WO2013167843A2 - Moteur à piston rotatif - Google Patents

Moteur à piston rotatif Download PDF

Info

Publication number
WO2013167843A2
WO2013167843A2 PCT/FR2013/051021 FR2013051021W WO2013167843A2 WO 2013167843 A2 WO2013167843 A2 WO 2013167843A2 FR 2013051021 W FR2013051021 W FR 2013051021W WO 2013167843 A2 WO2013167843 A2 WO 2013167843A2
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
pump
motor
delta
roller
Prior art date
Application number
PCT/FR2013/051021
Other languages
English (en)
Other versions
WO2013167843A3 (fr
Inventor
William Gruet
Original Assignee
William Gruet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Gruet filed Critical William Gruet
Priority to CN201380023193.6A priority Critical patent/CN104302872B/zh
Priority to EP13728443.6A priority patent/EP2847430B1/fr
Priority to US14/400,278 priority patent/US9771934B2/en
Publication of WO2013167843A2 publication Critical patent/WO2013167843A2/fr
Publication of WO2013167843A3 publication Critical patent/WO2013167843A3/fr
Priority to IN9527DEN2014 priority patent/IN2014DN09527A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/24Rotary-piston machines or pumps of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions
    • F04C2/26Rotary-piston machines or pumps of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions of internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/24Rotary-piston machines or engines of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions
    • F01C1/28Rotary-piston machines or engines of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/36Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movements defined in sub-groups F01C1/22 and F01C1/24

