WO2013164964A1 - Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method - Google Patents

Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method Download PDF

Info

Publication number
WO2013164964A1
WO2013164964A1 PCT/JP2013/061925 JP2013061925W WO2013164964A1 WO 2013164964 A1 WO2013164964 A1 WO 2013164964A1 JP 2013061925 W JP2013061925 W JP 2013061925W WO 2013164964 A1 WO2013164964 A1 WO 2013164964A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
glass ribbon
glass
sonic
reflector
Prior art date
Application number
PCT/JP2013/061925
Other languages
French (fr)
Japanese (ja)
Inventor
修 下宮
博史 安藤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147030362A priority Critical patent/KR20150016223A/en
Priority to CN201380022995.5A priority patent/CN104271520B/en
Publication of WO2013164964A1 publication Critical patent/WO2013164964A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • C03B35/246Transporting continuous glass ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2407/00Means not provided for in groups B65H2220/00 – B65H2406/00 specially adapted for particular purposes
    • B65H2407/40Means for adding commercial value, e.g. sound producing or logos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/82Sound; Noise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to a sonic levitation apparatus, a sonic levitation method, a sheet glass manufacturing apparatus, and a sheet glass manufacturing method.
  • Patent Document 2 the technique described in Patent Document 2 is based on the premise that a room temperature object is supported in a non-contact manner, and there is no mention of supporting an object having a temperature higher than room temperature in a non-contact manner.
  • This invention was made in view of the said subject, Comprising: It aims at provision of the sonic levitation apparatus and the sonic levitation method which can suppress the damage of a glass ribbon.
  • one embodiment of the present invention provides: When conveying a glass ribbon continuously drawn out from a sheet glass forming device, a sonic levitation device that levitates the glass ribbon with a radiant pressure of sound waves, Among the glass ribbons having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the center in the width direction, a diaphragm having an upper surface that emits sound waves to a portion having a temperature of 300 ° C.
  • a reflector having an upper surface that reflects sound waves emitted from the lower surface of the diaphragm,
  • the longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
  • the cross-sectional shape of the upper surface of the diaphragm is convex upward.
  • Another embodiment of the present invention is as follows.
  • a sonic levitation method of levitation of the glass ribbon with sonic radiation pressure Of the glass ribbon having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the central portion in the width direction, radiation of sound waves radiated from the upper surface of the diaphragm at a temperature of 300 ° C. to 800 ° C.
  • the longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
  • the cross-sectional shape of the upper surface of the diaphragm is convex upward.
  • a sonic levitation device and a sonic levitation method that can suppress damage to a glass ribbon.
  • FIG. FIG. 3 is a sectional view taken along line III-III in FIG. It is a top view which shows the arrangement
  • FIG. 1 is a side cross-sectional view of a flat glass manufacturing apparatus provided with a sonic levitation apparatus according to an embodiment of the present invention at a steady state.
  • FIG. 2 is a side cross-sectional view of the plate glass manufacturing apparatus 100 at the time of startup.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • FIG. 4 is a top view showing the arrangement of the diaphragm and the support roll.
  • FIG. 5 is an enlarged view showing a main part of FIG. In FIG. 5, the bending of the glass ribbon, the curvature of the diaphragm, and the like are exaggerated from the actual one.
  • the plate glass manufacturing apparatus 100 melts a glass raw material 10 to obtain a molten glass 12, and forms the molten glass 12 obtained by the melting apparatus 200 to obtain a strip-shaped glass ribbon 14.
  • a molding apparatus 300 is provided.
  • the plate glass manufacturing apparatus 100 includes a slow cooling device 400 that gradually cools the glass ribbon 14 formed by the forming device 300, and a lift-out device 500 that transports the glass ribbon 14 from the forming device 300 to the slow cooling device 400. .
  • the lift-out device 500 is provided between the molding device 300 and the slow cooling device 400.
  • the melting apparatus 200 melts the glass raw material 10 to obtain a molten glass 12.
  • the melting apparatus 200 includes a melting tank 204 that accommodates the molten glass 12 and a burner 206 that forms a flame above the molten glass 12 accommodated in the melting tank 204.
  • the glass raw material 10 thrown into the melting tank 204 is gradually melted into the molten glass 12 by the radiant heat from the flame formed by the burner 206.
  • the molten glass 12 is continuously supplied from the melting tank 204 to the molding apparatus 300.
  • the forming apparatus 300 is an apparatus that forms the molten glass 12 obtained by the melting apparatus 200 to produce a strip-shaped glass ribbon 14.
  • the molding apparatus 300 may be a float molding apparatus, for example.
  • the float forming apparatus continuously supplies the molten glass 12 to the bath surface of the molten tin 304 in the bathtub 302 and forms it into a strip shape.
  • the formed glass ribbon 14 is pulled up from the bath surface of the molten tin 304 by the lift-out device 500 and conveyed to the slow cooling device 400.
  • molding apparatus 300 is not limited to a float shaping
  • a fusion molding apparatus may be sufficient.
  • the fusion molding apparatus continuously supplies the molten glass 12 to the inside of the ridge, and the molten glass 12 overflowing from the ridge to the left and right sides is merged at the lower edge of the ridge and formed into a strip shape.
  • the lift-out device 500 includes a heat insulating structure 502 disposed between the molding device 300 and the slow cooling device 400 and a lift-out roll 504 disposed in the internal space of the heat insulating structure 502.
  • the heat insulating structure 502 surrounds the conveyance path of the glass ribbon 14.
  • a heater or a cooler may be provided inside the heat insulating structure 502 in order to adjust the temperature of the glass ribbon 14.
  • the lift-out roll 504 is rotated by a rotary motor (not shown), pulls up the glass ribbon 14 from the bath surface of the molten tin 304 and conveys it to the slow cooling device 400.
  • the slow cooling device 400 gradually cools the glass ribbon 14 formed by the forming device 300.
  • the slow cooling device 400 includes a slow cooling furnace 402 and a sonic levitation device 410.
  • the sonic levitation device 410 may be provided in any of the slow cooling device 400 and the lift-out device 500, or may be provided across both.
  • the slow cooling furnace 402 has a plurality of heaters 402a therein.
  • the heater 402a extends in parallel with the width direction of the glass ribbon 14 as shown in FIG. Note that the heater 402 a may be divided into a plurality of pieces in the width direction of the slow cooling furnace 402.
  • the glass ribbon 14 is gradually cooled while being transported horizontally in the slow cooling furnace 402, and is carried out from the outlet of the slow cooling furnace 402. Thereafter, the glass ribbon 14 is cut into a desired size and shape to become a plate glass as a product.
  • the sonic levitation device 410 levitates the glass ribbon 14 conveyed horizontally in the slow cooling furnace 402 with the radiation pressure of the sonic wave, and supports the glass ribbon 14 in a non-contact manner.
  • the sonic levitation device 410 includes a vibration plate 411 that emits sound waves that float the glass ribbon 14 and a reflector 450 that reflects sound waves from the lower surface of the vibration plate 411.
  • the temperature is 300 ° C. to 800 ° C. (preferably 500 ° C.
  • the portion of ⁇ 800 ° C., more preferably 600 ° C. to 800 ° C. is levitated by the radiation pressure of the sound wave radiated from the diaphragm 411.
  • the diaphragm 411 may be used to float a portion of the glass ribbon 14 having a temperature lower than 300 ° C. with the radiation pressure of sound waves.
  • the width W0 of the glass ribbon 14 is preferably 2 to 6 m.
  • the plate thickness at the center in the width direction of the glass ribbon 14 is preferably 0.1 mm or more.
  • board thickness of the center part of the width direction of the glass ribbon 14 becomes like this. Preferably it is 1 mm or less, More preferably, it is 0.7 mm or less.
  • the vibration plate 411 is excited by the vibrator 412, bends and vibrates in the vertical direction, and emits sound waves in the vertical direction.
  • the glass ribbon 14 floats above the diaphragm 411 by the radiation pressure of the sound wave radiated upward from the diaphragm 411.
  • the sound wave formed by the flexural vibration of the diaphragm 411 is preferably a standing wave. If it is a traveling wave, the glass ribbon 14 may be conveyed in an unintended direction by the radiation pressure of the sound wave from the diaphragm 411. In addition, by optimizing the shape and arrangement of the vibration plate 411, the glass ribbon 14 can be conveyed in a desired direction using the radiation pressure of sound waves from the vibration plate 411.
  • the frequency of flexural vibration of the diaphragm 411 is preferably 15 kHz to 50 kHz. When the frequency falls below 15 kHz, the frequency becomes human audible range, and the sound becomes an obstacle to work. Generation of vibration exceeding 50 kHz is difficult due to the properties of the power source and the vibrator 412.
  • the frequency is more preferably 18 kHz to 30 kHz, further preferably 19 kHz to 25 kHz, and particularly preferably 19 kHz to 21 kHz.
  • the amplitude of the flexural vibration of the diaphragm 411 is preferably 0.25 ⁇ m to 50 ⁇ m.
  • “amplitude” means the maximum displacement from the center of vibration.
  • the longitudinal direction of the vibration plate 411 is parallel to the width direction of the glass ribbon 14.
  • the width direction of the vibration plate 411 is perpendicular to the width direction of the glass ribbon 14 and the vertical direction.
  • One end in the longitudinal direction of the diaphragm 411 is connected to the vibrator 412 via a vibration transmitting member such as a horn 414 or a booster 416.
  • the vibration of the vibrator 412 is transmitted to one end portion in the longitudinal direction of the diaphragm 411 by a vibration transmitting member.
  • the vibration transmitting member may be omitted, and in this case, the diaphragm 411 and the vibrator 412 are directly connected.
  • the other end in the longitudinal direction of the diaphragm 411 is a free end.
  • the other end in the longitudinal direction of the diaphragm 411 may be a fixed end, or may be connected to the vibrator 412 via a vibration transmitting member, like the one end in the longitudinal direction of the diaphragm 411. .
  • a plurality of diaphragms 411 are installed at intervals in the conveyance direction of the glass ribbon 14.
  • the pitch P (see FIG. 5) of the diaphragm 411 is preferably 200 mm to 700 mm. If the pitch P is 200 mm or less, a support roll 490 described later cannot be installed on the equipment layout. On the other hand, when the pitch P is 700 mm or more, it is difficult to float without contact.
  • the pitch P of the diaphragm 411 is more preferably 300 mm to 500 mm.
  • the glass ribbon 14 is slightly bent and deformed by gravity. As the glass ribbon 14 is further away from the diaphragm 411, it tends to hang down due to gravity.
  • the cross-sectional shape of the upper surface of the diaphragm 411 is convex upward as shown in FIG.
  • convex upward means that a portion between both ends is above a line segment connecting both ends.
  • the upper surface of the diaphragm 411 has a horizontal linear portion and curved portions extending from both ends of the linear portion in a cross-sectional view as shown in FIG.
  • the curved portion has an upwardly convex shape so as to go downward as it goes outward in the width direction (left-right direction in the figure).
  • the curvature radius r11 of the curved portion is, for example, 150 mm to 1000 mm.
  • the width of the curved portion (the horizontal dimension in the figure) W12 is 5% to 30% of the width W11 of the diaphragm 411.
  • the cross-sectional shape of the lower surface of the diaphragm 411 may be a horizontal linear shape.
  • the diaphragm 411 can be easily obtained by grinding the upper surface of a flat plate.
  • the width of the diaphragm 411 (when the diaphragm 411 is square when viewed from above, the short side length of the diaphragm 411) W11 is preferably 50 mm to 200 mm.
  • the width W11 is smaller than 50 mm, the area of the sound wave emission surface of the diaphragm 411 is too small, and it is difficult to float the glass ribbon 14 from the diaphragm 411.
  • the width W11 exceeds 200 mm, the vibration mode of the vibration plate 411 is less likely to be a fringe mode, and the radiation pressure of sound waves is reduced.
  • the width W11 of the diaphragm 411 is more preferably 70 mm to 150 mm, and still more preferably 80 mm to 120 mm.
  • the width W11 of the diaphragm 411 is preferably 50% to 150% of the width W21 of the reflector 450.
  • W11 is less than 50% of W21, the reflector 450 and the glass ribbon 14 are likely to contact each other.
  • W11 exceeds 150% of W21 the diaphragm 411 hardly floats from the reflector 450.
  • the length L1 (see FIG. 3) of the diaphragm 411 is preferably 95% to 200% of the width W0 of the glass ribbon 14. If L1 is less than 95% of W0, the end of the diaphragm 411 comes into contact with the glass ribbon 14 and scratches are generated. On the other hand, if L1 exceeds 200% of W0, installation on the equipment layout becomes difficult. More preferably, L1 is 100% to 200% of W0.
  • the length L1 of the diaphragm 411 (see FIG. 3) is preferably 50% to 120% of the length L2 of the reflector 450.
  • L1 is less than 50% of L2, the diaphragm 411 is convexly bent downward, and the central portion in the longitudinal direction of the diaphragm 411 hangs downward.
  • L1 exceeds 120% of L2, installation on the facility layout becomes difficult.
  • the diaphragm 411 is made of, for example, stainless steel, carbon, aluminum, an aluminum alloy, titanium, a titanium alloy, nickel, a nickel alloy, or the like. Stainless steel and carbon are excellent in heat resistance, and aluminum and aluminum alloy are excellent in toughness. When carbon is used, the atmosphere in the slow cooling furnace 402 may be an inert atmosphere such as a nitrogen atmosphere. Moreover, the diaphragm 411 may be formed of ceramics, manganese steel, cast iron, or the like. As a material of the diaphragm 411, stainless steel, aluminum or aluminum alloy is preferable, and stainless steel is more preferable. When the material of the diaphragm 411 is stainless steel, aluminum, or aluminum alloy, the thickness of the diaphragm 411 is, for example, 0.5 mm to 5 mm, preferably 1 mm to 4 mm.
  • the diaphragm 411 may be surface-coated in order to improve corrosion resistance and oxidation resistance.
  • the coding method include a thermal spraying method, a plating method, a vapor deposition method (including a PVD method and a CVD method), and the like.
  • the coating layer formed by the thermal spraying method includes, for example, a super hard material such as tungsten carbide, ceramics, or a heat resistant alloy such as a Ni-based alloy or a Cr-based alloy.
  • the coding layer formed by the plating method includes, for example, a Cr-based alloy or a Ni-based alloy.
  • the coding layer formed by the vapor deposition method includes, for example, diamond-like carbon (DLC).
  • Part of the diaphragm 411 is outside the slow cooling furnace 402.
  • the diaphragm 411 passes through the slow cooling furnace 402, and both end portions in the longitudinal direction of the diaphragm 411 are exposed to the outside of the slow cooling furnace 402.
  • the vibrator 412 and the first lifting device 460 that supports the vibrator 412 so as to be movable up and down can be disposed.
  • the vibrator 412 excites the diaphragm 411 and is provided for each diaphragm 411.
  • the plurality of vibrators 412 may vibrate with the same phase or with different phases.
  • the vibrator 412 may be an ultrasonic vibrator, and is composed of, for example, a piezoelectric element or a magnetostrictive element.
  • the vibrator 412 vibrates longitudinally under the control of a control device such as a computer. When this longitudinal vibration is transmitted to the vibration plate 411, the vibration plate 411 bends and vibrates in the vertical direction, and a sound wave is oscillated from the vibration plate 411 in the vertical direction.
  • the vibrator 412 is installed outside the slow cooling furnace 402 as shown in FIG. 3 in order to suppress deterioration due to heat.
  • a heat insulating box 430 that houses the vibrator 412 and the like is provided outside the slow cooling furnace 402, and the temperature in the heat insulating box 430 is maintained in a desired temperature range by the cooler 440.
  • a plurality of heat insulation boxes 430 may be provided.
  • oscillator 412, the 1st raising / lowering apparatus 460, etc. are arrange
  • a second lifting device 470 and the like are arranged.
  • the heat insulation box 430 includes, for example, a housing 432 and a heat insulating material 434 attached to the inner wall surface of the housing 432.
