nm 이상이 되면 600nm 파장 이상의 가시광선만 투과된다. 반사방지 투명전도층(240)의 두께가 114nm 이상이 되면 투과되는 가시광선 영역이 극히 제한적이 되므로, 투명전도성 기판의 광투과 특성을 잃게 된다.
따라서, 반사방지 투명전도층(240)은 30nm 이상 110nm 이하의 두께로 형성될 수 있다. 상기 두께로 형성되는 반사방지 투명전도층(240)을 포함하는 투명전도성 기판은 터치스크린 등에 사용되기 적합하다.
한편, 투명전도성 기판이 터치스크린 등에 사용되기 위하여, 반사방지 투명전도층(240) 면저항은 100Ω/□ 이상 1000Ω/□ 이하에서 제어될 수 있다.
다시 도 8을 참조하면, 연속전도층(250)은 복수의 돌기형 구조체(230)와 전도성 반사방지 구조체(260) 사이에 투명전도성 물질에 의해 연속적으로 형성된 층이다. 연속전도층(250)은 반사방지 투명전도층(240) 전체가 전도성을 가질 수 있게 한다.
전도성 반사방지 구조체(260)는 복수의 돌기형 구조체(230)와 연속전도층(250) 상부에 형성된 구조체이다. 전도성 반사방지 구조체(260)는 구 형상으로 형성될 수 있다.
보호층(270)은 산소, 물 등과 같이 베이스 기판(100)을 오염시키거나, 투명전도성 기판의 불량을 발생시킬 수 있는 이물의 투과를 방지하고, 투명전도성 기판 자체의 경도를 강화시켜, 투명전도성 기판을 보호하는 층이다. 보호층(270)은 베이스 기판(100)의 제2면에 형성될 수 있다.
한편, 투명전도성 기판의 광학적 특성은 전도성 반사방지층(220)에 포함된 전도성 반사방지 구조체(260)의 직경 및 배열 간격에 의해 제어된다. 전도성 반사방지 구조체(260)의 직경은 전도성 반사방지 구조체(260)가 형성되는 과정 중의 공정 조건과 시간의 제어를 통해 조절될 수 있다. 한편, 전도성 반사방지 구조체(260)의 배열 간격은 전도성 반사방지 구조체(260)가 형성되는 복수의 돌기형 구조체(230) 간의 간격의 제어를 통해 조절될 수 있다.
복수의 돌기형 구조체(230)의 간격은, 플라즈마 파워 또는 에칭 노출 시간을 조절하여 제어될 수 있다. 에칭 노출 시간은 베이스 기판(100)을 플라즈마에 노출하여 베이스 기판(100)을 에칭하는 시간을 말한다.
도 11은 본 발명의 일 실시예에 따른 전도성 반사방지층의 에칭 노출 시간에 따른 광투과 특성을 도시한 그래프이다. 도 11을 참조하면, 투명전도성 기판의 광투과 특성이 나타나는 가시광선의 영역은, 에칭 노출 시간이 3분인 경우에 가장 넓으며, 에칭 노출 시간이 7분인 경우에 가장 좁다. 에칭 시간이 7분 이상이 되면, 장파장(약 650nm 이상)에서만 광투과 특성이 나타난다.
따라서, 본 발명의 일 실시예에 따라 제공되는 복수의 돌기형 구조체(230)을 형성하기 위하여, 베이스 기판(100)의 에칭 노출 시간은 7분미만으로 제어하는 것이 바람직하다.
도 12는 본 발명의 일 실시예에 따른 에칭 노출 시간에 따른 전도성 반사방지 구조체의 실제 간격을 나타낸 도면이다. 도 12를 참조하면, 에칭 노출 시간을 1분, 3분, 7분으로 설정했을 때, 전도성 반사방지 구조체(260)의 간격이 달라졌음을 알 수 있다.
전도성 반사방지 구조체(260)의 간격은, 에칭 노출 시간을 조절하여 제어될 수 있다. 전도성 반사방지 구조체(260)의 간격이 달라지면, 반사방지 투명전도층(240)의 밀도가 달라지므로, 반사방지 투명전도층(240)의 굴절률이 달라질 수 있다. 따라서 투명전도성 기판의 광투과 특성은 전도성 반사방지 구조체(260)의 간격을 조절하여 제어될 수 있다.
전도성 반사방지 구조체(260)의 간격은, 투명전도성 기판의 광투과 효율을 증가시키기 위하여, 200nm 이하로 할 수 있다.
전도성 반사방지 구조체(260)는 서로 인접하게 배열될 수 있다. 전도성 반사방지 구조체(260)가 서로 인접하게 배치되면, 그렇지 않은 경우에 비하여 전도성 반사방지층(220)의 광학적 특성이 증대될 수 있다.
도 13은 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 나타낸 개략도이다. 도 13을 참조하면, 본 발명의 또 다른 실시예에따른 투명전도성 기판은, 베이스 기판(100), 반사방지층(120), 연속박막층(150), 지문방지층(160) 및 전도성 반사방지층(220)을 포함할 수 있다.