Definitions

  • the present invention relates to engines and pumps called rotary piston.
  • a mechanical system to obtain a variable volume can create pumps, motors if it is sufficiently rigid.
  • the engine may be internal explosion, or moved by a fluid under pressure.
  • the present invention relates to an engine comprising mainly:
  • this form F can be mobile, and in this case has a movement of rotation around its delta axis. It can also be fixed, and in this case, it is the envelope V which revolves around delta. F and V can both rotate around delta, and it is the relative rotation that will be taken into account.
  • each cell A_i is housed a roller G_i which rotates about the axis ⁇ _ ⁇ , and has at least 2 faces, G_i_1 and G_i_2.
  • the first of these faces G_i_1 is able to seal with the cell A_i at certain times of the system cycle when this face is inside the cell Aj.
  • the section by a plane perpendicular to ⁇ _ ⁇ is an arc of circle (R_i, S_i) centered on ⁇ _ ⁇ in P_i, of ends R_i and S_i, of angle in the center (R_i, P_i, S_i), which could also be called angle in the center (G_i_1).
  • a mechanical means such as a set of gears, preferably toothed belts, transmission shafts, etc., which makes the rotation of each Gj around ⁇ _ ⁇ proportional to the relative rotation of delta axis of the form F with respect to the envelope V.
  • an orthonormal coordinate system Ox Ow an initial position of the system: Pos_0 at a time tO
  • the face G_i_2 of Gj is the envelope generated by the envelope V at the level of Gj.
  • the seal between Gj and the envelope V is ensured, the assembly is made so that, if we consider a section by a plane perpendicular to delta, the envelope V, the shape F and one of the ends of the arc G_i_1 of G_i: either Rj or Sj, are in contact in one place, at a particular moment of the cycle.
  • the various parts may be provided with seals, segments or any other sealing means
  • At least one roller G_i has its angle in the center (G_i_1) determined so as to obtain the closed volumes that it delimits, as large as possible, taking into account the other parameters of the system, constraints such as contra intes of real and design (manufacturing constraints, material resistance, sealing problems, etc.).
  • at least one roller G_i has its angle in the center (G_i_1) less than 180 °.
  • the envelope V has tips, or ends Qa, Qb or even Qc, according to the values of m. If we take, for example Qa, this end delimits, at a time of the cycle, a variable volume on each of its faces, on one side with G_i-1 and on the other, with G_i.
  • the angle at the center (G_i_1) of at least one roller Gj is determined so as to close the previous volume to start the compression in this volume, at the same time that it opens the next closed volume to allow the evacuation of burnt gas.
  • the ends Q of the envelope V have an angular shape. They can be widened for reasons of resistance of the materials subjected to strong constraints, sealing, manufacturing, ... etc. It has not been specified so far, which of the form of revolution F and the envelope V is inside the other.
  • the form of revolution F is outside with respect to the envelope V (and consequently, the envelope V, is inside with respect to the form of revolution F).
  • the revolution form F is inside with respect to the envelope V (and consequently, the envelope V, is outside with respect to the revolution form F).
  • At least 2 cells A_i and A_i + 1 are contiguous, that is to say that they are as close as possible. They remain separate, but the separations between them have a thickness reduced to a minimum, taking into account the constraints of resistance of the materials, sealing, and design: as will be explained further, close together means nevertheless a small distance between 2 cells consecutive, to be able to arrange a fluid passage from one side to the other side of the envelope V. Moreover, if the ends of the envelope V are not spikes, but widened, this also helps to widen the separation .
  • the explosions occur one at a time, and the operation is more regular.
  • it is essential to be able to pass, in one way or another, the compressed fluid on one side of one end Q of the envelope V, to the closed volume of the other side of this end Q.
  • the fluid remains compressed because it is trapped between two rollers in their respective respective cells, the form F and the envelope V.
  • the explosion takes place at this time, and thus, the pressure on that other side of Q makes the envelope turn in the right direction.
  • a passage is arranged so that, when a Q end of the envelope V is between these 2 cells, the fluid compressed by one of the faces of the Q end of the envelope V, can pass on the other side (on which the fluid, after explosion, will relax).
  • the forms F, A_i, G_i, and V are cylindrical generatrices parallel to delta.
  • rollers G_i have their section along a plane passing through beta_i which is a rectangle, and the section of V along a plane passing through delta is a rectangle too. It may be interesting to be able to round the angles of the rectangles.
  • the rollers are such that the section of G_i along a plane passing through beta_i is a non-rectangular surface.
  • the envelope V is drawn accordingly.
  • the new design of the rollers and V also allows to integrate the joints
  • the engine (or pump) can still operate with various valves or valves, but it may be best to avoid them when you can, and have intake and / or exhaust openings open permanently.
  • Figures 1 to 23ter relate to embodiments according to the
  • the form F is outside, the envelope V inside.
  • the form F is fixed, and the envelope V rotates.
  • the envelope V is the central rotary piston.
  • Figures 1 to 5 show different stages of the design of a first embodiment of an engine according to the invention for obtaining the geometric shapes of said engine.
  • FIGS 6 to 1 1 illustrate the various stages of an operating cycle of an engine according to the invention.
  • Figures 12 to 16 show motors for rollers having different center angle values.
  • FIG. 17 shows the value of the limit angle ⁇ 1 and the length OQ as a function of the value of the half angle at the center of the rollers ( ⁇ ).
  • Figures 18 and 18a show a motor without valve.
  • Figures 19 to 22 show some examples with different coefficients m and different values of the number of cells.
  • Figures 23 and 23a show an example of drive with gears.
  • Figure 23b shows non-rectangular sections of G_i.
  • Figures 24 to 31 bis show a second embodiment of an engine according to the invention.
  • the axes ⁇ _ ⁇ are parallel to delta and located at the same distance d of delta.
  • the shape F and its cells A_i, the rollers G_i, the envelope V are cylindrical generatrices parallel to delta.
  • the side walls J1 and J2 are perpendicular to delta.
  • the elements G_i, P_i, A_i, ... etc. will be noted Gi, Pi, Ai on the figures.
  • Figure 1 the system is in the initial position Pos_0, in which a horizontal axis Ox, is an axis of symmetry of the set.
  • the piston F is positioned in such a way that the cell A_1 is on this axis Ox, the first face G_1_1 is in its cell.
  • Qa is a point of V, which we will call QaO, and a point of G, which we will call qaO.
  • rollers G half-angle at the center ⁇ whose ends are R and S, axis of symmetry Py, and the roller G2, whose ends are R2, and S2,
  • the initial data are:
  • Figure 2 corresponds to the position Pos_1, where the points Q, S and U meet.
  • Figure 3 it is a question of determining the arc of curve G_1_2 of G.
  • qaO is a 1st point of G_1_2.
  • Qa is the point of V in contact with G in qa (qa being a point of G).
  • the half curve G_1_2 of G is the set of points qa.
  • the last point is S.
  • the other half curve is obtained by symmetry.
  • the 1 st part of the envelope V is the set of points s.
  • the rest of the piston is obtained, in this case, by 2 symmetries.
  • the “improved piston” is then drawn, then it is this piston that will “machine” the rollers.
  • This "improved piston” may not be symmetrical; in this case, the curve arc G_l_2 is no longer symmetrical.
  • the shape of the Q-piston can be rounded at its ends
  • Figure 6 the volume v2 has just been closed by the roller G2. It contains fresh air to compress.
  • the angle at the center ⁇ 90 ° - ⁇ 1, so that the roller G2 closes v2, at the same time as the roller G4 opens the volume v1.
  • Figure 8 the volume v3 is passed to v4, on the other side of Qa by a suitable passage (not shown). At this moment can take place the injection then the explosion. The flue gases exert a strong pressure on the central piston which makes it turn.
  • Figure 10 A quarter of a turn is available to evacuate the flue gases and replace the exhaust air with air. Intake and exhaust valves are not shown.
  • Figure 1 1 the volume v7 contains fresh air, and the roller L1 closes the volume. We are in the situation of Figure 10.
  • the exhaust and intake can be done in different ways and depending on the configuration.
  • the exhaust can be at f2 (Fig. 9).
  • Admission can be done at e1 level; the bottom of the cell v8 can be filled with fresh air at low pressure in advance, so that it will drive more quickly the remaining burned gas to f2, from the opening at the level of S.
  • the valves or valves
  • This operation is similar to that of the 2-stroke engine (compression, expansion, and exhaust / intake).
  • An operation similar to that of a 4-stroke engine could be described, the complete cycle then taking place over 2 turns.
  • Figures 12 to 16 show the influence of the center angle on the engine characteristics. These figures show, for different values of ⁇ , the maximum volume v5 for the expanded gases.
  • the length d and the radius r are the same in all these figures.
  • G_1 closes the previous volume v8, and opens the volume v5 at the same time.
  • the volume v5 is little different from the previous case: it caps.
  • 90 ° is not an ideal choice.
  • 90 ° is not an ideal choice.
  • must preferably be less than 90 °.
  • Figures 18 and 18bis give an example of valveless operation, the fresh air passing through the interior of the central piston, and passing through the arcuate portion of the piston.
  • the two intake valves fa and fb are shown. Only the exhaust valve f1 on G has been shown; there is one by pebble.
  • the shaded area upwards corresponds to fresh air to be compressed, the hatched area downwards corresponds to expanding flue gas, the grid area corresponds to flue gas, being replacement by fresh air.
  • This rotational speed ratio m may be different.
  • Figures 19 to 22 show some examples with coefficients m ranging from 3 to 5.
  • Figure 20 m 4 and 9 cells.
  • Figure 21: m 5 and 9 cells.
  • Figure 22 m 5 and 1 1 cells.
  • Figs. 23 and 23a show an exemplary drive with gears.
  • the wheels G1 to G5 give the direction of rotation and the ratio m.
  • FIG. 23a the section AA, the sections of V and the rollers are here rectangles (hatched) because all the generatrices are parallel to delta. But the pebbles can be other, especially at the level of external angles.
  • the envelope V is modified accordingly.
  • Figure 23a shows chamfered rollers. They could also be rounded. More generally, any modification with respect to the basic drawing is possible, provided that the rollers G and the envelope V remain in contact at all times, that is to say that one is envelope of the other in their respective movements
  • Figures 24 to 31 relate to embodiments according to the
  • the form F is inside, the envelope V outside.
  • the form F rotates, and the envelope V is fixed.
  • Form F is the central rotary piston.
  • Figure 24 shows the motor in position Pos_0.
  • Figure 25 shows how to obtain ⁇ 1 and OQ.
  • FIG. 26 to 29 show the operation.
  • Figure 30 corresponds to Figure 7 of the 1 st implementation, with close rollers.
  • the volume v3 of compressed air passes on the other side of the envelope V in v4 by a passage not shown.
  • Figures 31 and 31a show an example of drive with gears.
  • the rotary piston engine is an intermediate solution between the engine with cylinders and pistons, and the turbine engine.
  • the possible applications are numerous (motors, pumps, compressors, ).

Abstract

La présente invention se rapporte à un moteur ou pompe, dit à piston rotatif, comprenant une forme de révolution F par rapport à un axe delta,et mobile en rotation autour dudit axe delta relativement à une enveloppe V, et n alvéoles réparties sur le pourtour de F. Dans chaque alvéole vient se loger un galet tournant, caractérisé en ce qu'au moins un galet son angle au centre déterminé de manière à obtenir les volumes fermés qu'il délimite, aussi grands que possible.