  • the housing 432 is made of, for example, heat resistant steel such as SS material, and functions as a sound insulating member that blocks noise generated by the vibrator 412 and the like.
  • the heat insulating material 434 is made of, for example, glass wool, gypsum board, or the like, and also functions as a sound absorbing material that absorbs noise generated by the vibrator 412 or the like.
  • the heat insulating box 430 may be fixed so as to be in contact with the slow cooling furnace 402. However, in order to limit heat transfer from the slow cooling furnace 402, for example, as shown in FIG. Good.
  • the cooler 440 is for keeping the temperature in the heat insulation box 430 in a desired temperature range.
  • the cooler 440 is provided for each heat insulation box 430 and is fixed to the heat insulation box 430.
  • the cooler 440 keeps the inside of the heat insulation box 430 in a desired temperature range, for example, by blowing a cooling gas into the heat insulation box 430 or cooling the outer wall of the heat insulation box 430.
  • the reflector 450 has an upper surface that reflects sound waves radiated from the lower surface of the diaphragm 411 toward the diaphragm 411. Due to the radiation pressure of the reflected wave, the diaphragm 411 floats above the reflector 450, and the deformation of the diaphragm 411 by its own weight is reduced. This effect is significant when the other longitudinal end of the diaphragm 411 is a free end.
  • the reflector 450 has, for example, a substantially quadrangular annular shape, an inverted U shape, an I shape, a T shape, an inverted L shape, or a Z shape (substantially square annular shape in the drawing) to increase the moment of inertia of the cross section.
  • the reflector 450 may be plate-shaped.
  • the cross-sectional shape of the reflector 450 is preferably a substantially quadrangular ring.
  • a plurality of reflectors 450 are installed at intervals in the conveyance direction of the glass ribbon 14.
  • the reflector 450 is provided for each vibration plate 411, and the longitudinal direction of the reflector 450 is parallel to the width direction of the glass ribbon 14.
  • the width direction of the reflector 450 is perpendicular to the width direction and the vertical direction of the glass ribbon 14.
  • the upper surface of the reflector 450 reflects sound waves radiated from the lower surface of the diaphragm 411 toward the diaphragm 411.
  • the cross sectional shape of the upper surface of the reflector 450 may be a horizontal straight line.
  • the reflector 450 can be easily manufactured (processed).
  • the average value of the gap between the reflector 450 and the diaphragm 411 is preferably 30 ⁇ m to 120 ⁇ m when the diaphragm 411 is vibrating.
  • the average value of the gap between the reflector 450 and the diaphragm 411 is less than 30 ⁇ m, the diaphragm 411 and the reflector 450 are likely to contact each other.
  • that the average value of the gap between the reflector 450 and the diaphragm 411 exceeds 120 ⁇ m means that the amplitude of the diaphragm 411 is too large and the diaphragm 411 is easily damaged.
  • the average value of the gap between the reflector 450 and the diaphragm 411 is more preferably 50 ⁇ m to 100 ⁇ m when the diaphragm 411 is vibrating.
  • the width W21 of the reflector 450 is preferably 50 mm to 200 mm. If the width W21 of the reflector 450 is smaller than 50 mm, the area of the reflecting surface of the reflector 450 is too small, and it is difficult to lift the diaphragm 411 from the reflector 450. On the other hand, when the width W21 of the reflector 450 exceeds 200 mm, it is difficult to alternately arrange the reflector 450 and a support roll 490 described later.
  • the width W21 of the reflector 450 is more preferably 70 mm to 150 mm, and further preferably 80 mm to 120 mm.
  • the Young's modulus at room temperature (25 ° C.) of the reflector 450 is preferably 70 GPa or more. By setting it as 70 GPa or more, the weight change of the reflector 450 can fully be suppressed.
  • a more preferable range is 190 GPa or more, and a further preferable range is 210 GPa or more.
  • the melting point of the reflector 450 is preferably 1300 ° C. or higher. By setting it as 1300 degreeC or more, softening of the reflector 450 can fully be suppressed. A more preferable range is 1500 ° C. or higher, and a further preferable range is 1700 ° C. or higher.
  • the reflector 450 is made of, for example, heat resistant steel such as stainless steel or ceramic such as silica. Examples of stainless steel include SUS310S.
  • a part of the reflector 450 comes out of the slow cooling furnace 402.
  • the reflector 450 passes through the slow cooling furnace 402, and both longitudinal ends of the reflector 450 are exposed to the outside of the slow cooling furnace 402. Therefore, the 1st and 2nd raising / lowering apparatuses 460 and 470 which support the reflector 450 so that raising / lowering is possible can be installed in the slow cooling furnace 402 outside.
  • the first elevating device 460 is configured by, for example, a hydraulic jack or the like, and supports one end portion of the diaphragm 411 through the vibrator 412 so as to be movable up and down. As the vibration plate 411 moves up and down with respect to the hearth of the slow cooling furnace 402, the positional relationship with the glass ribbon 14 can be optimized.
  • the first lifting device 460 is provided for each diaphragm 411.
  • the first lifting device 460 supports one end of the reflector 450 so as to be lifted and lowered.
  • the diaphragm 411 and the reflector 450 can be moved up and down independently so that the positional relationship can be adjusted.
  • the second lifting / lowering device 470 is composed of, for example, a hydraulic jack or the like, and supports the other end of the reflector 450 so as to be liftable.
  • the second lifting device 470 moves the reflector 450 up and down relative to the hearth of the slow cooling furnace 402 in synchronization with the first lifting device 460.
  • the second lifting device 470 is provided for each reflector 450.
  • One or more lifting devices that support the reflector 450 so as to be movable up and down may be provided between the first lifting device 460 and the second lifting device 470. The bending of the reflector 450 is reduced, and the floating of the diaphragm 411 can be stabilized.
  • Transport roll A plurality of transport rolls 480 are provided at intervals in the transport direction of the glass ribbon 14.
  • the transport roll 480 is driven by a rotary motor and transports the glass ribbon 14 horizontally.
  • the transport roll 480 is disposed in a low temperature region of the glass ribbon 14 so as not to damage the glass ribbon 14.
  • the transport roll 480 is preferably provided downstream of the slow cooling furnace 402 as shown in FIG.
  • the transport roll 480 may be provided inside the slow cooling furnace 402.
  • the transport roll 480 and the diaphragm 411 may be alternately arranged so that the contact pressure between the transport roll 480 and the glass ribbon 14 is lowered.
  • the support roll 490 is provided inside the slow cooling furnace 402 and can support the glass ribbon 14 from below.
  • a plurality of support rolls 490 are provided at intervals in the conveyance direction of the glass ribbon 14.
  • one diaphragm 411 is disposed, and the support roll 490 and the diaphragm 411 are alternately and repeatedly arranged.
  • the arrangement order of the support roll 490 and the diaphragm 411 may be various.
  • the support roll 490 and the diaphragm 411 can be moved up and down relatively.
  • the support roll 490 can be moved up and down with respect to the hearth of the slow cooling furnace 402, as will be described in detail later, depending on the situation, a position for supporting the glass ribbon 14 from below (see FIG. 2), and a glass ribbon 14 and moved to a retracted position (see FIG. 1) that is separated from 14.
  • the support roll 490 raises / lowers
  • the diaphragm 411 may raise / lower.
  • the support roll 490 can support the glass ribbon 14 from below or be separated from the glass ribbon 14.
  • the support roll 490 supports the glass ribbon 14 from below and prevents the glass ribbon 14 and the diaphragm 411 from contacting each other.
  • the support roll 490 is rotated by a rotary motor and conveys the glass ribbon 14 in a predetermined direction.
  • the plate glass manufacturing apparatus 100 when the plate glass manufacturing apparatus 100 is in a steady state (at the time of plate glass manufacture), as shown in FIG. 1, the support roll 490 is separated from the glass ribbon 14, and the radiating pressure of sound waves from the vibration plate 411 The glass ribbon 14 is levitated above. Since the support roll 490 and the glass ribbon 14 do not contact, damage to the glass ribbon 14 can be prevented. After the support roll 490 is separated from the glass ribbon 14, the rotation motor that rotates the support roll 490 is stopped.
  • the support roll 490 can be omitted by arranging the plurality of diaphragms 411 closely.
  • the diaphragm 411 may have a plurality of through holes 411a.
  • a rectangular tube-shaped reflector 450 is disposed below the diaphragm 411, and a plurality of ejection holes 450 a for ejecting the gas supplied to the inner space of the reflector 450 to the outside are formed on the reflector 450.
  • the gas ejected from the ejection hole 450a passes through the through-hole 411a of the vibration plate 411 and is blown to the lower surface of the glass ribbon 14 to float the glass ribbon 14.
  • gas since gas is supplied into the slow cooling furnace 402, the temperature in the slow cooling furnace 402 can be adjusted.
  • the gas ejected from the ejection hole 450a may be SO 2 gas.
  • the SO 2 gas can form a scratch-proof film on the lower surface of the glass ribbon 14.
  • the sonic levitation device 410A of FIG. 7 includes a diaphragm 411A and a reflector 450.
  • the upper surface of the diaphragm 411A has a horizontal linear portion and an inclined portion extending obliquely downward from both ends of the linear portion in a cross-sectional view.
  • the inclined portion is formed so as to go downward as it goes outward in the width direction (left-right direction in the figure).
  • An angle ⁇ formed by the inclined portion and the horizontal direction is, for example, 15 ° to 60 °.
  • the width of the inclined portion (the horizontal dimension in the drawing) W12 is, for example, 5% to 30% of the width W11 of the diaphragm 411A.
  • the cross-sectional shape of the upper surface of the vibration plate 411A is convex upward. Therefore, also in this modification, the effects (1) and (2) can be obtained as in the above embodiment.
  • the cross-sectional shape of the lower surface of the diaphragm 411A is a horizontal straight line.
  • the sonic levitation device 410B of FIG. 8 includes a diaphragm 411B and a reflector 450.
  • the cross-sectional shape of the upper surface of the diaphragm 411B is an upwardly convex curve. Therefore, also in this modification, the effects (1) and (2) can be obtained as in the above embodiment.
  • (3) a uniform gap is formed between the glass ribbon 14 deflected by gravity and the vibration plate 411B, and sound waves radiated from most of the upper surface of the vibration plate 411B are emitted from the glass ribbon 14. This contributes to the ascent of the buoyant and provides sufficient levitation force. If the gap is too wide, sufficient levitation force cannot be obtained, and if the gap is too narrow, the glass ribbon 14 and the diaphragm 411B come into contact with each other.
  • the curvature radii R11 of the upper surface of the diaphragm 411B are 150 mm to 10000 mm, respectively. If the curvature radius R11 of the upper surface of the vibration plate 411B is less than 150 mm, the gap formed between the glass ribbon 14 bent by gravity and the vibration plate 411B becomes non-uniform, and radiation is performed from most of the upper surface of the vibration plate 411B. The glass ribbon 14 is less likely to be lifted by the generated sound wave, and the lift force is weakened.
  • the curvature radius R11 of the upper surface of the diaphragm 411B exceeds 10,000 mm, the glass ribbon 14 bent by gravity and the both ends in the width direction of the diaphragm 411B are likely to come into contact with each other.
  • the curvature radius R11 of the upper surface of the diaphragm 411B is preferably 300 mm to 8000 mm, more preferably 500 mm to 7000 mm.
  • the cross-sectional shape of the lower surface of the diaphragm 411B is a horizontal straight line.
  • the sonic levitation device 410C of FIG. 9 includes a diaphragm 411C and a reflector 450C.
  • the cross-sectional shape of the upper surface of the vibration plate 411C is an upward convex curve. Therefore, also in this modified example, the effects (1) to (3) can be obtained as in the modified example of FIG.
  • the cross-sectional shape of the lower surface of the vibration plate 411C is a curved shape that is convex upward (concave downward).
  • the curvature radius R12 of the lower surface of the diaphragm 411C may be smaller than the curvature radius R11 of the upper surface of the diaphragm 411C by the thickness of the diaphragm 411C.
  • the diaphragm 411C can be easily obtained by bending a flat plate.
  • the vibration plate 411C may be manufactured by grinding a flat plate.
  • the cross-sectional shape of the lower surface of the diaphragm 411C is an upwardly convex curved shape
  • the cross-sectional shape of the upper surface of the reflector 450C is an upwardly convex curved shape
  • the diaphragm 411C and the reflector 450C A uniform gap is formed, and sound waves reflected from most of the upper surface of the reflector 450C contribute to the floating of the vibration plate 411C, and a sufficient floating force is obtained.
  • the curvature radius R21 of the upper surface of the reflector 450C is 90% to 110% (preferably, the curvature radius R12 of the lower surface of the diaphragm 411C so that a uniform gap is formed between the reflector 450C and the diaphragm 411C. 90% to 100%). More preferably, the radius of curvature R21 of the upper surface of the reflector 450C is smaller than the radius of curvature R12 of the lower surface of the diaphragm 411C by the gap between the reflector 450C and the diaphragm 411C.
  • the vibration plate 411C in FIG. 9 includes the vibration plate 411C in FIG. 9 and the reflector 450 in FIG. Therefore, also in this modified example, the effects (1) to (3) can be obtained as in the modified example of FIG.
  • the vibration plate 411C can be easily manufactured (processed) as in the example of FIG. 9, and the processing cost and processing accuracy of the vibration plate 411C are good.
  • the reflector 450 can be easily manufactured (processed) as in the examples of FIGS. 5 to 8, and the processing cost and processing accuracy of the reflector 450 are good.
  • the gap between the vibration plate 411C and the reflector 450 approaches uniformly, and the reflector 450
  • the sound wave reflected from most of the upper surface of the plate contributes to the levitation of the diaphragm 411C, and an effective levitation force is obtained.
  • FIG. 11 is a diagram showing a modification of the shape of the diaphragm.
  • the bending of the diaphragm and the bending of the glass ribbon are illustrated exaggerated than actual.
  • Rolls such as the lift-out roll 504 and the transport roll 480 shown in FIG. 1 and the like are supported at both axial ends, and are not supported at the central portion in the axial direction. Therefore, the axial center part of a roll may fall rather than the axial direction both ends of a roll by dead weight. As a result, the width direction center part of the glass ribbon 14 may fall rather than the width direction both ends of the glass ribbon 14. FIG. Moreover, the center part of the width direction of the glass ribbon 14 may fall rather than the both ends of the width direction of the glass ribbon 14 irrespective of the bending of a roll.
  • the upper end of the first portion 411D-1 corresponding to the glass ribbon width direction center portion of the vibration plate 411D has the second portion 411D-2 corresponding to both ends of the vibration plate 411D in the glass ribbon width direction, and It may be below the upper end of each of the third portions 411D-3.
  • the part corresponding to both ends of the glass ribbon width direction means a part located immediately below both ends of the glass ribbon width direction. If the length of the vibration plate 411D is 95% or more of the width of the glass ribbon 14, the second portion 411D-2 and the third portion 411D-3 corresponding to both ends of the vibration plate 411D in the glass ribbon width direction exist. When the diaphragm length is slightly shorter than the glass ribbon width (95% or more and less than 100%), both end portions in the length direction of the diaphragm correspond to the above-described 411D-2 and 411D-3.
  • the glass ribbon 14 is bent convexly downward.
  • the glass ribbon 14 is less likely to come into contact with the diaphragm 411D, and the glass ribbon 14 is less likely to be damaged.
  • the upper end of the first portion 411D-1 is lower than the upper ends of the second portion 411D-2 and the third portion 411D-3, but they may be at the same height.
  • the height means a position in the vertical direction. If the upper end of the first portion 411D-1 is not higher than the upper ends of the second portion 411D-2 and the third portion 411D-3, contact between the glass ribbon 14 and the diaphragm 411D can be limited to some extent.
  • the lower end of the first portion 411D-1 is above the lower ends of the second portion 411D-2 and the third portion 411D-3, but they may be at the same height. May be below.

