WO2013161523A1 - サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法 - Google Patents

サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法 Download PDF

Info

Publication number
WO2013161523A1
WO2013161523A1 PCT/JP2013/060079 JP2013060079W WO2013161523A1 WO 2013161523 A1 WO2013161523 A1 WO 2013161523A1 JP 2013060079 W JP2013060079 W JP 2013060079W WO 2013161523 A1 WO2013161523 A1 WO 2013161523A1
Authority
WO
WIPO (PCT)
Prior art keywords
cermet
alloy powder
covering material
cermet layer
alloy
Prior art date
Application number
PCT/JP2013/060079
Other languages
English (en)
French (fr)
Inventor
裕記 矢永
田代 博文
浩郎 平田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN201380021786.9A priority Critical patent/CN104271785B/zh
Priority to JP2014512444A priority patent/JP6169566B2/ja
Publication of WO2013161523A1 publication Critical patent/WO2013161523A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Definitions

  • the present invention relates to a cermet coating material, an alloy powder for producing the cermet coating material, and a method for producing the cermet coating material.
  • a processing method in which a coating is formed by spraying an alloy powder or the like on the surface of the base material by a thermal spraying method.
  • a thermal spraying method is widely applied to various members because it can be carried out relatively easily.
  • it is industrially effective as an effective method for partially imparting corrosion resistance and wear resistance to the surface of a substrate. It is used in various fields.
  • Ni-based self-fluxing alloy As an alloy powder material for forming a film on a substrate by a thermal spraying method, a Ni-based self-fluxing alloy, a Co-based stellite alloy, a WC cemented carbide, or the like is generally used.
  • Ni-based self-fluxing alloys and Co-based stellite alloys have excellent adhesion to the substrate, there is a problem that the corrosion resistance and wear resistance of the sprayed layer are insufficient.
  • the WC cemented carbide is too high in hardness, there is a problem that the counterpart material is worn when used for a screw application of an injection molding machine.
  • WC-based cemented carbide has a thermal expansion coefficient that is about half that of steel, and the difference in thermal expansion coefficient from steel is large. In the accompanying environment, there is also a problem that cracks or peeling of the coating occurs due to the influence of the difference in thermal expansion coefficient.
  • Patent Document 1 discloses a technique for improving corrosion resistance and wear resistance by using a cermet material containing a Mo 2 NiB 2 type double boride as a powder material used in a thermal spraying method. Has been.
  • the screw of an injection molding machine is used in a state where torque is applied in a high temperature environment. Therefore, as a material for forming the screw of an injection molding machine, in addition to being excellent in corrosion resistance and wear resistance. Therefore, there is a demand for a material whose characteristics are hardly deteriorated even when exposed to high temperatures.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a cermet coating material having a coating film that is excellent in corrosion resistance and wear resistance, and has little deterioration in characteristics even when exposed to high temperatures. . Another object of the present invention is to provide an alloy powder for forming a cermet layer of such a cermet covering material, and a method for producing such a cermet covering material.
  • the inventors of the present invention include a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 30 to 80% by weight in the base material, and the remainder has a crystallinity of 15% or more.
  • the inventors have found that the above object can be achieved by coating a cermet layer made of a binder phase of a certain Ni-based alloy, and have completed the present invention.
  • a cermet coating material obtained by coating a base material with a cermet layer, and the cermet layer has a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride.
  • a cermet coating material comprising a binder phase of a Ni-based alloy which is contained in a ratio of ⁇ 80% by weight and the balance is 15% or more of crystallinity.
  • the alloy powder for forming the cermet layer includes a hard phase containing Mo 2 (Ni, Cr) B 2 at a ratio of 30 to 80% by weight, and the balance is Ni-based.
  • An alloy powder comprising an alloy binder phase is provided.
  • the alloy powder of the present invention preferably has a particle size of 10 to 100 ⁇ m.
  • the alloy powder of the present invention is preferably produced by a gas atomizing method.
  • the hard phase containing a Mo 2 (Ni, Cr) B 2 type double boride is contained in a proportion of 30 to 80% by weight,
  • a manufacturing method for manufacturing a cermet covering material having a cermet layer composed of a binder phase of a Ni-based alloy having a remaining degree of crystallinity of 15% or more is provided.
  • this invention it is possible to provide a cermet coating material having a cermet layer that exhibits excellent corrosion resistance and wear resistance, and that has little deterioration in properties even when exposed to high temperatures. Moreover, this invention can also provide the alloy powder for forming the cermet layer of such a cermet coating
  • FIG. 1 is a view showing a test piece for measuring the coating strength of a cermet layer.
  • the cermet coating material of the present invention includes a base material and a cermet layer that covers the base material.
  • the base material is not particularly limited, and various metal materials can be used. From the viewpoint of excellent material strength, tool steel, powdered high-speed steel, stainless steel, and the like can be given. Tool steel (for example, SKD11, SKD61) and precipitation hardened stainless steel (for example, SUS630) are preferably used in that the thermal expansion coefficient is close to that of the cermet layer covering the steel and the dimensional change due to phase transformation during cooling is small. It is done.
  • the cermet layer covering the base material contains a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 30 to 80% by weight, and the remainder has a crystallinity of 15% or more. It is composed of a binder phase of a Ni-based alloy.
  • the content ratio of the hard phase containing the Mo 2 (Ni, Cr) B 2 type double boride in the above range, the effect of improving the corrosion resistance and wear resistance of the cermet coating material can be appropriately exhibited.
  • the content ratio of the hard phase containing the Mo 2 (Ni, Cr) B 2 type double boride is less than 30% by weight, the cermet layer becomes too soft and wear resistance decreases.
  • the content ratio of the hard phase containing the Mo 2 (Ni, Cr) B 2 type double boride in the cermet layer is preferably 35 to 80% by weight, more preferably 40 to 68% by weight, and still more preferably. 45 to 65% by weight.
  • the crystallinity of the Ni-based alloy constituting the binder phase constituting the remainder of the cermet layer is 15% or more, preferably 20% or more.