Description

Moteur à piston rotatif
La présente invention se rapporte à des moteurs et pompes dits à piston rotatif.
Les moteurs à explosion actuels sont constitués d'un piston se déplaçant l inéairement, et ce mouvement l inéaire est transformé en mouvement circulaire par une bielle et un vilebrequin. Ce mouvement qui change de sens plusieurs dizaines ou centaines de fois par seconde est un vrai problème, bien connu, sur lequel nous ne reviendrons pas. De là vient l'idée de chercher à concevoir un moteur avec un piston qui aurait un mouvement circulaire. Il n'y a pas de vraie réponse à cela à ce jour, bien que l'intérêt et l'enjeu soient considérables
Le seul moteur à piston rotatif qui ait été construit en série est le moteur "Wankel". Or, ses défauts, qui tiennent de sa complexité, ont fait qu'il n'est jamais arrivé, vraiment, à s'imposer, malgré les investissements massifs en recherche et développement dont il a été l'objet à maintes reprises.
Des moteurs de la même catégorie que celui qui va être présenté ici, ont été l'objet de brevets : U S 1 003 263A(191 1 ), GB 570 776 A (1945), FR 1 489 283 A (1967), US 7 188 602 B1 (2007), et US 5 819 699 A (1998).
Aucun de ces moteurs n'a été fabriqué ou n'a donné de suite. Aucun de ces brevets ne mentionne un passage de fluide d'un côté du piston sur l'autre.
Par ailleurs, dans les brevets US 1 003 263A, US 7 188 602 B1 et US 5 819 699 A, le piston secondaire, ou galet, a une forme elliptique plate contrairement à la forme du galet du moteur présenté ici. Dans le brevet FR 1 489 283 A, le galet reste parallèle à lui-même, alors que ce cas particulier est exclu ici, considéré comme inefficace. Le concept le plus proche serait celui décrit dans la description provisoire (« provisional spécifications ») du brevet GB 570 776 A. La description finale proprement dite (« complète spécifications »), pour transformer l'idée de la description provisoire en un moteur, aboutit à un résultat différent du moteur présenté ici pour au moins 2 raisons : le piston et le galet ne tournent pas à des vitesses proportionnelles (un système d'eng renages à 2 d iamètres change le rapport de vitesse au cours du cycle) et le piston principal a une forme différente.
Dans cette description provisoire assez succincte, aucune indication n'est donnée sur la façon d'obtenir la géométrie voulue, ne démontre pas l'existence d'une solution géométrique au problème posé, qui est loin d'être évidente surtout lorsque la pointe du piston rotatif est élargie comme c'est le cas. Par ailleurs, le galet présente un angle au centre de 180°, contrairement à la solution présentée ici, dans laquelle cet angle est inférieur à 180. °ll est montré que si cet angle n'est pas inférieur à 180°, de l'ordre de 100 à 160,° le moteur a des caractéristiques amoindries.0
Rappelons qu'un système mécanique permettant d'obtenir un volume variable, permet de créer des pompes, des moteurs s'il est suffisamment rigide. Le moteur peut être à explosion interne, ou mu par un fluide sous pression.
Nous utiliserons dorénavant le terme moteur, mais il faudra comprendre moteur thermique ou mu par un fluide sous pression (vapeur, huile, air, ...etc.), ou pompe (aspirante, refoulante, ...).
Pour ce faire, la présente invention se rapporte à un moteur comprenant principalement :
- une forme de révolution F par rapport à un axe delta et mobile en rotation autour dudit axe delta relativement à une enveloppe V. Ce qui signifie que cette forme F peut être mobile, et, dans ce cas, a un mouvement de rotation autour de son axe delta. Elle peut aussi être fixe, et dans ce cas, c'est l'enveloppe V qui tourne autour de delta. F et V peuvent tourner tous les deux autour de delta, et c'est la rotation relative qui sera prise en compte.
- F comporte n (n étant un nombre entier) alvéoles A_i (i étant la ième, et i <= n) qui sont des formes de révolution d'axe β_ί. Elles sont réparties sur le pourtour de F. Les intersections de chaque alvéole A_i avec la forme F sont : T_i et U_i.
- dans chaque alvéole A_i vient se loger un galet G_i qui tourne autour de l'axe β_ί, et présente au moins 2 faces, G_i_1 et G_i_2. La première de ces faces G_i_1 est capable d'assurer l'étanchéité avec l'alvéole A_i à certains moments du cycle du système lorsque cette face se trouve à l'intérieur de l'alvéole Aj. La section par un plan perpendiculaire à β_ί est un arc de cercle (R_i, S_i ) centré sur β_ί en P_i, d'extrémités R_i et S_i, d'angle au centre (R_i, P_i, S_i ) , qui pourra aussi être appelé angle au centre (G_i_1 ). On pourra repérer la position de Gj par la position du centre P_i et l'angle de rotation Θ de l'axe de symétrie (P_i,z) de l'arc (R_i, S_i ) par rapport à une position initiale.
- un moyen mécanique (tel qu'un jeu d'engrenages, des courroies, crantées de préférence, des axes de transmission, ...etc.), qui rend la rotation de chaque Gj autour de β_ί proportionnelle à la rotation relative d'axe delta de la forme F par rapport à l'enveloppe V.
Ainsi, supposons que l'on ait défini : un repère orthonormé Ox, Ow une position initiale du système : Pos_0 à un instant tO, l'angle ω(ί) pour repérer la rotation relative de la forme F par rapport à l'enveloppe V, ainsi, lorsque la forme F fait un tour (ω= 360°) par rapport à l'enveloppe V, chaque G_i fait m tours par rapport à sa position initiale, m étant un nombre entier, positif ou négatif selon le sens.
Autrement dit, à tout instant t, θ( t) = m * ω( t), t étant le temps On exclue m pour 2 cas particuliers : a) m = 1 , car le galet tourne alors comme s'il était fixé à F, et b) m= 0, car dans ce cas, P_iy est toujours parallèle à Ox, et ce cas est considéré comme ne présentant pas d'intérêt.
- de l'enveloppe V qui, si elle est mobile, tourne autour de l'axe delta, et qui est l'enveloppe engendrée par les galets G_i dans leur mouvement de rotation autour des β_ί eux-mêmes entraînés par F, et la rotation relative d'axe delta de la forme F par rapport à l'enveloppe V.
- la face G_i_2 de Gj est l'enveloppe engendrée par l'enveloppe V au niveau de Gj. Ainsi l'étanchéité entre Gj et l'enveloppe V se trouve assurée, l'ensemble est réalisé de telle sorte que, si on considère une section par un plan perpendiculaire à delta, l'enveloppe V , la forme F et une des extrémités de l'arc de cercle G_i_1 de G_i : soit Rj, soit Sj, sont en contact en un même endroit, en un moment particulier du cycle.
La première position telle que celle-ci, relative à G_1 , est la position Pos_1 , obtenue pour un angle ω= ω1 (appelé angle limite), l'endroit : commun à V, F et G_1 : C1 .
