WO2013166687A1 - 磁粉芯的制造方法 - Google Patents

磁粉芯的制造方法 Download PDF

Info

Publication number
WO2013166687A1
WO2013166687A1 PCT/CN2012/075293 CN2012075293W WO2013166687A1 WO 2013166687 A1 WO2013166687 A1 WO 2013166687A1 CN 2012075293 W CN2012075293 W CN 2012075293W WO 2013166687 A1 WO2013166687 A1 WO 2013166687A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
magnetic powder
powder core
mold
manufacturing
Prior art date
Application number
PCT/CN2012/075293
Other languages
English (en)
French (fr)
Inventor
李晓雨
兰荣鑫
江志滨
Original Assignee
青岛云路新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛云路新能源科技有限公司 filed Critical 青岛云路新能源科技有限公司
Priority to PCT/CN2012/075293 priority Critical patent/WO2013166687A1/zh
Publication of WO2013166687A1 publication Critical patent/WO2013166687A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a method for manufacturing a magnetic powder core, in particular to a press molding process of a magnetic powder core.
  • the magnetic powder core is mainly used for the production of various types of electromagnetic components.
  • the process of pressing and forming the magnetic powder core is involved.
  • the main method is to use traditional mechanical pressing.
  • This method has many defects, mainly as follows: 1. Due to the pressure defects of traditional presses, the cost of traditional presses is extremely high when the press is 10,000 tons, and the density of magnetic powder core Inhomogeneity, there is a significant difference between the core density of the magnetic powder core and its shallow surface density, especially the large-volume magnetic powder core is particularly obvious, and its magnetic properties are not uniform, which restricts its application. Second, due to uneven pressure, the traditional magnetic powder core adopts machinery. Pressure suppression causes stress to be difficult to release during pressing, and pressure release must be performed in other ways.
  • the technical problem solved by the invention is: Providing a method for manufacturing a magnetic powder core, which adopts pressure forming of a magnetic powder core and the like, can generate pressure of more than 10,000 tons, realizes uniformity of magnetic powder core density and particle gap, and effectively avoids internal generation of magnetic powder core stress.
  • a method for manufacturing a magnetic powder core comprising the following steps,
  • Step one pretreatment: mixing the magnetic powder core material uniformly;
  • Step 2 loading the mold: the magnetic powder core material of the first step is loaded into the soft sealing mold without any gap;
  • Step 3 Forming: placing the mold in a pressure vessel, sequentially performing equal pressure pressing, holding pressure and pressure relief; Step 4, demoulding: taking out the mold from the pressure vessel, and pressing the molded magnetic powder core from the mold Disengage
  • pressurization determining a target pressure applied to the mold according to the type and volume of the magnetic powder core material, and injecting a pressure medium into the pressure vessel to reach a target pressure;
  • Pressure After the pressure reaches the target pressure, the mold is continuously maintained;
  • Pressure relief After the pressure is maintained, the mold is relieved;
  • the pressure vessel is gradually injected into the equal pressure medium in stages;
  • the mold is suspended in a pressure vessel;
  • the equal pressure medium is water
  • the mold is made of a rubber material
  • the shape of the mold is a rectangular parallelepiped, a cylinder, an elliptical cylinder or a combination thereof; preferably, the magnetic powder core material is amorphous powder, iron powder, iron silicon aluminum powder, high magnetic flux powder, permalloy Powder or iron-silicon magnetic powder.
  • the invention adopts the traditional mechanical pressing method in the molding process, and uses the equal pressure equalizing method to press the mold, thereby not only achieving the equal pressure equalizing effect, but also effectively increasing the pressure to more than 10,000 tons. , to make the magnetic powder core density and particle gap uniform.
  • Figure 1 is a schematic view showing the arrangement of various devices for performing press forming in the embodiment
  • FIG. 2 is a schematic view showing the arrangement of each device in which the mold is a cylinder
  • FIG. 3 is a process flow diagram of the present invention
  • Figure 4 is a time-pressure graph of moderate pressure pressurization in the pressurizing process of the embodiment
  • the magnetic powder core material is preferably an amorphous powder; and the equalizing medium is preferably water.
  • This embodiment includes the following steps,
  • Step one pretreatment: mixing the amorphous powder core materials purchased on the market;
  • Step 2 Mounting the mold: The pretreated amorphous powder core material is filled into the sealed rubber mold 2, so that the amorphous powder core is sufficiently filled in the mold 2, and there is no gap in the mold 2 as much as possible;
  • Step 3 Molding: The mold 2 is suspended in a pressure vessel and processed according to the following steps: (1) Pressurization: First, the target pressure for pressurizing the mold 2 is determined, and the target pressure is mainly based on the amorphous powder. The core volume is determined, and those skilled in the art have the ability to determine the target pressure according to common knowledge (Table 1 is provided for reference in the present embodiment); after the target pressure is determined, the multi-stage pressurizing device 4 is required to be injected into the pressure vessel 1. Water 3 pressurizes the mold 2, and when the mold 2 is pressurized, if the pressure is small, the target pressure can be pressurized once; if the pressure is large, it is better not to directly add to the target pressure, but to step by step.
  • Pressurization First, the target pressure for pressurizing the mold 2 is determined, and the target pressure is mainly based on the amorphous powder. The core volume is determined, and those skilled in the art have the ability to determine the target pressure according to common knowledge (Table 1 is provided for reference in the
  • the water injection pressure when the target pressure is determined to be F3, the pressurization process should be like this: First, add the pressure to F1, then hold to time t1, then increase the pressure to F2, and keep the time to t2. , then increase the pressure to F3, and then enter the pressure holding process; this can effectively improve the performance and quality of the amorphous powder core; (2) pressure: as shown in Figure 4. After the pressure reaches the target pressure F3, it is necessary to maintain the target pressure F3 to t3 (the dwell time refers to Table 1); then enter the pressure relief process, (3) Pressure relief: After the pressure is maintained to t3, the pressure is released until t4 The pressure relief is completed (refer to Table 1 for pressure relief time);
  • Step 4 demolding: The mold 2 is taken out from the pressure vessel 1, and the pressed amorphous powder core is detached from the mold 2, and the amorphous powder core is completed.
  • the stepwise pressurization in stages is not limited to the three stages shown in FIG. 4, but needs to be determined according to the actual target pressure. When the target pressure is large, it needs to be divided into several parts.
  • the stage is gradually pressurized to ensure uniform density and gap of the amorphous powder core particles, and to improve the adverse effects caused by the stress;
  • the mold may be other soft materials in addition to the rubber material; It is not limited to water, but may be other liquids; the shape of the mold can be arbitrarily selected, for example, it can be a rectangular parallelepiped (as shown in Fig. 1), a cylindrical body (as shown in Fig. 2), or an elliptical cylinder or a combination thereof. Wait.
  • the mold is suspended in the pressure vessel, and may be suspended by the belt on the top of the pressure vessel, or may be suspended in the pressure vessel by the cantilever, and the pressing action of the equal pressure medium on the mold can be well realized;
  • the magnetic powder core material may be iron powder, iron silicon aluminum powder, high magnetic flux powder, permalloy powder or iron silicon magnetic powder.
  • the mold can also be conventionally pressed, and then subjected to equal pressure pressing, and the performance of the magnetic powder core can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种磁粉芯的制造方法,包括磁粉芯原料的预处理工序、装模工序、成型工序以及脱模工序,其中,成型工序是通过等均压介质对模具进行加压、保压和泄压,本发明改变传统的机械压制方法,采用等均压方式对模具进行压制,能够有效将压力提高到万吨以上,使磁粉芯密度和颗粒间隙更加均匀,避免磁粉芯内部破坏应力的产生。

Description

磁粉芯的制造方法 技术领域
本发明涉及一种磁粉芯的制造方法, 具体来说是一种磁粉芯的压制成型工序。
背景技术
磁粉芯主要用于各类电磁元件的生产制造, 在磁粉芯的成型制造中, 涉及对磁粉芯进行 压制成型的工序。 目前, 主要是采用传统机械压制的方法, 这种方法存在诸多缺陷, 主要表 现在: 一、 由于传统压机压力缺陷, 传统压力机做到万吨级压机时成本极高, 而且磁粉芯密 度不均匀, 磁粉芯体芯密度与其浅层表面密度存在明显差异, 特别是大体积磁粉芯表现尤为 明显, 其磁性能不均匀, 制约了其应用; 二、 由于压力不均, 传统磁粉芯采用机械压力压制 致使其压制过程中存在应力难以释放, 必须采用其他方式进行压力释放。
发明内容
本发明解决的技术问题是: 提供一种磁粉芯的制造方法, 采用对磁粉芯等均压力成型, 可以产生万吨级以上压力, 实现了磁粉芯密度和颗粒间隙均匀, 有效避免磁粉芯内部产生应 力。
为了解决上述技术问题, 本发明采用的技术方案是: 一种磁粉芯的制造方法, 包括以下步 骤,
步骤一, 预处理: 将磁粉芯原料混合均匀;
步骤二, 装模: 将步骤一的磁粉芯原料无间隙地装入软性密封的模具中;
步骤三, 成型: 将所述模具放置在压力容器中, 依次进行等均压加压、 保压和泄压; 步骤四, 脱模: 从压力容器中取出模具, 使压制成型的磁粉芯从模具中脱离;
优选方案, 所述步骤三中, (1 ) 加压: 根据磁粉芯原料种类和体积大小, 确定对模具施 加的目标压力, 向压力容器中注入等均压力介质, 达到目标压力; (2) 保压: 压力达到目标 压力后, 对模具进行持续保压; (3) 泄压: 持续保压完成后, 对模具进行泄压;
优选方案, 所述加压工序中, 对压力容器分阶段逐步注入等均压力介质;
优选方案, 所述模具悬置在压力容器中;
优选方案, 所述等均压力介质是水;
优选方案, 所述模具是由橡胶材料做成;
优选方案, 所述模具的形状是长方体、 圆柱体、 椭圆柱体或者他们的组合体; 优选方案, 所述磁粉芯原料是非晶粉、 铁粉、 铁硅铝粉、 高磁通量粉、 坡莫合金粉或铁 硅磁粉。 i 和现有技术相比, 本发明采用在成型工艺中, 改变传统的机械压制方法, 采用等均压方 式对模具进行压制, 不仅实现了等均压效果, 而且能够有效将压力提高到万吨以上, 使磁粉 芯密度和颗粒间隙均匀。
附图说明
图 1是实施例中进行压制成型的各设备布置示意图;
图 2是实施例中模具为圆柱体的各设备的布置示意图;
图 3是本发明的工艺流程图;
图 4是实施例所述加压工序中等均压加压的时间-压力曲线图;
附图中, 1.压力容器; 2.模具; 3.水; 4.多级加压装置。
具体实施方式
下面结合附图和实施例对本发明做详细说明。
本实施例中, 磁粉芯原料优选非晶粉; 等均压介质优选水。
本实施例包括以下步骤,
步骤一, 预处理: 将市场上购买的非晶粉芯原料混合均匀;
步骤二, 装模: 将预处理的非晶粉芯原料装入密封的橡胶模具 2中, 使非晶粉芯在模具 2内 充分填充, 尽量保证模具 2内没有间隙;
步骤三, 成型: 将所述模具 2悬置在压力容器中, 并按以下工序处理: (1 ) 加压: 首先要确 定对模具 2进行加压的目标压力, 目标压力主要是根据非晶粉芯体积大小进行确定, 本领域 技术人员根据公知常识, 有能力确定该目标压力 (本实施例提供表格 1供参考); 目标压力确 定后, 需要用多级加压装置 4向压力容器 1内注入水 3对模具 2进行加压, 对模具 2进行加 压时, 如果压力较小, 可以一次加压值目标压力; 如果压力较大, 最好不要直接加至目标压 力, 而是分阶段逐步进行注水加压, 如图 4所示, 当确定目标压力为 F3时, 加压过程应该是 这样的: 首先将压力加至 F1,然后保持到时间 tl, 再将压力增加至 F2, 时间保持到 t2, 再将 压力增加至 F3, 然后进入保压工序; 这样可以有效提高非晶粉芯的性能和质量; (2) 保压: 如图 4所示, 当压力达到目标压力 F3后, 需要维持该目标压力 F3至 t3 (保压时间参考表格 1 ); 然后进入泄压工序, (3)泄压: 保压到 t3后, 进行泄压, 直至 t4泄压完毕 (泄压时间参 考表格 1 );
步骤四, 脱模: 从压力容器 1中取出模具 2, 使压制成型的非晶粉芯从模具 2中脱离, 非晶 粉芯制造完成。
非晶粉芯制造完成后, 尚需对非晶粉芯进行性能检测, 确定产品质量是否合格。 需要说明的是, 上述加压工序中, 分阶段逐步加压不局限于图 4所示三个阶段, 而是需 要根据实际目标压力的大小确定, 当目标压力较大时, 就需要多分几个阶段逐步进行加压, 保证了非晶粉芯颗粒的密度和间隙均匀, 改善应力带来的不利影响; 所述模具除了使用橡胶 材料制作外, 还可以是其他软性材料; 上述等均压力介质也不局限于水, 也可以是其他液体; 模具的形状可以任意选择, 比如可以是长方体(如图 1 ), 也可以是圆柱体(如图 2), 还可以 是椭圆柱体或他们的组合等。 所述模具悬置在压力容器中, 可以是通过带状物悬挂在压力容 器的顶部, 也可以是通过悬臂悬挂在压力容器内, 都能很好地实现等均压力介质对模具的压 制作用; 上述磁粉芯原料除了选择非晶粉外, 还可以是铁粉、 铁硅铝粉、 高磁通量粉、 坡莫 合金粉或铁硅磁粉等。
另外, 在步骤二装模完成后, 也可以对模具先进行传统压制, 然后再进行等均压压制, 磁粉芯的性能会得到进一步改善。
表格 1
Figure imgf000004_0001

Claims

权 利 要 求 书
1. 一种磁粉芯的制造方法, 其特征在于: 包括以下步骤,
步骤一, 预处理: 将磁粉芯原料混合均匀;
步骤二, 装模: 将步骤一的磁粉芯原料无间隙地装入软性密封的模具中;
步骤三, 成型: 将所述模具放置在压力容器中, 依次进行等均压加压、 保压和泄压; 步骤四, 脱模: 从压力容器中取出模具, 使压制成型的磁粉芯从模具中脱离。
2. 根据权利要求 1所述的磁粉芯的制造方法, 其特征在于: 所述步骤三中, (1 )加压: 根据 磁粉芯原料种类和体积大小, 确定对模具施加的目标压力, 向压力容器中注入等均压力介 质, 达到该目标压力; (2)保压: 压力达到目标压力后, 对模具进行持续保压; (3)泄压: 持续保压完成后, 对模具进行泄压。
3. 根据权利要求 2所述磁粉芯的制造方法, 其特征在于: 所述加压工序中, 对压力容器分阶 段逐步注入等均压力介质。
4. 根据权利要求 1所述磁粉芯的制造方法, 其特征在于: 所述模具悬置在压力容器中。
5. 根据权利要求 1所述磁粉芯的制造方法, 其特征在于: 所述等均压力介质是水。
6. 根据权利要求 1所述磁粉芯的制造方法, 其特征在于: 所述模具是由橡胶材料做成。
7. 根据权利要求 1所述磁粉芯的制造方法,其特征在于:所述模具的形状是长方体、圆柱体、 椭圆柱体或者他们的组合体。
8. 根据权利要求 1所述磁粉芯的制造方法, 其特征在于: 所述磁粉芯原料是非晶粉、 铁粉、 铁硅铝粉、 高磁通量粉、 坡莫合金粉或铁硅磁粉。
PCT/CN2012/075293 2012-05-10 2012-05-10 磁粉芯的制造方法 WO2013166687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075293 WO2013166687A1 (zh) 2012-05-10 2012-05-10 磁粉芯的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075293 WO2013166687A1 (zh) 2012-05-10 2012-05-10 磁粉芯的制造方法

Publications (1)

Publication Number Publication Date
WO2013166687A1 true WO2013166687A1 (zh) 2013-11-14

Family

ID=49550092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075293 WO2013166687A1 (zh) 2012-05-10 2012-05-10 磁粉芯的制造方法

Country Status (1)

Country Link
WO (1) WO2013166687A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615915A (en) * 1968-10-31 1971-10-26 Philips Corp Method of densifying magnetically anisotropic powders
CN1353428A (zh) * 2000-11-13 2002-06-12 住友金属矿山株式会社 高耐气候性磁铁粉及使用该磁铁粉的磁铁

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615915A (en) * 1968-10-31 1971-10-26 Philips Corp Method of densifying magnetically anisotropic powders
CN1353428A (zh) * 2000-11-13 2002-06-12 住友金属矿山株式会社 高耐气候性磁铁粉及使用该磁铁粉的磁铁

Similar Documents

Publication Publication Date Title
JP2008525212A5 (zh)
US20150004047A1 (en) Binderless Metal Injection Molding Apparatus and Method
JP2012526679A5 (zh)
CN106182342A (zh) 一种大型高纯氧化铝陶瓷件的成型工艺
RU2013101582A (ru) Литейная форма, выполненная из композиционного материала, и способ изготовления изделий с использованием данной литейной формы
TWI546176B (zh) Method of manufacturing fast molds
WO2013166687A1 (zh) 磁粉芯的制造方法
CN104148581A (zh) 一种陶瓷型铸造工艺
KR101325934B1 (ko) 밀봉장치를 구비한 진공 사출압축성형 금형 및 이를 이용한 진공 사출압축성형 방법
CN106611655A (zh) 钽电容器圆形钽芯专用成型模具及其使用方法
TW201634234A (zh) 三維物件的製造方法
CN104446507A (zh) 陶瓷发热体的制造方法及陶瓷发热体
KR101813654B1 (ko) 3차원 프린팅으로 제작된 흡기매니폴드 샘플 제조방법
CN103393246A (zh) 一种帽子的制作方法
WO2014199080A3 (fr) Procédé d'obtention d'une cale pelable non plane et cale pelable non plane ainsi obtenue
JP2012206391A (ja) 繊維強化プラスチックの成形方法
KR20120088345A (ko) 미세 입체패턴 가공방법
CN217318481U (zh) 高纯氧化铝陶瓷凝胶注模成型用模具
CN203317649U (zh) 一种带双注射装置的注塑机
TW201827858A (zh) 帶有抗眩光薄膜的三維工件製作方法
CN103317661A (zh) 一种带双注射装置的注塑机
CN202985975U (zh) 一种壁厚较薄的产品浇口结构
Ali et al. Graphene coated smart fabrics for vartm process monitoring
CN109291346B (zh) 一种利于pdms脱模的卡具及利用该卡具制备pdms层的方法
JP5370825B2 (ja) 型内被覆成形方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12876193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12876193

Country of ref document: EP

Kind code of ref document: A1