  • the coating strength of the cermet layer is reduced even when exposed to high temperatures for a long time while maintaining excellent corrosion resistance and wear resistance. Can be suppressed.
  • the crystallinity of the Ni-based alloy is less than 15%, the proportion of the amorphous portion in the Ni-based alloy increases, and cracking or peeling of the cermet layer occurs when torque is applied in a high temperature environment. It tends to occur easily.
  • the reason for this may be that, when exposed to a high temperature of about 350 ° C., the toughness of the Ni-based alloy decreases due to the formation of precipitates in the amorphous part of the Ni-based alloy.
  • the upper limit of the crystallinity of the Ni-based alloy is not particularly limited.
  • the method for setting the crystallinity of the Ni-based alloy forming the binder phase within the above range is not particularly limited.
  • a cermet may be formed by a thermal spraying method using an alloy powder manufactured by a gas atomizing method described later. Examples include a method of forming a layer.
  • the cermet layer may have a hard phase content and a binder phase crystallinity within the above predetermined ranges, but the composition is B: 3.0 to 6.5 wt%, Mo: 20. It is preferably 0 to 66.0% by weight, Cr: 7.5 to 20.0% by weight, and the balance is made of Ni.
  • B (boron) is an element for forming a double boride that becomes hard phase particles.
  • the cermet layer can be appropriately formed with Mo 2 (Ni, Cr) B 2 type double boride and excellent in wear resistance and strength. . If the B content is too low, the hard phase content will be low, which may reduce the wear resistance. On the other hand, when the content ratio of B is too high, the contact ratio between the hard phases increases, and as a result, the mechanical strength decreases.
  • Mo mobdenum
  • Mo is an element for forming a double boride that becomes a hard phase together with B, and a part of Mo is dissolved in the binder phase, thereby improving the corrosion resistance. If the Mo content is too low, the wear resistance and corrosion resistance may be reduced. On the other hand, if the Mo content is too high, a third phase is formed and the mechanical strength is reduced.
  • Ni nickel
  • the binder phase contributes to excellent corrosion resistance.
  • the Ni content may be 10% by weight or more. preferable.
  • Cr chromium
  • Cr has a solid solution with Ni in the double boride and has the effect of stabilizing the crystal structure of the double boride to a tetragonal crystal.
  • the added Cr also dissolves in the binder phase, and greatly improves the corrosion resistance, wear resistance, high temperature characteristics, and mechanical characteristics of the cermet layer. If the Cr content is too high , borides such as Cr 5 B 3 are formed and the strength is lowered.
  • the cermet layer having a hard phase containing a Mo 2 (Ni, Cr) B 2 type double boride is selected from W, V, Fe, Mn and Si in addition to the above components. 1 type (s) or 2 or more types may be contained.
  • the composition of the cermet layer is as follows: B: 3.0 to 6.5 wt%, Mo: 20.0 to 66.0 wt%, Cr: 7.5 to 20.0 wt%, V: 0 0.1 to 10.0% by weight, with the balance being Ni.
  • the Mo content is more preferably 24.0 to 66.0% by weight.
  • the cermet coating material of the present invention is manufactured by spraying an alloy powder that constitutes a cermet layer on a base material to form the cermet layer on the base material.
  • an alloy powder that forms the cermet layer is manufactured.
  • the alloy powder constituting the cermet layer can be obtained by alloying each raw material for forming the cermet layer.
  • the cermet layer to be formed contains a hard phase containing Mo 2 (Ni, Cr) B 2 in a proportion of 30 to 80% by weight, and the balance is a Ni-based alloy In this case, the obtained alloy powder can also have such a configuration.
  • an atomizing method is used because the obtained alloy powder can have a dense structure inside. It is preferable.
  • the alloy powder for forming the cermet layer is manufactured by an atomizing method, and the inside thereof has a dense structure, so that when the alloy powder is sprayed, the binder phase of the cermet layer is changed.
  • the degree of crystallinity of the Ni-base alloy to be formed can be 15% or more, preferably 25% or more.
  • the inside thereof does not have a dense structure.
  • the crystallinity of the Ni-based alloy constituting the binder phase of the cermet layer becomes as low as less than 15%, and the resulting cermet layer is likely to be cracked or peeled off.
  • the alloy powder produced by the atomizing method is heated to a high temperature of about 2000 ° C. to be in a molten or semi-molten state and then collides with a relatively low temperature base material of about 200 ° C.
  • the inside has a dense structure, the cooling rate when colliding with the base material can be relaxed, thereby preventing the Ni-based alloy from becoming amorphous due to rapid cooling, As a result, the crystallinity of the Ni-based alloy constituting the binder phase of the cermet layer can be within the above range.
  • any of gas atomizing method, disk atomizing method, water atomizing method, plasma atomizing method, etc. may be adopted, but the shape is a uniform sphere and the internal density
  • the gas atomization method is particularly preferable from the viewpoint that a high alloy powder can be produced.
  • the molten alloy powder is preferably at a temperature of about 1500 to 1850 ° C.). It is a method of powdering an alloy by spraying.
  • a melting furnace in the atomization method a high frequency induction melting furnace, a gas furnace, or the like can be used.
  • the gas atomizing method is a method in which an inert gas is sprayed on a molten metal to be pulverized.
  • the alloy powder produced by the gas atomization method has a uniform spherical shape and therefore has a small surface area, and the unit area used for bonding between the particles of the alloy powder with respect to the thermal energy given to the alloy powder when spraying. This is because the ratio of the hit energy is considered to be relatively large, and as a result, the bond between the particles of the alloy powder becomes strong, and the coating strength can be improved.
  • the raw material is a sintered body obtained by sintering powder even if the raw material is in powder form.
  • it may be a lump having a size of several mm to several tens of mm.
  • melting is relatively easy when a sintered body is used as a raw material.
  • dissolving a raw material in order to suppress that a raw material raise
  • argon when producing alloy powder by the gas atomization method, argon, nitrogen, helium, etc. can be adopted as an inert gas sprayed against the molten metal, but the reaction of the alloy powder can be suppressed. More preferably, argon is used.
  • the alloy powder for thermal spraying to be produced preferably has a particle diameter of 10 to 100 ⁇ m, more preferably 20 to 75 ⁇ m, from the viewpoint of easy spraying.
  • a cermet layer is formed by spraying the manufactured alloy powder on a base material by a thermal spraying method.
  • a thermal spraying method either flame spraying or high-speed flame spraying, which has a small thermal effect when forming the cermet layer, may be adopted. preferable.
  • the thickness of the cermet layer to be formed is preferably 100 ⁇ m to 500 ⁇ m, more preferably 200 ⁇ m to 400 ⁇ m. By setting the thickness of the cermet layer to be formed within the above range, a cermet layer having excellent corrosion resistance and wear resistance can be formed. Note that the thickness of the cermet layer can be measured by, for example, an electromagnetic film thickness meter.
  • the cermet coating material of the present invention includes a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 30 to 80% by weight, and the balance is Ni having a crystallinity of 15% or more. Since the substrate is coated with a cermet layer composed of a binder phase of the base alloy, the following effects are exhibited. That is, as a hard phase forming the cermet layer, it contains Mo 2 (Ni, Cr) B 2 type double boride, so it has excellent corrosion resistance and wear resistance. In addition, Since the binder phase of the cermet layer is made of a Ni-based alloy having a crystallinity of 15% or more, it is possible to effectively suppress deterioration of characteristics when exposed to high temperatures.
  • the cermet coating material of the present invention can be suitably used for applications that require strength in a high temperature environment in addition to corrosion resistance and wear resistance, for example, screw applications of injection molding machines.
  • the formed cermet layer can prevent cracking and peeling by suppressing the amorphization of the Ni-based alloy.
  • the coating strength can be improved.
  • Example 1> B 4.0% by weight, Mo: 39.1% by weight, Cr: 17.5% by weight, Ni: 100 parts by weight of the raw material mixed at the ratio of the balance, 5 parts by weight of paraffin are added,
  • the sintered compact was obtained by hold
  • the obtained sintered body was melted in a high-frequency induction melting furnace (20 kW) under an argon atmosphere using a gas atomizer (manufactured by Nisshin Giken Co., Ltd., NEV-GP5G).
  • the powder produced under the condition of 1.5 MPa was held at 1100 ° C. in a vacuum for 1 hour, and then classified so as to have a particle size range of 32 to 75 ⁇ m to obtain an alloy powder for thermal spraying.
  • the obtained alloy powder was composed of a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 49% by weight, and the balance was a Ni-base alloy binder phase. .
  • a steel material (SKD11) having the shape shown in FIG. 1 was prepared as a base material for performing thermal spraying.
  • the steel material shown in FIG. 1 is a test piece for measuring the film strength to be described later, both ends (fixed portion 10 and rotating portion 30 in FIG. 1) have a diameter of 20 mm, and a central portion (in FIG. 1, The cermet layer forming part 20) has a diameter of 10 mm.
  • the alloy powder for thermal spraying prepared above is applied to the cermet layer forming portion 20 in FIG. 1 using the high-speed flame spraying machine (TAFA, JP-5000) in the surface of the prepared specimen 100.
  • the cermet layer was formed in the cermet layer formation part 20 by spraying.
  • the cermet layer was formed under the conditions of spraying distance (distance between the base material and the spray gun): 300 mm, kerosene amount: 6 gph, oxygen flow rate: 1850 scfh. Moreover, the thickness of the cermet layer formed by this was 0.3 mm.
  • the formed cermet layer contained a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 49% by weight, and the balance was a Ni-based alloy binder phase. .
  • the film strength of the obtained cermet coating material was measured. That is, the coating strength was measured by a torsion tester (manufactured by Shimadzu Corp., UET-300), with the fixing part 10 of the test piece 100 being fixed and the rotating part 30 being rotated to form the cermet layer forming part 20. The torque value when cracking or peeling occurred in the cermet layer was measured, and the value was taken as the coating strength.
  • the coating strength is measured at room temperature for each of the test piece 100 that has not been subjected to thermal history after the cermet layer is formed and the test piece 100 that is held at 350 ° C. for 100 hours after the cermet layer is formed. went.
  • the rate of decrease in coating strength was calculated for the coating strength of the test piece 100 held at 350 ° C. for 100 hours with reference to the coating strength of the test piece 100 to which no thermal history was applied. The results are shown in Table 1.
  • the crystallinity of the Ni-based alloy was measured for the cermet layer formed on the test piece 100.
  • the Ni-based alloy crystallinity was measured by the ⁇ -2 ⁇ method using an X-ray diffractometer (RINT-2000, RINT-2000, radiation source: CuK ⁇ ) on the surface of the cermet layer polished with # 2000 abrasive paper. This was done by detecting the diffraction pattern of the (111) plane of the Ni-based alloy.
  • Examples 2 and 3> By changing the ratio of B, Mo and Ni in the raw material for producing the alloy powder for thermal spraying, and changing the oxygen flow rate when forming the cermet layer by thermal spraying from 1850 scfh to 2100 scfh, A cermet coating material was obtained in the same manner as in Example 1 except that the hard phase content and the crystallinity of the Ni-based alloy were changed as shown in Table 1. The strength reduction rate was calculated. The results are shown in Table 1.
  • sintered powder for thermal spraying was obtained.
  • the obtained sintered powder contains a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 62% by weight, and the balance is a Ni-base alloy binder phase. It was.
  • Example 1 the obtained sintered powder for thermal spraying was sprayed on the test piece 100 (SKD11) shown in FIG. 1 under the same conditions as in Example 1 described above to obtain a cermet having a thickness of 0.3 mm.
  • a layer was formed.
  • the formed cermet layer contained a hard phase containing Mo 2 (Ni, Cr) B 2 type double boride in a proportion of 62% by weight, and the balance was a Ni-base alloy binder phase. .
  • the film strength and the crystallinity were also evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the content ratio of the hard phase containing Mo 2 (Ni, Cr) B 2 type double boride is 30 to 80% by weight, and the crystallinity of the binder phase of the Ni-based alloy is In Examples 1 to 3 having a cermet layer of 15% or more, the film strength after being held at 350 ° C. for 100 hours is a relatively high value of 23.3 to 27.2 kgf ⁇ m, The reduction rate is a low value of 15.5 to 20.0%. From this result, it can be determined that the deterioration of characteristics is small even when exposed to a high temperature of 350 ° C.
  • Comparative Example 1 having a cermet layer in which the crystallinity of the Ni-base alloy binder phase is less than 15% has a coating strength of 14.3 kgf ⁇ m is a low value, and the rate of decrease in coating strength is a high value of 42.3%. From this result, it is determined that the properties deteriorate and the coating strength decreases when exposed to a high temperature of 350 ° C. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 基材にサーメット層を被覆してなるサーメット被覆材であって、前記サーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなることを特徴とするサーメット被覆材を提供する。本発明によれば、耐食性および耐摩耗性に優れ、しかも、高温に晒されても特性の劣化が小さい被膜を有するサーメット被覆材を提供することができる。

Description

サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法
 本発明は、サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法に関する。
 基材の表面特性を向上させるために、基材の表面に溶射法により合金粉末等を溶射して被膜を形成する加工法が用いられている。このような溶射法は、比較的簡便に実施できることから各種の部材に広く適用されており、特に基材の表面に部分的に耐食性や耐摩耗性を付与したい場合に効果的な手法として産業上様々な分野において用いられている。
 溶射法により基材上に被膜を形成するための合金粉末材料としては、一般的にNi基の自溶性合金、Co基のステライト合金、またはWC系超硬合金等が用いられている。しかしながら、Ni基の自溶性合金やCo基のステライト合金は、基材との密着性に優れるものの、溶射層の耐食性および耐摩耗性が不十分であるという問題がある。一方、WC系超硬合金は、硬度が高過ぎるため、射出成形機のスクリュ用途などに用いた場合に、相手材を摩耗させてしまうという問題がある。また、WC系超硬合金は、熱膨張係数が鋼材の半分程度であり、鋼材との熱膨張係数の差が大きいため、基材として鋼材を用い、その表面に被膜として形成すると、熱サイクルを伴う環境下において、熱膨張係数の差の影響により、被膜のクラックや剥離が生じてしまうという問題もある。
 これに対し、たとえば、特許文献1には、溶射法に用いる粉末材料として、MoNiB型の複硼化物を含有するサーメット材を用いることで、耐食性および耐摩耗性を向上させる技術が開示されている。
特開2009-68052号公報
 一方で、射出成形機などの高温環境下で用いられる装置においても、溶射法により被膜を形成し、耐食性および耐摩耗性を向上させることが望まれている。特に射出成形機のスクリュは、高温環境下でトルクが加わる状態で使用されるものであるため、射出成形機のスクリュを形成するための材料としては、耐食性および耐摩耗性に優れることに加えて、高温に晒されても特性の劣化が小さい材料が求められている。
 しかしながら、上記特許文献1に記載の技術では、射出成形機のスクリュ用途に用いた場合に、射出成形を行う際の温度、具体的には、350℃程度の高温に晒された場合に、温度の影響により、基材表面に形成されたサーメット被膜の強度が低下してしまい、この場合において、射出成形時にスクリュにトルクが加わると、サーメット被膜にクラックが生じるおそれがあった。
 本発明は、このような実状に鑑みてなされ、その目的は、耐食性および耐摩耗性に優れ、しかも、高温に晒されても特性の劣化が小さい被膜を有するサーメット被覆材を提供することにある。また、本発明は、このようなサーメット被覆材のサーメット層を形成するための合金粉末、およびこのようなサーメット被覆材の製造方法を提供することも目的とする。
 本発明者等は、基材に、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなるサーメット層を被覆することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、基材にサーメット層を被覆してなるサーメット被覆材であって、前記サーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなることを特徴とするサーメット被覆材が提供される。
 また、本発明によれば、上記のサーメット層を形成するための合金粉末として、Mo(Ni,Cr)Bを含む硬質相を30~80重量%の割合で含み、残部が、Ni基合金の結合相からなる合金粉末が提供される。
 本発明の合金粉末は、粒径が10~100μmであることが好ましい。
 本発明の合金粉末は、ガスアトマイズ法によって製造されることが好ましい。
 さらに、本発明によれば、上記の合金粉末を基材に溶射することで、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなるサーメット層を有するサーメット被覆材を製造する製造方法が提供される。
 本発明によれば、耐食性および耐摩耗性が優れることに加えて、高温に晒されても特性の劣化が小さいサーメット層を有するサーメット被覆材を提供することができる。また、本発明は、このようなサーメット被覆材のサーメット層を形成するための合金粉末、およびこのようなサーメット被覆材の製造方法を提供することもできる。
図1は、サーメット層の被膜強度を測定するための試験片を示す図である。
 本発明のサーメット被覆材は、基材と、基材を被覆するサーメット層とを備える。
<基材>
 基材としては、特に限定されず、各種金属材料を用いることができるが、材料強度に優れるという点より、工具鋼、粉末ハイス鋼、およびステンレス鋼等が挙げられ、これらのなかでも、基材を被覆するサーメット層と熱膨張係数が近く、冷却時における相変態による寸法変化が小さいという点より、工具鋼(たとえば、SKD11、SKD61)、析出硬化系のステンレス鋼(たとえば、SUS630)が好ましく用いられる。
<サーメット層>
 基材を被覆するサーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相から構成される。Mo(Ni,Cr)B型の複硼化物を含む硬質相の含有割合を上記範囲とすることにより、サーメット被覆材の耐食性および耐摩耗性の向上効果を適切に発揮させることができる。Mo(Ni,Cr)B型の複硼化物を含む硬質相の含有割合が30重量%未満になると、サーメット層が柔らかくなり過ぎてしまい、耐摩耗性が低下する。一方、Mo(Ni,Cr)B型の複硼化物を含む硬質相の含有割合が80重量%を超えると、硬質相の分散性が悪くなり過ぎてしまい、強度が低下する。なお、サーメット層中における、Mo(Ni,Cr)B型の複硼化物を含む硬質相の含有割合は、好ましくは35~80重量%、より好ましくは40~68重量%、さらに好ましくは45~65重量%である。
 また、本発明においては、サーメット層の残部を構成する結合相を構成するNi基合金の結晶化度が15%以上であり、好ましくは20%以上である。結合相を構成するNi基合金の結晶化度を上記範囲とすることにより、耐食性および耐摩耗性に優れたものとしながら、高温に長時間晒された場合においても、サーメット層の被膜強度の低下を抑制することができる。Ni基合金の結晶化度が15%未満になると、Ni基合金中の非晶質部分の割合が増大してしまい、高温環境下において、トルクがかかった場合において、サーメット層のクラックや剥離が生じ易くなる傾向にある。なお、この理由としては、350℃程度の高温に晒されると、Ni基合金の非晶質部分において、析出物が生成することなどにより、Ni基合金の靭性が低下するためなどが考えられる。なお、Ni基合金の結晶化度の上限は特に限定されない。また、結合相を形成するNi基合金の結晶化度を上記範囲とする方法としては、特に限定されないが、一例を挙げれば、後述するガスアトマイズ法により製造した合金粉末を用いて、溶射法によりサーメット層を形成する方法などが挙げられる。
 なお、サーメット層としては、硬質相の含有割合および結合相の結晶化度が上記所定の範囲にあればよいが、その組成が、B:3.0~6.5重量%、Mo:20.0~66.0重量%、Cr:7.5~20.0重量%であり、残部がNiからなるものであることが好ましい。
 B(ホウ素)は、硬質相粒子となる複硼化物を形成するための元素である。Bの含有割合を上記範囲とすることにより、サーメット層を、適度にMo(Ni,Cr)B型の複硼化物が形成され、耐摩耗性や強度に優れたものとすることができる。Bの含有割合が低すぎると、硬質相の含有割合が低くなってしまい、これにより耐摩耗性が低下するおそれがある。一方、Bの含有割合が高すぎると、硬質相同士の接触率が高くなってしまい、結果として、機械的強度が低下してしまう。
 Mo(モリブデン)は、Bとともに、硬質相となる複硼化物を形成するための元素であるとともに、Moの一部は結合相に固溶し、これにより耐食性を向上させる効果を有する。Moの含有割合が低すぎると、耐摩耗性および耐食性が低下するおそれがある。一方、Moの含有割合が高すぎると、第三相を形成し、機械的強度が低下してしまう。
 Ni(ニッケル)は、BおよびMo同様に、複硼化物を形成するために必要な元素である。また、結合相を構成する主な元素であり、優れた耐食性に寄与する。Ni含有量が10重量%未満の場合は、十分な液相が出現せず緻密なサーメット層が得られず、強度の低下を招いてしまうため、Ni含有量は10重量%以上であることが好ましい。
 Cr(クロム)は、複硼化物中のNiと置換固溶し、複硼化物の結晶構造を正方晶に安定化させる効果を有する。また添加したCrは、結合相中にも固溶し、サーメット層の耐食性、耐摩耗性、高温特性、および機械的特性を大幅に向上させる。Cr含有量が多くなりすぎると、Cr53などの硼化物を形成し、強度が低下してしまう。
 なお、このようなMo(Ni,Cr)B型の複硼化物を含む硬質相を有するサーメット層には、上記各成分に加えて、W,V,Fe,MnおよびSiから選択される1種または2種以上が含有されていてもよい。たとえば、Vを含有させた場合には、サーメット層の硬質相を構成する複硼化物を、Mo,Ni,Cr,Bに加えて、Vを含有するMo(Ni,Cr,V)B型の複硼化物とすることができる。この場合においては、サーメット層の組成は、B:3.0~6.5重量%、Mo:20.0~66.0重量%、Cr:7.5~20.0重量%、V:0.1~10.0重量%であり、残部がNiからなるものが好ましい。なお、上記組成のうち、Moの含有割合は、24.0~66.0重量%であることがより好ましい。サーメット層に、Vを上記範囲で含有させることにより、Mo(Ni,Cr,V)B型の複硼化物の結晶構造を正方晶に安定化させることができ、加えて、Vの一部が結合相に固溶するため、サーメット層の耐食性、耐摩耗性、高温特性、および機械的特性を大幅に向上させることができる。
<サーメット被覆材の製造方法>
 次に、本発明のサーメット被覆材の製造方法について、説明する。
 本発明のサーメット被覆材は、サーメット層を構成することとなる合金粉末を基材上に溶射して、基材上にサーメット層を形成することで製造される。
 まず、サーメット層を構成することとなる合金粉末を製造する。サーメット層を構成することとなる合金粉末は、サーメット層を形成するための各原料を合金化することで得ることができる。サーメット層を形成するための原料の組成としては、形成されるサーメット層が、Mo(Ni,Cr)Bを含む硬質相を30~80重量%の割合で含み、残部が、Ni基合金の結合相であるものとなるように調整すればよく、この場合には、得られる合金粉末も、このような構成を有するものとすることができる。
 なお、サーメット層を形成するための原料を合金化し、合金粉末を得る方法としては、得られる合金粉末が、その内部が緻密な構造を有するものとすることができるという点より、アトマイズ法を用いることが好ましい。特に、サーメット層を形成するための合金粉末を、アトマイズ法で製造し、その内部が緻密な構造を有するものとすることにより、このような合金粉末を溶射した際に、サーメット層の結合相を構成するNi基合金の結晶化度を、15%以上、好ましくは25%以上とすることができる。
 一方で、溶射用の粉末として、造粒焼結粉末などを用いた場合には、アトマイズ法で製造した合金粉末とは異なり、その内部が緻密な構造を有するものではないため、溶射時において、2000℃程度の高温まで加熱されて溶融または半溶融の状態とされた後、比較的低温の200℃程度とされた基材に衝突した際に、急冷されて、Ni基合金が非晶質化してしまう。そして、その結果として、サーメット層の結合相を構成するNi基合金の結晶化度が15%未満と低くなってしまい、得られるサーメット層が、クラックや剥離が発生しやすいものとなってしまう。これに対して、アトマイズ法で製造した合金粉末は、2000℃程度の高温まで加熱されて溶融または半溶融の状態とされた後、比較的低温の200℃程度とされた基材に衝突した場合でも、その内部が緻密な構造を有するものであるため、基材に衝突した際における冷却速度を緩和することができ、これにより、急冷によるNi基合金の非晶質化を防ぐことができ、結果として、サーメット層の結合相を構成するNi基合金の結晶化度を、上記範囲とすることが可能となる。
 なお、合金粉末を製造するためのアトマイズ法としては、ガスアトマイズ法、ディスクアトマイズ法、水アトマイズ法、プラズマアトマイズ法等のいずれを採用してもよいが、形状が均一な球形であり、内部の密度が高い合金粉末を製造することができるという点より、ガスアトマイズ法が特に好ましい。アトマイズ法は、合金粉末を溶融炉で溶解した後、ノズル穴から流出する溶湯(本発明においては、合金粉末の溶湯は1500~1850℃程度の温度であることが好ましい。)に対して流体を吹き付けたりすることにより合金を粉末化する方法である。アトマイズ法における溶融炉としては、高周波誘導溶解炉やガス炉などを用いることができる。アトマイズ法のうち、ガスアトマイズ法は、溶湯に対して不活性ガスを吹き付けて粉化する方法である。特に、ガスアトマイズ法により製造された合金粉末は、均一な球形であることから表面積が小さく、溶射する際に、合金粉末に与えられる熱エネルギーに対する、合金粉末の粒子間の結合に使用される単位面積当たりのエネルギーの割合が比較的大きくなると考えられ、その結果、合金粉末の粒子間の結合が強くなり、被膜強度を向上させることが可能となるためである。
 また、アトマイズ法において、溶解炉で溶解する原料を構成する各元素の含有割合が所望の組成比となっていれば、原料は粉末状であっても、粉末を焼結した焼結体であっても、数mm~数十mm程度の大きさの塊であってもよい。溶解炉として高周波誘導溶解炉を用いる場合には、原料としては焼結体を用いると溶解が比較的容易となる。そして、原料を溶解する際には、原料が不要な反応を起こしてしまうことを抑制するために、真空中またはアルゴン等の不活性雰囲気下であることが好ましい。
 また、ガスアトマイズ法により合金粉末を製造する際には、溶湯に対して吹き付ける不活性ガスとして、アルゴン、窒素、ヘリウム等を採用することができるが、合金粉末の反応を抑制することができるという点より、アルゴンを用いることが好ましい。
 また、製造する溶射用の合金粉末としては、溶射を行い易いという点より、粒子径が10~100μmであることが好ましく、20~75μmであることがより好ましい。
 次いで、製造した合金粉末を、溶射法により基材に溶射することでサーメット層を形成する。溶射法としては、サーメット層形成時の熱影響が小さいフレーム溶射、高速フレーム溶射のいずれを採用してもよいが、金属粉末の速度が速く緻密な膜が形成できるという点より、高速フレーム溶射が好ましい。
 形成するサーメット層の厚みは、好ましくは100μm~500μmであり、より好ましくは200μm~400μmである。形成するサーメット層の厚みを上記範囲とすることにより、耐食性および耐摩耗性に優れたサーメット層を形成することができる。なお、サーメット層の厚みは、たとえば、電磁式膜厚計により測定することができる。
 本発明のサーメット被覆材は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなるサーメット層を基材に被覆したものであるため、次のような効果を奏するものである。すなわち、サーメット層を形成する硬質相として、Mo(Ni,Cr)B型の複硼化物を含有していることから、耐食性および耐摩耗性に優れており、また、これに加えて、サーメット層の結合相が、結晶化度が15%以上であるNi基合金から構成されているため、高温に晒された際における、特性の劣化を有効に抑制することができる。そのため、本発明のサーメット被覆材は、耐食性、および耐摩耗性に加えて、高温環境下での強度が要求される用途、たとえば、射出成形機のスクリュ用途に好適に用いることができる。特に、アトマイズ法で得られた粉末を用いることにより、形成されるサーメット層は、Ni基合金の非晶質化が抑制されることで、クラックや剥離を防止することができ、また、これに加えて、合金粉末の粒子間の結合が強まるため、被膜強度を向上させることが可能となる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
<実施例1>
 B:4.0重量%、Mo:39.1重量%、Cr:17.5重量%、Ni:残部の比率で混合してなる原料100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルにより25時間湿式粉砕を行うことで粉砕粉を作製した。そして、作製した粉砕粉を1250℃で0.5時間保持して焼結することで焼結体を得た。次いで、得られた焼結体を、ガスアトマイズ装置(日新技研製、NEV-GP5G)を用いて、アルゴン雰囲気下で高周波誘導溶解炉(20kW)にて溶解し、出湯温度:1650℃、噴霧圧:1.5MPaの条件で作製した粉末を、真空中にて1100℃で1時間保持した後、32~75μmの粒度範囲になるように分級することにより、溶射用の合金粉末を得た。そして、得られた合金粉末は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を49重量%の割合で含み、残部がNi基合金の結合相からなるものであった。
 次いで、溶射を行うための基材として、図1に示す形状を有する鋼材(SKD11)を準備した。図1に示す鋼材は、後述する被膜強度の測定を行うための試験片であり、両端(図1における、固定部10および回転部30)は直径:20mmであり、中心部分(図1における、サーメット層形成部20)は直径:10mmである。そして、準備した試験片100の表面のうち、図1におけるサーメット層形成部20に、高速フレーム溶射機(TAFA社製、JP-5000)を用いて、上記にて調製した溶射用の合金粉末を溶射することで、サーメット層形成部20にサーメット層を形成した。なお、サーメット層の形成は、溶射距離(基材と溶射ガンの距離):300mm、灯油量:6gph、酸素流量:1850scfhの条件で行った。また、これにより形成されたサーメット層の厚みは0.3mmであった。そして、形成されたサーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を49重量%の割合で含み、残部がNi基合金の結合相からなるものであった。
 次いで、得られたサーメット被覆材について、被膜強度の測定を行った。すなわち、被膜強度の測定は、ねじり試験機(島津製作所製、UET-300)により、試験片100の固定部10を固定したまま、回転部30を回転させ、サーメット層形成部20に形成されたサーメット層にクラックまたは剥離が生じた時のトルク値を計測し、その値を被膜強度とした。ここで、被膜強度の測定は、サーメット層を形成した後に熱履歴を加えていない試験片100、およびサーメット層を形成した後に350℃で100時間保持した試験片100のそれぞれについて、室温で測定を行った。また、熱履歴を加えていない試験片100の被膜強度を基準として、350℃で100時間保持した試験片100の被膜強度について、被膜強度の低下率を算出した。結果を表1に示す。
 次いで、試験片100に形成したサーメット層について、Ni基合金結晶化度を測定した。Ni基合金結晶化度の測定は、♯2000の研磨紙で研磨したサーメット層表面について、X線回折装置(リガク社製、RINT-2000、線源:CuKα)を用いて、θ-2θ法により、Ni基合金の(111)面の回折パターンを検出することで行った。そして、検出した回折パターンについて、結晶質部分のピークと、非晶質部分のハローとを分離し、結晶質部分のピークおよび非晶質部分のハローのそれぞれの積分強度に基づいて、下記式(1)にしたがい結晶化度Xcを求めた。
  Xc=Ic/(Ic+Ia)×100 ・・・(1)
 なお、上記式(1)において、Icは結晶質部分のピークの積分強度(2θ=44°付近のピーク)であり、Iaは非晶質部分のハローの積分強度(2θ=32~55°)である。結果を表1に示す。
<実施例2,3>
 溶射用の合金粉末を作製するための原料中のB、Mo、およびNiの比率を変更するとともに、サーメット層を溶射により形成する際における酸素流量を1850scfhから2100scfhに変更することにより、サーメット層中における硬質相の含有割合およびNi基合金の結晶化度を表1に示すように変化させた以外は、実施例1と同様にして、サーメット被覆材を得て、同様に被膜強度の測定および被膜強度低下率の算出を行った。結果を表1に示す。
<比較例1>
 B:5.0重量%、Mo:51.0重量%、Cr:17.5重量%、Ni:残部の比率で混合してなる原料100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルにより25時間湿式粉砕を行うことで粉砕粉を作製した。次いで、作製した粉砕粉を、窒素雰囲気下において150℃で18時間乾燥した。そして、乾燥した粉砕粉を、アセトンと1:1の重量割合で混合した後に、スプレードライヤーによって造粒し、造粒した粉末を真空にて1150℃で1時間保持して粉末を焼結した後、32~53μmの粒度範囲で分級することにより、溶射用の焼結粉末を得た。そして、得られた焼結粉末は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を62重量%の割合で含み、残部がNi基合金の結合相からなるものであった。
 次いで、得られた溶射用の焼結粉末を用いて、上述した実施例1と同様の条件で、図1に示す試験片100(SKD11)に対して溶射を行い、厚さ0.3mmのサーメット層を形成した。なお、形成されたサーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を62重量%の割合で含み、残部がNi基合金の結合相からなるものであった。また、被膜強度および結晶化度についても、実施例1と同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Mo(Ni,Cr)B型の複硼化物を含む硬質相の含有割合が30~80重量%であり、かつ、Ni基合金の結合相の結晶化度が15%以上であるサーメット層を備える実施例1~3においては、350℃で100時間保持した後の被膜強度が、23.3~27.2kgf・mと比較的高い値であり、被膜強度の低下率は15.5~20.0%と低い値であり、この結果より、350℃の高温に晒されても特性の劣化が小さいものと判断することができる。
 一方、表1に示すように、Ni基合金の結合相の結晶化度が15%未満であるサーメット層を備える比較例1は、350℃で100時間保持した後の被膜強度は14.3kgf・mと低い値であり、被膜強度の低下率は42.3%と高い値であり、この結果より、350℃の高温に晒されると特性が劣化し、被膜強度が低下してしまうものと判断することができる。
100…試験片
 10…固定部
 20…サーメット層形成部
 30…回転部

Claims (5)

  1.  基材にサーメット層を被覆してなるサーメット被覆材であって、
     前記サーメット層は、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなることを特徴とするサーメット被覆材。
  2.  請求項1に記載のサーメット被覆材を構成する前記サーメット層を形成するための合金粉末であって、
     Mo(Ni,Cr)Bを含む硬質相を30~80重量%の割合で含み、残部が、Ni基合金の結合相からなることを特徴とする合金粉末。
  3. 前記合金粉末は、粒径が10~100μmであることを特徴とする請求項2に記載の合金粉末。
  4.  前記合金粉末は、アトマイズ法によって製造されることを特徴とする請求項2または3に記載の合金粉末。
  5.  請求項2~4のいずれかに記載の合金粉末を基材に溶射することで、Mo(Ni,Cr)B型の複硼化物を含む硬質相を30~80重量%の割合で含み、残部が、結晶化度が15%以上であるNi基合金の結合相からなるサーメット層を形成する工程を有することを特徴とするサーメット被覆材の製造方法。
PCT/JP2013/060079 2012-04-26 2013-04-02 サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法 WO2013161523A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380021786.9A CN104271785B (zh) 2012-04-26 2013-04-02 金属陶瓷覆盖材、用于制造金属陶瓷覆盖材的合金粉末以及金属陶瓷覆盖材的制造方法
JP2014512444A JP6169566B2 (ja) 2012-04-26 2013-04-02 サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-100802 2012-04-26
JP2012100802 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013161523A1 true WO2013161523A1 (ja) 2013-10-31

Family

ID=49482855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060079 WO2013161523A1 (ja) 2012-04-26 2013-04-02 サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法

Country Status (3)

Country Link
JP (1) JP6169566B2 (ja)
CN (1) CN104271785B (ja)
WO (1) WO2013161523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186037A1 (ja) * 2015-05-15 2016-11-24 東洋鋼鈑株式会社 硬質焼結合金及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080678B (zh) * 2020-09-15 2021-12-21 广东博杰特新材料科技有限公司 三元硼化物合金螺杆材料及其生产工艺
CN114318060A (zh) * 2021-03-22 2022-04-12 武汉钜能科技有限责任公司 耐腐蚀金属陶瓷粉及应用和耐腐蚀金属陶瓷

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541906A (en) * 1978-09-16 1980-03-25 Mitsubishi Metal Corp High strength cermet
JP2009068052A (ja) * 2007-09-11 2009-04-02 Toyo Kohan Co Ltd 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末
JP2010260065A (ja) * 2009-04-30 2010-11-18 Osaka Univ 回転ツール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133769A (ja) * 1983-12-21 1985-07-16 Tdk Corp 熱発電素子
JPH0487325A (ja) * 1990-07-31 1992-03-19 Tonen Corp 多結晶膜の作製法
JPH05144745A (ja) * 1991-11-18 1993-06-11 Sanyo Electric Co Ltd 半導体基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541906A (en) * 1978-09-16 1980-03-25 Mitsubishi Metal Corp High strength cermet
JP2009068052A (ja) * 2007-09-11 2009-04-02 Toyo Kohan Co Ltd 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末
JP2010260065A (ja) * 2009-04-30 2010-11-18 Osaka Univ 回転ツール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186037A1 (ja) * 2015-05-15 2016-11-24 東洋鋼鈑株式会社 硬質焼結合金及びその製造方法

Also Published As

Publication number Publication date
JP6169566B2 (ja) 2017-07-26
CN104271785A (zh) 2015-01-07
CN104271785B (zh) 2016-08-17
JPWO2013161523A1 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
US10308999B2 (en) Iron-based alloy coating and method for manufacturing the same
CN105088108B (zh) 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层
JP5253781B2 (ja) 垂直磁気記録媒体における軟磁性膜層用合金ターゲット材
TWI630100B (zh) 使用呈現變質轉化之塗層之消費性電子加工過的外殼
Lin et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings
CN108677129A (zh) 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
JP2008115443A (ja) 溶射用Ni基自溶合金粉末およびその製造方法と、該粉末を用いて得られる自溶合金溶射皮膜
Ghadami et al. Characterization of MCrAlY/nano-Al 2 O 3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition
JP6169566B2 (ja) サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法
Wu et al. Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropy alloy coatings
Kiplangat et al. Microstructure and mechanical properties of the plasma-sprayed and cold-sprayed Al0. 5CoCrFeNi2Ti0. 5 high-entropy alloy coatings
WO2014185181A1 (ja) 溶射層形成用粉末、サーメット溶射層、サーメット被覆材、およびサーメット被覆材の製造方法
JP2988281B2 (ja) 溶射用セラミックス・金属複合粉末及び溶射被膜の形成方法
WO2010103563A1 (ja) 溶射層形成高耐食耐摩耗部材及びそれを形成する溶射層形成用粉末
JP2012042317A (ja) 熱中性子遮蔽材料及びその製造方法
KR20160071619A (ko) 철계 초내열 합금의 제조방법
WO2014073392A1 (ja) 溶射層形成用粉末
CN105215365B (zh) 一种金属陶瓷涂层及其制备方法
AU2010229319B2 (en) Chrome-free coating for substrate
JP2002173758A (ja) 溶射用粉末およびそれを用いて溶射皮膜された部品
TWI764843B (zh) 鐵基金屬玻璃合金粉末及其用於塗層之用途
WO2012023265A1 (ja) 熱中性子遮蔽材料及びその製造方法
CN115142000B (zh) 锅具的处理方法以及锅具
CN115608977A (zh) 一种耐磨涂层用铁基非晶粉末及其制备方法和耐磨非晶涂层
Azarmi et al. Investigations of Microstructural and Hardness Characteristics of Detonation Gun Sprayed Fe-based Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780955

Country of ref document: EP

Kind code of ref document: A1