WO2013166868A1 - Oled显示结构及oled显示装置 - Google Patents

Oled显示结构及oled显示装置 Download PDF

Info

Publication number
WO2013166868A1
WO2013166868A1 PCT/CN2013/070997 CN2013070997W WO2013166868A1 WO 2013166868 A1 WO2013166868 A1 WO 2013166868A1 CN 2013070997 W CN2013070997 W CN 2013070997W WO 2013166868 A1 WO2013166868 A1 WO 2013166868A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
quarter
wave plate
display structure
Prior art date
Application number
PCT/CN2013/070997
Other languages
English (en)
French (fr)
Inventor
周晓东
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/996,087 priority Critical patent/US9437841B2/en
Priority to KR20137015272A priority patent/KR101512581B1/ko
Priority to EP13724495.0A priority patent/EP2849242B1/en
Priority to JP2015510611A priority patent/JP6166360B2/ja
Publication of WO2013166868A1 publication Critical patent/WO2013166868A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures

Definitions

  • Embodiments of the present invention relate to an organic light emitting diode (OLED) display structure and an OLED display device including the OLED display structure.
  • OLED organic light emitting diode
  • OLED display devices are widely used in digital products such as MP3 players because of their thinness and power saving.
  • LCD Liquid Crystal Display
  • OLED display technology eliminates the need for backlights and typically uses very thin organic coatings and glass substrates that illuminate when current is passed through.
  • the OLED display screen can be made lighter and thinner, has a larger viewing angle, and can significantly save power.
  • the OLED display is also affected by the environment in which it is used. Especially in an outdoor glare environment, the display effect of the OLED display will also decrease.
  • an OLED display structure which eliminates strong by sequentially forming a quarter-wave plate layer 60 and a polarizer layer 70 on the OLED pixel layer 20.
  • the effect of ambient light on the display Its working principle is as follows.
  • the ambient light 80 is incident on the display screen, and first passes through the polarizer layer 70 to become linearly polarized light, and the linear polarized light passes through the quarter-wave plate layer 60 (the optical axis is at an angle of ⁇ 45° with respect to the linear polarization direction).
  • Right-handed or left-handed circularly polarized is a quarter-wave plate layer 60 (the optical axis is at an angle of ⁇ 45° with respect to the linear polarization direction).
  • the polarizing plate layer 70 and the quarter wave plate layer 60 are combined into a right-handed or left-handed circular polarizer, and the natural light can be converted into a right-handed or left-handed circularly polarized light.
  • the right-handed or left-handed circularly polarized light becomes left-handed or right-handed circularly polarized light after being reflected by the substrate 10, and passes through the quarter-wave plate layer 60 for a second time, and then turns into linearly polarized light again, but the polarization direction is deflected by 90°. It coincides with the absorption axis of the polarizing plate layer 70, whereby the reflected light is absorbed by the polarizing layer 70 and is not transmitted.
  • the right-handed circularly polarized light cannot pass through the left-handed circular polarizer, or the left-handed circularly polarized light cannot pass through the right-handed circular polarizer. Therefore, the above configuration can achieve the purpose of eliminating the influence of ambient light, improving contrast, and improving visual effects.
  • Embodiments of the present invention are directed to the above drawbacks, and provide an OLED display structure and the same
  • the OLED display device of the OLED display structure can overcome the influence of ambient light without absorbing or scattering the light emitted by itself, thereby improving the light transmittance and saving energy.
  • An aspect of the present invention provides an OLED display structure, including: a substrate and an OLED pixel layer, a light splitting layer, and a circular polarizer layer sequentially formed on the substrate, wherein the light splitting layer is configured to divide the light into 0 light and e Light, and convert both the 0 light and the e light into circularly polarized light having the same vibrational state as the circular polarizer layer; the circular polarizer layer is used to transmit circularly polarized light having the same vibrational state.
  • the light splitting layer includes a birefringent crystal layer, and a 0-wave quarter-wave plate layer and an e-light quarter-wave plate layer formed on the birefringent crystal layer, a 0-wave quarter-wave plate layer for converting 0-light into circularly polarized light having the same vibration-transmitting state as the circular polarizer layer; the e-light quarter-wave plate layer is used to convert e-light into Circularly polarized light having the same vibration transmission state as the circular polarizer layer.
  • the optical axis directions of the 0-wave quarter-wave plate layer and the e-light quarter-wave plate layer are perpendicular to each other, and the 0-wave quarter-wave plate layer and The optical axes of the e-wave quarter-wave plate layers are at an angle of 45° to the polarization directions of the corresponding 0-light and e-light, respectively.
  • the birefringent crystal layer is made of a material having birefringence properties such as calcite crystal, quartz or sapphire.
  • the circular polarizer layer includes a quarter wave plate layer and a linear polarizer formed thereon, wherein the quarter wave plate layer is used to convert circularly polarized light into linearly polarized light.
  • the linear polarizer is configured to transmit light that is transmitted through the same direction as the vibration transmission direction.