Abstract

A sound wave levitation device levitates a glass ribbon that is continuously drawn out from a plate glass forming device by radiation pressure of sound waves when the glass ribbon is conveyed, and is provided with: a diaphragm having an upper surface for radiating sound waves to a portion with a temperature of 300-800°C of the glass ribbon with a width of 1-8 m and a plate thickness of a central portion thereof in a width direction of 0.05-3 mm; and a reflector having an upper surface for reflecting sound waves radiated from the lower surface of the diaphragm. The longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon, and the cross-sectional shape of the upper surface of the diaphragm is an upward protruding shape.

Description

音波浮上装置、音波浮上方法、板ガラス製造装置、及び板ガラス製造方法Sonic levitation device, sonic levitation method, plate glass manufacturing device, and plate glass manufacturing method
 本発明は、音波浮上装置、音波浮上方法、板ガラス製造装置、及び板ガラス製造方法に関する。 The present invention relates to a sonic levitation apparatus, a sonic levitation method, a sheet glass manufacturing apparatus, and a sheet glass manufacturing method.
 従来から、板ガラス成形装置から連続的に引き出されるガラスリボンを水平に搬送する
装置として、複数の搬送ロールが用いられている(例えば、特許文献1参照)。
Conventionally, a plurality of conveyance rolls have been used as an apparatus for horizontally conveying a glass ribbon drawn continuously from a sheet glass forming apparatus (see, for example, Patent Document 1).
 一方、近年では、物体を非接触で支持する技術として、振動板を励振させて、振動板からの音波の放射圧によって振動板の上方に物体を浮かす技術が提案されている(例えば、特許文献2参照)。 On the other hand, in recent years, as a technique for supporting an object in a non-contact manner, a technique has been proposed in which a diaphragm is excited and the object is floated above the diaphragm by radiation pressure of sound waves from the diaphragm (for example, Patent Documents). 2).
日本国特開2009-155164号公報Japanese Unexamined Patent Publication No. 2009-155164 日本国特開平7-24415号公報Japanese Unexamined Patent Publication No. 7-24415
 しかしながら、搬送ロールの外周面に異物又は傷が付いていると、搬送ロールが1回転するたびに、ガラスリボンの下面に傷が付くという問題がある。 However, if there is a foreign object or scratch on the outer peripheral surface of the transport roll, there is a problem that the lower surface of the glass ribbon is scratched each time the transport roll makes one revolution.
 一方で、上記特許文献2に記載の技術は、室温の物体を非接触で支持することを前提としており、室温よりも高温の物体を非接触で支持することについて言及がない。 On the other hand, the technique described in Patent Document 2 is based on the premise that a room temperature object is supported in a non-contact manner, and there is no mention of supporting an object having a temperature higher than room temperature in a non-contact manner.
 本発明は、上記課題に鑑みてなされたものであって、ガラスリボンの損傷を抑制できる音波浮上装置及び音波浮上方法の提供を目的とする。 This invention was made in view of the said subject, Comprising: It aims at provision of the sonic levitation apparatus and the sonic levitation method which can suppress the damage of a glass ribbon.
 上記課題を解決するため、本発明の一態様は、
 板ガラス成形装置から連続的に引き出されるガラスリボンを搬送する際に、該ガラスリボンを音波の放射圧で浮上させる音波浮上装置であって、
 幅が1m~8mであって幅方向中央部の板厚が0.05mm~3mmである前記ガラスリボンのうち、温度が300℃~800℃の部分に音波を放射する上面を有する振動板と、
 該振動板の下面から放射される音波を反射する上面を有する反射体とを備え、
 前記振動板の長手方向は、前記ガラスリボンの幅方向と平行であり、
 前記振動板の上面の横断面形状は、上に凸状である。
In order to solve the above problems, one embodiment of the present invention provides:
When conveying a glass ribbon continuously drawn out from a sheet glass forming device, a sonic levitation device that levitates the glass ribbon with a radiant pressure of sound waves,
Among the glass ribbons having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the center in the width direction, a diaphragm having an upper surface that emits sound waves to a portion having a temperature of 300 ° C. to 800 ° C .;
A reflector having an upper surface that reflects sound waves emitted from the lower surface of the diaphragm,
The longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
The cross-sectional shape of the upper surface of the diaphragm is convex upward.
 また、本発明の他の一態様は、
 板ガラス成形装置から連続的に引き出されるガラスリボンを搬送する際に、該ガラスリボンを音波の放射圧で浮上させる音波浮上方法であって、
 幅が1m~8mであって幅方向中央部の板厚が0.05mm~3mmである前記ガラスリボンのうち、温度が300℃~800℃の部分を振動板の上面から放射される音波の放射圧で前記振動板から浮上させると共に、前記振動板の下面からの音波を反射体の上面で反射し、
 前記振動板の長手方向は、前記ガラスリボンの幅方向と平行であり、
 前記振動板の上面の横断面形状は、上に凸状である。
Another embodiment of the present invention is as follows.
When conveying a glass ribbon continuously drawn out from a sheet glass forming apparatus, a sonic levitation method of levitation of the glass ribbon with sonic radiation pressure,
Of the glass ribbon having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the central portion in the width direction, radiation of sound waves radiated from the upper surface of the diaphragm at a temperature of 300 ° C. to 800 ° C. And the sound wave from the lower surface of the diaphragm is reflected on the upper surface of the reflector,
The longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
The cross-sectional shape of the upper surface of the diaphragm is convex upward.
 本発明によれば、ガラスリボンの損傷を抑制できる音波浮上装置及び音波浮上方法が提供される。 According to the present invention, there is provided a sonic levitation device and a sonic levitation method that can suppress damage to a glass ribbon.
本発明の一実施形態による音波浮上装置を備える板ガラス製造装置の定常時の側面断面図Side surface sectional drawing at the time of the steady state of the plate glass manufacturing apparatus provided with the sonic levitation apparatus by one Embodiment of this invention 板ガラス製造装置100のスタートアップ時の側面断面図である。It is side surface sectional drawing at the time of start-up of the plate glass manufacturing apparatus 100. FIG. 図1のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 振動板及び支持ロールの配列を示す上面図である。It is a top view which shows the arrangement | sequence of a diaphragm and a support roll. 図1の要部を示す拡大図である。It is an enlarged view which shows the principal part of FIG. 図5の変形例1を示す断面図である。It is sectional drawing which shows the modification 1 of FIG. 図5の変形例2を示す断面図である。It is sectional drawing which shows the modification 2 of FIG. 図5の変形例3を示す断面図である。It is sectional drawing which shows the modification 3 of FIG. 図5の変形例4を示す断面図である。It is sectional drawing which shows the modification 4 of FIG. 図5の変形例5を示す断面図である。It is sectional drawing which shows the modification 5 of FIG. 振動板の形状の変形例を示す図である。It is a figure which shows the modification of the shape of a diaphragm.
 以下、本発明を実施するための形態について図面を参照して説明する。尚、各図面において同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 図1は、本発明の一実施形態による音波浮上装置を備える板ガラス製造装置の定常時の側面断面図である。図2は、板ガラス製造装置100のスタートアップ時の側面断面図である。図3は、図1のIII-III線に沿った断面図である。図4は、振動板及び支持ロールの配列を示す上面図である。図5は、図1の要部を示す拡大図である。図5では、ガラスリボンの撓み、振動板の曲率等を実際よりも誇張して図示している。 FIG. 1 is a side cross-sectional view of a flat glass manufacturing apparatus provided with a sonic levitation apparatus according to an embodiment of the present invention at a steady state. FIG. 2 is a side cross-sectional view of the plate glass manufacturing apparatus 100 at the time of startup. FIG. 3 is a sectional view taken along line III-III in FIG. FIG. 4 is a top view showing the arrangement of the diaphragm and the support roll. FIG. 5 is an enlarged view showing a main part of FIG. In FIG. 5, the bending of the glass ribbon, the curvature of the diaphragm, and the like are exaggerated from the actual one.
 板ガラス製造装置100は、図1に示すように、ガラス原料10を溶解し溶融ガラス12を得る溶解装置200、溶解装置200で得られた溶融ガラス12を成形し帯板状のガラスリボン14を得る成形装置300を備える。また、板ガラス製造装置100は、成形装置300で成形されたガラスリボン14を徐冷する徐冷装置400と、成形装置300から徐冷装置400にガラスリボン14を搬送するリフトアウト装置500とを備える。リフトアウト装置500は、成形装置300と徐冷装置400との間に設けられる。 As shown in FIG. 1, the plate glass manufacturing apparatus 100 melts a glass raw material 10 to obtain a molten glass 12, and forms the molten glass 12 obtained by the melting apparatus 200 to obtain a strip-shaped glass ribbon 14. A molding apparatus 300 is provided. Further, the plate glass manufacturing apparatus 100 includes a slow cooling device 400 that gradually cools the glass ribbon 14 formed by the forming device 300, and a lift-out device 500 that transports the glass ribbon 14 from the forming device 300 to the slow cooling device 400. . The lift-out device 500 is provided between the molding device 300 and the slow cooling device 400.
 溶解装置200は、ガラス原料10を溶解し溶融ガラス12を得る。溶解装置200は、溶融ガラス12を収容する溶解槽204と、溶解槽204内に収容される溶融ガラス12の上方に火炎を形成するバーナ206とを備える。溶解槽204へ投入されたガラス原料10は、バーナ206が形成する火炎からの輻射熱によって溶融ガラス12に徐々に融け込む。溶融ガラス12は、溶解槽204から成形装置300に連続的に供給される。 The melting apparatus 200 melts the glass raw material 10 to obtain a molten glass 12. The melting apparatus 200 includes a melting tank 204 that accommodates the molten glass 12 and a burner 206 that forms a flame above the molten glass 12 accommodated in the melting tank 204. The glass raw material 10 thrown into the melting tank 204 is gradually melted into the molten glass 12 by the radiant heat from the flame formed by the burner 206. The molten glass 12 is continuously supplied from the melting tank 204 to the molding apparatus 300.
 成形装置300は、溶解装置200で得られた溶融ガラス12を成形して、帯板状のガラスリボン14を作製する装置である。成形装置300は、例えばフロート成形装置であってよい。フロート成形装置は、浴槽302内の溶融スズ304の浴面に溶融ガラス12を連続的に供給して、帯板状に成形する。成形されたガラスリボン14は、リフトアウト装置500によって溶融スズ304の浴面から引き上げられ、徐冷装置400に搬送される。 The forming apparatus 300 is an apparatus that forms the molten glass 12 obtained by the melting apparatus 200 to produce a strip-shaped glass ribbon 14. The molding apparatus 300 may be a float molding apparatus, for example. The float forming apparatus continuously supplies the molten glass 12 to the bath surface of the molten tin 304 in the bathtub 302 and forms it into a strip shape. The formed glass ribbon 14 is pulled up from the bath surface of the molten tin 304 by the lift-out device 500 and conveyed to the slow cooling device 400.
 尚、成形装置300は、フロート成形装置に限定されることはなく、例えばフュージョン成形装置であってもよい。フュージョン成形装置は、樋の内部に溶融ガラス12を連続的に供給し、樋から左右両側に溢れ出た溶融ガラス12を、樋の下縁で合流させて帯板状に成形する。 In addition, the shaping | molding apparatus 300 is not limited to a float shaping | molding apparatus, For example, a fusion molding apparatus may be sufficient. The fusion molding apparatus continuously supplies the molten glass 12 to the inside of the ridge, and the molten glass 12 overflowing from the ridge to the left and right sides is merged at the lower edge of the ridge and formed into a strip shape.
 リフトアウト装置500は、成形装置300と徐冷装置400との間に配設される断熱構造体502と、断熱構造体502の内部空間に配設されるリフトアウトロール504とを備える。断熱構造体502は、ガラスリボン14の搬送経路を囲繞する。断熱構造体502の内部には、ガラスリボン14の温度を調節するため、ヒータやクーラが設けられてもよい。リフトアウトロール504は、図示されない回転モータによって回転され、ガラスリボン14を溶融スズ304の浴面から引き上げ、徐冷装置400に搬送する。 The lift-out device 500 includes a heat insulating structure 502 disposed between the molding device 300 and the slow cooling device 400 and a lift-out roll 504 disposed in the internal space of the heat insulating structure 502. The heat insulating structure 502 surrounds the conveyance path of the glass ribbon 14. A heater or a cooler may be provided inside the heat insulating structure 502 in order to adjust the temperature of the glass ribbon 14. The lift-out roll 504 is rotated by a rotary motor (not shown), pulls up the glass ribbon 14 from the bath surface of the molten tin 304 and conveys it to the slow cooling device 400.
 徐冷装置400は、成形装置300で成形されたガラスリボン14を徐冷する。徐冷装置400は、徐冷炉402と、音波浮上装置410とを備える。尚、音波浮上装置410は、徐冷装置400、及びリフトアウト装置500のいずれに設けられてもよく、両方にまたがって設けられてもよい。 The slow cooling device 400 gradually cools the glass ribbon 14 formed by the forming device 300. The slow cooling device 400 includes a slow cooling furnace 402 and a sonic levitation device 410. The sonic levitation device 410 may be provided in any of the slow cooling device 400 and the lift-out device 500, or may be provided across both.
 徐冷炉402は、複数のヒータ402aを内部に有する。ヒータ402aは、図3に示すようにガラスリボン14の幅方向と平行に延びている。尚、ヒータ402aは、徐冷炉402の幅方向に複数に分割されていてもよい。ガラスリボン14は、徐冷炉402内を水平に搬送されながら徐冷され、徐冷炉402の出口から搬出される。その後、ガラスリボン14は、所望の寸法形状に切断され、製品である板ガラスとなる。 The slow cooling furnace 402 has a plurality of heaters 402a therein. The heater 402a extends in parallel with the width direction of the glass ribbon 14 as shown in FIG. Note that the heater 402 a may be divided into a plurality of pieces in the width direction of the slow cooling furnace 402. The glass ribbon 14 is gradually cooled while being transported horizontally in the slow cooling furnace 402, and is carried out from the outlet of the slow cooling furnace 402. Thereafter, the glass ribbon 14 is cut into a desired size and shape to become a plate glass as a product.
 音波浮上装置410は、徐冷炉402内を水平に搬送されるガラスリボン14を音波の放射圧で浮上させ、ガラスリボン14を非接触で支持する。 The sonic levitation device 410 levitates the glass ribbon 14 conveyed horizontally in the slow cooling furnace 402 with the radiation pressure of the sonic wave, and supports the glass ribbon 14 in a non-contact manner.
 音波浮上装置410は、ガラスリボン14を浮上させる音波を放射する振動板411、及び振動板411の下面からの音波を反射する反射体450を備える。幅W0(図3、図4参照)が1m~8mであって幅方向中央部の板厚が0.05mm~3mmであるガラスリボン14のうち、温度が300℃~800℃(好ましくは500℃~800℃、より好ましくは600℃~800℃)の部分は、振動板411から放射される音波の放射圧で浮上される。ガラスリボン14の上記部分は、柔らかく、傷付きやすいので、振動板411からの音波の放射圧によって非接触で支持することが好ましい。尚、振動板411は、ガラスリボン14のうち、温度が300℃未満の部分を音波の放射圧で浮上させるために用いられてもよい。 The sonic levitation device 410 includes a vibration plate 411 that emits sound waves that float the glass ribbon 14 and a reflector 450 that reflects sound waves from the lower surface of the vibration plate 411. Among the glass ribbons 14 having a width W0 (see FIGS. 3 and 4) of 1 to 8 m and a thickness of 0.05 mm to 3 mm at the center in the width direction, the temperature is 300 ° C. to 800 ° C. (preferably 500 ° C. The portion of ˜800 ° C., more preferably 600 ° C. to 800 ° C. is levitated by the radiation pressure of the sound wave radiated from the diaphragm 411. Since the above-mentioned portion of the glass ribbon 14 is soft and easily damaged, it is preferable to support the glass ribbon 14 in a non-contact manner by the radiation pressure of sound waves from the diaphragm 411. Note that the diaphragm 411 may be used to float a portion of the glass ribbon 14 having a temperature lower than 300 ° C. with the radiation pressure of sound waves.
