WO2013167240A1 - Procédé et dispositif de jonction au laser d'au moins deux pièces à usiner à l'aide d'un capillaire de vapeur et oscillation du faisceau laser - Google Patents

Procédé et dispositif de jonction au laser d'au moins deux pièces à usiner à l'aide d'un capillaire de vapeur et oscillation du faisceau laser Download PDF

Info

Publication number
WO2013167240A1
WO2013167240A1 PCT/EP2013/001246 EP2013001246W WO2013167240A1 WO 2013167240 A1 WO2013167240 A1 WO 2013167240A1 EP 2013001246 W EP2013001246 W EP 2013001246W WO 2013167240 A1 WO2013167240 A1 WO 2013167240A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
oscillation
workpieces
laser
joining
Prior art date
Application number
PCT/EP2013/001246
Other languages
German (de)
English (en)
Inventor
Felix Schmitt
Benjamin MEHLMANN
Arnold Gillner
Alexander Olowinsky
Dirk HAVERMANN
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2013167240A1 publication Critical patent/WO2013167240A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding

Definitions

  • the present invention relates to a method for joining at least two workpieces of similar or dissimilar metallic materials to form a component by means of a continuously emitting laser beam by forming a weld seam along a joint surface by partially absorbing the laser beam in an interaction zone in the region of the joint surface
  • Melting bath forms, wherein a part of the joining surface is detected by the molten bath and this part forms a supporting cross-section after the solidification of the melt, wherein the laser beam along the joining surface on a small beam cross-section, with a main direction of the laser beam axis in the direction of the surface normal of the surface of the workpieces , is incident on the laser beam, focused and the laser beam along the joining surface of the workpieces guided by the feed direction of the laser beam, a second movement is superimposed with an oscillating components of movement both in the feed direction and perpendicular thereto.
  • the simultaneous joining method is used in which along the joining contour individual diode lasers or Strahlfokussierieri are attached and can be varied in the heating time, melting time and cooling behavior by selecting the turn-on of the diode laser or the diode laser ,
  • this procedure can not respond to local changes in the process.
  • metal welding is currently used in individual cases to set a defined TemperaturMapprofils with the ability to influence the solidification and thus, for example, the hardness of the weld a rigid Doppelspot- focusing optics, in which the laser beam is split into two sub-beams; In this way you can set a specific temperature profile by different choice of power distributions.
  • additional heating techniques such as induction or a second laser, are used to set a selectable temperature cycle.
  • the functional sizes of the welded joint are determined by a V-shaped weld geometry, the seam width of which depends to a large degree on the welding depth. Since the instabilities in the welding process and the tolerances in the production can not be prevented, the formation of a rectangular seam geometry with steep Schmelzbadflanken is desirable for a stabilization of the welding process.
  • a variant of the method of local power modulation in laser beam welding represents the rigid power density distribution with several arranged Foki.
  • the Mehrfokustechnik a suitable means.
  • the arrangement of two behind or juxtaposed foci increases the capillary and facilitates the outflow of the metal vapor.
  • the Umströmungs At a greater distance of the two foci of> 1, 5 d 0 , where d 0 indicates the focus diameter, and the formation of two separate Dampfkapillaren the Umströmungs economically the melt is reduced and the limit to the formation of seam imperfections, such as humping, can be moved to higher feed rates become.
  • No. 4,369,348 describes a system technology for deflecting a beam at frequencies up to 1000 Hz for laser welding applications, in which the focus diameter is increased by means of a copper mirror excited by electromagnetic drives. The description concentrates exclusively on the necessary system technology.
  • WO 2006/027013 A1 describes a uniaxial pendulum motion superimposed on the feed motion in order to reduce crack formation during laser welding of hardenable steels.
  • the specified oscillation frequencies are a few 10 Hz.
  • the invention has for its object to provide a method for joining at least two workpieces of similar or dissimilar metallic materials to form a component by means of a continuously emitting laser beam by forming a weld along a joint surface, compared to conventional methods, a higher process efficiency based on the depth of penetration with the same power, a defined connection cross-section, improved gap bridgeability and a defined mixing of the two joining partners possible.
  • a laser beam is used with an intensity forming a vapor capillary in the workpieces.
  • This laser beam is continuously coupled into the vapor capillary.
  • Starting from this vapor capillary takes place a radial energy transport into the workpieces.
  • the oscillation of the laser beam and thus the oscillation of the vapor capillary causes at least perpendicular to the feed direction of the laser beam to the center of the oscillating motion directed towards energy transport and thereby generates a
  • an adjustable temperature distribution in the melting zone of the workpiece can be made, which should relate to an increase in volume of the weld between the trajectory of the oscillatory motion in a heat accumulation, and based on the temperature distribution outside the tracks of the oscillatory motion can lead to a controlled cooling behavior.