  • the OLED display structure may further include a lens layer between the OLED pixel layer and the light splitting layer for condensing light emitted by the OLED pixel layer into a parallel light beam to enter the light splitting layer.
  • the lens layer includes a transparent substrate, and first and second convex lenses respectively formed on both sides of the transparent substrate, wherein a focus or focus of the first and second convex lenses The plane coincides.
  • the lens layer includes a transparent substrate, and a first convex lens and a concave lens microstructure layer respectively formed on both sides of the transparent substrate, wherein the first convex lens and the concave lens microstructure layer cooperate The light converges into a parallel beam.
  • the transparent substrate further includes a reflective layer for reflecting ambient light to the circular polarizer layer for absorption.
  • Another aspect of the invention also includes an OLED display device comprising the OLED display structure of any of the above.
  • An OLED display structure of an embodiment of the present invention and an OLED display device including the OLED display structure by dividing light emitted by an OLED pixel layer into 0 light and e light, and converting the 0 light and the e light into
  • the circular polarized light of the circular polarizer layer has the same polarization state, and completely transmits the circular polarizer layer, thereby improving the light transmittance and reducing the pixel current of the OLED pixel layer, thereby saving energy.
  • FIG. 1 is a schematic structural view of a display structure of an OLED in the prior art
  • FIG. 2 is a schematic view of a spatial rectangular coordinate system of a birefringence phenomenon of a birefringent crystal in the prior art
  • FIG. 3 is a schematic structural view of an OLED display structure according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural view of an OLED display structure according to Embodiment 3 of the present invention.
  • lens layer lens layer
  • 5 beam splitting layer
  • 6 circular polarizing layer
  • 10 substrate
  • 20 OLED pixel layer
  • birefringent crystal is a crystal which can cause birefringence of light, such as a material having birefringence properties such as calcite crystal, quartz, ruby or the like.
  • the ray traveling direction of the ray-polarized light is the z-axis positive direction of the spatial rectangular coordinate system, perpendicular to the X-axis of the spatial rectangular coordinate system perpendicular to the paper surface, and perpendicular to the X and Z axes.
  • the direction of the y-axis is the forward direction coordinate system
  • the vibration plane of the 0-light is the xoz plane
  • the vibration plane of the e-light is the yoz plane.
  • the OLED display structure of the embodiment of the invention includes: a substrate 10 and an OLED pixel layer 20, a light splitting layer and a circular polarizer layer sequentially formed on the substrate 10, wherein the light splitting layer is used for emitting and passing through the OLED pixel layer
  • the light ray 30 is divided into 0 light and e light, and both the o light and the e light are converted into circular polarized light which is the same as the transparent state of the circular polarizer layer; the circular polarizer layer is used for transmitting through Circularly polarized light with the same vibration state.
  • the above OLED display structure by dividing the light emitted by the OLED pixel layer into o-light and e-light, and converting both the 0-light and the e-light into a circularly polarized light having the same vibration-transmitting state as the circular polarizer layer, It completely penetrates the circular polarizer layer and then exits for display, which improves the light transmittance and reduces the pixel current of the OLED pixel layer, thereby saving energy.
  • the OLED display structure may further include a lens layer, where the lens layer may be located between the OLED pixel layer and the light splitting layer, for condensing the light emitted by the OLED pixel layer into parallel
  • the light beam enters the light splitting layer to facilitate better splitting of the light splitting layer, avoiding the influence of light components in other directions, and improving the light transmittance of the OLED display structure.
  • the light splitting layer in the OLED display structure of the embodiment of the present invention may include a birefringent crystal layer 50, and a 0-wave quarter wave plate layer 51 and an e-light quarter formed on the birefringent crystal layer 50.
  • the birefringent crystal layer 50 may be made of a material having birefringence properties such as calcite crystal, quartz or ruby.
  • the optical axis directions of the 0-wave quarter-wave plate layer 51 and the e-light quarter-wave plate layer 52 are perpendicular to each other, and the 0-wave quarter-wave plate layer 51 and the e-light quarter are The optical axes of the wave plate layer 52 are at an angle of 45° to the polarization directions of the corresponding 0- and e-lights, respectively.
  • the 0-wave quarter-wave plate layer 51 is used to convert 0-light into circularly polarized light having the same vibration-transmitting state as the circular polarizer layer; the e-light quarter-wave plate layer 52 is used to The e-light is converted into circularly polarized light having the same vibration-transmitting state as the circular polarizer layer.
  • the circular polarizer layer described in the OLED display structure of the embodiment of the present invention may include a quarter wave plate layer 60 and a linear polarizer 70 formed thereon, wherein the quarter wave plate layer 60 is transparent.