베이스 기판(100), 반사방지층(120), 연속박막층(150) 및 지문방지층(160)은 도 1을 참조하여 설명한 바와 같다. 전도성 반사방지층(220)은 도 2를 참조하여 설명한 바와 같다.
이하에서는 전술한 투명전도성 기판의 제조 방법에 대하여 설명하기로 한다.
도 14은 본 발명의 일 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도, 도 15는 본 발명의 일 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도이다.
도 14 및 도 15를 참조하면, 본 발명의 일 실시예에 따른 투명전도성 기판의 제조 방법은, 베이스 기판(100) 준비 단계(S100), 투명전도층(110) 형성 단계(S200), 반사방지층(120) 형성 단계(S300), 연속박막층(150) 형성 단계(S400) 및 지문방지층(160) 형성 단계(S450)를 포함한다.
베이스 기판(100) 준비 단계(S100)는, 빛의 투과가 가능한 폴리머 재질로 이루어진 베이스 기판(100)을 준비하는 단계이다.
투명전도층(110) 형성 단계(S200)는, 베이스 기판(100)의 제1면에 투명전도성 물질을 증착하여, 투명전도층(110)을 연속적으로 형성하는 단계이다.
투명전도성 물질을 증착하여 투명전도층(110)을 형성하는 방법은, 스퍼터링(sputtering) 방법이 될 수 있으며, 그 방법의 단계는 다음과 같다.
먼저, 진공 챔버(chamber) 내에 베이스 기판(100)이 거치된다. 저진공펌프와 고진공펌프를 이용하여 진공 챔버 내부의 진공도가 2x10-5torr로 유지된다. 그 다음, Ar 작업 가스가 주입되고, 작업진공도는 2x10-3torr에 도달한다. 그 후, 투명전도성 물질이 부착된 스퍼터링 타겟에 연결되어 있는 플라즈마 발생전원에 전원이 인가(impression)되고, 플라즈마가 발생하여, 상기 투명전도성 물질이 베이스 기판(100) 제1면에 증착된다.
투명전도성 물질을 증착하여 투명전도층(110)을 형성하는 방법의 구체적인 실시예는 다음과 같다.
- 베이스 기판 : PET 두께 125, 투과도 90%
- 초기 진공도 : 2x10-5torr
- 산화물계 투명전도층 코팅
- 스퍼터링 타겟 : ITO
- 작업가스 : Ar+ (O2)
- 작업진공도: 2x10-3torr
- RF 전력: 200W (타겟 넓이 400cm2)
상술한 바와 같은 방법으로 투명전도층(110)을 형성하게 되면, 투명전도성 기판은 전기 전도성을 가질 수 있다.
반사방지층(120) 형성 단계(S300)는, 복수의 돌기형 구조체(130) 형성 단계(S310) 및 반사방지 구조체(140) 형성 단계(S320)를 포함한다.
복수의 돌기형 구조체(130) 형성 단계(S310)는, 건식 에칭 방법을 이용하여 베이스 기판(100)의 제2면에 복수의 돌기형 구조체(130)를 형성하는 단계이다.
건식 에칭 방법은 습식 에칭 방법을 이용하는 경우에 비하여 보다 정밀하고 정확하게 복수의 돌기형 구조체(130)의 형성을 제어할 수 있다.
건식 에칭 방법은 플라즈마 에칭 방법일 수 있다. 플라즈마 에칭 방법에 사용되는 물질은, Ar, O2, H2, He 및 N2에서 선택된 적어도 어느 하나의 기체 중 하나 이상을 포함할 수 있다. 베이스 기판(100)이 상술한 기체 물질 중 적어도 어느 하나의 기체를 포함하여 형성되는 플라즈마에 노출되면 베이스 기판(100)의 제2면이 에칭되어 복수의 돌기형 구조체(130)가 형성될 수 있다.
반사방지 구조체(140) 형성 단계(S320)는 베이스 기판(100)의 제2면에 형성된 복수의 돌기형 구조체(130)에 무기물 입자를 증착시킴으로써, 각각의 돌기형 구조체(130)에 반사방지 구조체(140)를 형성하는 단계이다.
연속층(135)은, 무기물 입자를 증착 초기에, 복수의 돌기형 구조체(130) 및 복수의 돌기형 구조체(130) 사이의 골짜기(valley)에 균일하게 무기물 입자가 균일하게 증착되어 형성된다.
무기물 입자가 증착되는 시간이 점점 지나면서 음영 효과(shadow effect)가 발생한다. 즉, 베이스 기판(100)의 제2면으로 도달하는 무기물 입자가, 복수의 돌기형 구조체(130) 및 복수의 돌기형 구조체(230) 상부에 형성된 연속층(135)에 가려져서, 복수의 돌기형 구조체(130) 사이의 골짜기까지 도달하지 못하게 된다. 그 결과 무기물 입자는 복수의 돌기형 구조체(130)의 상부에 형성된 연속층(135)의 상에만 증착되어, 단위 입자 구조를 가지는 반사방지 구조체(140)를 형성한다. 이때, 반사방지 구조체(140)는 구 형상으로 형성될 수 있다.
이때, 무기물 입자를 증착하는 방법은, 화학적 증기 증착법(CVD, chemical vapor deposition)과 물리적 증기 증착법(PVD, physical vapor deposition)을 이용할 수 있다.
도 16는 본 발명의 일 실시예에 따른 반사방지층에 의해 광투과 특성이 향상된 정도를 도시한 그래프이다. 도 16에 도시된 것과 같이, 반사방지층(120)이 구비된 투명전도성 기판은, 반사방지층(120)이 없는 투명전도성 기판보다 광투과도가 더 높다. 도 16에서 투명전도층(110)은 ITO를 이용하여 형성하고, 반사방지층(120)은 SiOx을 이용하여 90nm 두께로 형성하였다.
다시 도 14 및 도 15를 참조하면, 연속박막층(150) 형성 단계(S400)는, 반사방지층(120)에 연속박막층(150)을 형성하는 단계를 말한다.
연속박막층(150)은 무기물 입자의 증착에 의하여 형성될 수 있다. 무기물 입자를 증착하는 방법으로는 화학적 증기 증착법, 물리적 증기 증착법 등이 이용될 수 있다.
연속박막층(150)을 형성하는 무기물 입자는 반사방지 구조체(140)를 형성하기 위하여 사용되는 무기물 입자와 동일할 수 있다. 연속박막층(150)이 반사방지 구조체(140)와 동일한 물질을 사용하여 이루어지는 경우에는, 빛의 굴절과 같은 광학적 특성의 제어가 용이하며, 제조 공정에 있어서 번거로움이 감소될 수 있다.
연속박막층(150)은 솔 겔(sol-gel)법 또는 디핑(dipping)으로 형성될 수 있다. 즉, 연속박막층(150)은 액상의 무기물 입자를 반사방지 구조체(140) 사이의 공간에 도포함으로써 형성될 수 있다.
지문방지층(160) 형성 단계(S450)는, 연속박막층(150)에 발수 기능 및 내지문 기능을 가지는 지문방지층(160)을 형성하는 단계이다.
지문방지층(160)은 건식 코팅법 또는 습식 공정 코팅법을 적용하여 형성할 수 있다. 그 중 건식 코팅법으로는 화학적 증기 증착법 또는 물리적 증기 증착법이 사용될 수 있다.
본 발명의 바람직한 다른 실시예에 의하면, 지문방지층(160)은 연속박막층(150)이 아닌 반사방지층(120)의 상에 형성될 수도 있다. 즉, 반사반지층(120)의 상에 연속박막층(150)이 형성되지 않고, 곧바로 지문방지층(160)이 형성될 수 있다.
이상에서 서술한 것과 같이 베이스 기판(100) 제1면에 투명전도층(110)을 연속적으로 형성하고, 베이스 기판(100) 제2면에 반사방지층(120), 연속박막층(150) 및 지문방지층(160)을 형성함으로써 전기적 특성, 광학적 특성 및 내지문 특성이 모두 우수한 투명전도성 기판이 제공될 수 있다.
도 17은 본 발명의 다른 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도, 도 18은 본 발명의 다른 실시예에 따른 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도이다.
도 17 및 도 18을 참조하면, 투명전도성 기판의 제조 방법은 베이스 기판(100) 준비 단계(S100), 전도성 반사방지층(220) 형성 단계(S500), 및 보호층(270) 형성 단계(S600)를 포함한다.
베이스 기판(100) 준비 단계(S100)는, 빛의 투과가 가능한 재질로 이루어진 베이스 기판(100)을 준비하는 단계이다.
전도성 반사방지층(220) 형성 단계(S500)는, 복수의 돌기형 구조체(230) 형성 단계(S510) 및 반사방지 투명전도층(240) 형성 단계(S520)를 포함한다.
복수의 돌기형 구조체(230) 형성 단계(S510)는, 건식 에칭 방법을 이용하여 베이스 기판(100)의 제1면에 복수의 돌기형 구조체(230)를 형성하는 단계이다.
건식 에칭 방법은 정밀하고 정확하게 복수의 돌기형 구조체(230)의 형성을 제어할 수 있다. 건식 에칭 방법은 스퍼터링(sputtering) 공정에서 사용하는 이온빔 에칭 방법일 수 있다. 그 방법의 단계는 다음과 같다.
먼저, 베이스 기판(100)이 진공 챔버(chamber) 내에 거치된다. 저진공펌프와 고진공펌프를 이용하여 진공 챔버 내부의 진공도는 1x10-5torr로 유지된다. 이때 이온빔 장치가 작동하여, 베이스 기판(100) 상에 존재하는 흡착가스 입자들과 오염물질을 제거하게 된다. 이온빔 장치는 필라멘트로부터 열전자를 방출하여 플라즈마를 발생시키고, 플라즈마에 존재하는 이온들을 가속시켜 방출하는 엔드홀(end-hall) 방법이 사용되어 작동할 수 있다.
보다 상세하게는, 이온빔 에칭 방법은, 진공 챔버 내부에 Ar 혼합가스를 주입하여 5x10-5torr 내지 5x10-4torr의 진공도가 유지되고, 필라멘트의 파워가 약 400W(20A x 20V), 이온빔 장치의 파워가 180W(2A x 90V)로 설정되며, 10분 이하에서 실시될 수 있다.
건식 에칭 방법은 플라즈마 에칭 방법일 수 있다. 이때, 플라즈마 에칭 방법에 사용되는 물질은, Ar, O2, H2, He 및 N2에서 선택된 적어도 어느 하나의 기체 중 하나 이상을 포함할 수 있다. 베이스 기판(100)이 상술한 기체 물질 중 적어도 어느 하나의 기체를 포함하여 형성되는 플라즈마에 노출되면 베이스 기판(100)의 제1면이 에칭되어 복수의 돌기형 구조체(230)가 형성될 수 있다. 다만, 플라즈마 에칭 방법으로 복수의 돌기형 구조체(230)를 형성하는 경우, 후술할 반사방지 투명전도층(240)과 다른 챔버에서 형성된다.
반사방지 투명전도층(240) 형성 단계(S520)는, 베이스 기판(100)의 제1면에 형성된 복수의 돌기형 구조체(230)에 투명전도성 물질을 증착시킴으로써, 복수의 돌기형 구조체(230)에 연속적으로 형성되는 연속전도층(250)과 전도성 반사방지 구조체(260)를 형성하는 단계이다.
연속전도층(250)은 전도성 반사방지 구조체(260) 아래에 함께 형성됨으로써 반사방지 투명전도층(240) 전체가 전도성을 가질 수 있게 된다. 이때, 연속전도층(250)과 전도성 반사방지 구조체(260)는 동시에 형성될 수 있다.
본 발명의 일 실시예에 따른, 투명전도성 물질을 증착하여 반사방지 투명전도층(240)을 형성하는 방법은 스퍼터링(sputtering) 방법이 될 수 있으며, 그 방법의 단계는 다음과 같다.
먼저, 진공 챔버(chamber) 내에 베이스 기판(100)이 거치된다. 저진공펌프와 고진공펌프를 이용하여 진공 챔버 내부의 진공도가 2x10-5torr로 유지된다. 그 다음, Ar 작업 가스가 주입되고, 작업진공도는 2x10-3torr에 도달한다. 그 후, 투명전도성 물질이 부착된 스퍼터링 타겟에 연결되어 있는 플라즈마 발생전원에 전원이 인가(impression)되고, 플라즈마가 발생하여, 상기 투명전도성 물질이 베이스 기판(100) 제1면에 증착된다.
투명전도성 물질을 증착하여 반사방지 투명전도층(240)을 형성하는 방법의 구체적인 실시예는 다음과 같다.
- 베이스 기판 : PET 두께 125, 투과도 90%
- 초기 진공도 : 2x10-5torr
- 산화물계 투명전도층 코팅
- 스퍼터링 타겟 : ITO
- 작업가스 : Ar+ (O2)
- 작업진공도: 2x10-3torr
- RF 전력: 200W (타겟 넓이 400cm2)
연속전도층(250)은, 투명전도성 물질 증착 초기에, 복수의 돌기형 구조체(230) 및 복수의 돌기형 구조체(230) 사이의 골짜기(valley)에 균일하게 투명전도성 물질이 증착되어 형성된다.
투명전도성 물질이 증착되는 시간이 점차 지나면서 음영 효과(shadow effect)가 발생한다. 즉, 베이스 기판(100)에 도달하는 투명전도성 물질이 복수의 돌기형 구조체(230) 및 복수의 돌기형 구조체(230) 상부에 형성된 연속전도층(250)에 가려져서 복수의 돌기형 구조체(230) 사이의 골짜기까지 도달하지 못하게 된다. 그 결과, 무기물 입자는 복수의 돌기형 구조체(230) 상부에 형성된 연속전도층(250)의 상부에만 증착되어 전도성 반사방지 구조체(260)를 형성한다. 이때, 전도성 반사방지 구조체(260)는 구 형상으로 형성될 수 있다.
도 19는 본 발명의 일 실시예에 따른 전도성 반사방지층에 의해 광투과 특성이 향상된 정도를 도시한 그래프이다. 도 19에 도시된 것과 같이, 베이스 기판(100)에 반사방지 투명전도층(240)을 형성하면, 투명전도성 물질을 동일한 두께의 연속박막으로 형성한 경우에 비하여, 빛을 투과시키는 정도가 높아지므로, 광투과 특성이 향상된 투명전도성 기판을 제공할 수 있다. 도 19에서 반사방지 투명전도층(240)은 ITO를 이용하여 90nm 두께로 형성하였다.
다시 도 17 및 도 18을 참조하면, 보호층(270) 형성 단계(S600)는, 외부 환경으로부터 베이스 기판(100)을 보호하는 보호층(270)을 베이스 기판(100)의 제2면에 에칭 과정 없이 연속적으로 형성하는 단계이다.
보호층(270)은, 화학적 증기 증착법 또는 물리적 증기 증착법을 이용하여 Si, Al, Zn, Ti 등의 산화물을 증착함으로써 형성될 수 있다.
이상에서 서술한 것과 같이, 폴리머 베이스 기판(100) 제1면에 복수의 돌기형 구조체(230)를 형성하고, 투명전도성 물질을 증착하여 연속전도층(250)과 전도성 반사방지 구조체(260)를 포함한 반사방지 투명전도층(240)을 형성하게 되면, 전도성 반사방지층(220)을 용이하게 제어할 수 있으므로, 광학적 특성이 향상된 투명전도성 기판이 제공될 수 있고, 베이스 기판(100)의 제2면에 보호층을 구비하여 보호 기능이 구비된 투명전도성 기판이 제공될 수 있다.
도 20는 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 순서도, 도 21은 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판을 제조하는 방법을 순서대로 나타낸 공정도이다.
도 20 및 도 21를 참조하면, 본 발명의 일 실시예에 따라, 투명전도성 기판의 제조 방법은, 베이스 기판(100) 준비 단계(S100), 반사방지층(120) 형성 단계(S300), 연속박막층(150) 형성 단계(S400), 지문 방지층(160) 형성 단계(S450) 및 전도성 반사방지층(220) 형성 단계(S500)를 포함한다.
베이스 기판(100) 준비 단계(S100), 반사방지층(120) 형성 단계(S300), 연속박막층(150) 형성 단계(S400), 지문 방지층(160) 형성 단계(S450)는 도 14 및 도 15를 참조하여 설명한 바와 같다. 또한, 전도성 반사방지층(220) 형성 단계(S500)는 도 17 및 도 18을 참조하여 설명한 바와 같다.
도 22는 본 발명의 일 실시예에 따른 양면 구조의 투명전도성 기판의광투과 특성이 향상된 정도를 도시한 그래프이다. 도 22를 참조하면, 본 발명에 따라 베이스 기판에 전도성 반사방지층(220) 및 반사방지층(120)을 양면 구조로 형성한 경우에, 단면구조로 형성한 경우보다 광투과 특성이 더욱 향상된 투명전도성 기판을 제공할 수 있다. 도 22에서 ITO를 70nm 두께의 연속박막으로 형성한 투명전도성 기판을 대조군으로 하여, 양면 구조로 형성한 투명전도성 기판을 비교하였다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
100 : 베이스 기판
110 : 투명전도층
120 : 반사방지층
220 : 전도성 반사방지층
130, 230 : 복수의 돌기형 구조체
135 : 연속층
140 : 반사방지 구조체
240 : 반사방지 투명전도층
250 : 연속 전도층
260 : 전도성 반사방지 구조체
150 : 연속박막층
160 : 지문방지층

Claims (64)

  1. 빛의 투과가 가능한 베이스 기판을 준비하는 단계;
    상기 베이스 기판 제1면에, 투명전도성 물질의 증착에 의해, 투명전도층을 형성하는 단계; 및
    상기 베이스 기판 제2면에, 반사방지층을 형성하는 단계를 포함하되,
    상기 반사방지층을 형성하는 단계는,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에, 복수의 돌기형 구조체를 형성하는 단계; 및
    무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에, 빛의 반사를 방지하는 반사방지 구조체를 형성하는 단계를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  2. 빛의 투과가 가능한 베이스 기판을 준비하는 단계; 및
    상기 베이스 기판 제1면에, 전도성 반사방지층을 형성하는 단계를 포함하되,
    상기 전도성 반사방지층을 형성하는 단계는,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제1면에, 복수의 돌기형 구조체를 형성하는 단계; 및
    투명전도성 물질의 증착에 의해, 상기 복수의 돌기형 구조체 상에, 반사방지 투명전도층을 형성하는 단계를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  3. 제2항에 있어서,
    상기 반사방지 투명전도층은,
    상기 투명전도성 물질의 증착에 의해 형성되는 연속전도층; 및
    빛의 반사를 방지하는 전도성 반사방지 구조체를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  4. 제1항에 있어서,
    상기 반사방지층은,
    상기 복수의 돌기형 구조체와 상기 반사방지 구조체 사이에 상기 무기물 입자의 증착에 의해 형성되는, 연속층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  5. 제1항 또는 제2항에 있어서,
    상기 베이스 기판은,
    강화코팅층을 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  6. 제1항 또는 제2항에 있어서,
    상기 베이스 기판은,
    불소계 투명 폴리머 필름, 아크릴계 투명 폴리머필름, 폴리에틸렌 테레프탈레이트계열 투명 폴리머 필름, 폴리카보네이트, 폴리에틸렌 나프탈레이트, 폴리에테르설폰, 폴리시클로올레핀, CR39 및 폴리우레탄(polyiourethane)에서 선택된 적어도 어느 하나를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  7. 제1항 또는 제2항에 있어서,
    상기 투명전도성 물질은,
    Zn, Cd, In, Ga, Sn 및 Ti에서 선택된 적어도 어느 하나를 포함하는 산화물인 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  8. 제1항 또는 제2항에 있어서,
    상기 투명전도성 물질은,
    스퍼터링(sputtering) 방법으로 증착되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  9. 제1항 또는 제2항에 있어서,
    상기 복수의 돌기형 구조체는,
    플라즈마 에칭 방법 또는 이온빔 에칭 방법을 이용하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  10. 제1항 또는 제2항에 있어서,
    상기 건식 에칭 방법은,
    Ar, O2, H2, He 및 N2에서 선택된 적어도 어느 하나의 기체를 사용하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  11. 제1항 또는 제2항에 있어서,
    상기 복수의 돌기형 구조체의 배열 간격은 에칭 노출 시간을 제어하여 조절되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  12. 제10항에 있어서,
    상기 에칭 노출 시간은 7분 미만으로 하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  13. 제1항에 있어서,
    상기 무기물 입자는,
    금속물질(Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, Yb)의 산화물(oxide), 상기 금속물질의 질화물(nitride) 및 불화 마그네슘(Magnesium fluoride)에서 선택된 적어도 어느 하나를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  14. 제1항에 있어서,
    상기 반사방지 구조체는,