  • the laser beam is moved in the feed direction at 30 mm / s to 2000 mm / s and this feed motion is superimposed on an oscillating motion, which at a beam diameter of the laser beam in focus less than 100 pm, preferably in the range of 10 to 30 ⁇ , at 300 hertz to 100 kilohertz, preferably in the range of 1 kilohertz, with an oscillation amplitude in the range of 0.02 mm to 0.5 mm, preferably from 0.05 mm to 0.2 mm , expires.
  • an oscillation amplitude in the range of 0.02 mm to 0.5 mm, preferably from 0.05 mm to 0.2 mm
  • the oscillating movement of the laser beam and thus the movement of the vapor capillary is two-dimensional in the direction of propagation of the laser beam and perpendicular to it, wherein the reference point of the oscillating motion is the position of the focus of the laser beam.
  • Characteristic of this type of process control is that the welding process is in the area of deep welding with a pronounced vapor capillary. Deep welding means that a significant portion of the laser power is absorbed within the formed vapor capillary and the laser power coupled into the workpiece is no longer primarily dependent on the reflectance of the material.
  • the method according to the invention is distinguished by the fact that the ratio of diameter of the vapor capillary and feed rate is considerably smaller. As a result, the relative heat conduction losses increase in laser welding and have a greater impact.
  • the melt composition and the concentration composition are set via the choice of the oscillation parameters of frequency and amplitude, whereby a greater mixing of the two joining partners is achieved by increasing the frequency or by increasing the amplitude.
  • an increase in the process efficiency can be achieved by selecting the oscillation parameters by adjusting the oscillation amplitude and oscillation frequency so that, given the heat conduction properties of the material, the energy within the oscillation geometry is sufficient to produce a melt.
  • the laser and oscillation parameters can be adjusted online when repeatedly processing a specific volume of material.
  • Welding process in particular a stabilization of the vapor capillary, be made.
  • the laser beam movement directed backwards perpendicularly and with respect to the main feed direction is selected such that the heat conduction losses at the weld capillary or at the respective laser interaction point in the region enclosed by the movement of the laser beam accumulate in such a way that they repeat together with the laser Recurring laser beam result in a significant increase in the available energy for welding. This results in a significant increase in the molten volume, without having to increase the available laser power.
  • the laser beam is modulated both temporally and locally with extremely high frequency, resulting in corresponding procedural advantages.
  • a setting of a defined temperature profile is possible.
  • This setting of a defined time-temperature profile can be achieved by a rapid deflection in the form of oscillatory movements with frequencies in the multi-kilohertz range of the laser beam perpendicular to the feed direction and in a suitable manner via an extension of the interaction zone with respect to the actual weld zone in the direction of the joining contour be achieved with high scanning frequency depending on the oscillation contour.
  • oscillation contours simple lines, circles, ellipses, spirals, eight-shaped geometries as well as meanders and arbitrary 2D geometries can be used.
  • a preferred geometry is a circular or elliptical-shaped geometry, since with this geometry, the radially inward heat conduction loss can best be exploited.
  • the amplitudes from 0.1 mm to 0.2 mm should lie at frequencies greater than 2 kHz, and the laser beam is returned to the still molten area, the energy required to overcome the enthalpy of fusion no longer has to be applied.
  • the oscillation movement ie the oscillation frequency and amplitude as a function of the feed rate of the laser beam, must be chosen depending on the heat conduction or energy dissipation of the respective material so that with repeated irradiation by the moving laser beam, the material is still melted or even over a correspondingly high temperature. In this way, greater depths of penetration can be achieved via the higher intensity, without having to introduce high energies into the material, as in the case of cw welding.
  • Another advantage of the method according to the invention is to be emphasized that the vertical drive mechanisms of the mixing due to reduced interaction times are reduced by the superimposed movement, especially when welding in overlap configuration; As a result, the two molten materials of the workpieces to be joined to a component are less mixed, which is expressed in a reduced formation of undesirable, brittle intermetallic phases.
  • the superimposed oscillatory motion during welding of materials that are prone to unstable process behavior, such as aluminum or copper materials achieves a settling that translates into fewer process errors.
  • the functional variables of a welded connection can be set. Due to the local and temporal variability, such an adaptation can also take place during the process and, if necessary, it can be reacted to changing component conditions.
  • an improvement in the gap bridging ability and low requirements for the edge preparation during welding in butt joint should be mentioned, since the energy is introduced over a larger area cross section.