  • the vibration state can convert left-handed or right-handed circularly polarized light into linearly polarized light, and the linear polarizing plate 70 is used to transmit the same linearly polarized light as the direction of the vibration transmission.
  • the OLED pixel layer may be formed in any manner in the art, for example, a stacked structure including a cathode layer, an organic light emitting layer, and an anode layer, and the stacked structure may further include, for example, an electron transport layer.
  • An auxiliary function layer such as a hole transport layer.
  • the OLED display structure in this embodiment includes: a substrate 10 and an OLED pixel layer 20, a lens layer 4, a light-splitting layer 5, and a circular polarizer layer 6 which are sequentially formed on the substrate 10 from bottom to top.
  • Light emitted upward from the OLED pixel layer 20 sequentially passes through the lens layer 4, the light splitting layer 5, and the circular polarizer layer 6, and is then emitted for display.
  • the light splitting layer 5 is configured to split the light ray 30 emitted from the OLED pixel layer 20 and transmitted therethrough into o-light and e-light, and convert both the 0-light and the e-light into a vibration-transmitting with the circular polarizer layer.
  • the circular polarized light of the same state is used for transmitting the circularly polarized light having the same vibrational state as the circular polarizing plate.
  • the light splitting layer 5 includes a birefringent crystal layer 50, and a 0-wave quarter wave sheet 51 and an e-light quarter wave sheet layer 52 respectively formed thereon.
  • the birefringent crystal layer 50 may be composed of a material having birefringence properties such as calcite crystal, quartz or ruby. Said.
  • the optical quarter directions of the optical quarter wave plate layer 51 and the e light quarter wave plate layer 52 are perpendicular to each other, and the 0 light quarter wave plate layer 51 and the e light quarter wave plate layer
  • the optical axes of 52 are respectively 45 with the polarization directions of the corresponding 0- and e-lights. Angle.
  • the 0-wave quarter-wave plate layer 51 is used to convert 0-light into circularly polarized light having the same vibration-transmitting state as the circular polarizer layer; the e-light quarter-wave plate layer 52 is used to The e-light is converted into circularly polarized light having the same vibration-transmitting state as the circular polarizer layer.
  • the 0-wave quarter-wave plate layer 51 and the e-light quarter-wave plate layer 52 are juxtaposed on the birefringent crystal layer 50, for example, each occupying the upper surface of the birefringent crystal layer 50-half.
  • the circular polarizer layer 6 includes a quarter-wave plate layer 60 and a linear polarizer 70 formed thereon.
  • the permeation state of the quarter-wave plate layer 60 can convert left-handed or right-handed circularly polarized light into linearly polarized light, and the polarizer 70 is used to transmit the same linearly polarized light as its direction of vibration transmission.
  • the lens layer 4 includes a transparent substrate 40, and a first convex lens 41 and a second convex lens 42 respectively formed on both sides of the transparent substrate 40, and a focal point or focal plane of the first convex lens 41 and the second convex lens 42 coincide.
  • the lens layer 4 is used to condense the light 30 to improve the display effect.
  • the substrate 10 has reflective properties or forms a reflective layer on the substrate 10 for upward reflection of ambient light 80 incident from outside the display device and for upward reflection of light emitted from the OLED pixel layer.
  • Ambient light 80 is extinguished by the circular polarizer layer 6, which greatly reduces the effects of ambient light 80.
  • the embodiment is substantially the same as the first embodiment except that the lens layer 4 of the OLED display structure of the embodiment includes a transparent substrate 40, and two sides of the transparent substrate 40 respectively.
  • a first convex lens 41 and a concave lens microstructure layer 43 are formed, and the first convex lens 41 and the concave lens microstructure layer 43 cooperate to concentrate the light into a parallel beam.
  • this embodiment is basically the same as Embodiment 1, except that the lens layer 4 is only Also included is a reflective layer 90 disposed on the transparent substrate 40 for reflecting ambient light 80 to the circular polarizer layer for absorption, which greatly reduces the effects of ambient light 80.
  • Embodiment 2 can be used in place of the lens layer (except for the reflective layer 90) in Embodiment 3, thereby obtaining a new embodiment.
  • another embodiment of the present invention also provides an OLED display device including the above OLED display structure.
  • an embodiment of the present invention discloses an OLED display structure and an OLED display device including the OLED display structure.
  • the OLED display structure is configured to divide light emitted by an OLED pixel layer into 0 light and e light. Converting both the 0 light and the e light into a circularly polarized light having the same vibrational state as that of the circular polarizer layer, completely transmitting through the circular polarizer layer, thereby improving light transmittance and reducing OLED
  • the pixel current of the pixel layer saves energy.
  • the embodiment of the present invention can also configure a reflective layer to further reduce the influence of ambient light, thereby improving readability in an outdoor environment and having strong environmental adaptability.
  • birefringent crystal materials many types, excellent performance, mature technology, can reduce production costs.