 ガラスリボン14の幅W0は、好ましくは2m~6mである。ガラスリボン14の幅方向中央部の板厚は、好ましくは0.1mm以上である。また、ガラスリボン14の幅方向中央部の板厚は、好ましくは1mm以下、より好ましくは0.7mm以下である。 The width W0 of the glass ribbon 14 is preferably 2 to 6 m. The plate thickness at the center in the width direction of the glass ribbon 14 is preferably 0.1 mm or more. Moreover, the plate | board thickness of the center part of the width direction of the glass ribbon 14 becomes like this. Preferably it is 1 mm or less, More preferably, it is 0.7 mm or less.
 (振動板)
 振動板411は、振動子412によって励振され、上下方向に撓み振動して、上下方向に音波を放射する。振動板411から上方に放射された音波の放射圧で、ガラスリボン14が振動板411の上方に浮上する。
(Diaphragm)
The vibration plate 411 is excited by the vibrator 412, bends and vibrates in the vertical direction, and emits sound waves in the vertical direction. The glass ribbon 14 floats above the diaphragm 411 by the radiation pressure of the sound wave radiated upward from the diaphragm 411.
 振動板411の撓み振動によって形成される音波は、定在波であることが望ましい。進行波であると、振動板411からの音波の放射圧によってガラスリボン14が意図しない方向に搬送されることがある。尚、振動板411の形状や配置を最適化することで、振動板411からの音波の放射圧を利用して、ガラスリボン14を所望の方向に搬送することも可能である。 The sound wave formed by the flexural vibration of the diaphragm 411 is preferably a standing wave. If it is a traveling wave, the glass ribbon 14 may be conveyed in an unintended direction by the radiation pressure of the sound wave from the diaphragm 411. In addition, by optimizing the shape and arrangement of the vibration plate 411, the glass ribbon 14 can be conveyed in a desired direction using the radiation pressure of sound waves from the vibration plate 411.
 振動板411の撓み振動の周波数は、15kHz~50kHzであると好ましい。周波数が15kHzを下回ると、周波数が人間の可聴域になり、音が作業の障害となる。50kHzを超える振動発生は電源や振動子412の性質上、困難である。周波数は、より好ましくは18kHz~30kHzであり、さらに好ましくは19kHz~25kHz、特に好ましくは19kHz~21kHzである。 The frequency of flexural vibration of the diaphragm 411 is preferably 15 kHz to 50 kHz. When the frequency falls below 15 kHz, the frequency becomes human audible range, and the sound becomes an obstacle to work. Generation of vibration exceeding 50 kHz is difficult due to the properties of the power source and the vibrator 412. The frequency is more preferably 18 kHz to 30 kHz, further preferably 19 kHz to 25 kHz, and particularly preferably 19 kHz to 21 kHz.
 振動板411の撓み振動の振幅は、0.25μm~50μmであると好ましい。ここで、「振幅」とは、振動中心からの最大変位量をいう。振幅が0.25μm以上であると、ガラスリボン14が十分に浮上し、振幅が50μm以下であると振動板411等の破損が抑制できる。 The amplitude of the flexural vibration of the diaphragm 411 is preferably 0.25 μm to 50 μm. Here, “amplitude” means the maximum displacement from the center of vibration. When the amplitude is 0.25 μm or more, the glass ribbon 14 is sufficiently floated, and when the amplitude is 50 μm or less, damage to the diaphragm 411 and the like can be suppressed.
 振動板411の長手方向は、ガラスリボン14の幅方向と平行である。振動板411の幅方向は、ガラスリボン14の幅方向、及び上下方向に対して垂直である。 The longitudinal direction of the vibration plate 411 is parallel to the width direction of the glass ribbon 14. The width direction of the vibration plate 411 is perpendicular to the width direction of the glass ribbon 14 and the vertical direction.
 振動板411の長手方向一端部は、ホーン414やブースター416等の振動伝達部材を介して振動子412に接続されている。振動子412の振動は、振動伝達部材によって振動板411の長手方向一端部に伝達される。尚、振動伝達部材はなくてもよく、この場合、振動板411と振動子412とが直接に接続される。 One end in the longitudinal direction of the diaphragm 411 is connected to the vibrator 412 via a vibration transmitting member such as a horn 414 or a booster 416. The vibration of the vibrator 412 is transmitted to one end portion in the longitudinal direction of the diaphragm 411 by a vibration transmitting member. Note that the vibration transmitting member may be omitted, and in this case, the diaphragm 411 and the vibrator 412 are directly connected.
 一方、振動板411の長手方向他端部は、自由端部となっている。尚、振動板411の長手方向他端部は、固定端部であってもよいし、振動板411の長手方向一端部と同様に、振動伝達部材を介して振動子412に接続されてもよい。 On the other hand, the other end in the longitudinal direction of the diaphragm 411 is a free end. The other end in the longitudinal direction of the diaphragm 411 may be a fixed end, or may be connected to the vibrator 412 via a vibration transmitting member, like the one end in the longitudinal direction of the diaphragm 411. .
 振動板411は、例えば、図5に示すように、ガラスリボン14の搬送方向に間隔をおいて複数設置されている。振動板411のピッチP(図5参照)は、好ましくは200mm~700mmである。ピッチPが200mm以下であると、設備レイアウト上、後述の支持ロール490が設置出来ない。一方、ピッチPが700mm以上であると、非接触で浮上させることが困難となる。振動板411のピッチPは、より好ましくは300mm~500mmである。 For example, as shown in FIG. 5, a plurality of diaphragms 411 are installed at intervals in the conveyance direction of the glass ribbon 14. The pitch P (see FIG. 5) of the diaphragm 411 is preferably 200 mm to 700 mm. If the pitch P is 200 mm or less, a support roll 490 described later cannot be installed on the equipment layout. On the other hand, when the pitch P is 700 mm or more, it is difficult to float without contact. The pitch P of the diaphragm 411 is more preferably 300 mm to 500 mm.
 ところで、複数の振動板411が間隔をおいて配列されているので、ガラスリボン14が重力で僅かに撓み変形する。ガラスリボン14は、振動板411から遠くなるほど、重力で垂れ下がりやすい。 Incidentally, since the plurality of diaphragms 411 are arranged at intervals, the glass ribbon 14 is slightly bent and deformed by gravity. As the glass ribbon 14 is further away from the diaphragm 411, it tends to hang down due to gravity.
 そこで、振動板411の上面の横断面形状は、図5に示すように上に凸状である。ここで、「上に凸」とは、両端の間の部分が、両端を結ぶ線分よりも上方にあることを意味する。これにより、次の効果が得られる。(1)振動板411の上面のうち、音波のほとんど放射されない幅方向両端部が幅方向中央部よりも下方に位置し、重力で撓むガラスリボン14と、振動板411の幅方向両端部との接触を防止できる。(2)振動板411の上面からガラスリボン14に向かう音波が振動板411の幅方向外側に広がるので、重力で撓むガラスリボン14と、振動板411の幅方向両端部との接触を防止できる。 Therefore, the cross-sectional shape of the upper surface of the diaphragm 411 is convex upward as shown in FIG. Here, “convex upward” means that a portion between both ends is above a line segment connecting both ends. Thereby, the following effect is acquired. (1) Out of the upper surface of the vibration plate 411, both end portions in the width direction in which almost no sound waves are emitted are positioned below the center portion in the width direction, and the glass ribbon 14 is bent by gravity, and both end portions in the width direction of the vibration plate 411 Can be prevented. (2) Since the sound wave traveling from the upper surface of the vibration plate 411 toward the glass ribbon 14 spreads outward in the width direction of the vibration plate 411, it is possible to prevent contact between the glass ribbon 14 deflected by gravity and both ends of the vibration plate 411 in the width direction. .
 振動板411の上面は、図5に示すように横断面視で、水平な直線状部分と、直線状部分の両端から延びる曲線状部分とを有する。曲線状部分は、幅方向(図において左右方向)外側に行くほど下方に向かうように、上に凸の形状を有する。曲線状部分の曲率半径r11は、例えば150mm~1000mmである。曲線状部分の幅(図において左右方向寸法)W12は、振動板411の幅W11の5%~30%である。 The upper surface of the diaphragm 411 has a horizontal linear portion and curved portions extending from both ends of the linear portion in a cross-sectional view as shown in FIG. The curved portion has an upwardly convex shape so as to go downward as it goes outward in the width direction (left-right direction in the figure). The curvature radius r11 of the curved portion is, for example, 150 mm to 1000 mm. The width of the curved portion (the horizontal dimension in the figure) W12 is 5% to 30% of the width W11 of the diaphragm 411.
 振動板411の下面の横断面形状は、水平な直線状であってよい。 The cross-sectional shape of the lower surface of the diaphragm 411 may be a horizontal linear shape.
 振動板411は、平板の上面を研削して容易に得られる。 The diaphragm 411 can be easily obtained by grinding the upper surface of a flat plate.
 振動板411の幅(上方から見たときに振動板411が四角形の場合、振動板411の短辺長)W11は、好ましくは50mm~200mmである。幅W11が50mmよりも小さいと、振動板411の音波放射面の面積が小さすぎ、振動板411からのガラスリボン14の浮上が困難である。幅W11が200mmを超えると、振動板411の振動モードが縞モードになりにくく、音波の放射圧が小さくなる。振動板411の幅W11は、より好ましくは70mm~150mm、さらに好ましくは80mm~120mmである。 The width of the diaphragm 411 (when the diaphragm 411 is square when viewed from above, the short side length of the diaphragm 411) W11 is preferably 50 mm to 200 mm. When the width W11 is smaller than 50 mm, the area of the sound wave emission surface of the diaphragm 411 is too small, and it is difficult to float the glass ribbon 14 from the diaphragm 411. When the width W11 exceeds 200 mm, the vibration mode of the vibration plate 411 is less likely to be a fringe mode, and the radiation pressure of sound waves is reduced. The width W11 of the diaphragm 411 is more preferably 70 mm to 150 mm, and still more preferably 80 mm to 120 mm.
 振動板411の幅W11は、好ましくは反射体450の幅W21の50%~150%である。W11がW21の50%未満であると、反射体450とガラスリボン14が接触しやすい。一方、W11がW21の150%を超えると、振動板411が反射体450から浮上しにくい。 The width W11 of the diaphragm 411 is preferably 50% to 150% of the width W21 of the reflector 450. When W11 is less than 50% of W21, the reflector 450 and the glass ribbon 14 are likely to contact each other. On the other hand, when W11 exceeds 150% of W21, the diaphragm 411 hardly floats from the reflector 450.
 振動板411の長さL1(図3参照)は、好ましくはガラスリボン14の幅W0の95%~200%である。L1がW0の95%未満であると、振動板411の端がガラスリボン14と接触しキズが発生する。一方、L1がW0の200%を超えると、設備レイアウト上設置が困難となる。L1はW0の100%~200%であることがより好ましい。 The length L1 (see FIG. 3) of the diaphragm 411 is preferably 95% to 200% of the width W0 of the glass ribbon 14. If L1 is less than 95% of W0, the end of the diaphragm 411 comes into contact with the glass ribbon 14 and scratches are generated. On the other hand, if L1 exceeds 200% of W0, installation on the equipment layout becomes difficult. More preferably, L1 is 100% to 200% of W0.
 振動板411の長さL1(図3参照)は、好ましくは反射体450の長さL2の50%~120%である。L1がL2の50%未満であると、振動板411が下に凸に撓み、振動板411の長手方向中央部が下方に垂れる。一方、L1がL2の120%を超えると、設備レイアウト上設置が困難となる。 The length L1 of the diaphragm 411 (see FIG. 3) is preferably 50% to 120% of the length L2 of the reflector 450. When L1 is less than 50% of L2, the diaphragm 411 is convexly bent downward, and the central portion in the longitudinal direction of the diaphragm 411 hangs downward. On the other hand, when L1 exceeds 120% of L2, installation on the facility layout becomes difficult.
 振動板411は、例えばステンレス鋼、カーボン、アルミニウムもしくはアルミニウム合金、チタンもしくはチタン合金、又はニッケルもしくはニッケル合金等で形成される。ステンレス鋼やカーボンは耐熱性に優れ、アルニウムやアルミニウム合金は靱性に優れる。カーボンを用いる場合、徐冷炉402内の雰囲気を窒素雰囲気等の不活性雰囲気にしてよい。また、振動板411は、セラミックスやマンガン鋼、鋳鉄等で形成されてもよい。振動板411の材料としては、ステンレス鋼、アルミニウム又はアルミニウム合金が好ましく、ステンレス鋼がより好ましい。振動板411の材料がステンレス鋼、アルミニウム又はアルミニウム合金の場合、振動板411の厚さは例えば0.5mm~5mm、好ましくは1mm~4mmである。 The diaphragm 411 is made of, for example, stainless steel, carbon, aluminum, an aluminum alloy, titanium, a titanium alloy, nickel, a nickel alloy, or the like. Stainless steel and carbon are excellent in heat resistance, and aluminum and aluminum alloy are excellent in toughness. When carbon is used, the atmosphere in the slow cooling furnace 402 may be an inert atmosphere such as a nitrogen atmosphere. Moreover, the diaphragm 411 may be formed of ceramics, manganese steel, cast iron, or the like. As a material of the diaphragm 411, stainless steel, aluminum or aluminum alloy is preferable, and stainless steel is more preferable. When the material of the diaphragm 411 is stainless steel, aluminum, or aluminum alloy, the thickness of the diaphragm 411 is, for example, 0.5 mm to 5 mm, preferably 1 mm to 4 mm.
 振動板411は、耐食性や耐酸化性を向上するため、表面コーティングしたものであってよい。コーディング方法としては、例えば溶射法、メッキ法、蒸着法(PVD法及びCVD法を含む)等が挙げられる。溶射法で形成されるコーディング層は、例えば炭化タングステン等の超硬材、セラミックス、又はNi系合金やCr系合金等の耐熱合金を含む。メッキ法で形成されるコーディング層は、例えばCr系合金、又はNi系合金を含む。蒸着法で形成されるコーディング層は、例えばダイヤモンドライクカーボン(DLC)を含む。 The diaphragm 411 may be surface-coated in order to improve corrosion resistance and oxidation resistance. Examples of the coding method include a thermal spraying method, a plating method, a vapor deposition method (including a PVD method and a CVD method), and the like. The coating layer formed by the thermal spraying method includes, for example, a super hard material such as tungsten carbide, ceramics, or a heat resistant alloy such as a Ni-based alloy or a Cr-based alloy. The coding layer formed by the plating method includes, for example, a Cr-based alloy or a Ni-based alloy. The coding layer formed by the vapor deposition method includes, for example, diamond-like carbon (DLC).
 振動板411の一部は、徐冷炉402の外部に出ている。例えば図3に示すように、振動板411は徐冷炉402を貫通して、振動板411の長手方向両端部が徐冷炉402の外部に出ている。徐冷炉402の外部に、振動子412や振動子412を昇降可能に支持する第1の昇降装置460等が配設可能となる。 Part of the diaphragm 411 is outside the slow cooling furnace 402. For example, as shown in FIG. 3, the diaphragm 411 passes through the slow cooling furnace 402, and both end portions in the longitudinal direction of the diaphragm 411 are exposed to the outside of the slow cooling furnace 402. Outside the slow cooling furnace 402, the vibrator 412 and the first lifting device 460 that supports the vibrator 412 so as to be movable up and down can be disposed.
 (振動子)
 振動子412は、振動板411を励振させるものであって、振動板411毎に設けられる。複数の振動子412は、同じ位相で振動してもよいし、異なる位相で振動してもよい。
(Vibrator)
The vibrator 412 excites the diaphragm 411 and is provided for each diaphragm 411. The plurality of vibrators 412 may vibrate with the same phase or with different phases.
 振動子412は、超音波振動子であってよく、例えば圧電素子又は磁歪素子等で構成される。振動子412は、コンピュータ等の制御装置による制御下で、縦振動する。この縦振動が振動板411に伝達すると、振動板411が上下方向に撓み振動して、振動板411から上下方向に音波が発振される。 The vibrator 412 may be an ultrasonic vibrator, and is composed of, for example, a piezoelectric element or a magnetostrictive element. The vibrator 412 vibrates longitudinally under the control of a control device such as a computer. When this longitudinal vibration is transmitted to the vibration plate 411, the vibration plate 411 bends and vibrates in the vertical direction, and a sound wave is oscillated from the vibration plate 411 in the vertical direction.
 振動子412は、熱による劣化を抑制するため、図3に示すように徐冷炉402の外部に設置されている。徐冷炉402の外部には、振動子412等を収容する断熱ボックス430が設けられ、断熱ボックス430内の温度は冷却器440で所望の温度範囲に保たれる。 The vibrator 412 is installed outside the slow cooling furnace 402 as shown in FIG. 3 in order to suppress deterioration due to heat. A heat insulating box 430 that houses the vibrator 412 and the like is provided outside the slow cooling furnace 402, and the temperature in the heat insulating box 430 is maintained in a desired temperature range by the cooler 440.
 (断熱ボックス)
 断熱ボックス430は、複数設けられてよい。一方の断熱ボックス430内には、振動子412、第1の昇降装置460等が配置される。他方の断熱ボックス430内には、第2の昇降装置470等が配置される。
(Insulation box)
A plurality of heat insulation boxes 430 may be provided. In one heat insulation box 430, the vibrator | oscillator 412, the 1st raising / lowering apparatus 460, etc. are arrange | positioned. In the other heat insulating box 430, a second lifting device 470 and the like are arranged.