- De parois latérales ou joues J1 et J2 sur lesquelles s'appuient la forme F, les galets Li, et l'enveloppe V,
L'enveloppe V, la forme F, les galets Gj, les joues J1 et J2, délimitent des volumes fermés et variables à différents moments du cycle de la rotation relative de F par rapport à V. Pour assurer l'étanchéité du volume fermé, les différentes pièces peuvent être dotées de joints, segments, ou tout autre moyen d'étanchéité
L'ensemble sera dorénavant appelé moteur.
Avantageusement, au moins un galet G_i a son angle au centre (G_i_1 ) déterminé de manière à obtenir les volumes fermés qu'il délimite, aussi grands que possible, compte tenu des autres paramètres du système, de contraintes tel les que contra intes de réal isation et de conception (contraintes de fabrication, de résistance des matériaux, problèmes relatifs à l'étanchéité, etc.). Avantageusement, au moins un galet G_i a son angle au centre (G_i_1 ) inférieur à 180°.
En effet, si on considère le volume fermé maximal en fonction de l'angle a u c e n t re (G_i_ 1 ) , b i e n q u e l a cou rbe d é pen d e d es d ifféren tes caractéristiques géométriques du système, on constate un maximum pour un angle inférieur à 180°, souvent nettement inférieur, aux alentours de 130°.
L'enveloppe V présente des pointes, ou extrémités Qa, Qb, voire Qc, .. selon les valeurs de m . Si nous prenons, par exemple Qa, cette extrémité délimite, à un moment du cycle, un volume variable sur chacune de ses faces, d'un côté avec G_i-1 et de l'autre, avec G_i. Avantageusement, l'angle au centre (G_i_1 ) de au moins un galet Gj est déterminé de manière à fermer le volume précédent pour commencer la compression dans ce volume, en même temps qu'il ouvre le volume fermé suivant pour permettre l'évacuation des gaz brûlés.
Les extrémités Q de l'enveloppe V, selon la conception géométrique de base, ont une forme anguleuse. Elles peuvent être élargies pour des raisons de résistance des matériaux soumis à de fortes contraintes, d'étanchéité, de fabrication, ...etc. Il n'a pas été précisé jusqu'ici, qui, de la forme de révolution F et de l'enveloppe V est à l'intérieur de l'autre.
Avantageusement, dans une première implémentation, la forme de révolution F est à l'extérieur par rapport à l'enveloppe V (et par conséquent, l'enveloppe V, est à l'intérieur par rapport à la forme de révolution F).
On peut dire que dans ce cas, nous avons un piston rotatif à l'intérieur de l'ensemble, dont V est la surface extérieure. A l'extérieur de l'ensemble, nous avons un bâti pouvant être fixe dont la surface intérieure est la forme F et les alvéoles. Ce bâti porte les axes β_ί, et sur sa surface intérieure sont extrudées les n alvéoles A_i.
Avantageusement, dans une 2ème implémentation, la forme de révolution F est à l'intérieur par rapport à l'enveloppe V (et par conséquent, l'enveloppe V, est à l'extérieur par rapport à la forme de révolution F).
On peut dire que dans ce dernier cas, nous avons un piston rotatif à l'intérieur de l'ensemble dont F et les alvéoles forment la surface extérieure. Ce piston porte les axes β_ί. A l'extérieur de l'ensemble, nous avons un bâti pouvant être fixe dont la surface intérieure est l'enveloppe V.
Avantageusement, au moins 2 alvéoles A_i et A_i+1 sont contiguës, c'est-à-dire qu'elles sont aussi proches que possible. Elles restent séparées, mais les séparations entre elles ont une épaisseur réduite au minimum, compte tenu des contraintes de résistance des matériaux, d'étanchéité, et de conception : comme on l'expliquera plus loin, rapproché signifie néanmoins une petite distance entre 2 alvéoles consécutives, pour pouvoir aménager un passage de fluide d'un coté à l'autre de l'enveloppe V. Par ailleurs, si les extrémités de l'enveloppe V ne sont pas en pointes, mais élargies, ceci contribue aussi à élargir la séparation.
Si le nombre d'alvéoles est impair, les explosions ont lieu une à la fois, et le fonctionnement s'en trouve plus régulier. Pour ce type de moteur rotatif, il est essentiel de pouvoir faire passer, d'une façon ou d'une autre, le fluide comprimé sur un côté d'une extrémité Q de l'enveloppe V, vers le volume fermé de l'autre côté de cette extrémité Q. Le fluide reste comprimé car il est emprisonné entre 2 galets dans leurs alvéoles respectives consécutives, la forme F et l'enveloppe V. Dans un moteur thermique, l'explosion a lieu à cet instant, et ainsi, la pression sur cet autre côté de Q fait tourner l'enveloppe dans le bon sens.
Avantageusement, entre au moins 2 alvéoles consécutives A_i et A_i+1 , un passage est aménagé pour que, lorsque qu'une extrémité Q de l'enveloppe V se trouve entre ces 2 alvéoles, le fluide comprimé par l'une des faces de l'extrémité Q de l'enveloppe V , puisse passer sur l'autre face (sur laquelle le fluide, après explosion, se détendra).
Avec le passage peut être aménagée une chambre de précombustion.
Avantageusement, les axes β_ί sont parallèles à delta et situés à une même distance de delta d= distance (OP).
Avantageusement, les formes F, A_i, G_i, et V, sont cylindriques de génératrices parallèles à delta.
Dans ce cas, les galets G_i ont leur section selon un plan passant par béta_i qui est un rectangle, et la section de V selon un plan passant par delta est un rectangle aussi. Il peut être intéressant de pouvoir arrondir les angles des rectangles.
Avantageusement, les galets sont tels que la section de G_i selon un plan passant par béta_i est une surface non rectangulaire. L'enveloppe V est dessinée en conséquence. Le nouveau dessin des galets et de V permet aussi d'intégrer les joints
(ou segments) d'étanchéité.
Le moteur (ou pompe) peut toujours fonctionner avec des soupapes ou des clapets divers, mais il peut être préférable de les éviter quand on peut, et de disposer d'ouvertures d'admission et/ou d'échappement ouvertes en permanence.
Pour cela, avantageusement, l'adm ission des gaz frais passe par l'intérieur du piston rotatif central. Pour les mêmes raisons, avantageusement, l'échappement des gaz brûlés, passe par l'intérieur du piston rotatif central.
Les figures suivantes et les descriptions de quelques implémentations particulières permettront une meilleure compréhension. Les figures 1 à 23ter portent sur des exemples de réalisation selon la
1 ère implémentation, c'est-à-dire, la forme F est à l'extérieur, l'enveloppe V à l'intérieur. La forme F est fixe, et l'enveloppe V tourne. L'enveloppe V est le piston rotatif central.
Les figures 1 à 5 montrent différentes étapes de la conception d'un premier mode de réalisation d'un moteur selon l'invention permettant d'obtenir les formes géométriques dudit moteur.
Les figures 6 à 1 1 illustrent les différentes étapes d'un cycle de fonctionnement d'un moteur selon l'invention.
Les figures 12 à 16 montrent des moteurs pour des galets possédant différentes valeurs d'angle au centre.
La figure 17 montre la valeur de l'angle limite ω1 et la longueur OQ en fonction de la valeur du demi-angle au centre des galets (μ).
Les figures 18 et 18bis montre un moteur sans soupape.
Les figures 19 à 22 montrent quelques exemples avec différents coefficients m et différentes valeurs du nombre d'alvéoles. Les figures 23 et 23 bis montrent un exemple d'entraînement avec des engrenages. La figure 23 ter montre des sections de G_i non rectangulaires.
Les figures 24 à 31 bis montrent un deuxième mode de réalisation d'un moteur selon l'invention.
Dans ces exemples, les axes β_ί sont parallèles à delta et situés à une même distance d de delta.
La forme F et ses alvéoles A_i, les galets G_i, l'enveloppe V sont cylindriques de génératrices parallèles à delta. Les parois latérales J1 et J2 sont perpendiculaires à delta.
Dans ces conditions, il est préférable, pour la compréhension, de représenter le système par une coupe BB par un plan perpendiculaire à l'axe delta (Figure 23).
Pour ne pas surcharger les écritures sur les dessins, concernant le 1 er galet G_1 , le point P_1 , l'alvéole A_1 , ils seront notés G, P, A, de même pour les autres éléments de G_1 . Pour les autres galets, les éléments G_i, P_i, A_i, ...etc. seront notés Gi, Pi, Ai sur les figures.
Figure 1 : le système est dans la position initiale Pos_0, dans laquelle un axe horizontal Ox, est un axe de symétrie de l'ensemble. Le piston F est positionné de telle sorte que l'alvéole A_1 est sur cet axe Ox, la 1 ère face G_1_1 est dans son alvéole.
Sur cette figure, nous distinguons :
- O, l'intersection du plan de coupe avec l'axe delta,
- P, et P2 l'intersection du plan de coupe avec les axes béta_1 et béta_2. Ils sont les centres des alvéoles A et A2, et les centres de rotation des galets
G et G2. - La forme F,
- L'enveloppe V, son extrémité Qa vers l'alvéole A1 (dans la position Pos_0), et l'autre extrémité Qb.
Dans cette position Pos_0, V et G sont en contact en Q.
Ce point Q dans le repère fixe Ox,Ow, est Q0 (le 0 pour Pos_0).
Qa est un point de V, que nous appellerons QaO, et un point de G, que nous appellerons qaO.
- Les galets G, de demi-angle au centre μ dont les extrémités sont R et S, d'axe de symétrie Py, et le galet G2, dont les extrémités sont R2, et S2,
Sur les autres figures :
- ω est l'angle de rotation (Ox, Oy) du piston V,
- Θ est l'angle de rotation (Ox, Oz) du galet G. Ici, Θ = 2* ω ( m= 2).
Les données initiales sont :
- n égal à 2
- m égal à 2
- La distance d, égale à distance( OP)
- le rayon r de l'angle au centre (R,P,S)
- le demi-angle μ de l'angle au centre (R,P,S) du galet G,
A partir de ces données, nous allons dessiner le reste du système. La figure 2 correspond à la position Pos_1 , où les points Q, S et U se rejoignent.
Cette figure permet de déterminer ω1 , et le rayon R de la forme F. En effet, en observant les triangles, on constate que : d * sin (ω1 ) = r * sin (μ+ (m-1 ) * ω1 ), et
R = d * cos (ω1 ) + r * cos (μ+ (m-1 ) * ω1 )
La figure 3 : il s'agit de déterminer l'arc de courbe G_1_2 de G.
Pour cela, revenons en Pos_0. qaO est un 1 er point de G_1_2. Faisons croître ω de 0 à ω1 . A chaque instant t et chaque valeur de ω(ί), Qa est le point de V en contact avec G en qa (qa étant un point de G). La demi courbe G_1_2 de G est l'ensemble des points qa.
Le dernier point est S. L'autre demi courbe s'obtient par symétrie.
La figure 4 : il s'agit de déterminer la 1 ere partie de l'enveloppe V.
Pour cela, partons de Pos_1 . Q est le 1 er point de l'arc d'enveloppe recherché. Faisons croître ω à partir de ω1 jusqu'à ce que (P,S) soit aligné avec Ox. A chaque instant t et chaque valeur de ω(ί), S est le point de G en contact avec V en s, s étant un point de V.
La 1 ere partie de l'enveloppe V est l'ensemble des points s.
Figure 5 , la position est Pos_2 : (P,S) est aligné avec Ox et ω= ω2. Faisons croître ω à partir de ω2 jusqu'à 90°. Cette portion de l'enveloppe V est un arc de cercle de centre O, de rayon d - r.
Le reste du piston est obtenu, dans ce cas, par 2 symétries.
Nous avons donc vu que G_1_2 et l'enveloppe V ont été obtenues indépendamment. La courbe G_1_2 a été « usinée » par Qa («usiner» dans le sens où Qa serait un outil coupant qui usinerait la matière pour donner sa forme à G_1 _2, Qa et G_1_2 étant entraînés dans leurs mouvements de rotation respectifs tels que définis précédemment), e t la 1 ere partie de l'enveloppe V a été « usinée » par S. Ces courbes ont été obtenues point par point pour contribuer à la compréhension. Elles peuvent aussi bien être obtenues analytiquement.
Ceci est une façon de faire. Il y en a d'autres, par exemple, supposons, que l'on soit amené à considérer que les extrémités Q du piston doive être plus larges, par exemple, pour des raisons d'étanchéité, de fabrication, ou par ce que la pression considérable au moment de l'explosion, amène à élargir les extrémités Q du piston.
On dessine alors le « piston amélioré », puis c'est ce piston qu i va « usiner » les galets. Ce « piston amélioré » peut ne pas être symétrique ; dans ce cas, l'arc de courbe G_l_2 n'est plus symétrique. Par exemple, la forme du piston en Q peut être arrondie à ses extrémités
Qa et Qb, pour être plus facile à usiner (un fraise ronde est moins coûteuse que les outils pour usiner les formes plus complexes). Le principe reste le même, c'est Qa qui « usinera » la 1 ere partie de l'arc G_1_2.
Autre exemple, si les extrémités de Q ne sont plus une pointe, mais 2 points Qaa ,et Qab (pour Qa) séparés par une petite distance compatible avec les contraintes de résistance du matériau, et tels que OQaa = OQab = d, pour simplifier, ne tenons pas compte de la forme du piston entre ces 2 points, c'est Qaa qui « usinera » la 1 ere partis de l'arc G_1 _2 (la 2eme par Qab, qui sera symétrique). D'une façon plus générale, toute modification par rapport au dessin de base est possible, pour autant que les galets G et l'enveloppe V restent en contact à tout instant, c'est-à-dire que l'un est l'enveloppe de l'autre dans leurs mouvements respectifs. Les figures 6 à 1 1 montrent le fonctionnement d'un moteur selon l'invention à quatre galets.
Figure 6 : le volume v2 vient d'être fermé par le galet G2. Il contient de l'air frais à comprimer. Sur cet exemple, l'angle au centre μ = 90° - ω1 , si bien que le galet G2 ferme v2, en même temps que le galet G4 ouvre le volume v1 .
Figure 7 : ω= ω1 , le volume d'air v2 a été comprimé et occupe le volume v3.
Figure 8 : le volume v3 est passé en v4, de l'autre côté de Qa par un passage adéquat (non représenté). A cet instant peut avoir lieu l'injection puis l'explosion. Les gaz brûlés exercent une forte pression sur le piston central qui le font tourner.
Figure 9 : C'est la fin de la détente, le volume v4 a augmenté jusqu'à devenir le volume maximum v5.
Figure 10 : On dispose d'un quart de tour pour évacuer les gaz brûlés et rem pl ir le vol ume v6 par de l 'a ir fra is . Les soupapes d 'adm ission et d'échappement ne sont pas représentées.
Figure 1 1 : le volume v7 contient de l'air frais, et le galet L1 ferme le volume. On se retrouve dans la situation de la figure 10.
L'échappement et l'admission peuvent se faire de différentes façons et selon la configuration. Par exemple ici, l'échappement peut se faire au niveau de f2 (Fig. 9). L'admission peut se faire au niveau de e1 ; le fond de l'alvéole v8 peut être rempli par de l'air frais en basse pression à l'avance, si bien qu'il chassera plus rapidement le reste de gaz brûlés vers f2, dès l'ouverture au niveau de S. On peut constater q ue, contra i rement aux moteu rs à cyl ind res classiques, les soupapes (ou clapets) ne sont pas dans une zone de feu (où a lieu l'explosion) ce qui donne plus de liberté pour leur implémentation. Ce fonctionnement s'apparente à celui du moteur 2 temps (compression, détente, et échappement/admission). On pourrait décrire un fonctionnement s'apparentant à celui d'un moteur 4 temps, le cycle complet s'effectuant alors sur 2 tours. Les figures 12 à 16 montrent l'influence de l'angle au centre sur les caractéristiques du moteur. Ces figures montrent, pour différentes valeurs de μ, le volume maximum v5 pour les gaz expansés. La longueur d et le rayon r sont les mêmes dans toutes ces figures.
Figure 12 : μ= 90° Figure 13 : μ= 80 : on voit, par rapport au cas précèdent, que pour une différence de seulement 10°, le volume v5 est nettement plus grand, à peu près le double.
Figure 14 : μ= 66 : on voit, par rapport au cas précèdent, que le volume a encore à peu près doublé. Figure 15 : μ= 90° - ω1 soit à peu près 60° ici. Pour cette valeur, le galet
G_1 ferme le volume précédent v8, et ouvre le volume v5 au même instant. Le volume v5 est peu différent par rapport au cas précédent : on plafonne.
Figure 16 : μ= 55° : on voit, par rapport au cas précèdent, le volume v5 a peu changé. On constate que pour μ < 90° - ω1 , le volume au fond de l'alvéole n'est jamais enfermé.
On voit donc que le volume maximum v5 a augmenté lorsque μ a diminué, jusqu'à plafonner et que la valeur à reten ir se situe dans ce voisinage, en tenant compte de différentes contraintes. La figure 17 montre que ω1 passe lui aussi par un maximum, obtenu pour 65° environ. On voit aussi que la distance OQ croit lorsque μ diminue. Bien que ce ne soit pas démontré formellement ici, le maximum de ω1 et le maximum de v5 se situent dans le même voisinage de valeurs. Ces résultats ont été expliqués pour une valeur particulière du rapport r / d, mais on pourrait démontrer qu'ils sont généraux.
Ce qui est vrai pour l'expansion des gaz est aussi vrai pour la compression car il y a une symétrie.
On en conclu que μ = 90° n'est pas un choix idéal. Pour que le moteur soit plus efficace, μ doit être de préférence inférieur à 90°.
Les Figures 1 8 et 18bis donnent un exemple de fonctionnement sans soupape, l'air frais passant par l'intérieur du piston central, et traversant au niveau de la partie en arc de cercle de ce piston. Les 2 soupapes d'admission fa et fb sont représentées. Seule la soupape d'échappement f1 sur G a été représentée ; il y en a une par galet.
La zone hachurée vers le haut (en procédant de gauche à droite) correspond à de l'air frais à comprimer, la zone hachurée vers le bas correspond à des gaz brûlés en expansion, la zone quadrillée correspond à des gaz brûlés, en cours de remplacement par de l'air frais. Dans les figures précédentes, le rapport de vitesse de rotation est m= 2.
Ce rapport de vitesse de rotation m peut être différent. Les figures 19 à 22 montrent quelques exemples avec des coefficients m allant de 3 à 5.
La figure 19 : m= 3 et 9 alvéoles. La figure 20 m= 4 et 9 alvéoles. La figure 21 : m= 5 et 9 alvéoles. La figure 22 m= 5 et 1 1 alvéoles.
Les figures 23 et 23bis montre un exemple d'entraînement avec des engrenages. Les roues G1 à G5 donnent le sens de rotation et le rapport m.
Sur la figure 23 bis, la coupe AA, les sections de V et des galets sont ici des rectangles (hachurés) car toutes les génératrices sont parallèles à delta. Mais les galets peuvent être autres, notamment au n iveau des angles extérieurs. L'enveloppe V se trouve modifiée en conséquence. La figure 23 bis montre des galets chanfreinés. Ils pourraient aussi être arrondis. D'une façon plus générale, toute modification par rapport au dessin de base est possible, pour autant que les galets G et l'enveloppe V restent en contact à tout instant, c'est-à-d ire que l'un est l'enveloppe de l'autre dans leurs mouvements respectifs Les figures 24 à 31 portent sur des exemples de réalisation selon la
2ème implémentation, c'est-à-dire, la forme F est à l'intérieur, l'enveloppe V à l'extérieur. Ici, la forme F tourne, et l'enveloppe V est fixe. La forme F est le piston rotatif central.
Tout ce qui a été dit pour la 1 ere implémentation et qui reste valable pour la 2eme n'est pas répété ici.
La figure 24 montre le moteur dans la position Pos_0.
La figure 25 montre la façon d'obtenir ω1 et OQ.
Les figures 26 à 29 montrent le fonctionnement.
La figure 30 correspond à la figure 7 de la 1 ere implémentation, avec des galets rapprochés. Le volume v3 d'air comprimé passe de l'autre côté de l'enveloppe V en v4 par un passage non représenté. Les figures 31 et 31 bis montrent un exemple d'entraînement avec des engrenages.
Le moteur à piston rotatif se présente comme une solution intermédiaire entre le moteur à cylindres et pistons, et le moteur à turbine. Les applications possibles sont nombreuses (moteurs, pompes, compresseurs, ...).
Par rapport aux moteurs à cylindres et pistons, la suppression de ce mouvement linéaire alternatif du piston très anti-mécanique, la simplicité, l'absence de vibration, permettront des fonctionnements fiables avec peu d'usure, et économiques.
Par rapport aux turbines (à gaz, vapeur, fluides sous pression, ...etc.), le rendement sera très supérieur.
Ce moteur est aussi propice à la réalisation de moteurs à gaz, ou à hydrogène, non polluants

Claims

REVENDICATIONS
Moteur ou pompe, dit à piston rotatif, comprenant : une forme de révolution F par rapport à un axe delta, et mobile en rotation autour dudit axe delta relativement à une enveloppe V, n alvéoles A_i qui sont des formes de révolution d'axe β_ί, réparties sur le pourtour de F, dans chaque alvéole A_i vient se loger un galet Gj qui tourne autour de l'axe β_ί, et présente au moins 2 faces, G_i_1 et G_i_2, la première de ces faces G_i_1 étant capable d'assurer l'étanchéité avec l'alvéole A_i à certains moments du cycle du système lorsque cette face se trouve à l'intérieur de l'alvéole A_i et dont la section par un plan perpendiculaire à β_ί, est un arc de cercle centré sur β_ί, d'angle au centre (G_i_1 ) un moyen mécanique qui rend la rotation de chaque Gj autour de β_ί proportionnelle à la rotation relative d'axe delta de la forme F par rapport à l'enveloppe V,
- l'enveloppe V étant l'enveloppe engendrée par les galets Gj dans leur mouvement de rotation autour des β_ί eux-mêmes entraînés par F, et la rotation relative d'axe delta de la forme F par rapport à l'enveloppe V,
- la face G_i_2 de Gj est l 'enveloppe engendrée par l'enveloppe V au niveau de G_i et assure ainsi l'étanchéité entre G_i et l'enveloppe V, l'ensemble est réalisé de telle sorte que, si on considère une section par un plan perpendiculaire à delta, l'enveloppe V , la forme F et une des extrémités de l'arc de cercle G_i_1 de Gj, sont en contact, en un même endroit, en un moment particulier du cycle, des parois latérales ou joues J1 et J2 sur lesquelles s'appuient la forme F, les galets Li, et l'enveloppe V,
- la forme F, les galets Gj, l'enveloppe V, les joues J 1 et J2, délimitant des volumes fermés et variables à différents moments du cycle de la rotation relative de F par rapport à V, l'ensemble étant caractérisé en ce que au moins un galet G_i a son angle au centre (G_i_1 ) déterminé de manière à obtenir les volumes fermés qu'il délimite, aussi grands que possible,
2) Moteur ou pompe, selon la revendication précédente, caractérisé en ce que au moins un galet G_i a son angle au centre (G_i_1 ) inférieur à 180, 3) Moteu r ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle au centre (G_i_1 ) de au moins un galet G_i est déterminé de manière à fermer le volume précédent, en même temps qu'il ouvre le volume fermé suivant,
4) Moteur, ou pompe, selon l'une quelconque des revend ications précédentes caractérisé en ce que la forme de révolution F est à l'extérieur par rapport à l'enveloppe V,
5) Moteur, ou pompe, selon l'une quelconque des revendications précédentes sauf la précédente, caractérisé en ce que la forme de révolution F est à l'intérieur par rapport à l'enveloppe V, 6) Moteur, ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que au moins 2 alvéoles A_i et A_i+1 sont contiguës, 7) Moteur, ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que entre au moins 2 alvéoles consécutives A_i et A_i+ 1 , un passage est aménagé pour que, lorsque qu'une extrémité de l'enveloppe V se trouve entre ces 2 alvéoles, le fluide comprimé par l'une des faces de l'extrémité de l'enveloppe V , puisse passer sur l'autre face,
8) Moteur, ou pompe, selon l 'une quelconque des revend ications précédentes, caractérisé en ce que les axes β_ί sont parallèles à delta et situés à une même distance de delta.
9) Moteur, ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que les formes F, A_i, G_i, et V, sont cylindriques de génératrices parallèles à delta.
10) Moteur, ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que la section de chaque galet G_i selon un plan passant par β_ί est une surface non rectangulaire.
1 1 ) Moteur, ou pompe, selon l'une quelconque des revendications précédentes, caractérisé en ce que l'admission des gaz frais passe par l'intérieur du piston rotatif central.
12) Moteur, ou pompe, selon l 'u ne quelconque des revendications précédentes, caractérisé en ce que l'échappement des gaz brûlés, passe par l'intérieur du piston rotatif central.
PCT/FR2013/051021 2012-05-10 2013-05-07 Moteur à piston rotatif WO2013167843A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380023193.6A CN104302872B (zh) 2012-05-10 2013-05-07 旋转活塞发动机
EP13728443.6A EP2847430B1 (fr) 2012-05-10 2013-05-07 Moteur à piston rotatif
US14/400,278 US9771934B2 (en) 2012-05-10 2013-05-07 Rotary-piston engine
IN9527DEN2014 IN2014DN09527A (fr) 2012-05-10 2014-11-12

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR12/54259 2012-05-10
FR1254259 2012-05-10
FR12/58215 2012-09-04
FR1258215 2012-09-04
FR12/62295 2012-12-19
FR1262295 2012-12-19

Publications (2)

Publication Number Publication Date
WO2013167843A2 true WO2013167843A2 (fr) 2013-11-14
WO2013167843A3 WO2013167843A3 (fr) 2014-02-20