Abstract

一种OLED显示结构及包括该OLED显示结构的OLED显示装置,该OLED显示结构包括:基板(10),以及在基板上依次形成的OLED像素层(20)、分光层(5)和圆偏光片层(6),其中该分光层(5)用于将光线分成o光和e光,并将该o光和e光都转换成与该圆偏光片层(6)的透振态相同的圆偏光;该圆偏光片层(6)用于透过与其透振态相同的圆偏光。该显示结构提高了光透过率,降低了OLED像素层(20)的像素电流,从而节约了能源。

Description

OLED显示结构及 OLED显示装置 技术领域
本发明的实施例涉及一种有机发光二极管 ( OLED )显示结构及包括所 述 OLED显示结构的 OLED显示装置。 背景技术
有机发光二极管 (Organic Light-Emitting Diode, OLED)显示装置因为具备 轻薄、省电等特性,因此在 MP3播放器等数码产品上得到了广泛应用。 OLED 显示技术与传统的 LCD (液晶显示器, Liquid Crystal Display )显示技术不同, 无需背光灯,通常釆用非常薄的有机材料涂层和玻璃基板, 当有电流通过时, 这些有机材料就会发光。 而且, OLED显示屏幕可以做得更轻更薄, 可视角 度更大, 能够显著节省电能。 但是作为显示设备, OLED显示屏同样会受到 使用环境的影响。 特别是当在户外强光的环境中, OLED显示屏的显示效果 同样会有所下降。
为了克服环境光线的影响, 如图 1所示, 人们提出了一种 OLED显示结 构,其通过在 OLED像素层 20上依次形成四分之一波片层 60和偏光片层 70 来消除较强的环境光线对显示器的影响。 其工作原理如下所述。 环境光线 80 入射到显示屏中,先通过偏光片层 70后成为线偏光,该线偏光再通过四分之 一波片层 60(光轴与线偏光偏振方向成 ±45°夹角)后成为右旋或左旋圓偏光。 即偏光片层 70和四分之一波片层 60组合为右旋或左旋圓偏光片, 可以将自 然光转换为右旋或左旋圓偏光。该右旋或左旋圓偏光例如经基板 10反射后变 为左旋或右旋圓偏光, 第二次通过上述四分之一波片层 60后再次转为线偏 光, 但偏振方向偏转了 90°, 恰好与偏光片层 70的吸收轴一致, 由此该反射 光被偏光层 70吸收, 不能透过。 即右旋圓偏光不能通过左旋圓偏光片, 或左 旋圓偏光不能通过右旋圓偏光片。 因此, 上述配置可以达到消除环境光的影 响, 提高对比度, 改善视觉效果的目的。
但是, 由于 OLED像素层 20发出的光不具有偏振性, 透过四分之一波 片层 60后依然没有偏振特性, 但是经过偏光片层 70时能量被吸收一半, 再 加上散射、 反射等影响因素, 使得光透过率大大降低; 从而导致在实际设计 中, 为了达到合适的亮度而不得不增大像素电流, 又造成了能源浪费。 发明内容
本发明的实施例针对上述缺陷,提供了一种 OLED显示结构及包括所述
OLED显示结构的 OLED显示装置, 其既能克服环境光线的影响, 又不会过 多的吸收或散射自身发出的光线, 提高光透过率, 从而节约能源。
本发明的一个方面提供了一种 OLED显示结构, 包括: 基板以及在基板 上依次形成的 OLED像素层、 分光层和圓偏光片层, 其中, 所述分光层用于 将光线分成 0光和 e光, 并将所述 0光和 e光都转换成与所述圓偏光片层的 透振态相同的圓偏光; 所述圓偏光片层用于透过与其透振态相同的圓偏光。
对于该显示结构, 例如, 所述分光层包括双折射晶体层, 以及在所述双 折射晶体层上形成的 0光四分之一波片层和 e光四分之一波片层, 所述 0光 四分之一波片层用于将 0 光转换成与所述圓偏光片层的透振态相同的圓偏 光; 所述 e光四分之一波片层用于将 e光转换成与所述圓偏光片层的透振态 相同的圓偏光。
对于该显示结构, 例如, 所述 0光四分之一波片层和所述 e光四分之一 波片层的光轴方向互相垂直, 且所述 0光四分之一波片层和所述 e光四分之 一波片层的光轴分别与对应的 0光和 e光的偏振方向成 45°夹角。
对于该显示结构, 例如, 所述双折射晶体层由方解石晶体、 石英或红宝 石等具有双折射性质的材料制作。
对于该显示结构, 例如, 所述圓偏光片层包括四分之一波片层和在其上 形成的线偏光片, 其中所述四分之一波片层用于将圓偏光转换为线偏光, 所 述线偏光片用于透过与透振方向相同的线偏光。
例如, 所述 OLED显示结构还可以包括透镜层,位于所述 OLED像素层 和所述分光层之间, 用于将所述 OLED像素层发出的光线会聚成平行光束进 入所述分光层。
对于该显示结构, 例如, 所述透镜层包括透明基板, 以及在所述透明基 板两侧分别形成的第一凸透镜和第二凸透镜, 其中所述第一凸透镜和所述第 二凸透镜的焦点或焦平面重合。 对于该显示结构, 例如, 所述透镜层包括透明基板, 以及在所述透明基 板两侧分别形成的第一凸透镜和凹透镜微结构层, 其中所述第一凸透镜和所 述凹透镜微结构层配合将光线会聚成平行光束。
对于该显示结构, 例如, 所述透明基板还包括反射层, 用于将环境光线 反射到所述圓偏光片层进行吸收。
本发明的另一个方面还包括一种 OLED显示装置, 包括上述任一项所述 的 OLED显示结构。
本发明实施例的 OLED显示结构及包括所述 OLED显示结构的 OLED 显示装置, 通过将 OLED像素层发出的光分成 0光和 e光, 并将所述 0光和 e 光都转换成与所述圓偏光片层的透振态相同的圓偏光, 完全透过所述圓偏 光片层, 提高了光透过率, 降低了 OLED像素层的像素电流, 从而节约了能 源。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是现有技术中的 OLED显示结构的结构示意图;
图 2 是现有技术中双折射晶体的双折射现象的空间直角坐标系的示意 图;
图 3是本发明实施例 1所述的 OLED显示结构的结构示意图; 图 5是本发明实施例 3所述的 OLED显示结构的结构示意图。
附图标记:
4: 透镜层; 5: 分光层; 6: 圓偏光片层; 10: 基板; 20: OLED像素层;
30: 光线; 40: 透明基板; 41: 第一凸透镜; 42: 第二凸透镜; 43: 凹透镜 微结构层; 50: 双折射晶体层; 51: 0光四分之一波片层; 52: e光四分之一 波片层; 60: 四分之一波片层; 70: 偏光片; 80: 环境光线; 90: 反射层。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "一个" 或者 "一" 等类似词语也不表示数量限制, 而是 表示存在至少一个。 "包括"或者 "包含"等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵盖出现在 "包括" 或者 "包含" 后面列 举的元件或者物件及其等同,并不排除其他元件或者物件。 "连接"或者 "相 连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也可能相应地改变。
根据光的双折射原理, 一束入射到双折射晶体中的光经折射后变为两束 线偏光, 其中一束遵循折射定律, 被称为寻常光 ( "0 光" ) , 而另一束不 遵循折射定律, 被称为非常光 ( "e 光" ) 。 所述双折射晶体就是能使光产 生双折射的晶体, 例如方解石晶体、石英、 红宝石等具有双折射性质的材料。
如图 2所示, 设入射线偏光的光线行进方向为空间直角坐标系的 z轴正 向, 垂直于纸面向里为空间直角坐标系的 X轴正向, 同时垂直于 X、 Z轴向上 的方向为空间直角坐标系的 y轴正向, 则 0光的振动面为 xoz面, e光的振 动面为 yoz面。
本发明实施例的 OLED显示结构, 包括: 基板 10以及在基板 10上依次 形成的 OLED像素层 20、 分光层和圓偏光片层, 其中所述分光层用于将从 OLED像素层发出并通过其的光线 30分成 0光和 e光,并将所述 o光和 e光 都转换成与所述圓偏光片层的透振态相同的圓偏光; 所述圓偏光片层用于透 过与其透振态相同的圓偏光。
上述 OLED显示结构, 通过将 OLED像素层发出的光分成 o光和 e光, 并将所述 0光和 e光都转换成与所述圓偏光片层的透振态相同的圓偏光, 以 完全透过所述圓偏光片层, 然后出射以进行显示, 这提高了光透过率, 降低 了 OLED像素层的像素电流, 从而节约了能源。
本发明的一些实施例中, OLED显示结构还可以进一步包括透镜层,该 透镜层可以位于所述 OLED像素层和所述分光层之间,用于将所述 OLED像 素层发出的光线会聚成平行光束以进入所述分光层, 有利于所述分光层更好 地进行分光, 避免其他方向光线分量的影响, 提高所述 OLED显示结构的光 透过率。
本发明实施例的 OLED显示结构中所述的分光层可以包括双折射晶体层 50, 以及在所述双折射晶体层 50上形成的 0光四分之一波片层 51和 e光四 分之一波片层 52。 所述双折射晶体层 50可以由方解石晶体、 石英或红宝石 等具有双折射性质的材料制作。所述 0光四分之一波片层 51和 e光四分之一 波片层 52的光轴方向互相垂直, 且所述 0光四分之一波片层 51和 e光四分 之一波片层 52的光轴分别与对应的 0光和 e光的偏振方向成 45°夹角。 所述 0光四分之一波片层 51用于将 0光转换成与所述圓偏光片层的透振态相同的 圓偏光;所述 e光四分之一波片层 52用于将 e光转换成与所述圓偏光片层的 透振态相同的圓偏光。
本发明实施例的 OLED显示结构中所述的圓偏光片层可以包括四分之一 波片层 60和在其上形成的线偏光片 70,其中所述四分之一波片层 60的透振 态可以将左旋或右旋圓偏光转换为线偏光,所述线偏光片 70用于透过与其透 振方向相同线偏光。
在本发明的实施例中, OLED像素层可以以本领域中的任何方式形成, 例如为包括阴极层、 有机发光层以及阳极层的叠层结构, 该叠层结构还可以 进一步包括例如电子传输层、空穴传输层等辅助功能层。通电之后,该 OLED 像素层中,从阳极注入的空穴和从阴极注入的电子在发光层复合产生而发光。 本发明的范围不限于 OLED像素层的具体结构。
实施例 1
如图 3所示, 本实施例中的 OLED显示结构包括: 基板 10以及在基板 10上从下到上依次形成的 OLED像素层 20、透镜层 4、分光层 5和圓偏光片 层 6。 从 OLED像素层 20向上发射的光依次穿过透镜层 4、 分光层 5和圓偏 光片层 6, 然后出射以用于显示。 所述分光层 5用于将从 OLED像素层 20发射并透过其的光线 30分成 o 光和 e光, 并将所述 0光和 e光都转换成与所述圓偏光片层的透振态相同的 圓偏光; 所述圓偏光片层 6用于透过与其透振态相同的圓偏光。
所述分光层 5包括双折射晶体层 50,以及分别在其上形成的 0光四分之 一波片层 51和 e光四分之一波片层 52。所述双折射晶体层 50可以由方解石 晶体、 石英或红宝石等具有双折射性质的材料构成。 所述。光四分之一波片 层 51和 e光四分之一波片层 52的光轴方向互相垂直, 且所述 0光四分之一 波片层 51和 e光四分之一波片层 52的光轴分别与对应的 0光和 e光的偏振 方向成 45。夹角。 所述 0光四分之一波片层 51用于将 0光转换成与所述圓偏 光片层的透振态相同的圓偏光;所述 e光四分之一波片层 52用于将 e光转换 成与所述圓偏光片层的透振态相同的圓偏光。 0光四分之一波片层 51和 e光 四分之一波片层 52二者并列设置在双折射晶体层 50上, 例如各自占据双折 射晶体层 50—半的上表面。
所述圓偏光片层 6包括四分之一波片层 60和在其上形成的线偏光片 70。 所述四分之一波片层 60的透振态可以将左旋或右旋圓偏光转换为线偏光,所 述偏光片 70用于透过与其透振方向相同线偏光。
所述透镜层 4包括透明基板 40, 以及在所述透明基板 40两侧分别形成 的第一凸透镜 41和第二凸透镜 42,所述第一凸透镜 41和所述第二凸透镜 42 的焦点或焦平面重合。 透镜层 4用于对光线 30进行会聚, 以提高显示效果。
在本实施例中,例如基板 10具有反射性质或者在基板 10上形成反射层, 用于将从显示装置外部入射的环境光 80向上反射以及用于对从 OLED像素 层发射光向上反射。环境光 80由于圓偏光片层 6而被消光,这大大降低了环 境光线 80的影响。
实施例 2
如图 4所示, 本实施例与实施例 1基本相同, 不同之处仅在于本实施例 的 OLED显示结构中所述的透镜层 4包括透明基板 40,以及在所述透明基板 40两侧分别形成的第一凸透镜 41和凹透镜微结构层 43 ,所述第一凸透镜 41 和所述凹透镜微结构层 43配合将光线会聚成平行光束。
实施例 3
如图 5所示, 本实施例与实施例 1基本相同, 不同之处仅在于透镜层 4 还包括在所述透明基板 40上配置的一反射层 90,用于将环境光线 80全部反 射到所述圓偏光片层进行吸收, 这大大降低了环境光线 80的影响。
上述实施例可以彼此组合、 替代以形成新的实施方式。 例如, 实施例 2 的透镜层可以用于替代实施例 3中的透镜层(除反射层 90之外),从而得到 新的实施例。
另外, 本发明的另一实施例还提供了一种包括上述 OLED显示结构的 OLED显示装置。
综上所述, 本发明的实施例公开了一种 OLED 显示结构及包括所述 OLED显示结构的 OLED显示装置,利用上述 OLED显示结构,通过将 OLED 像素层发出的光分成 0光和 e光, 并将所述 0光和 e光都转换成与所述圓偏 光片层的透振态相同的圓偏光, 完全透过所述圓偏光片层发射出去, 提高了 光透过率, 降低了 OLED像素层的像素电流, 从而节约了能源。 本发明的实 施例还可以配置反射层, 进一步降低环境光线的影响, 从而提高在室外环境 的可读性, 环境适应能力强。 另外, 双折射晶体材料, 种类多, 性能优良, 技术成熟, 可降低生产成本。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种有机发光二极管(OLED )显示结构, 包括: 基板, 以及在基板 上依次形成的 OLED像素层、 分光层和圓偏光片层, 其中
所述分光层用于将光线分成 0光和 e光, 并将所述 0光和 e光都转换成 与所述圓偏光片层的透振态相同的圓偏光;
所述圓偏光片层用于透过与其透振态相同的圓偏光。
2、 根据权利要求 1所述的 OLED显示结构, 其中, 所述分光层包括双 折射晶体层, 以及在所述双折射晶体层上形成的 0光四分之一波片层和 e光 四分之一波片层, 其中,
所述 0光四分之一波片层用于将 0光转换成与所述圓偏光片层的透振态 相同的圓偏光;
所述 e光四分之一波片层用于将 e光转换成与所述圓偏光片层的透振态 相同的圓偏光。
3、 根据权利要求 2所述的 OLED显示结构, 其中, 所述 o光四分之一 波片层和所述 e光四分之一波片层的光轴方向互相垂直, 且所述 0光四分之 一波片层和所述 e光四分之一波片层的光轴分别与对应的 0光和 e光的偏振 方向成 45°夹角。
4、 根据权利要求 2或 3所述的 OLED显示结构, 其中, 所述双折射晶 体层由方解石晶体、 石英或红宝石制作。
5、 根据权利要求 1-4任一所述的 OLED显示结构, 其中, 所述圓偏光 片层包括四分之一波片层和在其上形成的线偏光片, 其中
所述四分之一波片层用于将圓偏光转换为线偏光;
所述线偏光片用于透过与透振方向相同的线偏光。
6、 根据权利要求 1至 5中任一所述的 OLED显示结构, 还包括透镜层, 位于所述 OLED像素层和所述分光层之间,用于将所述 OLED像素层发出的 光线会聚成平行光束进入所述分光层。
7、 根据权利要求 6所述的 OLED显示结构, 其中, 所述透镜层包括透 明基板, 以及在所述透明基板两侧分别形成的第一凸透镜和第二凸透镜, 其 中 所述第一凸透镜和所述第二凸透镜的焦点或焦平面重合。
8、 根据权利要求 6所述的 OLED显示结构, 其中, 所述透镜层包括透 明基板,以及在所述透明基板两侧分别形成的第一凸透镜和凹透镜微结构层, 其中
所述第一凸透镜和所述凹透镜微结构层配合将光线会聚成平行光束。
9、 根据权利要求 7或 8所述的 OLED显示结构, 其中, 所述透明基板 还包括反射层, 用于将环境光线反射到所述圓偏光片层进行吸收。
10、 一种有机发光二极管 (OLED )显示装置, 包括权利要求 1-9 中任 一项所述的 OLED显示结构。
PCT/CN2013/070997 2012-05-10 2013-01-25 Oled显示结构及oled显示装置 WO2013166868A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/996,087 US9437841B2 (en) 2012-05-10 2013-01-25 OLED display structure and OLED display device
KR20137015272A KR101512581B1 (ko) 2012-05-10 2013-01-25 Oled 디스플레이 구조 및 oled 디스플레이 장치
EP13724495.0A EP2849242B1 (en) 2012-05-10 2013-01-25 Oled display structure and oled display device
JP2015510611A JP6166360B2 (ja) 2012-05-10 2013-01-25 Oled表示構造及びoled表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220210411XU CN202549937U (zh) 2012-05-10 2012-05-10 Oled显示结构及oled显示装置
CN201220210411.X 2012-05-10