  • the local modulation of the laser power is carried out in the inventive method in that the laser beam by means of a biaxial scanner within a narrow range around the actual joint around so moves is that despite a fast oscillatory movement in the joining region, the process temperature for melting or welding is maintained and beyond by means of suitable oscillatory movements in the flow (range, seen in the direction of movement of the laser beam, in front of the laser beam) of the melting process can take place heating or in the wake ( Area, seen in the direction of movement of the laser beam, behind the laser beam) of the melting process a defined cooling is achieved.
  • the scan area perpendicular to the welding direction is typically 20 ⁇ to 500 pm (oscillation amplitude). In the welding direction, this scan area can be extended to a few millimeters in the feed direction, depending on the desired preheating or reheating.
  • the oscillation geometries to be set to optimize the preheat, melt, and cool phases may be formed by simple line, circle, ellipse, and spiral movements, octahedral geometries, sinusoidal geometries, meandering geometries, and other free-form geometries adapted to the machining process give temporally and locally modulated temperature profile.
  • defined temperature profiles can be generated dependent on the process via multiple scans with simultaneous variation of the laser power.
  • the geometric sizes of the superimposed motion can also be varied online during the process, if required by the process state.
  • the implementation of the method according to the invention can be carried out by means of a single fast beam deflection unit, which allows both the local modulation and the feed along the required contour, for example by galvanometer scanner.
  • a combination of two different motion systems is used for the implementation of the process technology according to the invention.
  • a first movement system either as a linear table combination or in the form of a galvanometer scanner takes over the irradiation along the actual welding path (macrogeometry).
  • a second highly dynamic scanner which is designed either as a galvanometer scanner or at high scanning speeds as an electro-optical, acousto-optic or phase-shifting scanner, takes over the rapid oscillation of the laser radiation around a reference point (microgeometry) and ensures the adjustment a temporally and locally variable temperature field. Alternatively, this temporal and spatial modulation of the laser radiation by means of a micromirror array done. Galvanometers, acousto-optic deflectors, piezo systems, phase shifters, electro-optical deflectors are used to deflect the laser radiation, the two first-mentioned devices being preferred.
  • the microscanner In order to be able to generate a homogeneous temperature field or temperature field that can be set according to the processing process at the actual processing location, the microscanner must enable scanning frequencies of a few hundred hertz to megahertz.
  • the scan amplitude can be from a few tens of micrometers to a few millimeters.
  • the fields of application of the method according to the invention and the system technology cover welding processes of metallic materials with laser radiation.
  • FIG. 1 shows a schematic representation for explaining the method according to the invention
  • FIG. 2 shows a section through the component of FIG. 1 perpendicular to the feed direction of the laser beam
  • Figure 3A and Figure 3B are two schematic representations in a section perpendicular to the feed direction of the laser beam
  • Figure 3A shows the prior art
  • Figure 3B relates to the inventive method in which each caused by the movement of the laser beam melting states in the workpieces are shown with additional flow arrows
  • FIGS. 4A and 4B are temperature diagrams associated with the illustrations of FIGS. 3A and 3B showing the temperature profile on the workpiece surface in the sections shown in FIGS. 3A and 3B, and FIGS
  • Figure 5 is a representation comparable to that of Figure 1, but with an oscillating movement of the laser beam in the shape of an eight.
  • Figure 1 shows a plan view of the upper workpiece 1 of two to be joined, superimposed workpieces 1, 2, which can be seen in the sectional view of Figure 2.
  • These two workpieces 1, 2 are formed by a continuously emitting laser beam 3 by forming a
  • the laser beam 3 is directed onto the surface of the upper workpiece 1, wherein the main direction of the laser beam axis, denoted by the reference numeral 5, extends in the direction of the surface normal of the surface of the workpiece 1.
  • the laser beam 3 is guided along a predetermined main or feed direction 6. This main direction or feed direction 6 of the laser beam 3 is superimposed on a second movement, the embodiment shown in Figure 1 a spiral course, indicated by the spiral path 7, shows.
  • the laser beam 3 depending on the material of the two workpieces 1, 2 to be joined, which may be those of similar or dissimilar metallic materials, one is selected which, due to its intensity in the workpieces 1, 2, is a vapor capillary 8 generated.
  • the laser beam 3 is continuously coupled into this vapor capillary 8. It can be seen from FIGS. 1 and 2 that these vapor capillaries 8 (see FIG. Wegungsbahn 7 (see Figure 1) describes a spiral path. From this vapor capillary 8 takes place a radial energy transport both outward and to the center of the oscillating motion. The energy transport to the outside, indicated by the arrows 9, leads to heat conduction losses.
  • the energy transport directed towards the center of the oscillation represents the energy which can be used for the joining process.
  • this energy transport 10 directed towards the center of the oscillating movement 7 a melted or heated region 11 is produced.
  • the vapor capillary 8 has a high aspect ratio due to the radiation used from beam sources of high brilliance.