 断熱ボックス430は、例えば筐体432及び筐体432の内壁面に貼り付けられる断熱材434等からなる。筐体432は、例えばSS材等の耐熱鋼等で構成され、振動子412等で生じる騒音を遮る遮音部材として機能する。断熱材434は、例えばグラスウール、石膏ボード等で構成され、振動子412等で生じる騒音を吸収する吸音材としても機能する。 The heat insulation box 430 includes, for example, a housing 432 and a heat insulating material 434 attached to the inner wall surface of the housing 432. The housing 432 is made of, for example, heat resistant steel such as SS material, and functions as a sound insulating member that blocks noise generated by the vibrator 412 and the like. The heat insulating material 434 is made of, for example, glass wool, gypsum board, or the like, and also functions as a sound absorbing material that absorbs noise generated by the vibrator 412 or the like.
 断熱ボックス430は、徐冷炉402に接触するように固定してもよいが、徐冷炉402からの熱伝達を制限するため、例えば図3に示すように、徐冷炉402に対して離間して固定してもよい。 The heat insulating box 430 may be fixed so as to be in contact with the slow cooling furnace 402. However, in order to limit heat transfer from the slow cooling furnace 402, for example, as shown in FIG. Good.
 (冷却器)
 冷却器440は、断熱ボックス430内の温度を所望の温度範囲に保つためのものである。冷却器440は、断熱ボックス430毎に設けられ、断熱ボックス430に固定されている。
(Cooler)
The cooler 440 is for keeping the temperature in the heat insulation box 430 in a desired temperature range. The cooler 440 is provided for each heat insulation box 430 and is fixed to the heat insulation box 430.
 冷却器440は、例えば、断熱ボックス430内に冷却ガスを吹き込むことで、又は、断熱ボックス430の外壁を冷却することで、断熱ボックス430の内部を所望の温度範囲に保つ。 The cooler 440 keeps the inside of the heat insulation box 430 in a desired temperature range, for example, by blowing a cooling gas into the heat insulation box 430 or cooling the outer wall of the heat insulation box 430.
 (反射体)
 反射体450は、振動板411の下面から放射される音波を振動板411に向けて反射する上面を有する。その反射波の放射圧によって、反射体450の上方に振動板411が浮上し、振動板411の自重変形が低減する。この効果は、振動板411の長手方向他端部が自由端部である場合に顕著である。
(Reflector)
The reflector 450 has an upper surface that reflects sound waves radiated from the lower surface of the diaphragm 411 toward the diaphragm 411. Due to the radiation pressure of the reflected wave, the diaphragm 411 floats above the reflector 450, and the deformation of the diaphragm 411 by its own weight is reduced. This effect is significant when the other longitudinal end of the diaphragm 411 is a free end.
 反射体450は、断面2次モーメントを高めるため、例えば略四角環状、逆U字状、I字状、T字状、逆L字状、又はZ字状(図では略四角環状)の断面形状を有する。尚、反射体450は、板状であってもよい。反射体450の剛性を考慮すると、反射体450の断面形状は略四角環状が好ましい。 The reflector 450 has, for example, a substantially quadrangular annular shape, an inverted U shape, an I shape, a T shape, an inverted L shape, or a Z shape (substantially square annular shape in the drawing) to increase the moment of inertia of the cross section. Have The reflector 450 may be plate-shaped. Considering the rigidity of the reflector 450, the cross-sectional shape of the reflector 450 is preferably a substantially quadrangular ring.
 反射体450は、ガラスリボン14の搬送方向に間隔をおいて複数設置される。反射体450は振動板411毎に設けられ、反射体450の長手方向はガラスリボン14の幅方向と平行である。反射体450の幅方向はガラスリボン14の幅方向及び上下方向に対して垂直である。 A plurality of reflectors 450 are installed at intervals in the conveyance direction of the glass ribbon 14. The reflector 450 is provided for each vibration plate 411, and the longitudinal direction of the reflector 450 is parallel to the width direction of the glass ribbon 14. The width direction of the reflector 450 is perpendicular to the width direction and the vertical direction of the glass ribbon 14.
 反射体450の上面は、振動板411の下面から放射される音波を振動板411に向けて反射する。反射体450の上面の横断面形状は、水平な直線状であってよい。反射体450の作製(加工)が容易である。 The upper surface of the reflector 450 reflects sound waves radiated from the lower surface of the diaphragm 411 toward the diaphragm 411. The cross sectional shape of the upper surface of the reflector 450 may be a horizontal straight line. The reflector 450 can be easily manufactured (processed).
 反射体450と振動板411との間の間隙の平均値は、振動板411が振動している状態で、好ましくは30μm~120μmである。反射体450と振動板411との間の間隙の平均値が30μm未満であると、振動板411と反射体450とが接触しやすい。一方、反射体450と振動板411との間の間隙の平均値が120μmを超えるということは、振動板411の振幅が大きすぎることを意味し、振動板411が破損しやすいことを意味する。反射体450と振動板411との間の間隙の平均値は、振動板411が振動している状態で、より好ましくは50μm~100μmである。 The average value of the gap between the reflector 450 and the diaphragm 411 is preferably 30 μm to 120 μm when the diaphragm 411 is vibrating. When the average value of the gap between the reflector 450 and the diaphragm 411 is less than 30 μm, the diaphragm 411 and the reflector 450 are likely to contact each other. On the other hand, that the average value of the gap between the reflector 450 and the diaphragm 411 exceeds 120 μm means that the amplitude of the diaphragm 411 is too large and the diaphragm 411 is easily damaged. The average value of the gap between the reflector 450 and the diaphragm 411 is more preferably 50 μm to 100 μm when the diaphragm 411 is vibrating.
 反射体450の幅W21は、好ましくは50mm~200mmである。反射体450の幅W21が50mmよりも小さいと、反射体450の反射面の面積が小さすぎ、反射体450からの振動板411の浮上が困難である。一方、反射体450の幅W21が200mmを超えると、反射体450と後述の支持ロール490とを交互に並べることが困難である。反射体450の幅W21は、より好ましくは70mm~150mm、さらに好ましくは80mm~120mmである。 The width W21 of the reflector 450 is preferably 50 mm to 200 mm. If the width W21 of the reflector 450 is smaller than 50 mm, the area of the reflecting surface of the reflector 450 is too small, and it is difficult to lift the diaphragm 411 from the reflector 450. On the other hand, when the width W21 of the reflector 450 exceeds 200 mm, it is difficult to alternately arrange the reflector 450 and a support roll 490 described later. The width W21 of the reflector 450 is more preferably 70 mm to 150 mm, and further preferably 80 mm to 120 mm.
 反射体450の室温(25℃)でのヤング率は、70GPa以上であることが好ましい。70GPa以上とすることで、反射体450の自重変形を十分に抑えることができる。より好ましい範囲は190GPa以上であり、さらに好ましい範囲は210GPa以上である。 The Young's modulus at room temperature (25 ° C.) of the reflector 450 is preferably 70 GPa or more. By setting it as 70 GPa or more, the weight change of the reflector 450 can fully be suppressed. A more preferable range is 190 GPa or more, and a further preferable range is 210 GPa or more.
 反射体450の融点は、1300℃以上であることが好ましい。1300℃以上とすることで、反射体450の軟化を十分に抑えることができる。より好ましい範囲は1500℃以上であり、さらに好ましい範囲は1700℃以上である。 The melting point of the reflector 450 is preferably 1300 ° C. or higher. By setting it as 1300 degreeC or more, softening of the reflector 450 can fully be suppressed. A more preferable range is 1500 ° C. or higher, and a further preferable range is 1700 ° C. or higher.
 反射体450は、例えばステンレス鋼等の耐熱鋼やシリカ等のセラミックで形成される。ステンレス鋼としては、例えばSUS310S等が挙げられる。 The reflector 450 is made of, for example, heat resistant steel such as stainless steel or ceramic such as silica. Examples of stainless steel include SUS310S.
 反射体450の一部は、徐冷炉402の外部に出ている。例えば図3に示すように、反射体450は徐冷炉402を貫通して、反射体450の長手方向両端部が徐冷炉402の外部に出ている。よって、徐冷炉402の外部に、反射体450を昇降可能に支持する第1及び第2の昇降装置460、470が設置できる。 A part of the reflector 450 comes out of the slow cooling furnace 402. For example, as shown in FIG. 3, the reflector 450 passes through the slow cooling furnace 402, and both longitudinal ends of the reflector 450 are exposed to the outside of the slow cooling furnace 402. Therefore, the 1st and 2nd raising / lowering apparatuses 460 and 470 which support the reflector 450 so that raising / lowering is possible can be installed in the slow cooling furnace 402 outside.
 (第1の昇降装置)
 第1の昇降装置460は、例えば油圧ジャッキ等で構成され、振動子412を介して振動板411の一端部を昇降可能に支持する。振動板411が徐冷炉402の炉床に対して昇降することで、ガラスリボン14との位置関係を最適化できる。第1の昇降装置460は、振動板411毎に設けられる。
(First lifting device)
The first elevating device 460 is configured by, for example, a hydraulic jack or the like, and supports one end portion of the diaphragm 411 through the vibrator 412 so as to be movable up and down. As the vibration plate 411 moves up and down with respect to the hearth of the slow cooling furnace 402, the positional relationship with the glass ribbon 14 can be optimized. The first lifting device 460 is provided for each diaphragm 411.
 また、第1の昇降装置460は、反射体450の一端部を昇降可能に支持する。振動板411及び反射体450は、その位置関係が調節可能となるように、それぞれ独立に昇降可能となっている。 Also, the first lifting device 460 supports one end of the reflector 450 so as to be lifted and lowered. The diaphragm 411 and the reflector 450 can be moved up and down independently so that the positional relationship can be adjusted.
 (第2の昇降装置)
 第2の昇降装置470は、例えば油圧ジャッキ等で構成され、反射体450の他端部を昇降可能に支持する。第2の昇降装置470は、第1の昇降装置460と同期して、反射体450を徐冷炉402の炉床に対して昇降させる。第2の昇降装置470は、反射体450毎に設けられる。
(Second lifting device)
The second lifting / lowering device 470 is composed of, for example, a hydraulic jack or the like, and supports the other end of the reflector 450 so as to be liftable. The second lifting device 470 moves the reflector 450 up and down relative to the hearth of the slow cooling furnace 402 in synchronization with the first lifting device 460. The second lifting device 470 is provided for each reflector 450.
 尚、第1の昇降装置460及び第2の昇降装置470の間に、反射体450を昇降可能に支持する昇降装置が1つ以上設けられてもよい。反射体450の撓みが低減され、振動板411の浮上が安定化できる。 One or more lifting devices that support the reflector 450 so as to be movable up and down may be provided between the first lifting device 460 and the second lifting device 470. The bending of the reflector 450 is reduced, and the floating of the diaphragm 411 can be stabilized.
 (搬送ロール)
 搬送ロール480は、ガラスリボン14の搬送方向に間隔をおいて複数設けられている。搬送ロール480は、回転モータで駆動され、ガラスリボン14を水平に搬送する。
(Transport roll)
A plurality of transport rolls 480 are provided at intervals in the transport direction of the glass ribbon 14. The transport roll 480 is driven by a rotary motor and transports the glass ribbon 14 horizontally.
 搬送ロール480は、ガラスリボン14に傷を付けないように、ガラスリボン14の温度の低い領域に配設される。例えば、搬送ロール480は、図1に示すように徐冷炉402よりも下流に設けられることが好ましい。 The transport roll 480 is disposed in a low temperature region of the glass ribbon 14 so as not to damage the glass ribbon 14. For example, the transport roll 480 is preferably provided downstream of the slow cooling furnace 402 as shown in FIG.
 尚、搬送ロール480は、徐冷炉402の内部に設けられてもよい。この場合、搬送ロール480とガラスリボン14との接触圧が低くなるよう、搬送ロール480と振動板411とが交互に配列されてよい。 Note that the transport roll 480 may be provided inside the slow cooling furnace 402. In this case, the transport roll 480 and the diaphragm 411 may be alternately arranged so that the contact pressure between the transport roll 480 and the glass ribbon 14 is lowered.
 (支持ロール)
 支持ロール490は、徐冷炉402の内部に設けられ、ガラスリボン14を下方から支持可能なものである。支持ロール490は、ガラスリボン14の搬送方向に間隔をおいて複数設けられている。
(Support roll)
The support roll 490 is provided inside the slow cooling furnace 402 and can support the glass ribbon 14 from below. A plurality of support rolls 490 are provided at intervals in the conveyance direction of the glass ribbon 14.
 隣り合う支持ロール490の間には、振動板411が1つずつ配置されており、支持ロール490と振動板411とが交互に繰り返し並んでいる。尚、支持ロール490と振動板411との配列順序は、多種多様であってよい。 Between the adjacent support rolls 490, one diaphragm 411 is disposed, and the support roll 490 and the diaphragm 411 are alternately and repeatedly arranged. The arrangement order of the support roll 490 and the diaphragm 411 may be various.
 支持ロール490と、振動板411とは相対的に昇降可能である。例えば、支持ロール490が徐冷炉402の炉床に対して昇降可能となっており、詳しくは後述するが、状況に応じて、ガラスリボン14を下方から支持する位置(図2参照)と、ガラスリボン14から離間する退避位置(図1参照)との間で移動される。 The support roll 490 and the diaphragm 411 can be moved up and down relatively. For example, the support roll 490 can be moved up and down with respect to the hearth of the slow cooling furnace 402, as will be described in detail later, depending on the situation, a position for supporting the glass ribbon 14 from below (see FIG. 2), and a glass ribbon 14 and moved to a retracted position (see FIG. 1) that is separated from 14.
 尚、本実施形態では、支持ロール490が昇降するが、振動板411が昇降してもよい。振動板411が昇降することで、支持ロール490がガラスリボン14を下方から支持したり、ガラスリボン14から離間したりできる。 In addition, in this embodiment, although the support roll 490 raises / lowers, the diaphragm 411 may raise / lower. As the vibration plate 411 moves up and down, the support roll 490 can support the glass ribbon 14 from below or be separated from the glass ribbon 14.
 (支持ロールの使用方法)
 例えば、板ガラス製造装置100のスタートアップ時には、ガラスリボン14の厚さや形状が不均一になったりする。そのため、振動板411からの音波の放射圧だけでは、振動板411の上方にガラスリボン14を浮上させることが困難なことがある。
(How to use support roll)
For example, when the plate glass manufacturing apparatus 100 is started up, the thickness and shape of the glass ribbon 14 become uneven. Therefore, it may be difficult to float the glass ribbon 14 above the diaphragm 411 only with the radiation pressure of the sound wave from the diaphragm 411.
 そこで、板ガラス製造装置100のスタートアップ時には、図2に示すように、支持ロール490がガラスリボン14を下方から支持し、ガラスリボン14と振動板411との接触を防止する。支持ロール490は、回転モータによって回転され、ガラスリボン14を所定方向に搬送する。 Therefore, when the plate glass manufacturing apparatus 100 is started up, as shown in FIG. 2, the support roll 490 supports the glass ribbon 14 from below and prevents the glass ribbon 14 and the diaphragm 411 from contacting each other. The support roll 490 is rotated by a rotary motor and conveys the glass ribbon 14 in a predetermined direction.
 一方、板ガラス製造装置100の定常時(板ガラス製造時)には、図1に示すように、支持ロール490がガラスリボン14から離間され、振動板411からの音波の放射圧で、振動板411の上方にガラスリボン14が浮上される。支持ロール490とガラスリボン14とが接触しないので、ガラスリボン14の損傷を防止できる。支持ロール490がガラスリボン14から離間された後、支持ロール490を回転させる回転モータが停止される。 On the other hand, when the plate glass manufacturing apparatus 100 is in a steady state (at the time of plate glass manufacture), as shown in FIG. 1, the support roll 490 is separated from the glass ribbon 14, and the radiating pressure of sound waves from the vibration plate 411 The glass ribbon 14 is levitated above. Since the support roll 490 and the glass ribbon 14 do not contact, damage to the glass ribbon 14 can be prevented. After the support roll 490 is separated from the glass ribbon 14, the rotation motor that rotates the support roll 490 is stopped.
 尚、複数の振動板411を密に配置することで、支持ロール490を用いないことも可能である。 Note that the support roll 490 can be omitted by arranging the plurality of diaphragms 411 closely.
 以上、本発明の一実施形態及びその変形例について説明したが、本発明は上記実施形態等に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although one embodiment of the present invention and modifications thereof have been described above, the present invention is not limited to the above-described embodiment and the like, and various modifications are possible within the scope of the gist of the present invention described in the claims. Can be modified and changed.