Publications (1)

Publication Number Publication Date
WO2013166868A1 true WO2013166868A1 (zh) 2013-11-14

Family

ID=47170517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070997 WO2013166868A1 (zh) 2012-05-10 2013-01-25 Oled显示结构及oled显示装置

Country Status (6)

Country Link
US (1) US9437841B2 (zh)
EP (1) EP2849242B1 (zh)
JP (1) JP6166360B2 (zh)
KR (1) KR101512581B1 (zh)
CN (1) CN202549937U (zh)
WO (1) WO2013166868A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946417B2 (en) 2009-04-06 2015-02-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
CN102971396B (zh) 2010-04-30 2016-06-22 代表亚利桑那大学的亚利桑那校董会 四配位钯络合物的合成及其在光发射设备中的应用
JP4691205B1 (ja) * 2010-09-03 2011-06-01 日東電工株式会社 薄型高機能偏光膜を含む光学フィルム積層体の製造方法
US8816080B2 (en) 2011-02-18 2014-08-26 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
WO2012162488A1 (en) 2011-05-26 2012-11-29 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
CN202549937U (zh) 2012-05-10 2012-11-21 京东方科技集团股份有限公司 Oled显示结构及oled显示装置
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
WO2014047616A1 (en) 2012-09-24 2014-03-27 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US20150274762A1 (en) 2012-10-26 2015-10-01 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
KR102048924B1 (ko) * 2013-05-16 2019-11-27 삼성디스플레이 주식회사 유기발광표시장치
CN104232076B (zh) 2013-06-10 2019-01-15 代表亚利桑那大学的亚利桑那校董会 具有改进的发射光谱的磷光四齿金属络合物
JP6804823B2 (ja) 2013-10-14 2020-12-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
CN103927949A (zh) * 2014-05-05 2014-07-16 上海和辉光电有限公司 Oled面板
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9502671B2 (en) 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
WO2016025921A1 (en) 2014-08-15 2016-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
WO2016029137A1 (en) 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
WO2016029186A1 (en) 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent oleds
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
CN105390528B (zh) * 2015-12-24 2019-07-16 昆山工研院新型平板显示技术中心有限公司 一种高发光开口率的显示装置及其制备方法
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11222875B2 (en) 2017-05-12 2022-01-11 Sony Corporation Display apparatus
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
WO2019079508A2 (en) 2017-10-17 2019-04-25 Jian Li PREFERRED MOLECULAR ORIENTATED PHOSPHORESCENT EXCIMERS AS MONOCHROMATIC TRANSMITTERS FOR DISPLAY AND LIGHTING APPLICATIONS
WO2019172271A1 (ja) * 2018-03-06 2019-09-12 富士フイルム株式会社 光学装置
CN109273508B (zh) * 2018-10-11 2021-03-30 京东方科技集团股份有限公司 显示装置及其制造方法
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
CN110112322B (zh) * 2019-06-11 2021-08-10 京东方科技集团股份有限公司 一种显示面板及显示装置
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
KR20220010363A (ko) 2020-07-17 2022-01-25 삼성전자주식회사 발광 소자 및 이를 포함하는 디스플레이 장치
WO2023059457A1 (en) * 2021-10-04 2023-04-13 Applied Materials, Inc. Polarizer-free led displays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368656A (zh) * 2001-01-15 2002-09-11 株式会社日立制作所 光发射器件与光发射显示器
US20050194891A1 (en) * 2004-03-03 2005-09-08 Yi-Chu Wu Organic light-emitting diode display device with a function of converting to be mirror
CN1774654A (zh) * 2003-05-02 2006-05-17 日东电工株式会社 光学膜、其制造方法及使用这种光学膜的图像显示装置
CN202008552U (zh) * 2011-03-30 2011-10-12 京东方科技集团股份有限公司 起偏器及使用这种起偏器的液晶显示器
CN202549937U (zh) * 2012-05-10 2012-11-21 京东方科技集团股份有限公司 Oled显示结构及oled显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989710B2 (ja) * 1991-04-09 1999-12-13 キヤノン株式会社 板状偏光素子、該素子を備える偏光変換ユニット、および該ユニットを備える画像装置と画像投影装置
BE1007993A3 (nl) * 1993-12-17 1995-12-05 Philips Electronics Nv Belichtingsstelsel voor een kleurenbeeldprojectie-inrichting en circulaire polarisator geschikt voor toepassing in een dergelijk belichtingsstelsel en kleurenbeeldprojectie-inrichting bevattende een dergelijk belichtingsstelsel met circulaire polarisator.
US5828488A (en) * 1993-12-21 1998-10-27 Minnesota Mining And Manufacturing Co. Reflective polarizer display
US6101032A (en) * 1994-04-06 2000-08-08 3M Innovative Properties Company Light fixture having a multilayer polymeric film
JPH08285690A (ja) * 1995-04-19 1996-11-01 Advantest Corp 偏光解消装置及びこれを用いた光パワー測定装置
JP3622556B2 (ja) * 1999-02-23 2005-02-23 セイコーエプソン株式会社 照明光学系および投写型表示装置
JP3923689B2 (ja) * 1999-09-30 2007-06-06 株式会社東芝 カラーシャッタ及びカラー画像表示方法
US6785049B1 (en) * 2000-01-31 2004-08-31 3M Innovative Properties Company Illumination system for reflective displays
JP2002151251A (ja) * 2000-11-09 2002-05-24 Sharp Corp 発光素子
EP1368697B1 (en) * 2001-03-13 2012-10-24 Merck Patent GmbH Combination of optical films comprising a twisted a-plate and a polarizer
US20050174641A1 (en) * 2002-11-26 2005-08-11 Jds Uniphase Corporation Polarization conversion light integrator
JP4184189B2 (ja) * 2003-08-13 2008-11-19 株式会社 日立ディスプレイズ 発光型表示装置
US7329434B2 (en) * 2005-02-23 2008-02-12 Eastman Kodak Company Polarizing layer with adherent protective layer
US7630132B2 (en) * 2005-05-23 2009-12-08 Ricoh Company, Ltd. Polarization control device
IL171820A (en) * 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate
IL173715A0 (en) * 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
KR100838066B1 (ko) * 2006-07-14 2008-06-16 삼성에스디아이 주식회사 유기 발광 장치
US8905547B2 (en) * 2010-01-04 2014-12-09 Elbit Systems Of America, Llc System and method for efficiently delivering rays from a light source to create an image
WO2012003215A1 (en) * 2010-06-30 2012-01-05 3M Innovative Properties Company Retarder film combinations with spatially selective birefringence reduction
US9081147B2 (en) * 2012-01-03 2015-07-14 3M Innovative Properties Company Effective media retarder films with spatially selective birefringence reduction
KR101659121B1 (ko) * 2013-06-28 2016-09-22 제일모직주식회사 Oled용 편광판 및 이를 포함하는 oled 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368656A (zh) * 2001-01-15 2002-09-11 株式会社日立制作所 光发射器件与光发射显示器
CN1774654A (zh) * 2003-05-02 2006-05-17 日东电工株式会社 光学膜、其制造方法及使用这种光学膜的图像显示装置
US20050194891A1 (en) * 2004-03-03 2005-09-08 Yi-Chu Wu Organic light-emitting diode display device with a function of converting to be mirror
CN202008552U (zh) * 2011-03-30 2011-10-12 京东方科技集团股份有限公司 起偏器及使用这种起偏器的液晶显示器
CN202549937U (zh) * 2012-05-10 2012-11-21 京东方科技集团股份有限公司 Oled显示结构及oled显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2849242A4 *

Also Published As

Publication number Publication date
US9437841B2 (en) 2016-09-06
JP6166360B2 (ja) 2017-07-19
EP2849242A4 (en) 2016-03-30
US20140203248A1 (en) 2014-07-24
CN202549937U (zh) 2012-11-21
KR20140007807A (ko) 2014-01-20
JP2015516092A (ja) 2015-06-04
EP2849242A1 (en) 2015-03-18
KR101512581B1 (ko) 2015-04-15
EP2849242B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2013166868A1 (zh) Oled显示结构及oled显示装置
US11003066B2 (en) Projection display unit and direct-view display unit
WO2016082431A1 (zh) 光学膜层、发光器件及显示装置
TWI533189B (zh) 觸控式螢幕
US20120092589A1 (en) Back light module and liquid crystal display device
WO2017067099A1 (zh) 双面液晶显示装置及其背光模块
WO2013127204A1 (zh) 液晶显示面板及其透反模式转换方法和显示装置
WO2017016193A1 (zh) 背光模组及其制作方法、双面显示装置
TW201606359A (zh) 顯示面板
WO2022121344A1 (zh) 显示器件及头戴式显示器
WO2019062513A1 (zh) 背光模组及显示装置
KR20160055431A (ko) 편광필름 및 그를 구비하는 플렉서블 표시장치
CN104570187B (zh) 一种光学膜层和显示装置
CN104216162A (zh) 一种液晶显示装置
US20110261457A1 (en) Optical device configured by bonding first and second transparent members having birefringent property
JP2009021408A (ja) 有機el表示装置
WO2014027459A1 (ja) 光学素子、光学装置及び映像表示装置
CN105301842B (zh) 背光模组及使用其的显示装置
JP2007093964A (ja) 偏光変換素子
JP3213629U (ja) バックライトモジュール及びディスプレイモジュール
JP5484405B2 (ja) 照明装置及び液晶表示装置
TWI752856B (zh) 光學膜之結構
TW201430393A (zh) 一種偏光轉換機制及方法
TWM245449U (en) Polarized illumination systems and liquid crystal device
US8741673B2 (en) Polarized light emitting diode device and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510611

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015272

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13996087

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13724495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE