JP2006283092A - Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same - Google Patents

Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same Download PDF

Info

Publication number
JP2006283092A
JP2006283092A JP2005103451A JP2005103451A JP2006283092A JP 2006283092 A JP2006283092 A JP 2006283092A JP 2005103451 A JP2005103451 A JP 2005103451A JP 2005103451 A JP2005103451 A JP 2005103451A JP 2006283092 A JP2006283092 A JP 2006283092A
Authority
JP
Japan
Prior art keywords
heat transfer
heating furnace
heated
type continuous
beam type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103451A
Other languages
Japanese (ja)
Inventor
Kazunao Takahashi
和直 高橋
Munehiro Ishioka
宗浩 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005103451A priority Critical patent/JP2006283092A/en
Publication of JP2006283092A publication Critical patent/JP2006283092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a walking beam type continuous heating furnace capable of locally heating a specified position of a workpiece to be heated while suppressing an increase in the fuel consumption and a steep rise in the equipment cost, and maintaining the production efficiency. <P>SOLUTION: The walking beam type continuous heating furnace is provided in which a combustion burner 8 is arranged below skid beams 10, 12 to support and transport a work S to be heated, and a heat transfer enhancement apparatus 14 is arranged on a hearth side below the combustion burner 8. The heat transfer enhancement apparatus absorbs the infrared light radiated from the combustion burner 8, and locally generates the radiant heat toward a vicinity of a supporting part of the skid beams 10, 12 to support the workpiece S. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱炉内の被加熱材の特定部位を局部的に加熱する伝熱促進装置及びこの装置を備えたウォーキングビーム式連続加熱炉に関する。   The present invention relates to a heat transfer acceleration device for locally heating a specific part of a material to be heated in a heating furnace and a walking beam type continuous heating furnace provided with this device.

連続鋳造されたスラブ、ブルーム、ビレット等の金属材を最終製品に圧延するために加熱する連続加熱炉として、近年、ウォーキングビーム式連続加熱炉が広く採用されている。
ウォーキングビーム式連続加熱炉の炉内に搬入された金属材(以下、被加熱材)は、炉長方向に並列に延設された複数の固定スキッドビーム上に所定間隔ごとに配置したスキッドボタンと、複数の固定スキッドビームの間に配置されて炉長方向に間欠的に運動する可動スキッドビームのスキッドボタンとに交互に乗り換えながら抽出側に搬送される。
In recent years, walking beam type continuous heating furnaces have been widely adopted as continuous heating furnaces for heating continuously cast metal materials such as slabs, blooms, billets and the like into final products.
The metal material carried into the walking beam type continuous heating furnace (hereinafter referred to as the material to be heated) includes a skid button disposed at predetermined intervals on a plurality of fixed skid beams extending in parallel in the furnace length direction. The movable skid beam is disposed between a plurality of fixed skid beams and intermittently moves in the furnace length direction, and is transferred to the extraction side while alternately changing to a skid button of the movable skid beam.

このウォーキングビーム式連続加熱炉の搬送過程で、被加熱材は、炉内の下部に設けた燃焼バーナから噴射される火炎により所定温度で加熱されることになるが、前述した固定スキッドビーム及び可動スキッドビームは内部を循環する冷却水によって炉内温度より低温になっており、燃焼バーナの火炎の放射熱が、固定スキッドビーム及び可動スキッドビームに遮られ、これらの陰に位置してスキッドボタンに接触している被加熱材の接触部分近傍の伝熱特性が低くなる。   During the transport process of this walking beam type continuous heating furnace, the material to be heated is heated at a predetermined temperature by a flame injected from a combustion burner provided in the lower part of the furnace. The skid beam is cooled below the furnace temperature by the cooling water circulating inside, and the radiant heat of the flame of the combustion burner is blocked by the fixed and movable skid beams. Heat transfer characteristics in the vicinity of the contact portion of the material to be heated that are in contact with each other are lowered.

このため、被加熱材の接触部分近傍の温度が、被加熱材の他の部分の温度と比較して低温となり、その結果、抽出後の被加熱材にスキッドマークが発生しやすい。このスキッドマークは、圧延後の製品の寸法精度、品質等に悪影響を及ぼすので、これを発生させないことが望まれる。
被加熱材のスキッドマークを抑制する方法として、炉長を長くしたり搬送速度を遅くするなどして被加熱材の在炉時間を延ばす方法がある。しかし、この方法では燃料消費量が増大して製造コストが高くなり、且つ生産性の低下も招くことになる。
For this reason, the temperature in the vicinity of the contact portion of the heated material is lower than the temperature of the other portion of the heated material, and as a result, a skid mark is likely to occur in the heated material after extraction. Since this skid mark adversely affects the dimensional accuracy, quality, etc. of the product after rolling, it is desirable not to generate this.
As a method for suppressing the skid mark of the material to be heated, there is a method of extending the in-furnace time of the material to be heated by increasing the furnace length or slowing the conveying speed. However, this method increases the fuel consumption, increases the manufacturing cost, and decreases the productivity.

そこで、燃焼バーナとは別に補助燃焼バーナを炉内に配置し、被加熱材のスキッドマークが発生しやすい部分に、補助燃焼バーナの火炎を直接、或いは、高温の燃焼ガスをチューブを介して局部的に吹き付けて加熱する方法が考えられている(例えば、特許文献1、特許文献2を参照)。
実公昭60−38658号公報 実公昭57−27787号公報
Therefore, an auxiliary combustion burner is arranged in the furnace separately from the combustion burner, and the flame of the auxiliary combustion burner is directly applied to the portion where the skid mark of the heated material is likely to be generated, or the high-temperature combustion gas is locally passed through the tube. The method of spraying and heating is considered (for example, refer patent document 1 and patent document 2).
Japanese Utility Model Publication No. 60-38658 Japanese Utility Model Publication No.57-27787

しかし、特許文献1、2のように被加熱材のスキッドマークが発生しやすい部分を局部的に加熱する方法は、炉内に多数の燃焼バーナ、補助燃焼バーナや、各バーナに接続する配管類が必要となるので、設備コストの高騰化を招いてしまう。
本発明はこのような不都合を解消するためになされたものであり、燃料消費量の増大、設備コストの高騰を抑制し、生産能率を維持しながら被加熱材の特定位置を局部的に加熱することができる加熱炉の伝熱促進装置及びこの装置を備えたウォーキングビーム式連続加熱炉を提供することを目的とする。
However, as in Patent Documents 1 and 2, the method of locally heating the portion where the skid mark of the material to be heated is likely to occur is a large number of combustion burners, auxiliary combustion burners, and piping connected to each burner. Therefore, the equipment cost will increase.
The present invention has been made in order to eliminate such inconveniences, and suppresses an increase in fuel consumption and equipment cost, and locally heats a specific position of a material to be heated while maintaining production efficiency. It is an object of the present invention to provide a heat transfer promotion device for a heating furnace and a walking beam type continuous heating furnace equipped with the device.

前記課題を解決するため、本発明に係る加熱炉の伝熱促進装置は、加熱炉内の被加熱材の特定部位を局部的に加熱する伝熱促進装置であって、燃焼バーナの火炎から放散する赤外線を吸収することで放射熱が発生し、この放射熱が前記特定部位に向かうように前記加熱炉内の所定の位置に配置した加熱炉の伝熱促進装置である。
また、請求項2記載の発明は、請求項1記載の加熱炉の伝熱促進装置を、赤外線を吸収することで放射熱が発生する耐火物により形成した。
また、請求項3記載の発明は、請求項1記載の加熱炉の伝熱促進装置を、熱放射性を有する部材とした。
In order to solve the above problems, a heat transfer promotion device for a heating furnace according to the present invention is a heat transfer promotion device for locally heating a specific part of a material to be heated in a heating furnace, and dissipates from the flame of a combustion burner. It is a heat transfer facilitating device for a heating furnace that is arranged at a predetermined position in the heating furnace so that radiant heat is generated by absorbing infrared rays to be emitted and the radiant heat is directed to the specific part.
In the invention according to claim 2, the heat transfer promotion device for a heating furnace according to claim 1 is formed of a refractory material that generates radiant heat by absorbing infrared rays.
Moreover, invention of Claim 3 made the heat transfer acceleration | stimulation apparatus of the heating furnace of Claim 1 the member which has thermal radiation property.

また、請求項4記載の発明は、請求項3記載の加熱炉の伝熱促進装置を、耐火物と、この耐火物の前記特定部位に対向している面に設けた熱放射性層とで構成した。
一方、請求項5記載の発明は、被加熱材を支持して搬送するスキッドビームの下方に燃焼バーナを配置し、この燃焼バーナの下方の炉床側に、請求項1乃至4の何れかに記載の伝熱促進装置を配置したウォーキングビーム式連続加熱炉において、前記被加熱材の特定部位を、前記スキッドビームの前記被加熱材を支持している支持部近傍とし、前記伝熱促進装置により前記支持部近傍を局部的に加熱するようにした。
さらに、請求項6記載の発明は、請求項4記載の伝熱促進装置を備えたウォーキングビーム式連続加熱炉において、前記伝熱促進装置は、稜線が炉長方向に延在し、前記稜線から2枚の平板が所定の傾斜角度で斜め下方に延在するように山形状に配置されており、前記2枚の平板が前記支持部近傍に対面している。
The invention according to claim 4 comprises the heat transfer promoting device for a heating furnace according to claim 3 with a refractory and a heat radiation layer provided on a surface of the refractory facing the specific portion. did.
On the other hand, in the invention according to claim 5, a combustion burner is disposed below a skid beam that supports and conveys the material to be heated, and a furnace floor side below the combustion burner is provided with any one of claims 1 to 4. In the walking beam type continuous heating furnace in which the heat transfer promotion device described above is arranged, the specific portion of the material to be heated is set in the vicinity of a support portion that supports the material to be heated of the skid beam, and the heat transfer promotion device The vicinity of the support portion was locally heated.
Further, the invention according to claim 6 is the walking beam type continuous heating furnace provided with the heat transfer promotion device according to claim 4, wherein the heat transfer promotion device has a ridge line extending in a furnace length direction, and the ridge line extends from the ridge line. The two flat plates are arranged in a mountain shape so as to extend obliquely downward at a predetermined inclination angle, and the two flat plates face each other in the vicinity of the support portion.

本発明に係る加熱炉の伝熱促進装置によると、被加熱材の在炉時間を延長しないので、燃料消費量、製造コストを抑制し、生産能率も維持することができる。
また、本発明に係るウォーキングビーム式連続加熱炉によると、上記効果を奏することができるとともに、伝熱促進装置が、スキッドビームの被加熱材を支持している支持部近傍を局部的に加熱するので、抽出後の被加熱材に対してスキッドマークの発生を防止することができる。
According to the heat transfer acceleration device for a heating furnace according to the present invention, since the in-furnace time of the material to be heated is not extended, the fuel consumption and the manufacturing cost can be suppressed, and the production efficiency can be maintained.
In addition, according to the walking beam type continuous heating furnace according to the present invention, the above-described effects can be achieved, and the heat transfer promotion device locally heats the vicinity of the support portion that supports the heated material of the skid beam. Therefore, it is possible to prevent the occurrence of skid marks on the heated material after extraction.

以下、本発明に係るウォーキングビーム式連続加熱炉の1実施形態について、図面を参照しながら説明する。
図1は、ウォーキングビーム式連続加熱炉の炉幅方向の断面図であり、図2は、ウォーキングビーム式連続加熱炉の炉長方向の断面図であり、図3は、ウォーキングビーム式連続加熱炉の要部の位置関係を示す図である。
本実施形態のウォーキングビーム式連続加熱炉は、金属製ケーシング内に耐火物を内張りしてなる炉壁2及び炉床4が、炉体6の一部を構成している。
炉壁2には、炉長方向に所定の間隔をあけて複数の燃焼バーナ8が互いに並列に配置されている。
Hereinafter, an embodiment of a walking beam type continuous heating furnace according to the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view in the furnace width direction of the walking beam type continuous heating furnace, FIG. 2 is a sectional view in the furnace length direction of the walking beam type continuous heating furnace, and FIG. 3 is a walking beam type continuous heating furnace. It is a figure which shows the positional relationship of the principal part.
In the walking beam type continuous heating furnace of this embodiment, a furnace wall 2 and a hearth 4 formed by lining a refractory in a metal casing constitute a part of the furnace body 6.
A plurality of combustion burners 8 are arranged on the furnace wall 2 in parallel with each other at a predetermined interval in the furnace length direction.

複数の燃焼バーナ8の上方には、炉長方向に並列に延在している複数の固定スキッドビーム10と、複数の固定スキッドビーム10の間で炉長方向に間欠的に運動する複数の可動スキッドビーム12とが配置されており、固定スキッドビーム10の上部及び可動スキッドビーム12の上部には、所定間隔をあけてスキッドボタン10a,12aが設けられている。なお、固定スキッドビーム10及び可動スキッドビーム12は、内部を循環する冷却水によって炉内温度より低温に設定されている。   Above the plurality of combustion burners 8, a plurality of fixed skid beams 10 extending in parallel in the furnace length direction and a plurality of movables moving intermittently in the furnace length direction between the plurality of fixed skid beams 10. A skid beam 12 is disposed, and skid buttons 10 a and 12 a are provided at predetermined intervals above the fixed skid beam 10 and the movable skid beam 12. The fixed skid beam 10 and the movable skid beam 12 are set to a temperature lower than the furnace temperature by cooling water circulating inside.

そして、複数の可動スキッドビーム12が炉長方向に間欠的に運動すると、炉体6内部に搬入されたスラブ(被加熱材)Sは、固定スキッドビーム10のスキッドボタン10aと、可動スキッドビーム12のスキッドボタン12aに乗り換えながら炉体6の抽出側に向けて搬送されていく。
燃焼バーナ8の下方の炉床4上には、複数の伝熱促進装置14が配置されている。
Then, when the plurality of movable skid beams 12 move intermittently in the furnace length direction, the slab (material to be heated) S carried into the furnace body 6 has a skid button 10 a of the fixed skid beam 10 and the movable skid beam 12. It is conveyed toward the extraction side of the furnace body 6 while changing to the skid button 12a.
A plurality of heat transfer promotion devices 14 are arranged on the hearth 4 below the combustion burner 8.

これら伝熱促進装置14は、固定スキッドビーム10及び可動スキッドビーム12の下方に位置し、炉長方向に延在しながら、炉幅方向に所定間隔を開けて平行に配置されている。
各伝熱促進装置14は、耐火物により形成された長尺で横断面V字形状の部材であり、稜線rが炉長方向に延在し、この稜線rから2つの平面形状の伝熱板14a,14bが所定の傾斜角度で斜め下方に延在する山形状に配置され、炉床4から立ち上がる支持部材16に支持されている。
These heat transfer promotion devices 14 are positioned below the fixed skid beam 10 and the movable skid beam 12, and are arranged in parallel at predetermined intervals in the furnace width direction while extending in the furnace length direction.
Each heat transfer promotion device 14 is a long member having a V-shaped cross section formed of a refractory material. A ridge line r extends in the furnace length direction, and two planar heat transfer plates are formed from the ridge line r. 14 a and 14 b are arranged in a mountain shape extending obliquely downward at a predetermined inclination angle, and are supported by a support member 16 rising from the hearth 4.

なお、図3に示すように、固定スキッドビーム10及び可動スキッドビーム12の幅方向間隔H1が約1000mm、伝熱促進装置14と固定スキッドビーム10(或いは可動スキッドビーム12)の上下方向間隔H2が1000〜2000mmである場合には、伝熱促進装置14の伝熱板14a,14bの開き角度αは約60度に設定されている。
上記構成のウォーキングビーム式連続加熱炉の炉内に搬入されたスラブSは、固定スキッドビーム10のスキッドボタン10aと、可動スキッドビーム12のスキッドボタン12aに乗り換えながら炉体6の抽出側に向けて搬送されていく。
As shown in FIG. 3, the widthwise interval H1 between the fixed skid beam 10 and the movable skid beam 12 is about 1000 mm, and the vertical distance H2 between the heat transfer promoting device 14 and the fixed skid beam 10 (or the movable skid beam 12) is as follows. In the case of 1000 to 2000 mm, the opening angle α of the heat transfer plates 14 a and 14 b of the heat transfer promoting device 14 is set to about 60 degrees.
The slab S carried into the walking beam type continuous heating furnace configured as described above is directed toward the extraction side of the furnace body 6 while changing over to the skid button 10a of the fixed skid beam 10 and the skid button 12a of the movable skid beam 12. It will be transported.

この搬送過程で、スラブSは、炉内下部に設けた燃焼バーナ8から噴射される火炎により所定温度で加熱されることになるが、燃焼バーナ8の火炎の放射熱が、固定スキッドビーム10及び可動スキッドビーム12に遮られ、これら固定スキッドビーム10及び可動スキッドビーム12の陰に位置し、スキッドボタン10a,12aに接触しているスラブSの接触部分近傍の伝熱特性が低くなるおそれがある。   In this conveying process, the slab S is heated at a predetermined temperature by the flame injected from the combustion burner 8 provided in the lower part of the furnace, and the radiant heat of the flame of the combustion burner 8 There is a possibility that the heat transfer characteristic in the vicinity of the contact portion of the slab S which is blocked by the movable skid beam 12 and is behind the fixed skid beam 10 and the movable skid beam 12 and is in contact with the skid buttons 10a and 12a may be lowered. .

そこで、本実施形態では、燃焼バーナ8の下方に配置した複数の伝熱促進装置14が、燃焼バーナ8から放散した赤外線を吸収し、放射熱を発生する。特に、2つの伝熱板14a,14bから斜め上方に向けて放射熱が誘導されていく。このように、各伝熱促進装置14の2つの伝熱板14a,14bから斜め上方に向けて放射熱が誘導されていくと、スキッドボタン10a,12aに接触しているスラブSの接触部分近傍が局部的に加熱されていく。   Therefore, in the present embodiment, the plurality of heat transfer promotion devices 14 arranged below the combustion burner 8 absorb the infrared rays diffused from the combustion burner 8 and generate radiant heat. In particular, radiant heat is induced obliquely upward from the two heat transfer plates 14a and 14b. As described above, when radiant heat is induced obliquely upward from the two heat transfer plates 14a and 14b of each heat transfer promoting device 14, the vicinity of the contact portion of the slab S that is in contact with the skid buttons 10a and 12a. Will be heated locally.

これにより、スラブSの接触部分近傍の温度は、スラブSの他の部分の温度と殆ど変化せず、抽出後のスラブSにはスキッドマークが発生しない。
したがって、本実施形態は、燃焼バーナ8の下方に配置した伝熱促進装置14が、燃焼バーナ8の火炎から放散する赤外線を吸収して放射熱を発生し、この放射熱をスラブSの接触部分近傍に向けて誘導することで局部的に加熱するようにしているので、従来のように、炉長を長くしたり搬送速度を遅くするなどして被加熱材の在炉時間を延ばす方法や、多数の燃焼バーナや配管類を炉内に配置する方法と比較して、燃料消費量の増大、設備コストの高騰を抑制することができるとともに、生産能率を維持することができる。
Thereby, the temperature in the vicinity of the contact portion of the slab S is hardly changed from the temperature of the other portion of the slab S, and no skid mark is generated in the slab S after extraction.
Therefore, in the present embodiment, the heat transfer promotion device 14 disposed below the combustion burner 8 absorbs infrared rays radiated from the flame of the combustion burner 8 to generate radiant heat, and this radiant heat is generated in the contact portion of the slab S. Since it is heated locally by inducing toward the vicinity, as in the past, a method of extending the in-furnace time of the material to be heated, such as increasing the furnace length or slowing the conveying speed, Compared with a method in which a large number of combustion burners and pipes are arranged in the furnace, an increase in fuel consumption and an increase in equipment costs can be suppressed, and production efficiency can be maintained.

次に、図4に示すものは、伝熱促進装置の他の実施形態を示すものである。
本実施形態の伝熱促進装置20は、耐火物基部22と、耐火物基部22の上面に設けた熱放射性層24とで構成されている。
耐火物基部22は、稜線rが炉長方向に延在し、この稜線rから2つの平面形状の基板22a,22bが所定の傾斜角度で斜め下方に延在する山形状に配置され、炉床4から立ち上がる支持部材16に支持されている。
Next, what is shown in FIG. 4 shows another embodiment of the heat transfer promoting device.
The heat transfer promoting device 20 of the present embodiment includes a refractory base 22 and a heat radiation layer 24 provided on the upper surface of the refractory base 22.
The refractory base 22 is arranged in a mountain shape in which a ridge line r extends in the furnace length direction, and two planar substrates 22a and 22b extend obliquely downward at a predetermined inclination angle from the ridge line r. 4 is supported by a support member 16 rising from 4.

また、熱放射性層24は、耐火物基部22の基板22a,22bの上面に設けられている。この熱放射性層24は、例えば酸化チタン等を含有した熱放射性塗料を基板22a,22b上に塗布することで設けられている。熱放射性層24は、赤外線の全波長を吸収するとともに、高エネルギの放射熱を発生する性質を有する。
上記構成の伝熱促進装置20を燃焼バーナ8の下方に配置すると、熱放射性層24は、燃焼バーナ8から放散した赤外線の全波長を吸収し、高エネルギの放射熱を発生する。
Further, the heat radiation layer 24 is provided on the upper surfaces of the substrates 22 a and 22 b of the refractory base 22. The thermal radiation layer 24 is provided by applying a thermal radiation paint containing, for example, titanium oxide on the substrates 22a and 22b. The heat radiation layer 24 has a property of absorbing all wavelengths of infrared rays and generating high energy radiant heat.
When the heat transfer promoting device 20 having the above-described configuration is disposed below the combustion burner 8, the heat radiation layer 24 absorbs all wavelengths of infrared rays diffused from the combustion burner 8, and generates high-energy radiant heat.

そして、耐火物基部22の基板22a,22bの上面に設けられている熱放射性層24から、斜め上方に向けて高エネルギの放射熱が誘導されていく。これにより、スキッドボタン10a,12aに接触しているスラブSの接触部分近傍が、伝熱促進装置20からの高エネルギの放射熱によって急速に加熱されていく。
これにより、本実施形態も、スラブSの接触部分近傍の温度がスラブSの他の部分の温度と殆ど変化せず、抽出後のスラブSにはスキッドマークが発生しない。
And high energy radiant heat is induced | guided | derived toward diagonally upward from the heat radiation layer 24 provided in the upper surface of the board | substrates 22a and 22b of the refractory base part 22. FIG. Thereby, the contact part vicinity of the slab S which is contacting the skid buttons 10a and 12a is rapidly heated by the high energy radiant heat from the heat-transfer promotion apparatus 20. FIG.
Thereby, also in this embodiment, the temperature of the contact part vicinity of the slab S hardly changes with the temperature of the other part of the slab S, and a skid mark does not generate | occur | produce in the slab S after extraction.

したがって、本実施形態は、燃焼バーナ8の下方に配置した伝熱促進装置22の熱放射性層24が、燃焼バーナ8の火炎から放散する赤外線の全波長を吸収して高エネルギの放射熱を発生するので、固定スキッドビーム10及び可動スキッドビーム12に遮られているスラブSの接触部分近傍を、効率良く加熱することができる。
なお、上述した伝熱促進装置20では、耐火物基部22の基板22a,22bの上面に熱放射性塗料を塗布することで熱放射性層24を設けたが、シート状の熱放射性材料を基板22a,22bの上面に設けても、同様の効果を奏することができる。
Therefore, in the present embodiment, the heat radiation layer 24 of the heat transfer promoting device 22 disposed below the combustion burner 8 absorbs all wavelengths of infrared rays radiated from the flame of the combustion burner 8 to generate high energy radiant heat. Therefore, the vicinity of the contact portion of the slab S blocked by the fixed skid beam 10 and the movable skid beam 12 can be efficiently heated.
In the heat transfer promoting device 20 described above, the heat radiating layer 24 is provided by applying a heat radiating paint on the upper surfaces of the substrates 22a and 22b of the refractory base 22, but the sheet-like heat radiating material is formed on the substrates 22a and 22b. Even if it is provided on the upper surface of 22b, the same effect can be obtained.

ここで、図5は、スラブSの接触部分近傍(スキッドボタン10a,12aに接触している部分の近傍)への入熱量と、接触部分以外(接触部分から離れた位置)の入熱量との比較を、本発明に係るウォーキングビーム式連続加熱炉と、従来のウォーキングビーム式連続加熱炉とで比較した実験結果である。なお、図5の縦軸の形態係数は、スラブSへの入熱量の指標であり、形態係数が高い場合には、スラブSに対する加熱能力が増大し、形態係数が低い場合には、スラブSに対する加熱能力が減少していることを意味している。   Here, FIG. 5 shows the amount of heat input to the vicinity of the contact portion of the slab S (near the portion in contact with the skid buttons 10a and 12a) and the amount of heat input other than the contact portion (position away from the contact portion). It is the experimental result which compared the comparison with the walking beam type continuous heating furnace which concerns on this invention, and the conventional walking beam type continuous heating furnace. Note that the shape factor on the vertical axis in FIG. 5 is an index of the amount of heat input to the slab S. When the shape factor is high, the heating capacity for the slab S increases, and when the shape factor is low, the slab S This means that the heating capacity against is decreasing.

この図5の実験結果から、従来のウォーキングビーム式連続加熱炉は、スラブSの接触部分近傍と接触部分以外との間に大きな形態係数の差が発生しているが、本発明に係るウォーキングビーム式連続加熱炉は、スラブSの接触部分近傍と接触部分以外との間の形態係数の差が小さいので、伝熱促進装置がスラブSの接触部分近傍を局部的に加熱していることが明らかである。   From the experimental results of FIG. 5, the conventional walking beam type continuous heating furnace has a large difference in form factor between the vicinity of the contact portion of the slab S and the portion other than the contact portion. Since the difference in the shape factor between the contact portion of the slab S and the non-contact portion is small in the continuous heating furnace, it is clear that the heat transfer promotion device locally heats the vicinity of the contact portion of the slab S It is.

本発明に係るウォーキングビーム式連続加熱炉を示す炉幅方向の断面図である。It is sectional drawing of the furnace width direction which shows the walking beam type continuous heating furnace which concerns on this invention. 本発明に係るウォーキングビーム式連続加熱炉を示す炉長方向の断面図である。It is sectional drawing of the furnace length direction which shows the walking beam type continuous heating furnace which concerns on this invention. 本発明に係るウォーキングビーム式連続加熱炉の要部の位置関係を示す図である。It is a figure which shows the positional relationship of the principal part of the walking beam type continuous heating furnace which concerns on this invention. 本発明に係るウォーキングビーム式連続加熱炉に配置した伝熱促進装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the heat-transfer promotion apparatus arrange | positioned at the walking beam type continuous heating furnace which concerns on this invention. 従来のウォーキングビーム式連続加熱炉と、本発明に係るウォーキングビーム式連続加熱炉とにおいて、被加熱材に対する加熱能力を比較した図である。It is the figure which compared the heating capability with respect to a to-be-heated material in the conventional walking beam type continuous heating furnace and the walking beam type continuous heating furnace which concerns on this invention.

符号の説明Explanation of symbols

2 炉壁
4 炉床
6 炉体(加熱炉)
8 燃焼バーナ
10 固定スキッドビーム
10a スキッドボタン
12 可動スキッドビーム
12a スキッドボタン
14,20 伝熱促進装置
14a,14b 伝熱板(平板)
22 耐火物基部(耐火物)
22a,22b 基板(平板)
24 熱放射性層
S スラブ(被加熱材)
2 furnace wall 4 hearth 6 furnace body (heating furnace)
8 Combustion Burner 10 Fixed Skid Beam 10a Skid Button 12 Movable Skid Beam 12a Skid Button 14, 20 Heat Transfer Promoters 14a, 14b Heat Transfer Plate (Flat Plate)
22 Refractory base (refractory)
22a, 22b Substrate (flat plate)
24 Thermal radiation layer S Slab (material to be heated)

Claims (6)

加熱炉内の被加熱材の特定部位を局部的に加熱する伝熱促進装置であって
燃焼バーナの火炎から放散する赤外線を吸収することで放射熱が発生し、この放射熱が前記特定部位に向かうように前記加熱炉内の所定の位置に配置されていることを特徴とする加熱炉の伝熱促進装置。
A heat transfer facilitating device that locally heats a specific part of a material to be heated in a heating furnace, which absorbs infrared rays that are dissipated from the flame of a combustion burner, and generates radiant heat. A heat transfer promotion device for a heating furnace, which is disposed at a predetermined position in the heating furnace so as to face.
赤外線を吸収することで放射熱が発生する耐火物により形成されていることを特徴とする請求項1記載の加熱炉の伝熱促進装置。   2. The heat transfer promotion device for a heating furnace according to claim 1, wherein the heat transfer promotion device is formed of a refractory that generates radiant heat by absorbing infrared rays. 部材が熱放射性を有することを特徴とする請求項1記載の加熱炉の伝熱促進装置。   The heat transfer promoting device for a heating furnace according to claim 1, wherein the member has thermal radiation. 耐火物と、この耐火物の前記特定部位に対向している面に設けた熱放射性層とで構成されていることを特徴とする請求項3記載の加熱炉の伝熱促進装置。   The heat transfer promoting device for a heating furnace according to claim 3, comprising a refractory and a heat radiation layer provided on a surface of the refractory facing the specific portion. 被加熱材を支持して搬送するスキッドビームの下方に燃焼バーナを配置し、この燃焼バーナの下方の炉床側に、請求項1乃至4の何れかに記載の伝熱促進装置を配置したウォーキングビーム式連続加熱炉において、
前記被加熱材の特定部位を、前記スキッドビームの前記被加熱材を支持している支持部近傍とし、前記伝熱促進装置により前記支持部近傍を局部的に加熱することを特徴とする伝熱促進装置を備えたウォーキングビーム式連続加熱炉。
5. A walking in which a combustion burner is disposed below a skid beam that supports and conveys a material to be heated, and the heat transfer promoting device according to any one of claims 1 to 4 is disposed on a hearth side below the combustion burner. In beam type continuous heating furnace,
The specific part of the material to be heated is a vicinity of the support part that supports the material to be heated of the skid beam, and the vicinity of the support part is locally heated by the heat transfer promoting device. Walking beam type continuous heating furnace equipped with a promotion device.
前記伝熱促進装置は、稜線が炉長方向に延在し、前記稜線から2枚の平板が所定の傾斜角度で斜め下方に延在するように山形状に配置されており、前記2枚の平板が、前記支持部近傍に対面していることを特徴とする請求項4記載の伝熱促進装置を備えたウォーキングビーム式連続加熱炉。   The heat transfer promotion device is arranged in a mountain shape so that a ridge line extends in the furnace length direction, and two flat plates extend obliquely downward at a predetermined inclination angle from the ridge line, The walking beam type continuous heating furnace provided with the heat transfer promoting device according to claim 4, wherein a flat plate faces the vicinity of the support portion.
JP2005103451A 2005-03-31 2005-03-31 Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same Pending JP2006283092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103451A JP2006283092A (en) 2005-03-31 2005-03-31 Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103451A JP2006283092A (en) 2005-03-31 2005-03-31 Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same

Publications (1)

Publication Number Publication Date
JP2006283092A true JP2006283092A (en) 2006-10-19

Family

ID=37405304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103451A Pending JP2006283092A (en) 2005-03-31 2005-03-31 Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same

Country Status (1)

Country Link
JP (1) JP2006283092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129831A1 (en) * 2007-03-30 2008-10-30 Panasonic Corporation Wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129831A1 (en) * 2007-03-30 2008-10-30 Panasonic Corporation Wiring board

Similar Documents

Publication Publication Date Title
JP5359887B2 (en) Glass plate forming heating apparatus and glass plate bending method
WO2006054015A3 (en) Indirect heat exchanger
CN109475970B (en) Apparatus and method for welding water wall panels
TWI419234B (en) Managing thermal budget in annealing of substrates
US20130255341A1 (en) Method for heating a metal slab
JP5931769B2 (en) Infrared furnace and infrared heating method
JP2006283092A (en) Heat transfer enhancement apparatus, and walking beam type continuous heating furnace having the same
JP2020501010A5 (en)
JP2010265529A (en) Walking-beam-type heat treatment furnace
JP2011038683A (en) Horizontal continuous annealing furnace of metal strip
JP5843456B2 (en) Heat treatment apparatus and heat treatment method
MX2013011077A (en) Oxy-fuel furnace and method of heating material in an oxy-fuel furnace.
JP2010236779A (en) Method of burning workpiece by roller hearth kiln
JP2007191750A (en) Steel slab heating method in walking beam heating furnace
US20180258506A1 (en) Heat treatment system
EP2944393B1 (en) Heating device for hot stamping
US20150176098A1 (en) Furnace for heating metal goods
JP2006274336A (en) Method for heating steel plate in open heat type continuous heating furnace
JP2007231328A (en) Method for heating metallic material and direct-firing heating furnace
JP4925349B2 (en) Reflow heating method and reflow heating apparatus
RU2798136C1 (en) Device and method for manufacturing radiant tubes
JP6446958B2 (en) Continuous heating furnace and radiant heater
JP5678581B2 (en) Walking beam furnace
JP2009167472A (en) Directly firing type continuous heating furnace for steel sheet
JP2010150614A (en) Heating furnace and heating method