 例えば、図6に示すように、振動板411は貫通孔411aを複数有してよい。この振動板411の下方には角筒状の反射体450が配置され、反射体450の上部には反射体450の内側空間に供給されるガスを外部に噴出する噴出孔450aが複数形成されている。噴出孔450aから噴き出したガスは、振動板411の貫通孔411aを通って、ガラスリボン14の下面に吹き付けられ、ガラスリボン14を浮上させる。また、徐冷炉402内にガスが供給されるので、徐冷炉402内の温度を調節できる。また、噴出孔450aから噴出するガスは、SOガスであってよい。SOガスは、ガラスリボン14の下面に防傷膜を形成できる。 For example, as shown in FIG. 6, the diaphragm 411 may have a plurality of through holes 411a. A rectangular tube-shaped reflector 450 is disposed below the diaphragm 411, and a plurality of ejection holes 450 a for ejecting the gas supplied to the inner space of the reflector 450 to the outside are formed on the reflector 450. Yes. The gas ejected from the ejection hole 450a passes through the through-hole 411a of the vibration plate 411 and is blown to the lower surface of the glass ribbon 14 to float the glass ribbon 14. Moreover, since gas is supplied into the slow cooling furnace 402, the temperature in the slow cooling furnace 402 can be adjusted. The gas ejected from the ejection hole 450a may be SO 2 gas. The SO 2 gas can form a scratch-proof film on the lower surface of the glass ribbon 14.
 また、図7の音波浮上装置410Aは、振動板411A、及び反射体450を有する。振動板411Aの上面は、横断面視で、水平な直線状部分と、該直線状部分の両端から斜め下方向に延びる傾斜部分とを有する。傾斜部分は、幅方向(図において左右方向)外側に行くほど下方に向かうように形成される。傾斜部分と水平方向とのなす角θは例えば15°~60°である。傾斜部分の幅(図において左右方向寸法)W12は、例えば振動板411Aの幅W11の5%~30%である。このように、振動板411Aの上面の横断面形状は、上に凸状になっている。従って、本変形例でも、上記実施形態と同様に、上記(1)~(2)の効果が得られる。尚、振動板411Aの下面の横断面形状は、水平な直線状である。 Further, the sonic levitation device 410A of FIG. 7 includes a diaphragm 411A and a reflector 450. The upper surface of the diaphragm 411A has a horizontal linear portion and an inclined portion extending obliquely downward from both ends of the linear portion in a cross-sectional view. The inclined portion is formed so as to go downward as it goes outward in the width direction (left-right direction in the figure). An angle θ formed by the inclined portion and the horizontal direction is, for example, 15 ° to 60 °. The width of the inclined portion (the horizontal dimension in the drawing) W12 is, for example, 5% to 30% of the width W11 of the diaphragm 411A. Thus, the cross-sectional shape of the upper surface of the vibration plate 411A is convex upward. Therefore, also in this modification, the effects (1) and (2) can be obtained as in the above embodiment. The cross-sectional shape of the lower surface of the diaphragm 411A is a horizontal straight line.
 また、図8の音波浮上装置410Bは、振動板411B、及び反射体450を有する。振動板411Bの上面の横断面形状は、上に凸の曲線状である。従って、本変形例でも、上記実施形態と同様に、上記(1)~(2)の効果が得られる。加えて、本変形例では、(3)重力で撓むガラスリボン14と振動板411Bとの間に均一な間隙が形成され、振動板411Bの上面の大部分から放射される音波がガラスリボン14の浮上に寄与し、十分な浮上力が得られる。間隙が広すぎると十分な浮上力が得られず、間隙が狭すぎるとガラスリボン14と振動板411Bが接触してしまう。 Further, the sonic levitation device 410B of FIG. 8 includes a diaphragm 411B and a reflector 450. The cross-sectional shape of the upper surface of the diaphragm 411B is an upwardly convex curve. Therefore, also in this modification, the effects (1) and (2) can be obtained as in the above embodiment. In addition, in the present modification, (3) a uniform gap is formed between the glass ribbon 14 deflected by gravity and the vibration plate 411B, and sound waves radiated from most of the upper surface of the vibration plate 411B are emitted from the glass ribbon 14. This contributes to the ascent of the buoyant and provides sufficient levitation force. If the gap is too wide, sufficient levitation force cannot be obtained, and if the gap is too narrow, the glass ribbon 14 and the diaphragm 411B come into contact with each other.
 振動板411Bの上面の曲率半径R11は、それぞれ、150mm~10000mmである。振動板411Bの上面の曲率半径R11が150mm未満であると、重力で撓むガラスリボン14と振動板411Bとの間に形成される間隙が不均一となり、振動板411Bの上面の大部分から放射される音波によってガラスリボン14が浮上しにくく、浮上力が弱くなる。一方、振動板411Bの上面の曲率半径R11が10000mmを超えると、重力で撓むガラスリボン14と、振動板411Bの幅方向両端部とが接触しやすい。振動板411Bの上面の曲率半径R11は、好ましくは300mm~8000mm、より好ましくは500mm~7000mmである。尚、振動板411Bの下面の横断面形状は、水平な直線状である。 The curvature radii R11 of the upper surface of the diaphragm 411B are 150 mm to 10000 mm, respectively. If the curvature radius R11 of the upper surface of the vibration plate 411B is less than 150 mm, the gap formed between the glass ribbon 14 bent by gravity and the vibration plate 411B becomes non-uniform, and radiation is performed from most of the upper surface of the vibration plate 411B. The glass ribbon 14 is less likely to be lifted by the generated sound wave, and the lift force is weakened. On the other hand, when the curvature radius R11 of the upper surface of the diaphragm 411B exceeds 10,000 mm, the glass ribbon 14 bent by gravity and the both ends in the width direction of the diaphragm 411B are likely to come into contact with each other. The curvature radius R11 of the upper surface of the diaphragm 411B is preferably 300 mm to 8000 mm, more preferably 500 mm to 7000 mm. Note that the cross-sectional shape of the lower surface of the diaphragm 411B is a horizontal straight line.
 また、図9の音波浮上装置410Cは、振動板411C、及び反射体450Cを有する。振動板411Cの上面の横断面形状は、上に凸の曲線状である。従って、本変形例でも、図8の変形例と同様に、上記(1)~(3)の効果が得られる。加えて、本変形例では、振動板411Cの下面の横断面形状が上に凸(下に凹)の曲線状である。振動板411Cの下面の曲率半径R12は、振動板411Cの上面の曲率半径R11よりも、振動板411Cの板厚分小さくてよい。振動板411Cは、平板を曲げ加工して容易に得られる。尚、振動板411Cは、平板を研削して作製されてもよい。 Further, the sonic levitation device 410C of FIG. 9 includes a diaphragm 411C and a reflector 450C. The cross-sectional shape of the upper surface of the vibration plate 411C is an upward convex curve. Therefore, also in this modified example, the effects (1) to (3) can be obtained as in the modified example of FIG. In addition, in this modification, the cross-sectional shape of the lower surface of the vibration plate 411C is a curved shape that is convex upward (concave downward). The curvature radius R12 of the lower surface of the diaphragm 411C may be smaller than the curvature radius R11 of the upper surface of the diaphragm 411C by the thickness of the diaphragm 411C. The diaphragm 411C can be easily obtained by bending a flat plate. The vibration plate 411C may be manufactured by grinding a flat plate.
 振動板411Cの下面の横断面形状が上に凸の曲線状の場合、反射体450Cの上面の横断面形状が上に凸の曲線状であると、振動板411Cと反射体450Cとの間に均一な間隙が形成され、反射体450Cの上面の大部分から反射される音波が振動板411Cの浮上に寄与し、十分な浮上力が得られる。 When the cross-sectional shape of the lower surface of the diaphragm 411C is an upwardly convex curved shape, if the cross-sectional shape of the upper surface of the reflector 450C is an upwardly convex curved shape, the diaphragm 411C and the reflector 450C A uniform gap is formed, and sound waves reflected from most of the upper surface of the reflector 450C contribute to the floating of the vibration plate 411C, and a sufficient floating force is obtained.
 反射体450Cの上面の曲率半径R21は、反射体450Cと振動板411Cとの間に均一な間隙が形成されるように、振動板411Cの下面の曲率半径R12の90%~110%(好ましくは90%~100%)であることが好ましい。反射体450Cの上面の曲率半径R21は、振動板411Cの下面の曲率半径R12よりも、反射体450Cと振動板411Cとの間の間隙分小さいことがより好ましい。 The curvature radius R21 of the upper surface of the reflector 450C is 90% to 110% (preferably, the curvature radius R12 of the lower surface of the diaphragm 411C so that a uniform gap is formed between the reflector 450C and the diaphragm 411C. 90% to 100%). More preferably, the radius of curvature R21 of the upper surface of the reflector 450C is smaller than the radius of curvature R12 of the lower surface of the diaphragm 411C by the gap between the reflector 450C and the diaphragm 411C.
 また、図10の音波浮上装置410Dは、図9の振動板411C、及び図8の反射体450を有する。従って、本変形例でも、図8の変形例と同様に、上記(1)~(3)の効果が得られる。加えて、本変形例では、図9の例と同様に振動板411Cの作製(加工)が容易であり、振動板411Cの加工コスト及び加工精度が良い。また、本変形例では、図5~図8の例と同様に反射体450の作製(加工)が容易であり、反射体450の加工コスト及び加工精度が良い。ここで、振動板411Cの上面の曲率半径R11、及び振動板411Cの下面の曲率半径R12が500mm以上であると、振動板411Cと反射体450との間の間隙が均一に近づき、反射体450の上面の大部分から反射される音波が振動板411Cの浮上に寄与し、有効な浮上力が得られるため、特に好ましい。 10 includes the vibration plate 411C in FIG. 9 and the reflector 450 in FIG. Therefore, also in this modified example, the effects (1) to (3) can be obtained as in the modified example of FIG. In addition, in this modified example, the vibration plate 411C can be easily manufactured (processed) as in the example of FIG. 9, and the processing cost and processing accuracy of the vibration plate 411C are good. Further, in this modification, the reflector 450 can be easily manufactured (processed) as in the examples of FIGS. 5 to 8, and the processing cost and processing accuracy of the reflector 450 are good. Here, when the curvature radius R11 of the upper surface of the vibration plate 411C and the curvature radius R12 of the lower surface of the vibration plate 411C are 500 mm or more, the gap between the vibration plate 411C and the reflector 450 approaches uniformly, and the reflector 450 The sound wave reflected from most of the upper surface of the plate contributes to the levitation of the diaphragm 411C, and an effective levitation force is obtained.
 図11は、振動板の形状の変形例を示す図である。図11では、振動板の撓みやガラスリボンの撓みを実際よりも誇張して図示している。 FIG. 11 is a diagram showing a modification of the shape of the diaphragm. In FIG. 11, the bending of the diaphragm and the bending of the glass ribbon are illustrated exaggerated than actual.
 図1等に示すリフトアウトロール504や搬送ロール480などのロールは、軸方向両端部で支持されており、軸方向中央部では支持されていない。そのため、自重によってロールの軸方向中央部がロールの軸方向両端部よりも下がることがある。その結果、ガラスリボン14の幅方向中央部がガラスリボン14の幅方向両端部よりも下がることがある。また、ロールの撓みに関係なく、ガラスリボン14の幅方向中央部がガラスリボン14の幅方向両端部よりも下がることがある。 Rolls such as the lift-out roll 504 and the transport roll 480 shown in FIG. 1 and the like are supported at both axial ends, and are not supported at the central portion in the axial direction. Therefore, the axial center part of a roll may fall rather than the axial direction both ends of a roll by dead weight. As a result, the width direction center part of the glass ribbon 14 may fall rather than the width direction both ends of the glass ribbon 14. FIG. Moreover, the center part of the width direction of the glass ribbon 14 may fall rather than the both ends of the width direction of the glass ribbon 14 irrespective of the bending of a roll.
 そこで、振動停止状態で、振動板411Dのガラスリボン幅方向中央部に対応する第1部分411D-1の上端が、振動板411Dのガラスリボン幅方向両端部に対応する第2部分411D-2および第3部分411D-3のそれぞれの上端よりも下にあってよい。ここで、ガラスリボン幅方向両端部に対応する部分とは、ガラスリボン幅方向両端部の直下に位置する部分を意味する。振動板411Dの長さがガラスリボン14の幅の95%以上であれば、振動板411Dのガラスリボン幅方向両端部に対応する第2部分411D-2および第3部分411D-3が存在する。尚、振動板長さがガラスリボン幅より若干短い場合(95%以上、100%未満)、振動板の長さ方向の両端部が前記411D-2および411D-3に相当する。 Therefore, when the vibration is stopped, the upper end of the first portion 411D-1 corresponding to the glass ribbon width direction center portion of the vibration plate 411D has the second portion 411D-2 corresponding to both ends of the vibration plate 411D in the glass ribbon width direction, and It may be below the upper end of each of the third portions 411D-3. Here, the part corresponding to both ends of the glass ribbon width direction means a part located immediately below both ends of the glass ribbon width direction. If the length of the vibration plate 411D is 95% or more of the width of the glass ribbon 14, the second portion 411D-2 and the third portion 411D-3 corresponding to both ends of the vibration plate 411D in the glass ribbon width direction exist. When the diaphragm length is slightly shorter than the glass ribbon width (95% or more and less than 100%), both end portions in the length direction of the diaphragm correspond to the above-described 411D-2 and 411D-3.
 このように、第1部分411D-1の上端が第2部分411D-2および第3部分411D-3のそれぞれの上端よりも下にあれば、ガラスリボン14が下に凸に撓んだ場合に、ガラスリボン14が振動板411Dと接触しにくく、ガラスリボン14が傷付きにくい。 As described above, if the upper end of the first portion 411D-1 is below the respective upper ends of the second portion 411D-2 and the third portion 411D-3, the glass ribbon 14 is bent convexly downward. The glass ribbon 14 is less likely to come into contact with the diaphragm 411D, and the glass ribbon 14 is less likely to be damaged.
 尚、本実施形態では、第1部分411D-1の上端が第2部分411D-2および第3部分411D-3のそれぞれの上端よりも下にあるが、同じ高さにあってもよい。高さとは、上下方向の位置を意味する。第1部分411D-1の上端が第2部分411D-2および第3部分411D-3のそれぞれの上端よりも上になければ、ガラスリボン14と振動板411Dとの接触をある程度制限できる。 In the present embodiment, the upper end of the first portion 411D-1 is lower than the upper ends of the second portion 411D-2 and the third portion 411D-3, but they may be at the same height. The height means a position in the vertical direction. If the upper end of the first portion 411D-1 is not higher than the upper ends of the second portion 411D-2 and the third portion 411D-3, contact between the glass ribbon 14 and the diaphragm 411D can be limited to some extent.
 第1部分411D-1の上端と第2部分411D-2の上端との高低差H2、および第1部分411D-1の上端と第3部分411D-3の上端との高低差H3が、それぞれ、ガラスリボン14の幅W0の0%~0.1%(好ましくは0.01%~0.1%、より好ましくは0.02%~0.1%)である。 The height difference H2 between the upper end of the first portion 411D-1 and the upper end of the second portion 411D-2, and the height difference H3 between the upper end of the first portion 411D-1 and the upper end of the third portion 411D-3, respectively. It is 0% to 0.1% (preferably 0.01% to 0.1%, more preferably 0.02% to 0.1%) of the width W0 of the glass ribbon 14.
 尚、本実施形態では、第1部分411D-1の下端が第2部分411D-2および第3部分411D-3のそれぞれの下端よりも上にあるが、同じ高さにあってもよいし、下にあってもよい。 In the present embodiment, the lower end of the first portion 411D-1 is above the lower ends of the second portion 411D-2 and the third portion 411D-3, but they may be at the same height. May be below.
 本出願は、2012年5月2日に日本国特許庁に出願された特願2012-105514号に基づく優先権を主張するものであり、特願2012-105514号の全内容を本国際出願に援用する。 This application claims priority based on Japanese Patent Application No. 2012-105514 filed with the Japan Patent Office on May 2, 2012. The entire contents of Japanese Patent Application No. 2012-105514 are incorporated herein by reference. Incorporate.
10  ガラス原料
12  溶融ガラス
14  ガラスリボン
100 板ガラス製造装置
200 溶解装置
300 成形装置
400 徐冷装置
402 徐冷炉
410 音波浮上装置
411 振動板
412 振動子
430 断熱ボックス
440 冷却器
450 反射体
460 第1の昇降装置
470 第2の昇降装置
480 搬送ロール(搬送手段)
490 支持ロール
500 リフトアウト装置
DESCRIPTION OF SYMBOLS 10 Glass raw material 12 Molten glass 14 Glass ribbon 100 Sheet glass manufacturing apparatus 200 Melting apparatus 300 Molding apparatus 400 Slow cooling apparatus 402 Slow cooling furnace 410 Sonic levitation apparatus 411 Vibration plate 412 Vibrator 430 Heat insulation box 440 Cooler 450 Reflector 460 First lifting apparatus 470 Second lifting device 480 Conveying roll (conveying means)
490 Support roll 500 Lift-out device