    상기 무기물 입자를 플라즈마 박막 증착하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  15. 제1항에 있어서,
    상기 반사방지 구조체는
    200nm 이하의 간격으로 배열되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  16. 제1항에 있어서,
    상기 반사방지 구조체는,
    서로 인접하게 배치하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  17. 제1항에 있어서,
    상기 반사방지 구조체는,
    구 형상인 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  18. 제3항에 있어서,
    상기 전도성 반사방지 구조체는,
    서로 인접하게 배치하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  19. 제3항에 있어서,
    상기 전도성 반사방지 구조체는,
    구 형상인 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  20. 제1항에 있어서,
    상기 반사방지층에 연속박막층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  21. 제20항에 있어서,
    상기 연속박막층을 형성하는 단계는,
    상기 무기물 입자와 동일한 물질을 이용하여 상기 연속박막층을 형성하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  22. 제1항에 있어서,
    상기 반사방지층에 지문방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  23. 제20항에 있어서,
    상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  24. 제22항 또는 제23항에 있어서,
    상기 지문방지층은,
    메틸기(CH3) 또는 불화탄소기(CF) 중 적어도 어느 하나를 포함하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  25. 제22항 또는 제23항에 있어서,
    상기 지문방지층은,
    사이클로메티콘(Cyclomethicone, C8H24Si4O4), 헥사메틸디옥실란(HMDSO), 옥타메틸사이클로테트라실록산(OMCTS), 2-플루오로-6-메톡시벤즈알데히드, 3-플루오로-4 메톡시벤즈알데히드, 4-플루오로-3 메톡시벤즈알데히드, 5-플루오로-2 메톡시벤즈알데히드, 2-플루오로-6 메톡시페놀, 4-플루오로-2 메톡시페놀 및 5-플루오로-3 메톡시살리실알데히드 중 적어도 어느 하나를 증착하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  26. 제2항에 있어서,
    상기 베이스 기판의 제2면에 보호층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  27. 제26항에 있어서,
    상기 보호층은, Si, Al, Zn 및 Ti의 산화물 중 적어도 어느 하나 이상을 포함하여 형성되는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  28. 제2항에 있어서,
    상기 베이스 기판의 제2면에 반사방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  29. 제28항에 있어서,
    상기 반사방지층을 형성하는 단계는,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 복수의 돌기형 구조체를 형성하는 단계; 및
    무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 빛의 반사를 방지할 수 있는, 반사방지 구조체를 형성하는 단계를 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  30. 제28항에 있어서,
    상기 반사방지층에 연속박막층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  31. 제28항에 있어서,
    상기 반사방지층에 지문방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  32. 제30항에 있어서,
    상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판 제조 방법.
  33. 빛의 투과가 가능한 베이스 기판;
    상기 베이스 기판 제1면에, 투명전도성 물질의 증착에 의해 형성되는, 투명전도층; 및
    상기 베이스 기판 제2면에 형성되는 반사방지층을 포함하되,
    상기 반사방지층은,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 형성되는, 복수의 돌기형 구조체 및
    무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는, 반사방지 구조체를 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  34. 빛의 투과가 가능한 베이스 기판; 및
    상기 베이스 기판 제1면에 형성되는 전도성 반사방지층을 포함하되,
    상기 전도성 반사방지층은,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제1면에 형성되는, 복수의 돌기형 구조체; 및
    투명전도성 물질의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는, 반사방지 투명전도층을 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  35. 제34항에 있어서,
    상기 반사방지 투명전도층은,
    상기 투명전도성 물질의 증착에 의해 형성되는 연속전도층; 및
    빛의 반사를 방지하는 전도성 반사방지 구조체를 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  36. 제33항에 있어서,
    상기 반사방지층은,
    상기 복수의 돌기형 구조체와 상기 반사방지 구조체 사이에 상기 무기물 입자의 증착에 의해 형성되는, 연속층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  37. 제33항 또는 제34항에 있어서,
    상기 베이스 기판은,
    강화코팅층을 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  38. 제33항 또는 제34항에 있어서,
    상기 베이스 기판은,
    불소계 투명 폴리머 필름, 아크릴계 투명 폴리머필름, 폴리에틸렌 테레프탈레이트계열 투명 폴리머 필름, 폴리카보네이트, 폴리에틸렌 나프탈레이트, 폴리에테르설폰, 폴리시클로올레핀, CR39 및 폴리우레탄(polyiourethane)에서 선택된 적어도 어느 하나를 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  39. 제33항 또는 제34항에 있어서,
    상기 투명전도성 물질은,
    Zn, Cd, In, Ga, Sn 및 Ti에서 선택된 적어도 어느 하나를 포함하는 산화물인 것
    을 특징으로 하는 투명전도성 기판.