  • the vapor capillary 8 In the lower region of the trajectory of the vapor capillary 8 results by radially inwardly directed heat conduction losses in addition molten and re-solidified after process end region 12, with the advantage that the applied energy for melting the entire material volume is smaller than in conventional linear path welding.
  • the local modulation of the laser radiation results in an adjustable temperature distribution in the melting zone in the workpieces 1, 2.
  • the melting zone and thus the increase in volume of the weld metal due to the heat build-up lie between the path of the oscillation movement.
  • the movement of the laser beam 3 in the feed direction 6, which is superimposed on the oscillating movement 7, is 30 mm / s to 2000 mm / s.
  • the beam diameter of the laser beam 3 in the focus (the focus is in the illustration of Figure 2 at the upper edge of the upper workpiece) is less than 100 pm, preferably in the range of 10 to 30 pm, at 300 hertz to 100 kilohertz, preferably in the range of 1 kilohertz.
  • the oscillation amplitude, denoted by reference numeral 14 in FIG. 2, is in the range of 0.02 mm to 0.5 mm, preferably 0.05 mm to 0.2 mm.
  • FIGS. 3A and 3B show two schematic representations in a section perpendicular to the feed direction of the laser beam, FIG. 3A representing the prior art while FIG. 3B relates to the method according to the invention.
  • the representation of FIG. 3B corresponds to that of FIG. 2, but in addition the melt bath flows around the vapor capillary 8 are indicated by corresponding flow arrows 13.
  • FIG. 3A which illustrates the joining of the two workpieces 1, 2 with a progressive only in the feed direction 7 laser beam 3, with the figure 3B, which illustrates the inventive method with the additional oscillation of the laser beam 3 and thus the vapor capillary 8, shows that influencing the molten bath dynamics can be achieved by the method according to the invention. While in the prior art method there is a very pronounced upward component of the molten bath flows, indicated by the length of the flow arrows 13, this upstream component of the molten bath flow is significantly reduced due to the reduced interaction times, indicated by the smaller length of the flow arrows 13.
  • FIGS. 4A and 4B which respectively show temperature diagrams associated with the illustrations of FIGS. 3A and 3B, illustrate the temperature profile in the workpieces 1, 2 during joining. While the temperature profile in the method used in FIG. 4A shows a Gaussian distribution corresponding to the intensity of the laser radiation, in the method according to the invention according to FIG. 4B a temperature profile determined by the choice of the oscillation movement does not correspond to the original intensity distribution of the laser radiation.
  • FIG. 5 shows the possibility of carrying out the method according to the invention with an oscillating movement of the laser beam, which progresses in the form of an eight in the feed direction 6.
  • corresponding effects can be achieved, as described with reference to Figures 1 and 2.
  • the corresponding reference numerals are used in Figure 5, which are also used in Figure 1, so that the comments on the one figure are transferable to the other figure.
  • the nature of the oscillating motion, as shown in Figure 5, has the advantage over circular oscillating motion of homogenizing the energy input with respect to the vertical component, and no differences in the path energy due to the counter-oscillatory oscillatory motion exist in relation to the actual welding direction; disadvantageous, however, is the higher system complexity.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé et un dispositif de jonction d'au moins deux pièces à usiner (1, 2) en matériaux métalliques identiques ou non pour former un composant, au moyen d'un faisceau laser émis de manière continue (3) par le biais de la formation d'une soudure le long d'une surface de jonction. Le faisceau laser (3) est partiellement absorbé dans une zone d'interaction dans la zone de la surface de jonction et un bain de fusion (11, 12) se forme, une partie de la surface de jonction étant contenue dans le bain de fusion (11, 12) et cette partie formant, après la solidification de la partie fondue une section transversale de support. Le faisceau laser (3) est focalisé le long de la surface de jonction sur une petite section transversale de faisceau, avec une direction principale de l'axe du faisceau laser (5) se trouvant en direction de la normale à la surface supérieure de la pièce à usiner (1, 2), sur laquelle le faisceau laser (3) est incident. Le faisceau laser (3) est ensuite guidé le long de la surface de jonction des pièces à usiner (1, 2), la direction d'avancement du faisceau laser (3) étant superposée à un deuxième mouvement (7) avec un composant de mouvement oscillant, aussi bien dans la direction d'avancement que dans le sens perpendiculaire à celle-ci. Le faisceau laser (3) est inséré avec une intensité formant un capillaire de vapeur (8) dans les pièces à usiner (1, 2) et le faisceau laser (3) est couplé de manière continue dans le capillaire de vapeur (8) et, depuis ce capillaire de vapeur (8), un transport d'énergie radiale sortante a lieu dans les pièces à usiner (1, 2), de telle sorte que l'oscillation du faisceau laser (3) et du capillaire de vapeur (8) agit de manière au moins perpendiculaire à la direction d'avancement d'un transport d'énergie dirigée vers un point intermédiaire du mouvement oscillant et produisant ainsi une zone de fusion.
PCT/EP2013/001246 2012-05-08 2013-04-25 Procédé et dispositif de jonction au laser d'au moins deux pièces à usiner à l'aide d'un capillaire de vapeur et oscillation du faisceau laser WO2013167240A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012008940.6 2012-05-08
DE102012008940.6A DE102012008940B4 (de) 2012-05-08 2012-05-08 Verfahren zum Fügen von mindestens zwei Werkstücken

Publications (1)

Publication Number Publication Date
WO2013167240A1 true WO2013167240A1 (fr) 2013-11-14

Family

ID=48444313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/001246 WO2013167240A1 (fr) 2012-05-08 2013-04-25 Procédé et dispositif de jonction au laser d'au moins deux pièces à usiner à l'aide d'un capillaire de vapeur et oscillation du faisceau laser

Country Status (2)

Country Link
DE (1) DE102012008940B4 (fr)
WO (1) WO2013167240A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104781A1 (fr) * 2014-01-10 2015-07-16 パナソニックIpマネジメント株式会社 Appareil de soudage au laser et procédé de soudage au laser
CN105555465A (zh) * 2014-02-25 2016-05-04 松下知识产权经营株式会社 激光焊接方法
WO2016194322A1 (fr) * 2015-06-01 2016-12-08 パナソニックIpマネジメント株式会社 Procédé de soudage laser, procédé de détermination des conditions de soudage laser, et système de soudage laser
JP2017152703A (ja) * 2015-10-01 2017-08-31 太陽誘電株式会社 蓄電モジュール及び蓄電モジュールの製造方法
CN107570870A (zh) * 2017-10-18 2018-01-12 大族激光科技产业集团股份有限公司 一种动力电池模组连接片的焊接方法
JP2018505058A (ja) * 2015-02-09 2018-02-22 エスピーアイ レーザーズ ユーケー リミテッド 溶接部
US10195688B2 (en) 2015-01-05 2019-02-05 Johnson Controls Technology Company Laser welding system for a battery module
CN109702342A (zh) * 2019-01-30 2019-05-03 华工法利莱切焊系统工程有限公司 铝合金激光焊接方法
CN110581418A (zh) * 2018-06-08 2019-12-17 罗伯特·博世有限公司 用于制造材料配合的激光接合连接的方法以及设备
CN111050980A (zh) * 2017-08-31 2020-04-21 宝钢激光拼焊(德国)有限公司 激光射线焊接一个或多个可加压淬火锰硼钢钢板的方法
EP3674427A1 (fr) * 2018-12-28 2020-07-01 Etxe-Tar, S.A. Procédé et système de chauffage à l'aide d'un faisceau d'énergie
WO2020194687A1 (fr) * 2019-03-28 2020-10-01 Jfeスチール株式会社 Joint soudé à recouvrement par points au laser, procédé de production d'un tel joint soudé, et élément structural de carrosserie automobile
CN112743234A (zh) * 2020-12-30 2021-05-04 长沙理工大学 一种高功率激光焊接镁合金厚板的方法与系统
US11052797B2 (en) 2019-08-09 2021-07-06 Fisher & Company, Incorporated Recliner heart for seat assembly
US11124093B2 (en) 2018-08-08 2021-09-21 Fisher & Company, Incorporated Recliner mechanism for seat assembly and method of manufacturing
WO2021241387A1 (fr) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Procédé de soudage au laser et dispositif de soudage au laser
US11192473B2 (en) 2019-08-30 2021-12-07 Fisher & Company, Incorporated Release handle for recliner mechanism of vehicle seat
US11260777B2 (en) 2018-08-29 2022-03-01 Fisher & Company, Incorporated Recliner heart for seat recliner assembly
US11364577B2 (en) 2019-02-11 2022-06-21 Fisher & Company, Incorporated Recliner mechanism for seat assembly and method of manufacturing
US11565348B2 (en) 2017-07-13 2023-01-31 Trumpf Laser- Und Systemtechnik Gmbh Methods and systems for joining at least two workpieces
US11607976B2 (en) 2020-03-06 2023-03-21 Fisher & Company, Incorporated Recliner mechanism having bracket
US11766957B2 (en) 2021-02-16 2023-09-26 Fisher & Company, Incorporated Release mechanism for seat recliner assembly
US11845367B2 (en) 2019-04-18 2023-12-19 Fisher & Company, Incorporated Recliner heart having lubricant member
US11850975B2 (en) 2021-06-11 2023-12-26 Fisher & Company, Incorporated Vehicle seat recliner mechanism with welded spring
US11897372B2 (en) 2021-05-06 2024-02-13 Fisher & Company, Incorporated Recliner heart having biasing members