Family

ID=48614042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051021 WO2013167843A2 (fr) 2012-05-10 2013-05-07 Moteur à piston rotatif

Country Status (5)

Country Link
US (1) US9771934B2 (fr)
EP (1) EP2847430B1 (fr)
CN (1) CN104302872B (fr)
IN (1) IN2014DN09527A (fr)
WO (1) WO2013167843A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034810A1 (fr) * 2015-04-13 2016-10-14 William Gruet Dispositif pour assurer l’etancheite pour les moteurs et pompes a piston rotatif

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110287627B (zh) * 2019-06-28 2022-09-27 浙江大学 一种基于包络的大规模串联传动机构生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1003263A (en) 1911-01-07 1911-09-12 Ira Boyd Humphreys Rotary explosion-engine.
GB570776A (en) 1944-02-02 1945-07-23 Nicholas George Frazer Improvements in rotary engines
FR1489283A (fr) 1966-08-04 1967-07-21 Perfectionnements aux machines à pistons tournants
US5819699A (en) 1997-05-13 1998-10-13 Burns; William A. Rotary internal combustion engine
US7188602B1 (en) 2004-07-14 2007-03-13 Clr, Llc Concentric internal combustion rotary engine

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1226745A (en) * 1914-10-19 1917-05-22 Frederick A Brooks Rotary engine.
US1239694A (en) * 1915-12-04 1917-09-11 Miles M Jackman Rotary engine.
US1970594A (en) * 1930-08-12 1934-08-21 Jack B Brady Rotary engine
US2070631A (en) * 1936-01-25 1937-02-16 Sunderland Morton Rotary internal combustion engine
US2275205A (en) * 1938-07-18 1942-03-03 Edward L Straub Rotary engine
US2856120A (en) * 1954-10-16 1958-10-14 Fawzi Mohamed Ibrahim Rotary piston machine, especially for use as a compressor
FR1192157A (fr) * 1956-11-14 1959-10-23 Inst Francais Du Petrole Moteurs rotatifs perfectionnés
US3435808A (en) * 1967-04-10 1969-04-01 Clayg Corp The Rotary engine
US3621820A (en) * 1970-01-12 1971-11-23 Floyd F Newsom Rotary internal combustion engine
US3799126A (en) * 1971-02-22 1974-03-26 J Park Rotary machines
US4083663A (en) * 1974-01-11 1978-04-11 Lionel Morales Montalvo Rotary engine with pistons and lenticular valves
US4057035A (en) * 1976-03-11 1977-11-08 Cherng Yi Su Internal combustion engines
CN87203294U (zh) * 1987-05-22 1988-08-17 白明 一种旋转活塞发动机和泵
US5595154A (en) * 1995-02-13 1997-01-21 Smith; William A. Rotary engine
JP3937081B2 (ja) * 1997-05-13 2007-06-27 芳男 阿部 真円回転式ロータリーエンジン吸入回転弁とロータ。
US6129067A (en) * 1997-11-28 2000-10-10 Riley; Thomas Rotary engine
DE20216762U1 (de) * 2002-10-31 2003-01-09 Hofmeister Dunkel Wolfgang Rotationskolbenmaschine
US7201134B2 (en) * 2005-03-09 2007-04-10 Aaron Matthew Guest Parallel rotary engine
WO2007026323A1 (fr) * 2005-09-01 2007-03-08 Wolfram Martin Moteur a piston rotatif
CN201106486Y (zh) * 2007-02-06 2008-08-27 陈继业 新型复合齿轮旋转活塞发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1003263A (en) 1911-01-07 1911-09-12 Ira Boyd Humphreys Rotary explosion-engine.
GB570776A (en) 1944-02-02 1945-07-23 Nicholas George Frazer Improvements in rotary engines
FR1489283A (fr) 1966-08-04 1967-07-21 Perfectionnements aux machines à pistons tournants
US5819699A (en) 1997-05-13 1998-10-13 Burns; William A. Rotary internal combustion engine
US7188602B1 (en) 2004-07-14 2007-03-13 Clr, Llc Concentric internal combustion rotary engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034810A1 (fr) * 2015-04-13 2016-10-14 William Gruet Dispositif pour assurer l’etancheite pour les moteurs et pompes a piston rotatif

Also Published As

Publication number Publication date
CN104302872A (zh) 2015-01-21
IN2014DN09527A (fr) 2015-07-17
US9771934B2 (en) 2017-09-26
EP2847430A2 (fr) 2015-03-18
WO2013167843A3 (fr) 2014-02-20
EP2847430B1 (fr) 2019-03-06
US20150093278A1 (en) 2015-04-02
CN104302872B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
FR2683001A1 (fr) Machine volumetrique axiale.
WO1998041781A1 (fr) Mecanisme desmodromique
EP1448873B1 (fr) Machine volumetrique rotative
EP0168268B1 (fr) Machine volumétrique à rouleaux
EP2847430B1 (fr) Moteur à piston rotatif
FR2652391A1 (fr) Pompes et moteurs a multirotors.
CN109519375A (zh) 差动式菱形活塞压缩机
EP0069039B1 (fr) Moteur à combustion interne suralimenté
WO2006016019A1 (fr) Moteur a piston rotatif tripode 6 temps
FR2898383A1 (fr) Ensemble mecanique pour la realisation de machines telles que compresseurs, moteurs thermiques ou autres, dotees d&#39;un cylindre et d&#39;un piston
EP0086719B1 (fr) Machine pour l&#39;aspiration et le refoulement d&#39;un fluide
EP3045656A1 (fr) Machine rotative a losange deformable multifonctions
EP1216358B1 (fr) Compresseur ou pompe a vide a spirales
FR2948972A1 (fr) Machine rotative a vilebrequins obliques
FR2738285A1 (fr) Moteur rotatif thermique a rotor unique, portant quatre pistons oscillants actionnes par bielles et vilebrequin
RU2120042C1 (ru) Роторный корпусно-поршневой двигатель внутреннего сгорания
FR1464519A (fr) Moteur rotatif à combustion interne
EP0127694B1 (fr) Machine à chambres et pistons oscillants
EP4077902A1 (fr) Moteur a source chaude externe a cycle divise a boisseaux
FR2757568A1 (fr) Moteur thermique 3 temps a 4 ou 6 cylindres opposes 2 a 2 avec un vilebrequin contrarotatif excentre et une distribution automatique
CH98401A (fr) Appareil à piston rotatif.
BE679111A (fr)
CH448752A (fr) Machine volumétrique rotative
BE489362A (fr)
BE717538A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13728443

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14400278

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013728443

Country of ref document: EP