  40. 제33항 또는 제34항에 있어서,
    상기 투명전도성 물질은,
    스퍼터링(sputtering) 방법으로 증착되는 것
    을 특징으로 하는 투명전도성 기판.
  41. 제33항 또는 제34항에 있어서,
    상기 복수의 돌기형 구조체는,
    플라즈마 에칭 방법 또는 이온빔 에칭 방법을 이용하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  42. 제33항 또는 제34항에 있어서,
    상기 건식 에칭 방법은,
    Ar, O2, H2, He 및 N2에서 선택된 적어도 어느 하나의 기체를 사용하는 것
    을 특징으로 하는 투명전도성 기판.
  43. 제33항 또는 제34항에 있어서,
    상기 복수의 돌기형 구조체의 배열 간격은 에칭 노출 시간을 제어하여 조절되는 것
    을 특징으로 하는 투명전도성 기판.
  44. 제43항에 있어서,
    상기 에칭 노출 시간은 7분 미만으로 하는 것
    을 특징으로 하는 투명전도성 기판.
  45. 제33항에 있어서,
    상기 무기물 입자는,
    금속물질(Al, Ba, Be, Ca, Cr, Cu, Cd, Dy, Ga, Ge, Hf, In, Lu, Mg, Mo, Ni, Rb, Sc, Si, Sn, Ta, Te, Ti, W, Zn, Zr, Yb)의 산화물(oxide), 상기 금속물질의 질화물(nitride) 및 불화 마그네슘(Magnesium fluoride)에서 선택된 적어도 어느 하나를 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  46. 제33항에 있어서,
    상기 반사방지 구조체는,
    상기 무기물 입자를 플라즈마 박막 증착하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  47. 제33항에 있어서,
    상기 반사방지 구조체는
    200nm 이하의 간격으로 배열되는 것
    을 특징으로 하는 투명전도성 기판.
  48. 제33항에 있어서,
    상기 반사방지 구조체는,
    서로 인접하게 배치하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  49. 제33항에 있어서,
    상기 반사방지 구조체는,
    구 형상인 것
    을 특징으로 하는 투명전도성 기판.
  50. 제35항에 있어서,
    상기 전도성 반사방지 구조체는,
    서로 인접하게 배치하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  51. 제35항에 있어서,
    상기 전도성 반사방지 구조체는,
    구 형상인 것
    을 특징으로 하는 투명전도성 기판.
  52. 제33항에 있어서,
    상기 반사방지층에 형성되는 연속박막층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  53. 제52항에 있어서,
    상기 연속박막층은,
    상기 무기물 입자와 동일한 물질을 이용하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  54. 제33항에 있어서,
    상기 반사방지층에 형성되는 지문방지층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  55. 제52항에 있어서,
    상기 연속박막층에 형성되는 지문방지층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  56. 제54항 또는 제55항에 있어서,
    상기 지문방지층은,
    메틸기(CH3) 또는 불화탄소기(CF) 중 적어도 어느 하나를 포함하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  57. 제54항 또는 제55항에 있어서,
    상기 지문방지층은,
    사이클로메티콘(Cyclomethicone, C8H24Si4O4), 헥사메틸디옥실란(HMDSO), 옥타메틸사이클로테트라실록산(OMCTS), 2-플루오로-6-메톡시벤즈알데히드, 3-플루오로-4 메톡시벤즈알데히드, 4-플루오로-3 메톡시벤즈알데히드, 5-플루오로-2 메톡시벤즈알데히드, 2-플루오로-6 메톡시페놀, 4-플루오로-2 메톡시페놀 및 5-플루오로-3 메톡시살리실알데히드 중 적어도 어느 하나를 증착하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  58. 제34항에 있어서,
    상기 베이스 기판의 제2면에 형성되는 보호층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  59. 제58항에 있어서,
    상기 보호층은, Si, Al, Zn 및 Ti의 산화물 중 적어도 어느 하나 이상을 포함하여 형성되는 것
    을 특징으로 하는 투명전도성 기판.
  60. 제34항에 있어서,
    상기 베이스 기판의 제2면에 형성되는 반사방지층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  61. 제60항에 있어서,
    상기 반사방지층은,
    건식 에칭 방법을 이용하여, 상기 베이스 기판 제2면에 형성되는 복수의 돌기형 구조체; 및
    무기물 입자의 증착에 의해, 상기 복수의 돌기형 구조체 상에 형성되는 반사방지 구조체를 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  62. 제60항에 있어서,
    상기 반사방지층에 형성되는 연속박막층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  63. 제60항에 있어서,
    상기 반사방지층에 형성되는 지문방지층을 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
  64. 제62항에 있어서,
    상기 연속박막층에 지문방지층을 형성하는 단계를 더 포함하는 것
    을 특징으로 하는 투명전도성 기판.
PCT/KR2012/003553 2012-05-07 2012-05-07 투명전도성 기판 및 그 제조 방법 WO2013168831A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/398,424 US20150083465A1 (en) 2012-05-07 2012-05-07 Transparent conductive substrate, and method for manufacturing same
PCT/KR2012/003553 WO2013168831A1 (ko) 2012-05-07 2012-05-07 투명전도성 기판 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/003553 WO2013168831A1 (ko) 2012-05-07 2012-05-07 투명전도성 기판 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2013168831A1 true WO2013168831A1 (ko) 2013-11-14

Family

ID=49550856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003553 WO2013168831A1 (ko) 2012-05-07 2012-05-07 투명전도성 기판 및 그 제조 방법

Country Status (2)

Country Link
US (1) US20150083465A1 (ko)
WO (1) WO2013168831A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684578B1 (ko) * 2013-07-11 2016-12-08 서울대학교산학협력단 패턴의 형성방법, 및 상기 방법을 이용한 촉매 및 전자 소자
JP7267500B2 (ja) * 2020-11-20 2023-05-01 信越化学工業株式会社 導電性ペースト組成物、導電性ペースト組成物の製造方法、導電配線及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007724A (ko) * 2009-07-17 2011-01-25 한국전자통신연구원 반사방지 나노구조물 및 그의 제조 방법
KR20110011855A (ko) * 2009-07-29 2011-02-09 한국기계연구원 기능성 표면의 제조방법
KR20110014039A (ko) * 2009-08-04 2011-02-10 엘지디스플레이 주식회사 태양전지 및 그 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742118A (en) * 1988-09-09 1998-04-21 Hitachi, Ltd. Ultrafine particle film, process for producing the same, transparent plate and image display plate
JP2006278047A (ja) * 2005-03-28 2006-10-12 Fuji Xerox Co Ltd 被覆材料及び電線・ケーブル
US20080276990A1 (en) * 2007-05-10 2008-11-13 Board Of Regents, University Of Texas System Substrate surface structures and processes for forming the same
WO2010032933A2 (en) * 2008-09-16 2010-03-25 Lg Electronics Inc. Solar cell and texturing method thereof
JP4677515B2 (ja) * 2009-04-30 2011-04-27 シャープ株式会社 型およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007724A (ko) * 2009-07-17 2011-01-25 한국전자통신연구원 반사방지 나노구조물 및 그의 제조 방법
KR20110011855A (ko) * 2009-07-29 2011-02-09 한국기계연구원 기능성 표면의 제조방법
KR20110014039A (ko) * 2009-08-04 2011-02-10 엘지디스플레이 주식회사 태양전지 및 그 제조방법

Also Published As

Publication number Publication date
US20150083465A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013157858A2 (ko) 전도성 구조체 및 이의 제조방법
WO2011162542A2 (en) Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof
WO2014035207A1 (ko) 전도성 구조체 및 이의 제조방법
WO2016036201A1 (ko) 터치 스크린 패널용 터치 센서 및 그 제조방법
WO2015076572A1 (ko) 전도성 구조체 및 이의 제조방법
WO2012121519A2 (ko) 전도성 구조체 및 이의 제조방법
WO2010002182A9 (en) Plastic substrate and device including the same
WO2015065162A1 (ko) 전도성 구조체 및 이의 제조방법
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2016159602A1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
WO2018186621A1 (ko) 마이크로 크랙 및 레이저 타공홀을 포함하는 전파투과성 센서 커버의 제조 방법 및 이를 이용하여 제조된 전파투과성 센서 커버
WO2015126088A1 (en) Touch window and display with the same
WO2021167377A1 (ko) 다층 필름 및 이를 포함하는 적층체
WO2010114313A2 (ko) 태양전지 및 이의 제조방법
WO2016137282A1 (ko) 전도성 구조체 및 이의 제조방법
WO2013141478A1 (ko) 반사방지 기능을 구비한 투명기판
WO2018135865A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2015093868A1 (ko) 터치패널 제조 장치, 시스템 및 방법
WO2015174797A1 (ko) 유기발광소자
WO2015030513A1 (ko) 터치 스크린 패널용 터치 센서, 그 제조방법 및 이를 포함하는 터치 스크린 패널
WO2013168831A1 (ko) 투명전도성 기판 및 그 제조 방법
WO2015002483A1 (ko) 터치 스크린 패널용 터치 센서, 그 제조방법 및 이를 포함하는 터치 스크린 패널
WO2013141442A1 (ko) 반사 방지 기판 및 그 제조 방법
WO2020017792A1 (ko) 스마트 윈도우 필름 및 이의 제조방법
WO2016043477A1 (ko) 전기발광 기능이 부여된 스마트윈도우

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876143

Country of ref document: EP

Kind code of ref document: A1