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206302A1 (de) * 2014-04-02 2015-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Schweißen
DE102014224738A1 (de) * 2014-12-03 2016-06-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Verbesserung der Schweißnahtqualität beim Remote-Laserschweißen
DE102015101263B4 (de) 2015-01-28 2016-12-15 Precitec Gmbh & Co. Kg Vorrichtung zur Materialbearbeitung mittels Laserstrahlung
GB201502149D0 (en) * 2015-02-09 2015-03-25 Spi Lasers Uk Ltd Apparatus and method for laser welding
US10118249B2 (en) 2015-10-15 2018-11-06 GM Global Technology Operations LLC Laser beam welding with a spiral weld path having a first order of continuity
RU2718393C2 (ru) * 2016-01-19 2020-04-02 Линде Акциенгезельшафт Способ соединения трубок кожухотрубного теплообменника с трубной решеткой кожухотрубного теплообменника
EP3299112A1 (fr) * 2016-09-21 2018-03-28 Etxe-Tar, S.A. Procede et systeme de soudage a l'aide d'un faisceau d'energie balaye dans deux dimensions de maniere repetee
DE102017108681A1 (de) * 2017-04-24 2018-10-25 Scherdel Innotec Forschungs- Und Entwicklungs-Gmbh Verfahren zum Zusatzwerkstoff-freien Laserstrahlverschweißen
DE102017006229B4 (de) 2017-07-03 2024-02-01 Monbat New Power GmbH Verfahren und Vorrichtung zur Herstellung eines Akkumulators und Akkumulator
DE102020215397A1 (de) 2020-12-07 2022-06-09 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Hochfrequenz-Laseroptik und Verfahren zum Betrieb einer Hochfrequenz-Laseroptik
DE102023002112A1 (de) 2023-05-25 2023-07-13 Mercedes-Benz Group AG Verfahren zum Fügen von mindestens zwei Werkstücken mittels Laserschweißen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369348A (en) 1979-01-04 1983-01-18 United Technologies Corporation Method and apparatus for high frequency optical beam oscillation
US4626653A (en) * 1983-06-24 1986-12-02 Sciaky, S.A. Method of and installation for spot-welding by laser beam
JPH11104877A (ja) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd レーザビームの高速ウィービング方法
JP2000084684A (ja) * 1998-09-09 2000-03-28 Mitsubishi Electric Corp エネルギービーム溶接装置及びエネルギービーム溶接方法
US6740845B2 (en) 2002-05-24 2004-05-25 Alcoa Inc. Laser welding with beam oscillation
WO2006027013A1 (fr) 2004-09-10 2006-03-16 Gkn Driveline International Gmbh Soudure laser d'acier trempable avec mouvement de pendule relatif du faisceau laser par rapport a la ligne de soudure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238077B2 (ja) 1996-08-28 2001-12-10 新日本製鐵株式会社 めっき鋼板の重ねレーザ溶接方法
JP2001030089A (ja) 1999-07-19 2001-02-06 Sumitomo Electric Ind Ltd レーザ溶接方法
US7910855B2 (en) 2005-09-23 2011-03-22 Lasx Industries, Inc. No gap laser welding of coated steel
DE102007038502B4 (de) 2007-08-14 2013-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Fügen von mindestens zwei Werkstücken mittels eines Laserstrahls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369348A (en) 1979-01-04 1983-01-18 United Technologies Corporation Method and apparatus for high frequency optical beam oscillation
US4626653A (en) * 1983-06-24 1986-12-02 Sciaky, S.A. Method of and installation for spot-welding by laser beam
JPH11104877A (ja) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd レーザビームの高速ウィービング方法
JP2000084684A (ja) * 1998-09-09 2000-03-28 Mitsubishi Electric Corp エネルギービーム溶接装置及びエネルギービーム溶接方法
US6740845B2 (en) 2002-05-24 2004-05-25 Alcoa Inc. Laser welding with beam oscillation
WO2006027013A1 (fr) 2004-09-10 2006-03-16 Gkn Driveline International Gmbh Soudure laser d'acier trempable avec mouvement de pendule relatif du faisceau laser par rapport a la ligne de soudure

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104781A1 (fr) * 2014-01-10 2015-07-16 パナソニックIpマネジメント株式会社 Appareil de soudage au laser et procédé de soudage au laser
US10155285B2 (en) 2014-01-10 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Laser welding method and laser welding device
CN105555465A (zh) * 2014-02-25 2016-05-04 松下知识产权经营株式会社 激光焊接方法
EP3020502A4 (fr) * 2014-02-25 2016-09-14 Panasonic Ip Man Co Ltd Procédé de soudage au laser
US11400546B2 (en) 2015-01-05 2022-08-02 Cps Technology Holdings Llc Welding process for a battery module
US10195688B2 (en) 2015-01-05 2019-02-05 Johnson Controls Technology Company Laser welding system for a battery module
JP2018505058A (ja) * 2015-02-09 2018-02-22 エスピーアイ レーザーズ ユーケー リミテッド 溶接部
EP3305459A4 (fr) * 2015-06-01 2018-07-11 Panasonic Intellectual Property Management Co., Ltd. Procédé de soudage laser, procédé de détermination des conditions de soudage laser, et système de soudage laser
JPWO2016194322A1 (ja) * 2015-06-01 2018-04-19 パナソニックIpマネジメント株式会社 レーザ溶接方法、レーザ溶接条件決定方法、およびレーザ溶接システム
US10807191B2 (en) 2015-06-01 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Laser welding method, laser welding conditions determining method, and laser welding system
CN107530831A (zh) * 2015-06-01 2018-01-02 松下知识产权经营株式会社 激光焊接方法、激光焊接条件决定方法以及激光焊接系统
CN107530831B (zh) * 2015-06-01 2019-08-09 松下知识产权经营株式会社 激光焊接方法、激光焊接条件决定方法以及激光焊接系统
WO2016194322A1 (fr) * 2015-06-01 2016-12-08 パナソニックIpマネジメント株式会社 Procédé de soudage laser, procédé de détermination des conditions de soudage laser, et système de soudage laser
CN108140494A (zh) * 2015-10-01 2018-06-08 太阳诱电株式会社 蓄电组件、蓄电组件的制造方法、金属接合体和金属接合体的制造方法
JP2017152703A (ja) * 2015-10-01 2017-08-31 太陽誘電株式会社 蓄電モジュール及び蓄電モジュールの製造方法
US11565348B2 (en) 2017-07-13 2023-01-31 Trumpf Laser- Und Systemtechnik Gmbh Methods and systems for joining at least two workpieces
CN111050980A (zh) * 2017-08-31 2020-04-21 宝钢激光拼焊(德国)有限公司 激光射线焊接一个或多个可加压淬火锰硼钢钢板的方法
CN107570870A (zh) * 2017-10-18 2018-01-12 大族激光科技产业集团股份有限公司 一种动力电池模组连接片的焊接方法
CN110581418A (zh) * 2018-06-08 2019-12-17 罗伯特·博世有限公司 用于制造材料配合的激光接合连接的方法以及设备
US11124093B2 (en) 2018-08-08 2021-09-21 Fisher & Company, Incorporated Recliner mechanism for seat assembly and method of manufacturing
US11260777B2 (en) 2018-08-29 2022-03-01 Fisher & Company, Incorporated Recliner heart for seat recliner assembly
WO2020136110A1 (fr) 2018-12-28 2020-07-02 Etxe-Tar, S.A. Procédé et système de chauffage au moyen d'un faisceau d'énergie
EP4234149A2 (fr) 2018-12-28 2023-08-30 Etxe-Tar, S.A. Procédé et système de chauffage à l'aide d'un faisceau d'énergie
CN113423847A (zh) * 2018-12-28 2021-09-21 Etxe-Tar有限公司 使用能量束进行加热的方法和系统
EP4234149A3 (fr) * 2018-12-28 2023-10-11 Etxe-Tar, S.A. Procédé et système de chauffage à l'aide d'un faisceau d'énergie
CN113423847B (zh) * 2018-12-28 2024-03-12 Etxe-Tar有限公司 使用能量束进行加热的方法和系统
EP3674427A1 (fr) * 2018-12-28 2020-07-01 Etxe-Tar, S.A. Procédé et système de chauffage à l'aide d'un faisceau d'énergie
CN109702342A (zh) * 2019-01-30 2019-05-03 华工法利莱切焊系统工程有限公司 铝合金激光焊接方法
US11364577B2 (en) 2019-02-11 2022-06-21 Fisher & Company, Incorporated Recliner mechanism for seat assembly and method of manufacturing
WO2020194687A1 (fr) * 2019-03-28 2020-10-01 Jfeスチール株式会社 Joint soudé à recouvrement par points au laser, procédé de production d'un tel joint soudé, et élément structural de carrosserie automobile
US11845367B2 (en) 2019-04-18 2023-12-19 Fisher & Company, Incorporated Recliner heart having lubricant member
US11052797B2 (en) 2019-08-09 2021-07-06 Fisher & Company, Incorporated Recliner heart for seat assembly
US11192473B2 (en) 2019-08-30 2021-12-07 Fisher & Company, Incorporated Release handle for recliner mechanism of vehicle seat
US11607976B2 (en) 2020-03-06 2023-03-21 Fisher & Company, Incorporated Recliner mechanism having bracket
WO2021241387A1 (fr) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 Procédé de soudage au laser et dispositif de soudage au laser
CN112743234A (zh) * 2020-12-30 2021-05-04 长沙理工大学 一种高功率激光焊接镁合金厚板的方法与系统
US11766957B2 (en) 2021-02-16 2023-09-26 Fisher & Company, Incorporated Release mechanism for seat recliner assembly
US11897372B2 (en) 2021-05-06 2024-02-13 Fisher & Company, Incorporated Recliner heart having biasing members
US11850975B2 (en) 2021-06-11 2023-12-26 Fisher & Company, Incorporated Vehicle seat recliner mechanism with welded spring

Also Published As

Publication number Publication date
DE102012008940B4 (de) 2022-03-24
DE102012008940A1 (de) 2013-11-14

Similar Documents

Publication Publication Date Title
DE102012008940B4 (de) Verfahren zum Fügen von mindestens zwei Werkstücken
DE102007038502B4 (de) Verfahren zum Fügen von mindestens zwei Werkstücken mittels eines Laserstrahls
EP2817123B1 (fr) Procédé de soudage en ligne continue par points d'un raccord par bride frontal
EP2747984B1 (fr) Procédé et dispositif pour le soudage au laser de deux parties en matière plastique à assembler
DE112015006848T5 (de) Verfahren zum Laserschweissen von Werkstücken aus Aluminium
DE102014105941A1 (de) Laserstrahlschweißverfahren zur Reduktion thermomechanischer Spannungen
DE102007063456A1 (de) Verfahren zum Schweißverbinden von Werkstücken aus einem metallischen Werkstoff mit einem Laserstrahl
DE102014203025A1 (de) Verfahren zum Laserstrahlschweißen und Schweißkopf
EP2117762A2 (fr) Procédé et dispositif de soudage laser
WO2016055184A1 (fr) Procédé de soudage par faisceau laser de deux éléments de jonction associés ou plus au moyen d'un guidage optique de joint de soudure et d'un dispositif de balayage avec oscillation superposée de miroirs oscillants
DE10113471B4 (de) Verfahren zum Hybridschweißen mittels eines Laserdoppelfokus
EP1832377B1 (fr) Dispositif et procédé pour souder une pièce
WO2018041463A1 (fr) Procédé et dispositif pour souder entre eux des partenaires d'assemblage
EP2489459B1 (fr) Procédé de soudage de composants à l'aide d'un rayon laser
EP4238687A1 (fr) Procédé d'usinage d'une pièce à usiner en forme de plaque ou de tube
EP3370913B1 (fr) Procédé d'assemblage de deux éléments structuraux dans la région d'une zone d'assemblage au moyen d'au moins un faisceau laser et procédé de production d'un joint d'assemblage continu
DE102014224738A1 (de) Verfahren zur Verbesserung der Schweißnahtqualität beim Remote-Laserschweißen
DE102009047995B3 (de) Verfahren zur gratfreien trennenden Bearbeitung von Werkstücken
DE102015121064B3 (de) Fügen durch Schmelzbadverdrängung
WO2021175555A1 (fr) Procédé de soudage laser de deux pièces revêtues
DE102018127649A1 (de) Verfahren zum Laserschweißen mit stabilem Schmelzbad und Laserbearbeitungsvorrichtung
DE102015115183A1 (de) Verfahren und eine Vorrichtung zum Herstellen einer Fügeverbindung
DE102017201872A1 (de) Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
DE102014002932B4 (de) Verfahren zum stoffschlüssigen Verbinden von mindestens zwei Werkstücken
DE102017100497B4 (de) Verfahren zum strahlbasierten Fügen von metallischen Grundwerkstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13722678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13722678

Country of ref document: EP

Kind code of ref document: A1