Claims (14)

  1.  板ガラス成形装置から連続的に引き出されるガラスリボンを搬送する際に、該ガラスリボンを音波の放射圧で浮上させる音波浮上装置であって、
     幅が1m~8mであって幅方向中央部の板厚が0.05mm~3mmである前記ガラスリボンのうち、温度が300℃~800℃の部分に音波を放射する上面を有する振動板と、
     該振動板の下面から放射される音波を反射する上面を有する反射体とを備え、
     前記振動板の長手方向は、前記ガラスリボンの幅方向と平行であり、
     前記振動板の上面の横断面形状は、上に凸状である音波浮上装置。
    When conveying a glass ribbon continuously drawn out from a sheet glass forming device, a sonic levitation device that levitates the glass ribbon with a radiant pressure of sound waves,
    Among the glass ribbons having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the center in the width direction, a diaphragm having an upper surface that emits sound waves to a portion having a temperature of 300 ° C. to 800 ° C .;
    A reflector having an upper surface that reflects sound waves emitted from the lower surface of the diaphragm,
    The longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
    The sonic levitation device, wherein the cross-sectional shape of the upper surface of the diaphragm is convex upward.
  2.  振動停止状態で、前記振動板の前記ガラスリボン幅方向中央部に対応する第1部分の上端が、前記振動板の前記ガラスリボン幅方向両端部に対応する第2部分および第3部分それぞれの上端よりも下にあるか、同じ高さにあり、
     前記第1部分の上端と前記第2部分の上端との高低差、および前記第1部分の上端と前記第3部分の上端との高低差が、それぞれ、前記ガラスリボンの幅の0%~0.1%である、請求項1に記載の音波浮上装置。
    In the vibration stopped state, the upper ends of the first portions corresponding to the glass ribbon width direction central portion of the diaphragm are the upper ends of the second portion and the third portion corresponding to the glass ribbon width direction both ends of the vibration plate, respectively. Below or at the same height,
    The height difference between the upper end of the first portion and the upper end of the second portion, and the height difference between the upper end of the first portion and the upper end of the third portion are 0% to 0% of the width of the glass ribbon, respectively. The sonic levitation device of claim 1, which is 1%.
  3.  前記反射体の室温でのヤング率が70GPa以上である請求項1又は2に記載の音波浮上装置。 The acoustic levitation device according to claim 1 or 2, wherein the reflector has a Young's modulus at room temperature of 70 GPa or more.
  4.  前記反射体の融点が1300℃以上である請求項1~3のいずれか1項に記載の音波浮上装置。 The sonic levitation apparatus according to any one of claims 1 to 3, wherein the reflector has a melting point of 1300 ° C or higher.
  5.  前記振動板は、ステンレス鋼で形成される請求項1~4のいずれか1項に記載の音波浮上装置。 The sonic levitation apparatus according to any one of claims 1 to 4, wherein the diaphragm is made of stainless steel.
  6.  前記振動板は、アルミニウム又はアルミニウム合金で形成される請求項1~4のいずれか1項に記載の音波浮上装置。 The sonic levitation apparatus according to any one of claims 1 to 4, wherein the diaphragm is formed of aluminum or an aluminum alloy.
  7.  前記ガラスリボンの前記部分を音波の放射圧で浮上させるときの前記振動板の周波数が15kHz~50kHzである請求項1~5のいずれか1項に記載の音波浮上装置。 6. The sonic levitating apparatus according to claim 1, wherein the vibration plate has a frequency of 15 kHz to 50 kHz when the portion of the glass ribbon is levitated by a radiation pressure of sound waves.
  8.  前記ガラスリボンの温度が300℃~800℃の部分を音波の放射圧で浮上させるときの前記振動板の振幅が0.25μm~50μmである請求項1~7のいずれか1項に記載の音波浮上装置。 The acoustic wave according to any one of claims 1 to 7, wherein the vibration plate has an amplitude of 0.25 to 50 µm when a portion of the glass ribbon having a temperature of 300 ° C to 800 ° C is levitated by the radiation pressure of the acoustic wave. Levitation device.
  9.  前記ガラスリボンを所定方向に搬送する搬送手段をさらに備える請求項1~8のいずれか1項に記載の音波浮上装置。 The sonic levitation apparatus according to any one of claims 1 to 8, further comprising conveying means for conveying the glass ribbon in a predetermined direction.
  10.  前記ガラスリボンを下方から支持可能な支持ロールをさらに備え、
     前記支持ロールは、前記振動板に対して相対的に昇降可能である請求項9に記載の音波浮上装置。
    Further comprising a support roll capable of supporting the glass ribbon from below;
    The sonic levitation apparatus according to claim 9, wherein the support roll is movable up and down relatively with respect to the diaphragm.
  11.  請求項1~10のいずれか1項に記載の音波浮上装置を有する、板ガラス製造装置。 A plate glass manufacturing apparatus having the sonic levitation apparatus according to any one of claims 1 to 10.
  12.  板ガラス成形装置から連続的に引き出されるガラスリボンを搬送する際に、該ガラスリボンを音波の放射圧で浮上させる音波浮上方法であって、
     幅が1m~8mであって幅方向中央部の板厚が0.05mm~3mmである前記ガラスリボンのうち、温度が300℃~800℃の部分を振動板の上面から放射される音波の放射圧で前記振動板から浮上させると共に、前記振動板の下面からの音波を反射体の上面で反射し、
     前記振動板の長手方向は、前記ガラスリボンの幅方向と平行であり、
     前記振動板の上面の横断面形状は、上に凸状である音波浮上方法。
    When conveying a glass ribbon continuously drawn out from a sheet glass forming apparatus, a sonic levitation method of levitation of the glass ribbon with sonic radiation pressure,
    Of the glass ribbon having a width of 1 to 8 m and a thickness of 0.05 mm to 3 mm in the central portion in the width direction, radiation of sound waves radiated from the upper surface of the diaphragm at a temperature of 300 ° C. to 800 ° C. And the sound wave from the lower surface of the diaphragm is reflected on the upper surface of the reflector,
    The longitudinal direction of the diaphragm is parallel to the width direction of the glass ribbon,
    The sonic levitation method, wherein the cross-sectional shape of the upper surface of the diaphragm is convex upward.
  13.  振動停止状態で、前記振動板の前記ガラスリボン幅方向中央部に対応する第1部分の上端が、前記振動板の前記ガラスリボン幅方向両端部に対応する第2部分および第3部分それぞれの上端よりも下にあるか、同じ高さにあり、
     前記第1部分の上端と前記第2部分の上端との高低差、および前記第1部分の上端と前記第3部分の上端との高低差が、それぞれ、前記ガラスリボンの幅の0%~0.1%である、請求項11に記載の音波浮上方法。
    In the vibration stopped state, the upper ends of the first portions corresponding to the glass ribbon width direction central portion of the diaphragm are the upper ends of the second portion and the third portion corresponding to the glass ribbon width direction both ends of the vibration plate, respectively. Below or at the same height,
    The height difference between the upper end of the first portion and the upper end of the second portion, and the height difference between the upper end of the first portion and the upper end of the third portion are 0% to 0% of the width of the glass ribbon, respectively. The sonic levitation method according to claim 11, which is 1%.
  14.  板ガラス成形装置から連続的に引き出されるガラスリボンを搬送する際に、請求項12又は13に記載の音波浮上方法によって前記ガラスリボンを音波の放射圧で浮上させる工程を有する、板ガラス製造方法。 A plate glass manufacturing method comprising a step of levitation of the glass ribbon with a sonic radiation pressure by the sonic levitation method according to claim 12 or 13 when transporting a glass ribbon continuously drawn from a plate glass forming apparatus.
PCT/JP2013/061925 2012-05-02 2013-04-23 Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method WO2013164964A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147030362A KR20150016223A (en) 2012-05-02 2013-04-23 Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method
CN201380022995.5A CN104271520B (en) 2012-05-02 2013-04-23 Sound wave float-up device, sound wave float method, glass sheet manufactures device and glass sheet manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-105514 2012-05-02
JP2012105514A JP2015131731A (en) 2012-05-02 2012-05-02 Sound wave floatation device and sound wave flotation method

Publications (1)

Publication Number Publication Date
WO2013164964A1 true WO2013164964A1 (en) 2013-11-07

Family

ID=49514364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061925 WO2013164964A1 (en) 2012-05-02 2013-04-23 Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method

Country Status (5)

Country Link
JP (1) JP2015131731A (en)
KR (1) KR20150016223A (en)
CN (1) CN104271520B (en)
TW (1) TW201350447A (en)
WO (1) WO2013164964A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100281A (en) * 2014-11-25 2016-05-30 株式会社豊田自動織機 Electrode manufacturing method and electrode manufacturing device
WO2020123204A3 (en) * 2018-12-13 2020-08-06 Corning Incorporated Conveying apparatus and conveying ribbon
US20200290916A1 (en) * 2017-10-31 2020-09-17 Corning Incorporated Systems and methods for processing thin glass ribbons
CN113248127A (en) * 2021-05-28 2021-08-13 河北光兴半导体技术有限公司 Glass belt on-line cutting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002398A (en) * 2016-07-01 2018-01-11 シンフォニアテクノロジー株式会社 Vibration transport device
CN111566032B (en) * 2017-10-30 2022-08-09 康宁公司 System and method for processing thin glass ribbon
CN114988388B (en) * 2022-06-08 2023-09-15 电子科技大学 Acoustic suspension CVD (chemical vapor deposition) carbon material preparation integrated device for electric spark synthesis catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724415A (en) * 1993-07-12 1995-01-27 Kaijo Corp Object floating device and object transporting device including the device and object floating method
JPH09169427A (en) * 1995-12-22 1997-06-30 Kaijo Corp Floating device and board carrying device provided with this floating device
JP2001097530A (en) * 1999-09-28 2001-04-10 Toyota Autom Loom Works Ltd Body floating device
JP2005119808A (en) * 2003-10-16 2005-05-12 Toyota Industries Corp Tabular member conveying system
JP2007191319A (en) * 2006-01-17 2007-08-02 National Institute Of Advanced Industrial & Technology Method for production of glass formed product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112517A (en) * 2003-10-06 2005-04-28 Toyota Industries Corp Object levitating and transporting device
JP4200922B2 (en) * 2004-02-19 2008-12-24 株式会社豊田自動織機 Sonic levitation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724415A (en) * 1993-07-12 1995-01-27 Kaijo Corp Object floating device and object transporting device including the device and object floating method
JPH09169427A (en) * 1995-12-22 1997-06-30 Kaijo Corp Floating device and board carrying device provided with this floating device
JP2001097530A (en) * 1999-09-28 2001-04-10 Toyota Autom Loom Works Ltd Body floating device
JP2005119808A (en) * 2003-10-16 2005-05-12 Toyota Industries Corp Tabular member conveying system
JP2007191319A (en) * 2006-01-17 2007-08-02 National Institute Of Advanced Industrial & Technology Method for production of glass formed product

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100281A (en) * 2014-11-25 2016-05-30 株式会社豊田自動織機 Electrode manufacturing method and electrode manufacturing device
US20200290916A1 (en) * 2017-10-31 2020-09-17 Corning Incorporated Systems and methods for processing thin glass ribbons
WO2020123204A3 (en) * 2018-12-13 2020-08-06 Corning Incorporated Conveying apparatus and conveying ribbon
CN113631524A (en) * 2018-12-13 2021-11-09 康宁公司 Conveying apparatus and conveying belt
US11440831B2 (en) 2018-12-13 2022-09-13 Corning Incorporated Conveying apparatus and conveying ribbon
CN113631524B (en) * 2018-12-13 2023-04-11 康宁公司 Conveying apparatus and conveying belt
US11739020B2 (en) 2018-12-13 2023-08-29 Corning Incorporated Conveying apparatus and methods for conveying ribbon
CN113248127A (en) * 2021-05-28 2021-08-13 河北光兴半导体技术有限公司 Glass belt on-line cutting device

Also Published As

Publication number Publication date
JP2015131731A (en) 2015-07-23
CN104271520A (en) 2015-01-07
TW201350447A (en) 2013-12-16
CN104271520B (en) 2016-09-21
KR20150016223A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2013164964A1 (en) Sound wave levitation device, sound wave levitation method, plate glass manufacturing apparatus, and plate glass manufacturing method
JP5883491B2 (en) Formation of flat glass with improved shape stability
JP5568080B2 (en) Heating apparatus, system and method for stabilizing sheet material
JP5869782B2 (en) Levitation conveyance heating device
EP2251310A1 (en) Methods and systems for forming continuous glass sheets
JP6862356B2 (en) Continuous machining of flexible glass ribbons with reduced mechanical stress
TWI701105B (en) Glass substrate support apparatuses and methods of providing flexible glass substrate support
JP2016528160A (en) Apparatus and method for processing molten glass
TW516346B (en) Device for heating printed-circuit board
KR101229184B1 (en) Heat treatment apparatus and heat treatment method
JPWO2018151166A1 (en) Molded glass molding method, molding apparatus, and glass product manufacturing method
JP4627164B2 (en) Substrate holding structure and substrate processing apparatus
JPH09169427A (en) Floating device and board carrying device provided with this floating device
JP5309858B2 (en) Method for producing thin glass plate by float method
JP6053468B2 (en) Levitation transfer heat treatment equipment
JP4466114B2 (en) Bearing for roll in bath of hot dipping bath
US10407335B2 (en) Ultrasonic near field hot glass transportation and forming
JP2014103231A (en) Cooling device
JP5519911B2 (en) Cooling floor
JP2004244657A (en) Roll for continuous hot dip metal plating
JP2014189421A (en) Scribe line processing device, scribe line processing method, and method of manufacturing plate glass
JP2018008858A (en) Manufacturing apparatus of glass article and method of manufacturing glass article
JP2006283092A (en) Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147030362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP