WO2013161074A1 - 体調監視装置及び方法 - Google Patents
体調監視装置及び方法 Download PDFInfo
- Publication number
- WO2013161074A1 WO2013161074A1 PCT/JP2012/061434 JP2012061434W WO2013161074A1 WO 2013161074 A1 WO2013161074 A1 WO 2013161074A1 JP 2012061434 W JP2012061434 W JP 2012061434W WO 2013161074 A1 WO2013161074 A1 WO 2013161074A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- physical condition
- blood pressure
- risk level
- blood flow
- blood
- Prior art date
Links
- 238000012806 monitoring device Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 28
- 230000017531 blood circulation Effects 0.000 claims abstract description 389
- 230000036772 blood pressure Effects 0.000 claims abstract description 343
- 238000005259 measurement Methods 0.000 claims abstract description 158
- 238000004364 calculation method Methods 0.000 claims abstract description 133
- 238000009530 blood pressure measurement Methods 0.000 claims description 132
- 238000012544 monitoring process Methods 0.000 claims description 93
- 230000008859 change Effects 0.000 claims description 87
- 230000008569 process Effects 0.000 claims description 10
- 210000004369 blood Anatomy 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 description 13
- 238000000502 dialysis Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
- A61B5/02116—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
Definitions
- the present invention relates to a technical field of a physical condition monitoring apparatus and method for monitoring a physical condition of a living body, for example.
- Patent Document 1 As this type of physical condition monitoring device, for example, as disclosed in Patent Document 1, there is an apparatus that monitors a blood flow, which is information related to the physical condition of a living body, using a laser blood flow meter. Moreover, as this kind of physical condition monitoring apparatus, as disclosed in Patent Document 2, a blood pressure change which is information related to the physical condition of a living body is monitored using a blood pressure measurement unit and a pulse movement time measurement system. A device has been proposed.
- Patent Document 1 monitors only the blood flow of a living body. For this reason, the technical problem that the monitoring precision of the physical condition by the apparatus disclosed by patent document 1 will become low arises. Specifically, according to the apparatus disclosed in Patent Document 1, it is technically problematic that if it should be determined that the physical condition is originally deteriorated, it is erroneously determined that the physical condition is good. A point arises.
- the apparatus disclosed in Patent Document 2 is a system that can monitor the blood pressure of a living body, but in order to measure the pulse movement time of the living body, in addition to the blood pressure measurement unit, for example, an electrocardiograph and a pulse at the periphery
- the blood pressure measurement unit for example, an electrocardiograph and a pulse at the periphery
- This device only monitors blood pressure. For this reason, the technical problem that the monitoring precision of the physical condition by the apparatus disclosed by patent document 2 will become low arises.
- This invention is made
- the physical condition monitoring device for solving the above problems includes a blood pressure measurement unit that measures blood pressure of a living body, a blood flow measurement unit that measures blood flow of the living body, and the blood pressure and blood flow measured by the blood pressure measurement unit.
- a physical condition calculation unit that calculates a physical condition risk level indicating the physical condition of the living body based on each of the blood flow measured by the measurement unit.
- the physical condition monitoring method for solving the above problems includes a blood pressure measurement process for measuring blood pressure of a living body, a blood flow measurement process for measuring blood flow of the living body, and the blood pressure and blood flow measured by the blood pressure measurement process.
- a physical condition calculating step for calculating a physical condition risk level indicating the physical condition of the living body based on each of the blood flow measured by the measuring step.
- movement of the physical condition monitoring apparatus of 1st Example. It is a table which shows the correspondence between a blood pressure risk level and a blood pressure. It is a table which shows the correspondence between a blood flow risk level and a blood flow rate. It is a graph which shows the aspect of calculation of the physical condition risk level using the numerical formula of physical condition risk level blood pressure risk level + blood flow risk level. It is a wave form diagram which shows the relationship between heart rate HR and pulse wave amplitude, and blood flow volume. It is a table which shows the correspondence between a heart rate risk level and a heart rate.
- the physical condition monitoring device of the present embodiment includes a blood pressure measurement unit that measures blood pressure of a living body, a blood flow measurement unit that measures blood flow of the living body, the blood pressure measured by the blood pressure measurement unit, and the blood flow measurement unit.
- a physical condition calculation unit that calculates a physical condition risk level indicating the physical condition of the living body based on each of the measured blood flow rates.
- the blood pressure measurement unit measures the blood pressure of the living body.
- the blood pressure measurement unit may measure blood pressure discretely. Specifically, the blood pressure measurement unit may measure blood pressure for each first cycle. In other words, the blood pressure measurement unit may measure blood pressure for each first cycle. More specifically, the blood pressure measurement unit may measure blood pressure at the first timing. Thereafter, the blood pressure measurement unit may measure the blood pressure again at the second timing when the period corresponding to the first period has elapsed with the first timing as a starting point. Thereafter, the blood pressure measurement unit may repeat the same operation.
- the blood flow measurement unit measures the blood flow of the living body.
- the blood flow measurement unit may continuously measure the blood flow. Specifically, the blood flow measurement unit performs every second cycle (however, the second cycle is preferably shorter than the first cycle in which the blood pressure measurement unit measures blood pressure). You may measure blood flow.
- the blood flow measurement unit may measure the blood flow volume every second period. More specifically, the blood flow measurement unit may measure the blood flow at the third timing. Thereafter, the blood flow measurement unit may measure the blood flow again at the fourth timing when the period corresponding to the second period has elapsed with the third timing as a starting point. Thereafter, the blood flow measurement unit may repeat the same operation.
- the physical condition calculation unit calculates the physical condition risk level based on each of the blood pressure measured by the blood pressure measurement unit and the blood flow measured by the blood flow measurement unit. That is, instead of calculating the physical condition risk level based only on the blood pressure measured by the blood pressure measurement unit, the physical condition calculation unit is based on each of the blood pressure measured by the blood pressure measurement unit and the blood flow measured by the blood flow measurement unit. To calculate the health risk level. In other words, instead of calculating the physical condition risk level based on only the blood flow measured by the blood flow measurement unit, the physical condition calculation unit calculates the blood pressure measured by the blood pressure measurement unit and the blood flow measured by the blood flow measurement unit. A physical condition risk level is calculated based on each.
- the “physical condition risk level” indicates directly or indirectly whether or not the physical condition of the living body is good (or not), or the state of the physical condition of the living body. Means any indicator.
- An example of such a physical condition risk level is a numerical value that increases as the physical condition of the living body deteriorates.
- Such a physical condition monitoring device of this embodiment instead of a single measurement value, based on a plurality of measurement values (that is, blood pressure measured by the blood pressure measurement unit and blood flow measured by the blood flow measurement unit), Physical condition risk level can be calculated. Therefore, the physical condition monitoring apparatus of the present embodiment is more suitable for the physical condition of the living body (for example, with higher accuracy) than the physical condition monitoring apparatus of the comparative example that calculates the physical condition risk level based on a single measurement value. ) Can be monitored.
- the measured “blood flow” is often used as a relative value (that is, a relative value or a change amount with respect to some reference value).
- a relative value that is, a relative value or a change amount with respect to some reference value.
- the physical condition monitoring device of the comparative example that monitors the physical condition based only on “blood flow” can determine whether or not the physical condition is suddenly changed by monitoring the change amount of the blood flow, etc. It is not possible to suitably determine the state of the physical condition at the stage before the physical condition suddenly changes. This is because the usefulness of the information as the absolute value of the blood flow itself is not relatively high.
- blood pressure is often used as an absolute value (that is, the value of blood pressure itself).
- the burden on the living body due to the measurement of “blood pressure” is larger than the burden on the living body due to the measurement of “blood flow”.
- the physical condition monitoring device of the comparative example that monitors the physical condition based only on “blood pressure” cannot measure blood pressure frequently considering the burden on the living body due to the measurement of “blood pressure”. Therefore, the physical condition monitoring apparatus of the comparative example that monitors the physical condition based only on “blood pressure” cannot continuously determine the state of the physical condition.
- the physical condition monitoring apparatus according to the present embodiment can monitor the physical condition based on both “blood pressure” often used as an absolute value and “blood flow” often used as a relative value.
- the physical condition monitoring apparatus of the present embodiment compensates for the demerits occurring in the physical condition monitoring apparatus of the comparative example that monitors the physical condition based only on “blood pressure” by monitoring the physical condition based also on “blood flow”. Can do.
- the physical condition monitoring apparatus of the present embodiment compensates for the disadvantages that occur in the physical condition monitoring apparatus of the comparative example that monitors the physical condition based only on “blood flow” by monitoring the physical condition based also on “blood pressure”. Can do. Therefore, the physical condition monitoring apparatus of the present embodiment is more suitable for the physical condition of the living body (for example, with higher accuracy) than the physical condition monitoring apparatus of the comparative example that calculates the physical condition risk level based on a single measurement value. ) Can be monitored.
- the physical condition calculation unit measures the blood pressure risk level indicating the physical condition of the living body according to the blood pressure measured by the blood pressure measurement unit and the blood flow measurement unit measures the blood pressure.
- the physical condition risk level is calculated by calculating a blood flow risk level indicating the physical condition of the living body according to the blood flow volume.
- the physical condition calculation unit is based on the blood pressure risk level calculated based on the blood pressure measured by the blood pressure measurement unit and the blood flow risk level calculated based on the blood flow rate measured by the blood flow measurement unit.
- the physical condition risk level can be calculated.
- the “blood pressure risk level” is an arbitrary value that directly or indirectly indicates whether or not the physical condition of the living body is good (or not) or the state of the living body's physical condition. And an arbitrary index calculated based on blood pressure.
- An example of such a blood pressure risk level is a numerical value uniquely associated with blood pressure (for example, a numerical value defined by an arbitrary function having blood pressure as a variable).
- the “blood flow risk level” indicates directly or indirectly whether or not the physical condition of the living body is good (or whether or not it is good) or the state of the physical condition of the living body. It means an arbitrary index that is calculated based on the blood flow rate. As such a blood flow risk level, a numerical value uniquely associated with the blood flow rate (for example, a numerical value defined by an arbitrary function having the blood flow amount as a variable) is given as an example.
- the physical condition calculation unit is a blood pressure indicating the physical condition of the living body according to at least one of a proportional value of the blood pressure measured by the blood pressure measurement unit and a change state of the blood pressure. Calculating the blood flow risk level indicating the physical condition of the living body according to at least one of a risk level and a proportional value of the blood flow measured by the blood flow measurement unit and a displacement amount of the blood flow; Is calculated.
- the physical condition calculation unit includes the proportional value of the blood pressure measured by the blood pressure measurement unit (for example, the value of the blood pressure itself or a value obtained by multiplying the blood pressure by a predetermined number) and the blood pressure measured by the blood pressure measurement unit.
- Change state for example, the rate of change of blood pressure, the ratio of blood pressure to the reference value, the amount of change of blood pressure relative to the reference value, the amount of change of blood pressure per predetermined time, and the blood pressure n (where n is 1 or more)
- the physical condition risk level can be calculated based on the blood pressure risk level calculated on the basis of at least one of an integer) and the like.
- the physical condition calculation unit measures the proportional value of the blood flow measured by the blood flow measurement unit (for example, the value of the blood flow itself or a value obtained by multiplying the blood flow by a predetermined number) and the blood flow measurement unit.
- the change state of the blood flow for example, the rate of change of the blood flow, the ratio of the blood flow with respect to the reference value, the change of the blood flow with respect to the reference value, the change of the blood flow per predetermined time, and the n of the blood flow
- the physical condition risk level can be calculated based on the blood flow risk level calculated based on at least one of the second-order differential value and the like.
- the physical condition calculation unit adds the blood pressure risk level and the blood flow risk level.
- the physical condition risk level is calculated by or by multiplying.
- the physical condition calculation unit can relatively easily calculate the physical condition risk level from the blood pressure risk level and the blood flow risk level.
- the physical condition calculation unit includes the blood pressure risk level that has been subjected to weighting processing using a first weighting coefficient. And the blood flow risk level weighted by the second weighting coefficient are used to calculate a physical condition risk level.
- the physical condition calculation unit can calculate the physical condition risk level from the blood pressure risk level and the blood flow risk level that have been subjected to weighting processing in consideration of individual differences and the like for each living body. Therefore, even if there are individual differences for each living body whose physical condition is monitored, at least one of the blood pressure risk level and the blood flow risk level is corrected by such weighting processing so as to absorb the individual difference. Therefore, the physical condition calculation unit can more suitably calculate the physical condition risk level.
- the physical condition calculation unit is calculated from the blood flow volume in addition to the blood pressure measured by the blood pressure measurement unit and the blood flow volume measured by the blood flow measurement unit.
- the physical condition risk level is calculated based on at least one of the pulse rate amplitude calculated from the heart rate and the blood flow volume.
- the physical condition calculation unit calculates from more measurement values (that is, the blood pressure measured by the blood pressure measurement unit, the blood flow measured by the blood flow measurement unit, and the blood flow measured by the blood flow measurement unit.
- the physical condition risk level can be calculated based on at least one of the heart rate and the pulse wave amplitude. Therefore, according to this aspect, the physical condition calculation unit can monitor the physical condition of the living body more suitably (for example, with higher accuracy).
- the physical condition calculation unit includes the physical condition of the living body according to the blood pressure measured by the blood pressure measurement unit.
- the blood pressure risk level indicating the physical condition of the living body according to the blood flow rate measured by the blood flow measurement unit
- the blood flow risk level indicating the physical condition of the living body according to the heart rate calculated from the blood flow rate
- the physical condition risk level is calculated by calculating at least one of the heartbeat risk level indicating the physical condition of the living body and the pulse wave risk level indicating the physical condition of the living body according to the pulse wave amplitude calculated from the blood flow volume.
- the physical condition calculating unit calculates the blood pressure risk level calculated based on the blood pressure measured by the blood pressure measuring unit, the blood flow risk level calculated based on the blood flow measured by the blood flow measuring unit, and blood Heart rate risk level calculated based on the heart rate calculated from the blood flow rate measured by the blood flow measurement unit and pulse wave risk level calculated based on the pulse wave amplitude calculated from the blood flow rate measured by the blood flow measurement unit
- the physical condition risk level can be calculated based on at least one of the above.
- heart rate risk level directly or indirectly indicates whether or not the physical condition of the living body is good (or not) or the state of the living body's physical condition. It means an arbitrary index that is calculated from the heart rate.
- a heart rate risk level a numerical value uniquely associated with the heart rate (for example, a numerical value defined by an arbitrary function having the heart rate as a variable) is given as an example.
- the “pulse wave risk level” directly or indirectly indicates whether or not the physical condition of the living body is good (or not) or the state of the physical condition of the living body. It means an arbitrary index and an arbitrary index calculated from the pulse wave amplitude.
- An example of such a pulse wave risk level is a numerical value uniquely associated with the pulse wave amplitude (for example, a numerical value defined by an arbitrary function having the pulse wave amplitude as a variable).
- the physical condition calculation unit includes the proportional value of the blood pressure measured by the blood pressure measurement unit and the blood pressure.
- the blood pressure risk level indicating the physical condition of the living body according to at least one of the change states, the proportional value of the blood flow measured by the blood flow measurement unit, and the physical condition of the living body according to at least one of the change states of the blood flow.
- it is calculated from the heart rate risk level showing the physical condition of the living body according to at least one of the proportional value of the heart rate calculated from the blood flow rate and the change state of the heart rate, and the blood flow rate.
- the physical condition calculation unit is obtained by multiplying the proportional value of the heart rate calculated from the blood flow measured by the blood flow measurement unit (for example, the value of the heart rate itself or multiplying the heart rate by a predetermined number). Value) and the change rate of the heart rate calculated from the blood flow measured by the blood flow measurement unit (for example, the rate of change of the heart rate, the ratio of the heart rate to the reference value, the amount of change of the heart rate relative to the reference value,
- the physical condition risk level can be calculated based on the heart rate risk level calculated based on at least one of a change in heart rate per predetermined time, an n-th order differential value of the heart rate, and the like.
- the physical condition calculation unit may calculate a proportional value of the pulse wave amplitude calculated from the blood flow measured by the blood flow measurement unit (for example, the value of the pulse wave amplitude itself or multiply the pulse wave amplitude by a predetermined number of times.
- the physical condition risk level is calculated based on the pulse wave risk level calculated based on at least one of the change amount of the wave amplitude, the change amount of the pulse wave amplitude per predetermined time, the n-th order differential value of the pulse wave amplitude, etc. Can be calculated.
- the physical condition calculation unit includes the blood pressure risk level, the blood flow risk level, the heart rate risk level, and The physical condition monitoring apparatus according to claim 7, wherein the physical condition risk level is calculated by adding or multiplying at least one of the pulse wave risk levels.
- the physical condition calculation unit can relatively easily calculate the physical condition risk level from at least one of the blood pressure risk level, the blood flow risk level, the heart rate risk level, and the pulse wave risk level.
- the physical condition calculation unit includes the blood pressure risk level that has been subjected to the weighting process using the first weighting coefficient.
- the physical condition calculation unit includes at least one of the blood pressure risk level, the blood flow risk level, the heart rate risk level, and the pulse wave risk level that has been subjected to at least one weighting process that takes into account individual differences among living organisms. From this, the physical condition risk level can be calculated. Therefore, even if there is an individual difference for each living body whose physical condition is monitored, at least one of the blood pressure risk level, the blood flow risk level, the heart rate risk level, and the pulse wave risk level is corrected so as to absorb the individual difference. . Therefore, the physical condition calculation unit can more suitably calculate the physical condition risk level.
- the physical condition calculation unit calculates (i) the physical condition risk level when the blood pressure measured by the blood pressure measurement unit satisfies a predetermined condition, and (ii) The physical condition risk level is not calculated when the blood pressure measured by the blood pressure measurement unit does not satisfy the predetermined condition.
- the physical condition calculation unit can calculate the physical condition risk level when the blood pressure satisfies a predetermined condition (for example, when it is preferable to monitor the physical condition or calculate the physical condition risk level).
- the physical condition calculation unit does not have to calculate the physical condition risk level when the blood pressure does not satisfy the predetermined condition (for example, when it is not necessary to monitor the physical condition or to calculate the physical condition risk level). Therefore, the power consumption of the physical condition monitoring device is reduced as compared with the physical condition monitoring apparatus of the comparative example in which the physical condition calculation unit constantly calculates the physical condition risk level.
- the blood flow measurement unit (i) measures the blood flow when the blood pressure measured by the blood pressure measurement unit satisfies the predetermined condition, and (ii ) When the blood pressure measured by the blood pressure measurement unit does not satisfy the predetermined condition, the blood flow rate is not measured.
- the blood flow measurement unit can measure the blood flow when the blood pressure satisfies the predetermined condition (for example, when it is preferable to monitor the physical condition or calculate the physical condition risk level).
- the blood flow measurement unit does not have to measure the blood flow volume when the blood pressure does not satisfy the predetermined condition (for example, when it is not necessary to monitor the physical condition or calculate the physical condition risk level). Therefore, the power consumption of the physical condition monitoring device is reduced as compared with the physical condition monitoring apparatus of the comparative example in which the blood flow measurement unit constantly measures the blood flow.
- the blood pressure measurement unit further includes timer means for setting a timing at which the blood pressure measurement unit measures the blood pressure, and the blood pressure measurement unit at the timing set by the timer unit. The blood pressure is automatically measured by measuring.
- the blood pressure measurement unit can automatically measure blood pressure.
- the blood pressure measurement unit can automatically measure blood pressure, for example, every predetermined cycle.
- the blood pressure measurement unit includes, for example, a sphygmomanometer (for example, a non-invasive sphygmomanometer that wraps a cuff around an arm and pressurizes the arm through the cuff) with a manual operation of a measurer.
- a sphygmomanometer for example, a non-invasive sphygmomanometer that wraps a cuff around an arm and pressurizes the arm through the cuff
- the blood pressure measurement unit automatically performs measurement without timing by the measurer (or without manual operation by the measurer) according to the timing set by the timer unit. Blood pressure can be measured.
- the timer unit is configured such that (i) the timing frequency at which the blood pressure is measured when the blood pressure measured by the blood pressure measurement unit satisfies a predetermined condition. (Ii) The timing is set so that the blood pressure measured by the blood pressure measurement unit is higher than the frequency of the timing when the blood pressure is measured when the predetermined condition is not satisfied.
- the timer means can suitably set the timing at which the blood pressure measurement unit measures blood pressure according to the blood pressure measured by the blood pressure measurement unit.
- the timer means measures the blood pressure so that the blood pressure is measured relatively frequently when the blood pressure satisfies a predetermined condition (for example, when it is preferable to monitor the physical condition or calculate the physical condition risk level).
- the timing at which the unit measures blood pressure can be set.
- the timer means measures the blood pressure relatively infrequently when the blood pressure does not satisfy a predetermined condition (for example, when it is not necessary to monitor the physical condition or calculate the physical condition risk level).
- the timing at which the blood pressure measurement unit measures blood pressure can be set.
- the physical condition monitoring method of the present embodiment includes a blood pressure measurement step for measuring blood pressure of a living body, a blood flow measurement step for measuring blood flow of the living body, the blood pressure measured by the blood pressure measurement step, and the blood flow measurement step. And a physical condition calculation step of calculating a physical condition risk level indicating the physical condition of the living body based on each of the measured blood flow rates.
- the physical condition monitoring method of the present embodiment may adopt various aspects.
- the physical condition monitoring apparatus includes blood pressure measurement means, blood flow measurement means, and physical condition calculation means.
- the physical condition monitoring method of the present embodiment includes a blood pressure measurement process, a blood flow measurement process, and a physical condition calculation process. Therefore, the physical condition of the living body can be monitored more suitably.
- FIG. 1 is a block diagram illustrating a configuration of a physical condition monitoring apparatus 1 according to the first embodiment.
- the physical condition monitoring apparatus 1 of the first embodiment includes a blood pressure measurement unit 11, a blood flow measurement unit 12, and a control unit 13.
- the blood pressure measurement unit 11 measures a blood pressure BP of a living body (for example, a human being or an animal).
- the blood pressure measurement unit 11 may be, for example, a non-invasive blood pressure monitor (for example, a blood pressure meter that measures the blood pressure BP by wrapping a cuff around an arm and pressurizing the arm through the cuff).
- the blood pressure measurement unit 11 may have any configuration as long as the blood pressure BP can be measured by some method.
- the blood flow measuring unit 12 measures the blood flow volume of the living body (that is, the flow rate of blood flowing in the blood vessel) BF.
- a blood flow measurement unit 12 for example, a laser Doppler blood flow meter may be used.
- the blood flow measurement unit 12 may have any configuration as long as the blood flow BF can be measured by any method.
- the description will be given by taking the case where the blood flow measuring unit 12 is a laser Doppler blood flow meter as an example.
- the blood flow measurement unit 12 includes a laser element 121, a light receiving element 122, an amplifier 123, an analog / digital (A / D) converter 124, and an arithmetic circuit 125.
- the laser element 121 irradiates a living body with laser light. At this time, the laser element 121 preferably irradiates a blood vessel in the living body with laser light. In particular, the laser element 121 preferably irradiates a blood vessel of the earlobe with laser light. However, the laser element 121 may irradiate the result of the other part with laser light.
- the light receiving element 122 receives the beat signal light generated by the mutual interference between the reflected light of the laser light from the living body and the scattered light of the laser light LB from the living body.
- the light receiving element 12 generates a detection current obtained by converting the received beat signal light into an electrical signal.
- the amplifier 123 amplifies the detection current output from the light receiving element 122 after converting it into a voltage signal.
- the A / D converter 124 performs A / D conversion processing (that is, quantization processing) on the output of the amplifier 123 (that is, the voltage signal corresponding to the beat signal light received by the light receiving element 122). As a result, the A / D converter 124 outputs the sample value of the voltage signal (that is, the quantized voltage signal) corresponding to the beat signal light received by the light receiving element 122 to the arithmetic circuit 125.
- a / D conversion processing that is, quantization processing
- the arithmetic circuit 125 performs frequency analysis using FFT (Fast Fourier Transform) on the output of the A / D converter 124 (that is, the sample value of the voltage signal corresponding to the beat signal light received by the light receiving element 122). . As a result, the arithmetic circuit 125 calculates the blood flow BF.
- FFT Fast Fourier Transform
- the control unit 13 is a central control device (for example, CPU: Central Processing Unit) for controlling the physical condition monitoring device 1.
- the control unit 13 includes a blood pressure storage unit 131, a blood flow storage unit 132, and a risk level calculation unit 133 as a processing circuit physically realized therein or as a processing block logically realized therein. And an output unit 134.
- the blood pressure storage unit 131 is a memory that stores the blood pressure BP measured by the blood pressure measurement unit 11. Note that the blood pressure storage unit 131 preferably stores the blood pressure BP measured by the blood pressure measurement unit 11 within a certain period. Alternatively, the blood pressure storage unit 131 may store all blood pressures BP measured by the blood pressure measurement unit 11.
- the blood flow storage unit 132 is a memory that stores the blood flow BF measured by the blood flow measurement unit 12.
- the blood flow storage unit 132 preferably stores the blood flow BF measured by the blood flow measurement unit 12 within a certain period. Alternatively, the blood flow storage unit 132 may store all blood flows BF measured by the blood flow measurement unit 12.
- the blood pressure storage unit 131 may be physically independent of the blood flow storage unit 132.
- the blood pressure storage unit 131 and the blood flow storage unit 132 may be configured from a single memory.
- the risk level calculation unit 133 indicates whether or not the physical condition of the living body is good based on the blood pressure BP stored in the blood pressure storage unit 131 and the blood flow BF stored in the blood flow storage unit 132 (or The physical condition risk level is calculated.
- the output unit 134 outputs the physical condition risk level calculated by the risk level calculation unit 133 to an external device of the physical condition management device 1. Alternatively, the output unit 134 outputs the physical condition risk level calculated by the risk level calculation unit 133 to a display unit (not illustrated) provided in the physical condition management device 1. As a result, the display unit may display the physical condition risk level.
- FIG. 2 is a flowchart showing an operation flow of the physical condition monitoring apparatus 1 according to the first embodiment.
- the blood flow measurement unit 12 measures the blood flow BF of the living body (step S11).
- the measurement of the blood flow BF of the living body by the blood flow measuring unit 12 is continuously performed until the monitoring operation of the physical condition of the living body by the physical condition monitoring device 1 is completed (step S16).
- the laser element 121 irradiates a living body with laser light.
- the light receiving element 122 has a mutual interference of scattered light of laser light from the living body (more specifically, scattered light scattered by blood cells that are moving scatterers and tissue that is stationary (for example, skin tissue).
- the beat signal light generated by the mutual interference with the scattered light scattered by the light is received.
- a living body is irradiated with laser light
- scattered light is generated due to the flow of blood inside blood vessels in the living body (that is, movement of red blood cells that are scatterers).
- the frequency of the scattered light is changed by the laser Doppler action corresponding to the moving speed of the blood as compared with the frequency of the original laser light.
- the light receiving element 122 receives beat signal light (so-called frequency difference signal) generated by the mutual interference of scattered light.
- the scattered light that generates the beat signal light forward scattered light corresponding to the transmitted light of the laser light irradiated on the living body may be used, or backward corresponding to the reflected light of the laser light irradiated on the living body. Scattered light may be used.
- the light receiving element 122 generates a detection current obtained by converting the received beat signal light into an electrical signal.
- the light receiving element 122 outputs the generated detection current to the amplifier 123.
- the amplifier 123 amplifies the detection current output from the light receiving element 122 (that is, the detection current corresponding to the beat signal light received by the light receiving element 122) after converting it into a voltage signal.
- the amplifier outputs a voltage signal to the A / D converter 124.
- the A / D converter 124 performs A / D conversion processing (that is, quantization processing) on the output of the amplifier 123 (that is, the voltage signal corresponding to the beat signal light received by the light receiving element 122).
- a / D converter 124 outputs the sample value of the voltage signal (that is, the quantized voltage signal) corresponding to the beat signal light received by the light receiving element 122 to the arithmetic circuit 125.
- the sampling period of the A / D converter 124 is Ta
- the A / D converter 124 samples the voltage signal sample value (corresponding to the beat signal light received by the light receiving element 122 for each period Ta ( That is, a quantized voltage signal) is output.
- the arithmetic circuit 125 performs frequency analysis using FFT (Fast Fourier Transform) on the output of the A / D converter 124 (that is, the sample value of the voltage signal corresponding to the beat signal light received by the light receiving element 12). I do.
- FFT Fast Fourier Transform
- the arithmetic circuit 125 calculates the blood flow BF.
- the arithmetic circuit 125 performs FFT on the sample value of the voltage signal corresponding to the beat signal light.
- the arithmetic circuit 125 calculates the blood flow BF using a first moment that is a result of multiplying the power spectrum and the frequency vector obtained by performing the FFT.
- the arithmetic circuit 125 outputs the calculated blood flow BF to the control unit 13 (particularly, the blood flow storage unit 132). As a result, the blood flow storage unit 132 stores the blood flow BF measured by the blood flow measurement unit 12 (step S11).
- the blood pressure measurement unit 11 measures the blood pressure BP of the living body following the measurement of the blood flow BF in step S11, or in parallel with or in parallel with the blood flow BF (step S12). Thereafter, the blood pressure BP measured by the blood pressure measurement unit 11 is output to the control unit 13 (particularly, the blood pressure storage unit 131). As a result, the blood pressure storage unit 131 stores the blood pressure BP measured by the blood pressure measurement unit 11 (step S12). The measurement of the blood pressure BP of the living body by the blood pressure measurement unit 11 is continuously performed until the monitoring operation of the physical condition of the living body by the physical condition monitoring device 1 is completed (step S16).
- the blood pressure measurement unit 11 may measure the blood pressure BP at regular time intervals (for example, every 20 minutes). For example, when the measurer operates the blood pressure measurement unit 11 at regular intervals (for example, the cuff is wound around the arm of the living body and the arm of the living body is pressed through the cuff), the blood pressure BP at regular intervals. Is measured.
- the cycle in which the blood pressure measurement unit 11 measures the blood pressure BP may be longer than the cycle in which the blood flow measurement unit 12 measures the blood flow BF.
- the blood pressure measurement unit 11 measures the blood pressure BP every 20 minutes
- the blood flow measurement unit 12 measures the blood every cycle shorter than 20 minutes (for example, every several tens of milliseconds to several tens of seconds).
- the flow rate BF may be measured.
- the blood pressure measurement unit 11 is a non-invasive blood pressure monitor and the blood flow measurement unit 12 is a laser Doppler blood flow meter
- the blood pressure measurement unit 11 has a blood pressure due to the labor involved in measuring the blood pressure BP.
- the cycle for measuring BP is often longer than the cycle for measuring blood flow BF by blood flow measurement unit 12.
- the risk level calculation unit 133 indicates whether or not the physical condition of the living body is good.
- the physical condition risk level (or the state of the physical condition of the living body) is calculated (from step S13 to step S15).
- the calculation of the physical condition risk level by the risk level calculation unit 133 is continuously performed until the monitoring operation of the physical condition of the living body by the physical condition monitoring device 1 is completed (step S16).
- the risk level calculation unit 133 first calculates a blood pressure risk level based on the blood pressure BP stored in the blood pressure storage unit 131 (step S13).
- the blood pressure risk level is an index indicating the state of the physical condition of the living body and is an index corresponding to the value of the blood pressure BP.
- FIG. 3 is a table showing a correspondence relationship between the blood pressure risk level and the blood pressure BP.
- the risk level calculation unit 133 may calculate the blood pressure risk level by referring to, for example, a table showing a correspondence relationship between the blood pressure BP and the blood pressure risk level. Specifically, the risk level calculation unit 133 calculates a numerical value “1” as the blood pressure risk level when the blood pressure BP is greater than 160 mmHg and equal to or less than 180 mmHg. Similarly, the risk level calculation unit 133 calculates a numerical value “2” as the blood pressure risk level when the blood pressure BP is greater than 180 mmHg. Similarly, when the blood pressure BP is greater than 140 mmHg and less than or equal to 160 mmHg, the risk level calculation unit 133 calculates a numerical value “3” as the blood pressure risk level.
- the risk level calculation unit 133 calculates a numerical value “4” as the blood pressure risk level when the blood pressure BP is greater than 120 mmHg and equal to or less than 140 mmHg. Similarly, the risk level calculation unit 133 calculates a numerical value “5” as the blood pressure risk level when the blood pressure BP is greater than 100 mmHg and equal to or less than 120 mmHg. Similarly, the risk level calculation unit 133 calculates a numerical value “6” as the blood pressure risk level when the blood pressure BP is 100 mmHg or less.
- the blood pressure risk level shown in FIG. 3 shows that the physical condition of the living body deteriorates as the value increases (in other words, it is not good).
- the blood pressure risk level shown in FIG. 3 mainly targets the blood pressure BP when the living body is performing artificial dialysis.
- a decrease in blood pressure BP often indicates deterioration in physical condition (that is, deterioration in state). Therefore, the blood pressure risk level shown in FIG. 3 increases as the blood pressure BP decreases (that is, the physical condition of the living body during artificial dialysis deteriorates).
- the blood pressure risk level may indicate that the physical condition of the living body deteriorates as the numerical value decreases (in other words, is not good).
- the blood pressure risk level may indicate the physical condition of the living body in another manner. That is, an arbitrary index having some correspondence with the blood pressure BP and having some correspondence with the physical condition of the living body may be used as the blood pressure risk level.
- the risk level calculation unit 133 is arbitrary information indicating the correspondence relationship between the blood pressure BP and the blood pressure risk level (for example, The blood pressure risk level may be calculated by referring to a map, a mathematical formula, a function, or the like.
- the risk level calculation unit 133 determines whether the proportional value of the blood pressure BP (for example, the value of the blood pressure BP itself or the value K ⁇ BP obtained by multiplying the blood pressure BP by a predetermined coefficient K) and the blood pressure risk level.
- the blood pressure risk level may be calculated by referring to arbitrary information indicating the correspondence.
- the risk level calculation unit 133 changes the blood pressure BP change rate (for example, the current blood pressure BP change rate based on a predetermined reference value (for example, the blood pressure BP before a predetermined time (for example, 10 minutes)) ⁇ BP
- the blood pressure risk level may be calculated by referring to arbitrary information indicating the correspondence between the blood pressure risk level and the blood pressure risk level.
- the risk level calculation unit 133 may be arbitrary information indicating a change mode of the blood pressure BP (for example, a current blood pressure BP change amount based on a predetermined reference value or a current amount based on a predetermined reference value).
- a change mode of the blood pressure BP for example, a current blood pressure BP change amount based on a predetermined reference value or a current amount based on a predetermined reference value.
- the blood pressure risk level may be calculated by referring to arbitrary information shown.
- the risk level calculation unit 133 calculates a blood flow risk level based on the blood flow BF stored in the blood flow storage unit 132 (step S14).
- the blood flow risk level is an index indicating the state of the physical condition of the living body and is an index corresponding to the value of the blood flow BF.
- FIG. 4 is a table showing the correspondence between the blood flow risk level and the blood flow BF.
- the risk level calculation unit 133 for example, the change rate ⁇ BF of the current blood flow BF with reference to a predetermined reference value (for example, the blood flow BF before a predetermined time (for example, 10 minutes)).
- the blood flow risk level may be calculated by referring to a table indicating the correspondence between the blood flow risk level and the blood flow risk level.
- the risk level calculation unit 133 determines that the change rate ⁇ BF of the blood flow BF is ⁇ 5% or more (that is, 0.95 ⁇ predetermined reference value ⁇ current blood flow BF). The numerical value “1” is calculated as the blood flow risk level. Similarly, the risk level calculation unit 133 has a change rate ⁇ BF of the blood flow BF that is ⁇ 10% or more and less than ⁇ 5% (that is, 0.90 ⁇ predetermined reference value ⁇ current blood flow BF ⁇ 0). .95 ⁇ predetermined reference value), a numerical value “2” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ BF of the blood flow BF that is ⁇ 20% or more and less than ⁇ 10% (that is, 0.80 ⁇ predetermined reference value ⁇ current blood flow BF ⁇ 0). .90 ⁇ predetermined reference value), a numerical value “3” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ BF of the blood flow BF of ⁇ 30% or more and less than ⁇ 20% (that is, 0.70 ⁇ predetermined reference value ⁇ current blood flow BF ⁇ 0). .80 ⁇ predetermined reference value), a numerical value “4” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ BF of the blood flow BF that is ⁇ 40% or more and less than ⁇ 30% (that is, 0.60 ⁇ predetermined reference value ⁇ current blood flow BF ⁇ 0). .70 ⁇ predetermined reference value), a numerical value “5” is calculated as the blood flow risk level.
- the change rate ⁇ BF of the blood flow BF is less than ⁇ 40% (that is, the current blood flow BF ⁇ 0.60 ⁇ predetermined reference value)
- the risk level calculation unit 133 sets “6 Is calculated as a blood flow risk level.
- the blood flow risk level shown in FIG. 4 shows that the physical condition of the living body deteriorates as the value increases (in other words, it is not good).
- the blood flow risk level shown in FIG. 4 mainly targets the blood flow BF when the living body is performing artificial dialysis.
- a rapid decrease in the blood flow BF often indicates deterioration of physical condition (that is, deterioration of the state). Therefore, the blood flow risk level shown in FIG. 4 decreases as the rate of change ⁇ BF of the blood flow BF decreases (that is, the blood flow BF decreases rapidly, in other words, the physical condition of the living body during artificial dialysis deteriorates).
- the numbers are increasing.
- the blood flow risk level may indicate that the physical condition of the living body deteriorates as the numerical value decreases (in other words, is not good).
- the blood flow risk level may indicate the physical condition of the living body in another manner. That is, an arbitrary index having some correspondence with the change rate ⁇ BF of the blood flow BF and having any correspondence with the physical condition of the living body is used as the blood flow risk level. Also good.
- the risk level calculation unit 133 calculates the change rate ⁇ BF of the blood flow BF and the blood flow risk level.
- the blood flow risk level may be calculated by referring to arbitrary information (for example, a map, a mathematical expression, a function, etc.) indicating the correspondence relationship between the two.
- the risk level calculation unit 133 also calculates a proportional value of the blood flow BF (for example, the value of the blood flow BF itself or a value K ⁇ BF obtained by multiplying the blood flow BF by a predetermined coefficient K) and the blood flow risk level.
- the blood flow risk level may be calculated by referring to arbitrary information indicating the correspondence between the blood flow and the blood flow.
- the risk level calculation unit 133 may be arbitrary information indicating a change mode of the blood flow BF (for example, a change in the current blood flow BF with reference to a predetermined reference value or a predetermined reference value as a reference).
- Arbitrary information indicating a correspondence relationship between a current blood flow rate BF ratio, a change amount or change rate of the blood flow rate BF per predetermined time, an n-th order differential value of the blood flow rate BF, and the blood flow risk level.
- the blood flow risk level may be calculated by referring to.
- the predetermined time may be changed for each living body.
- a relatively short time for example, 1 minute or 10 minutes
- a relatively long time for example, 5 minutes or 15 minutes
- a relatively long time for example, 5 minutes or 15 minutes
- an appropriate value that can remove the body movement and electrical noise of the living body may be set based on the average value of the blood flow BF.
- the blood flow rate BF measured by the blood flow measurement unit 12 at the time when the blood pressure measurement unit 11 measures the blood pressure BP may be used as the reference value when calculating the change rate ⁇ BF of the blood flow rate BF. The same applies to the calculation of the change rate ⁇ BP of the blood pressure BP, the change rate ⁇ HR of the heart rate HR described later, and the change rate ⁇ PA of the pulse wave amplitude PA described later.
- the risk level calculation unit 133 indicates whether or not the physical condition of the living body is good based on the blood pressure risk level calculated in step S13 and the blood flow risk level calculated in step S14 ( Alternatively, a physical condition risk level (indicating the state of the physical condition of the living body) is calculated (step S15).
- FIG. 5 (a) shows an example of the blood pressure risk level calculated in step S13 of FIG.
- the blood pressure risk level is “1”.
- the blood pressure BP measured when the measurement elapsed time becomes “20 minutes” is 190 mmHg
- the blood pressure risk level during the period becomes “2”.
- the blood pressure BP measured at the time when the measurement elapsed time becomes “40 minutes” is 150 mmHg, the measurement elapsed time from “40 minutes” to “60 minutes”.
- the blood pressure risk level during the period becomes “3”.
- FIG. 5B shows an example of the blood flow risk level calculated in step S14 of FIG.
- the period in which the measurement elapsed time is “0 minutes” to “23 minutes”, the period in which the measurement elapsed time is “37 minutes” to “45 minutes”, and the measurement elapsed time is “53”. Since the blood flow rate BF increases in the period from “minute” to “58 minutes”, the blood flow risk level in these periods is “1”. Similarly, as shown in FIG. 5 (b), since the blood flow BF is relatively abruptly decreased in the period in which the measurement elapsed time is “23 minutes” to “37 minutes”, the measurement elapsed time is The blood flow risk level in the period from “23 minutes” to “37 minutes” is “3”.
- FIG. 5 (c) shows a physical condition risk level calculated by adding the blood pressure risk level shown in FIG. 5 (a) and the blood flow risk level shown in FIG. 5 (b).
- the blood pressure risk level is “1” and the blood flow risk level is “1” during the period in which the measurement elapsed time is “0 minutes” to “20 minutes”. Therefore, the physical condition risk level is “2” during the period in which the measurement elapsed time is “0 minutes” to “20 minutes”.
- the blood pressure risk level is “2” and the blood flow risk level is “1” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”. . Therefore, the physical condition risk level is “3” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”.
- the blood pressure risk level is “2” and the blood flow risk level is “3” during the period in which the measurement elapsed time is “23 minutes” to “37 minutes”. . Therefore, the physical condition risk level is “5” during the period in which the measurement elapsed time is “23 minutes” to “37 minutes”.
- the blood pressure risk level is “2” and the blood flow risk level is “1” during the measurement elapsed time from “37 minutes” to “40 minutes”. . Therefore, the physical condition risk level is “3” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”.
- the blood pressure risk level is “3” and the blood flow risk level is “1” during the period in which the measurement elapsed time is “40 minutes” to “45 minutes”. . Therefore, the physical condition risk level is “4” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”.
- the blood pressure risk level is “3” and the blood flow risk level is “2” during the period in which the measurement elapsed time is “45 minutes” to “53 minutes”. . Therefore, the physical condition risk level is “5” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”.
- the blood pressure risk level is “3” and the blood flow risk level is “1” during the period in which the measurement elapsed time is “53 minutes” to “58 minutes”. . Therefore, the physical condition risk level is “4” during the period in which the measurement elapsed time is “20 minutes” to “23 minutes”.
- the blood pressure risk level is “3” and the blood flow risk level is “2” during the period in which the measurement elapsed time is “58 minutes” to “60 minutes”. . Therefore, the physical condition risk level is “5” during the period in which the measurement elapsed time is “58 minutes” to “60 minutes”.
- the physical condition monitoring apparatus 1 calculates the physical condition risk level based on the blood pressure BP measured by the blood pressure measurement unit 11 and the blood flow BF measured by the blood flow measurement unit 12. be able to. That is, the physical condition monitoring apparatus 1 according to the first embodiment, instead of calculating the physical condition risk level based only on the blood pressure BP measured by the blood pressure measurement unit 11, measures the blood pressure BP and blood flow measured by the blood pressure measurement unit 11. The physical condition risk level can be calculated based on each of the blood flow BF measured by the unit 12. In other words, the physical condition monitoring apparatus 1 according to the first embodiment replaces the blood pressure BP measured by the blood pressure measurement unit 11 with the physical condition risk level calculated based only on the blood flow BF measured by the blood flow measurement unit 12.
- the physical condition risk level can be calculated based on each of the blood flow BF measured by the blood flow measuring unit 12. That is, the physical condition monitoring apparatus 1 according to the first embodiment uses a plurality of measurement values (that is, the blood pressure BP measured by the blood pressure measurement unit 11 and the blood flow BF measured by the blood flow measurement unit 12 instead of a single measurement value). ) Based on the physical condition risk level. Therefore, the physical condition monitoring apparatus 1 of the first embodiment is more suitable for the physical condition of the living body (for example, higher than the physical condition monitoring apparatus of the comparative example that calculates the physical condition risk level based on a single measurement value). Can be monitored).
- the weighting coefficient ⁇ is set for each living body to be monitored by the physical condition monitoring apparatus 1 (in other words, for each individual). ) An appropriate value may be set. Alternatively, the weighting coefficient ⁇ may be set to an appropriate value according to the physical condition of the living body monitored by the physical condition monitoring device 1.
- the risk level calculation unit 133 calculates the physical condition risk level using each of the blood pressure BP measured by the blood pressure measurement unit 11 and the blood flow BP measured by the blood flow measurement unit 12.
- the risk level calculation unit 133 is calculated from the blood flow BF measured by the blood flow measurement unit 12 in addition to the blood pressure BP measured by the blood pressure measurement unit 11 and the blood flow BP measured by the blood flow measurement unit 12.
- the physical condition risk level may be calculated by further using each of the heart rate HR and the pulse wave amplitude PA. More specifically, the risk level calculation unit 133 is an index indicating the state of the physical condition of the living body and an index corresponding to the heart rate HR in addition to the blood pressure risk level and the blood flow risk level.
- the physical condition risk level may be calculated by further using each of the pulse wave risk level, which is an index indicating the level and the physical condition of the living body and corresponding to the pulse wave amplitude PA.
- FIG. 6 is a waveform diagram showing the relationship between heart rate HR and pulse wave amplitude PA and blood flow BF.
- FIG. 7 is a table showing the correspondence between the heart rate risk level and the heart rate HR.
- FIG. 8 is a table showing the correspondence between the pulse wave risk level and the pulse wave amplitude PA.
- the frequency of the waveform corresponding to the pulse wave corresponds to the heart rate HR.
- the risk level calculation unit 133 uses the current reference with a predetermined reference value (for example, the heart rate HR before a predetermined time (for example, 10 minutes)) as a reference.
- the heart rate risk level may be calculated by referring to a table showing the correspondence between the rate of change ⁇ HR of the heart rate HR and the heart rate risk level.
- the risk level calculation unit 133 has an absolute value of the rate of change ⁇ HR of the heart rate HR of 5% or less (that is,
- the risk level calculation unit 133 has an absolute value of the rate of change ⁇ HR of the heart rate HR greater than 5% and less than or equal to 10% (that is,
- the risk level calculation unit 133 has an absolute value of the rate of change ⁇ HR of the heart rate HR greater than 10% and 20% or less (that is,
- the risk level calculation unit 133 has an absolute value of the rate of change ⁇ HR of the heart rate HR greater than 20% and less than 30% (that is,
- the risk level calculation unit 133 has an absolute value of the rate of change ⁇ HR of the heart rate HR greater than 30% and less than or equal to 40% (that is,
- the risk level calculation unit 133 makes the absolute value of the rate of change ⁇ HR of the heart rate HR greater than 40% (that is,
- the heart rate risk level shown in FIG. 7 indicates that the physical value of the living body deteriorates as the value increases (in other words, it is not good). This is because the heart rate risk level shown in FIG. 7 is mainly for the heart rate HR when the living body is performing artificial dialysis. When the living body is performing artificial dialysis, a rapid change in the heart rate HR often indicates deterioration of physical condition (that is, deterioration of state). Therefore, the heart rate risk level shown in FIG. 7 increases the absolute value of the rate of change ⁇ HR of the heart rate HR (that is, the heart rate HR changes rapidly, in other words, the physical condition of the living body during artificial dialysis deteriorates). The numbers are getting bigger.
- the heart rate risk level may indicate that the physical condition of the living body deteriorates as the numerical value decreases (in other words, is not good).
- the heart rate risk level may indicate the physical condition of the living body in another manner. That is, any index that has some correspondence with the rate of change ⁇ HR of the heart rate HR and has some correspondence with the physical condition of the living body may be used as the heart rate risk level.
- the risk level calculation unit 133 may determine whether the rate of change ⁇ HR of the heart rate HR is equal to the heart rate risk level.
- the blood flow risk level may be calculated by referring to arbitrary information (for example, a map, a mathematical expression, a function, or the like) indicating the correspondence relationship.
- the risk level calculation unit 133 also calculates a proportional value of the heart rate HR (for example, a value of the heart rate HR itself or a value K ⁇ HR obtained by multiplying the heart rate HR by a predetermined coefficient K) and a heart rate risk level.
- the heart rate risk level may be calculated by referring to arbitrary information indicating the correspondence between the two.
- the risk level calculation unit 133 may be arbitrary information indicating a change mode of the heart rate HR (for example, a change amount of the current heart rate HR based on a predetermined reference value or a predetermined reference value as a reference).
- the heart rate risk level may be calculated by referring to it.
- the risk level calculation unit 133 uses, for example, a predetermined reference value (for example, a pulse wave amplitude PA before a predetermined time (for example, 10 minutes)) as a reference.
- the pulse wave risk level may be calculated by referring to a table showing a correspondence relationship between the current pulse wave amplitude PA change rate ⁇ PA and the pulse wave risk level.
- the risk level calculation unit 133 has a change rate ⁇ PA of the pulse wave amplitude PA of ⁇ 5% or more (that is, 0.95 ⁇ predetermined reference value ⁇ current pulse wave). In the case of an amplitude), a numerical value “1” is calculated as the pulse wave risk level. Similarly, the risk level calculation unit 133 has a change rate ⁇ PA of the pulse wave amplitude PA of ⁇ 10% or more and less than ⁇ 5% (that is, 0.90 ⁇ predetermined reference value ⁇ current pulse wave amplitude PA). ⁇ 0.95 ⁇ predetermined reference value), a value of “2” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ PA of the pulse wave amplitude PA of ⁇ 20% or more and less than ⁇ 10% (that is, 0.80 ⁇ predetermined reference value ⁇ current pulse wave amplitude PA). ⁇ 0.90 ⁇ predetermined reference value), a numerical value “3” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ PA of the pulse wave amplitude PA of ⁇ 30% or more and less than ⁇ 20% (that is, 0.70 ⁇ predetermined reference value ⁇ current pulse wave amplitude PA). ⁇ 0.80 ⁇ predetermined reference value), a numerical value “4” is calculated as the blood flow risk level.
- the risk level calculation unit 133 has a change rate ⁇ PA of the pulse wave amplitude PA of ⁇ 40% or more and less than ⁇ 30% (that is, 0.60 ⁇ predetermined reference value ⁇ current pulse wave amplitude PA). ⁇ 0.70 ⁇ predetermined reference value), a numerical value “5” is calculated as the blood flow risk level.
- the rate of change ⁇ PA of the pulse wave amplitude PA is less than ⁇ 40% (that is, the current pulse wave amplitude PA ⁇ 0.60 ⁇ predetermined reference value)
- the risk level calculation unit 133 The numerical value “6” is calculated as the blood flow risk level.
- the pulse wave risk level shown in FIG. 8 shows that the physical condition of the living body deteriorates as the value increases (in other words, it is not good).
- the pulse wave risk level shown in FIG. 8 mainly targets the pulse wave amplitude PA when the living body is performing artificial dialysis.
- a rapid decrease in the pulse wave amplitude PA often indicates deterioration of physical condition (that is, deterioration of state). Therefore, the pulse wave risk level shown in FIG. 8 decreases the rate of change ⁇ PA of the pulse wave amplitude PA (that is, the pulse wave amplitude PA decreases rapidly, in other words, the physical condition of the living body during artificial dialysis deteriorates).
- the numbers are getting bigger.
- the pulse wave risk level may indicate that the physical condition of the living body deteriorates as the numerical value decreases (in other words, is not good).
- the pulse wave risk level may indicate the physical condition of the living body in another manner. That is, an arbitrary index having any correspondence with the change rate ⁇ PA of the pulse wave amplitude PA and having any correspondence with the physical condition of the living body is used as the pulse wave risk level. May be.
- the risk level calculation unit 133 changes the change rate ⁇ PA of the pulse wave amplitude PA and the pulse wave risk.
- the pulse wave risk level may be calculated by referring to arbitrary information (for example, a map, a mathematical expression, a function, etc.) indicating a correspondence relationship between the levels.
- the risk level calculation unit 133 also calculates a proportional value of the pulse wave amplitude PA (for example, a value of the pulse wave amplitude PA itself or a value K ⁇ PA obtained by multiplying the pulse wave amplitude PA by a predetermined coefficient K) and the pulse wave amplitude PA.
- the pulse wave risk level may be calculated by referring to arbitrary information indicating the correspondence relationship between the wave risk level.
- the risk level calculation unit 133 may use arbitrary information indicating a change mode of the pulse wave amplitude PA (for example, a change amount of the current pulse wave amplitude PA based on a predetermined reference value or a predetermined reference value as a reference).
- the pulse wave risk level may be calculated by referring to arbitrary information indicating the relationship.
- the risk level calculation unit 133 calculates the physical condition risk level by further using each of the heart rate risk level and the pulse wave risk level.
- the risk level calculation unit 133 may calculate the physical condition risk level without using the pulse wave risk level while using the heartbeat risk level.
- the risk level calculation unit 133 may calculate the physical condition risk level without using the heartbeat risk level while using the pulse wave risk level.
- FIG. 9 is a block diagram illustrating a configuration of the physical condition monitoring apparatus 2 according to the second embodiment.
- the physical condition monitoring device 2 of the second embodiment includes a blood pressure measurement unit 11 and a blood flow measurement unit 12 in the same manner as the physical condition monitoring device 1 of the first example.
- the physical condition monitoring device 2 further includes a control unit 23.
- the control unit 23 of the second embodiment is different from the control unit 13 of the first embodiment in that it further includes a measurement instruction unit 235.
- Other components included in the controller 23 of the second embodiment may be the same as other components included in the controller 12 of the first embodiment.
- the measurement instruction unit 235 may control the blood flow measurement unit 12 so that the blood flow measurement unit 12 measures the blood flow BF when the blood pressure BP measured by the blood pressure measurement unit 11 satisfies a predetermined condition. In other words, the measurement instruction unit 235 controls the blood flow measurement unit 12 so that the blood flow measurement unit 12 does not measure the blood flow BF when the blood pressure BP measured by the blood pressure measurement unit 11 does not satisfy the predetermined condition. May be.
- the measurement instruction unit 235 causes the risk level calculation unit 133 to calculate a physical condition risk level when the blood pressure BP measured by the blood pressure measurement unit 11 satisfies a predetermined condition.
- the risk level calculation unit 133 may be controlled.
- the measurement instruction unit 235 controls the risk level calculation unit 133 so that the risk level calculation unit 133 does not calculate the physical condition risk level when the blood pressure BP measured by the blood pressure measurement unit 11 does not satisfy the predetermined condition. May be.
- FIG. 10 is a flowchart showing a flow of operations of the physical condition monitoring apparatus 2 according to the second embodiment.
- the blood pressure measurement unit 11 measures the blood pressure BP of the living body as in the first embodiment (step S12). Further, the blood pressure storage unit 131 stores the blood pressure BP measured by the blood pressure measurement unit 11 (step S12).
- the measurement instruction unit 235 determines whether or not the blood pressure BP measured in step S12 satisfies a predetermined condition (step S21).
- the measurement instruction unit 235 is a value for which the blood pressure BP measured in step S12 requires continuous monitoring (for example, a value that is not a normal value or a value that is a normal value but requires attention). It may be determined whether or not. When the blood pressure BP measured in step S12 is a value that requires continuous monitoring, it may be determined that the blood pressure BP measured in step S12 satisfies a predetermined condition. On the other hand, when the blood pressure BP measured in step S12 is not a value that requires continuous monitoring, it may be determined that the blood pressure BP measured in step S12 does not satisfy the predetermined condition.
- the measurement instruction unit 235 determines whether the blood pressure BP measured in step S12 is another desired value or a predetermined value, or whether it falls within a predetermined range, thereby measuring the blood pressure measured in step S12. It may be determined that the BP satisfies a predetermined condition. For example, the measurement instruction unit 235 determines whether or not the blood pressure BP measured in step S12 is a predetermined value indicating that continuous monitoring of the physical condition of the living body is necessary (or the continuous condition of the biological condition of the living body). It may be determined that the blood pressure BP measured in step S12 satisfies the predetermined condition by determining whether or not it falls within a predetermined range indicating that monitoring is required.
- the blood pressure BP measured in step S12 is a predetermined value indicating that continuous monitoring of the physical condition of the living body is required (or within a predetermined range indicating that continuous monitoring of the physical condition of the living body is required. If the blood pressure BP measured in step S12 satisfies the predetermined condition, the blood pressure BP may be determined to satisfy the predetermined condition. On the other hand, the blood pressure BP measured in step S12 is not a predetermined value indicating that continuous monitoring of the physical condition of the living body is required (or a predetermined value indicating that continuous monitoring of the physical condition of the living body is required. If it does not fall within the range), it may be determined that the blood pressure BP measured in step S12 does not satisfy the predetermined condition.
- step S21 When it is determined that the blood pressure BP measured in step S12 does not satisfy the predetermined condition as a result of the determination in step S21 (step S21: No), the operations in step S12 and step S21 are repeated. That is, the blood pressure measurement unit 11 measures the blood pressure BP of the living body.
- the blood pressure storage unit 131 stores the blood pressure BP measured by the blood pressure measurement unit 11.
- the measurement instruction unit 235 determines whether or not the blood pressure BP measured in step S12 satisfies a predetermined condition.
- the measurement instruction unit 235 may control the blood flow measurement unit 12 so that the blood flow measurement unit 12 does not measure the blood flow BF. As a result, the blood flow measurement unit 12 may not measure the blood flow BF.
- the measurement instruction unit 235 may control the risk level calculation unit 133 so that the risk level calculation unit 133 does not calculate the physical condition risk level in addition to or instead of controlling the blood flow measurement unit 12. . As a result, the risk level calculation unit 133 may not calculate the physical condition risk level.
- step S21 when it is determined that the blood pressure BP measured in step S12 satisfies a predetermined condition (step S21: Yes), the blood flow measurement unit 12 causes the blood flow measurement unit 12 to The blood flow measurement unit 12 may be controlled so as to measure the flow rate BF. As a result, the blood flow measurement unit 12 measures the blood flow BF (step S11).
- the measurement instruction unit 235 controls the risk level calculation unit 133 so that the risk level calculation unit 133 calculates a physical condition risk level. As a result, the risk level calculation unit 133 calculates a physical condition risk level (from step S13 to step S15).
- the blood pressure measurement unit 11 preferably measures the blood pressure BP of the living body.
- the measurement instruction unit 235 preferably determines whether or not the newly measured blood pressure BP satisfies a predetermined condition.
- the physical condition monitoring device 2 of the second embodiment can preferably enjoy the same effects as the various effects that the physical condition monitoring device 1 of the first embodiment can enjoy.
- the physical condition monitoring device 2 of the second embodiment performs measurement of the blood flow BF and calculation of the physical condition risk level when the blood pressure measured by the blood pressure measurement unit 11 satisfies a predetermined condition.
- the physical condition monitoring device 2 of the second embodiment may not perform measurement of the blood flow BF and calculation of the physical condition risk level when the blood pressure BP measured by the blood pressure measurement unit 11 does not satisfy the predetermined condition. For this reason, compared with the physical condition monitoring apparatus of the comparative example which always measures the blood flow volume BF and calculates the physical condition risk level, the power consumption of the physical condition monitoring apparatus 2 is reduced.
- FIG. 11 is a block diagram illustrating a configuration of the physical condition monitoring device 3 according to the third embodiment.
- the physical condition monitoring device 3 of the third embodiment includes a blood pressure measurement unit 11 and a blood flow measurement unit 12 in the same manner as the physical condition monitoring device 1 of the first example.
- the physical condition monitoring device 3 of the third embodiment further includes a control unit 33.
- the control unit 33 of the third embodiment is different from the control unit 13 of the first embodiment in that a timer unit 336 is further provided.
- Other components included in the control unit 33 of the third embodiment may be the same as other components included in the control unit 12 of the first embodiment.
- Timer section 336 sets the timing at which blood pressure measurement section 11 measures blood pressure BP.
- the timer unit 336 controls the blood pressure measurement unit 11 to measure the blood pressure BP when the time when the blood pressure measurement unit 11 measures the blood pressure BP has come.
- FIG. 12 is a flowchart showing an operation flow of the physical condition monitoring device 3 according to the third embodiment.
- the timer unit 336 sets the timing at which the blood pressure measurement unit 11 measures the blood pressure BP (step S31). For example, the timer unit 336 may set a cycle (for example, a cycle of 20 minutes) as the timing when the blood pressure measurement unit 11 measures the blood pressure BP. The timer unit 336 may set the time itself (for example, a time of 20 minutes, 40 minutes, 60 minutes,...) As the timing when the blood pressure measurement unit 11 measures the blood pressure BP.
- a cycle for example, a cycle of 20 minutes
- the timer unit 336 may set the time itself (for example, a time of 20 minutes, 40 minutes, 60 minutes,...) As the timing when the blood pressure measurement unit 11 measures the blood pressure BP.
- the blood flow measurement unit 12 measures the blood flow BF of the living body (step S11).
- the risk level calculation unit 133 calculates a physical condition risk level (from step S13 to step S15).
- the blood pressure measurement unit 11 determines the blood pressure BP of the living body following or in parallel with the measurement of the blood flow BF in step S11. Measurement is performed (step S12).
- the blood pressure storage unit 131 stores the blood pressure BP measured by the blood pressure measurement unit 11 (step S12).
- the timer unit 336 determines whether or not the current timing is the timing set in step S31 (that is, the timing at which the blood pressure measurement unit 11 measures the blood pressure BP) (step S32). ). In other words, the timer unit 336 determines whether or not the timing set in step S31 (that is, the timing when the blood pressure measurement unit 11 measures the blood pressure BP) has arrived (step S32).
- step S32 when it is determined that the current timing is the timing set in step S31 (that is, the timing at which the blood pressure measurement unit 11 measures the blood pressure BP) (step S32: Yes), step S12 Is performed again. That is, the blood pressure measurement unit 11 measures the blood pressure BP of the living body (step S12).
- the blood pressure storage unit 131 stores the blood pressure BP measured by the blood pressure measurement unit 11 (step S12).
- step S32 when it is determined that the current timing is not the timing set in step S31 (that is, the timing at which the blood pressure measurement unit 11 measures the blood pressure BP) (step S32: No), The operation of step S12 may not be performed. That is, the blood pressure measurement unit 11 does not have to measure the blood pressure BP of the living body until the timing set in step S31 (that is, the timing when the blood pressure measurement unit 11 measures the blood pressure BP) comes again. In addition, the blood pressure storage unit 131 does not store the blood pressure BP measured by the blood pressure measurement unit 11 until the timing set in step S31 (that is, the timing when the blood pressure measurement unit 11 measures the blood pressure BP) comes again. Also good.
- the physical condition monitoring device 3 of the third embodiment can preferably enjoy the same effects as the various effects that the physical condition monitoring device 1 of the first embodiment can enjoy.
- the physical condition monitoring device 3 of the third embodiment can automatically measure the blood pressure BP at a desired timing by the operation of the timer unit 336. For this reason, the physical condition monitoring device 3 of the third embodiment can automatically measure the blood pressure BP without the measurer timing (or without the measurer manually performing the work).
- the timer unit 336 may change the timing to be set depending on whether or not the blood pressure BP measured by the blood pressure measurement unit 11 satisfies a predetermined condition. For example, the timer unit 336 measures the timing at which the blood pressure measurement unit 11 measures the blood pressure BP when the blood pressure BP3 measured by the blood pressure measurement unit 11 satisfies a predetermined condition (for example, a value that requires continuous monitoring). As an alternative, a relatively short cycle may be set. As a result, when the blood pressure BP measured by the blood pressure measurement unit 11 satisfies a predetermined condition, the blood pressure measurement unit 11 measures the blood pressure BP with a relatively high frequency.
- a predetermined condition for example, a value that requires continuous monitoring
- the timer unit 336 measures the blood pressure BP when the blood pressure BP measured by the blood pressure measurement unit 11 does not satisfy a predetermined condition (for example, a value that does not require continuous monitoring).
- a predetermined condition for example, a value that does not require continuous monitoring.
- a relatively long cycle may be set as the timing.
- the blood pressure measurement unit 11 measures the blood pressure BP with a relatively low frequency.
- the blood pressure measurement unit 11 can measure the blood pressure BP at a suitable frequency according to whether or not the blood pressure BP is a value that requires continuous monitoring.
- the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and the physical condition monitoring apparatus and method involving such a change are also a technique of the present invention. Included in thought.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- External Artificial Organs (AREA)
Abstract
体調監視装置(1)は、生体の血圧(BP)を計測する血圧計測部(11)と、生体の血流量(BF)を計測する血流計測部(12)と、血圧計測部が計測した血圧及び血流計測部が計測した血流量の夫々に基づいて、生体の体調を示す体調リスクレベルを算出する体調算出部(133)とを備える。
Description
本発明は、例えば生体の体調を監視する体調監視装置及び方法の技術分野に関する。
この種の体調監視装置として、例えば特許文献1に開示されているように、レーザ血流計を用いて、生体の体調に関連する情報である血流量を監視する装置が存在する。また、この種の体調監視装置として、特許文献2に開示されているように、血圧測定ユニットとパルス移動時間測定システムとを用いて、生体の体調に関連する情報である血圧の変化を監視する装置が提案されている。
しかしながら、特許文献1に開示された装置は、生体の血流量のみを監視している。このため、特許文献1に開示された装置による体調の監視精度が低くなってしまうという技術的問題点が生ずる。具体的には、特許文献1に開示された装置によれば、本来であれば体調が悪化していると判断されるべきところ、体調が良好であると誤って判断されるという技術的な問題点が生ずる。
同様に、特許文献2に開示された装置は、生体の血圧を監視できるシステムであるが、生体のパルス移動時間を計測するため、血圧測定部に加えて、例えば心電計と末梢でのパルス測定という2点での計測が必要になるという問題がある。またこの装置は血圧のみを監視している。このため、特許文献2に開示された装置による体調の監視精度が低くなってしまうという技術的問題点が生ずる。本発明は、例えば上記問題点に鑑みてなされたものであり、生体の体調をより好適にかつ簡便に監視することが可能な体調監視装置及び方法を提供することを課題とする。
上記課題を解決するための体調監視装置は、生体の血圧を計測する血圧計測部と、前記生体の血流量を計測する血流計測部と、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出部とを備える。
上記課題を解決するための体調監視方法は、生体の血圧を計測する血圧計測工程と、前記生体の血流量を計測する血流計測工程と、前記血圧計測工程が計測した前記血圧及び前記血流計測工程が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出工程とを備える。
以下、発明を実施するための形態として、体調監視装置及び方法の実施形態について順に説明する。
(体調監視装置の実施形態)
<1>
本実施形態の体調監視装置は、生体の血圧を計測する血圧計測部と、前記生体の血流量を計測する血流計測部と、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出部とを備える。
<1>
本実施形態の体調監視装置は、生体の血圧を計測する血圧計測部と、前記生体の血流量を計測する血流計測部と、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出部とを備える。
本実施形態の体調監視装置によれば、血圧計測部は、生体の血圧を計測する。このとき、血圧計測部は、離散的に血圧を計測してもよい。具体的には、血圧計測部は、第1の周期毎の血圧を計測してもよい。言い換えれば、血圧計測部は、第1の周期毎に、血圧を計測してもよい。より具体的には、血圧計測部は、第1のタイミングで血圧を計測してもよい。その後、血圧計測部は、当該第1タイミングを起点として第1の周期に応じた期間が経過した第2のタイミングで、再度血圧を計測してもよい。以降、血圧計測部は、同様の動作を繰り返してもよい。
また、血流計測部は、生体の血流量を計測する。このとき、血流計測部は、連続的に血流量を計測してもよい。具体的には、血流計測部は、第2の周期(但し、第2の周期は、血圧計測部が血圧を計測する周期である第1の周期よりも短い周期であることが好ましい)毎の血流量を計測してもよい。言い換えれば、血流計測部は、第2の周期毎に、血流量を計測してもよい。より具体的には、血流計測部は、第3のタイミングで血流量を計測してもよい。その後、血流計測部は、当該第3タイミングを起点として第2の周期に応じた期間が経過した第4のタイミングで、再度血流量を計測してもよい。以降、血流計測部は、同様の動作を繰り返してもよい。
本実施形態では特に、体調算出部は、血圧計測部が計測した血圧及び血流計測部が計測した血流量の夫々に基づいて、体調リスクレベルを算出する。つまり、体調算出部は、血圧計測部が計測した血圧のみに基づいて体調リスクレベルを算出することに代えて、血圧計測部が計測した血圧及び血流計測部が計測した血流量の夫々に基づいて体調リスクレベルを算出する。言い換えれば、体調算出部は、血流計測部が計測した血流量のみに基づいて体調リスクレベルを算出することに代えて、血圧計測部が計測した血圧及び血流計測部が計測した血流量の夫々に基づいて体調リスクレベルを算出する。
ここで、「体調リスクレベル」は、生体の体調が良好であるか否か(或いは、良好でないか否か)又は生体の体調がどのような状態であるかを直接的に又は間接的に示す任意の指標を意味している。このような体調リスクレベルとして、生体の体調が悪化するにつれて増大する数値が一例としてあげられる。
このような本実施形態の体調監視装置は、単一の計測値に代えて、複数の計測値(つまり、血圧計測部が計測した血圧及び血流計測部が計測した血流量)に基づいて、体調リスクレベルを算出することができる。従って、本実施形態の体調監視装置は、単一の計測値に基づいて体調リスクレベルを算出する比較例の体調監視装置と比較して、生体の体調をより好適に(例えば、より高精度に)監視することができる。
尚、一般的に、計測された「血流量」は、相対値(つまり、何らかの基準値に対する相対的な値ないしは変化量)として活用されることが多い。このため、「血流量」のみに基づいて体調を監視する比較例の体調監視装置は、血流量の変化量等を監視することで体調が急変しているか否かを判断することはできるものの、体調が急変する前の段階での体調がどのような状態にあるかを好適に判断することができない。というのも、血流量そのものの絶対値としての情報の有用性が相対的に高くないからである。一方で、「血圧」は、絶対値(つまり、血圧そのものの値)として活用されることが多い。しかしながら、「血圧」の計測に起因した生体の負担は、「血流量」の計測に起因した生体の負担と比較して大きくなる。このため、「血圧」のみに基づいて体調を監視する比較例の体調監視装置は、「血圧」の計測に起因した生体の負担を考慮して、多頻度に血圧を計測することができない。従って、「血圧」のみに基づいて体調を監視する比較例の体調監視装置は、体調がどのような状態にあるかを連続的に判断することができない。しかるに、本実施形態の体調監視装置は、絶対値として活用されることが多い「血圧」及び相対値として活用されることが多い「血流量」の双方に基づいて体調を監視することができる。このため、本実施形態の体調監視装置は、「血圧」のみに基づいて体調を監視する比較例の体調監視装置に生ずるデメリットを、「血流量」にも基づいて体調を監視することで補うことができる。同様に、本実施形態の体調監視装置は、「血流量」のみに基づいて体調を監視する比較例の体調監視装置に生ずるデメリットを、「血圧」にも基づいて体調を監視することで補うことができる。従って、本実施形態の体調監視装置は、単一の計測値に基づいて体調リスクレベルを算出する比較例の体調監視装置と比較して、生体の体調をより好適に(例えば、より高精度に)監視することができる。
<2>
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出する。
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、血圧計測部が計測した血圧に基づいて算出される血圧リスクレベル及び血流計測部が計測した血流量に基づいて算出される血流リスクレベルに基づいて、体調リスクレベルを算出することができる。
尚、「血圧リスクレベル」は、生体の体調が良好であるか否か(或いは、良好でないか否か)又は生体の体調がどのような状態であるかを直接的に又は間接的に示す任意の指標であって、且つ、血圧に基づいて算出される任意の指標を意味している。このような血圧リスクレベルとして、血圧と一意に対応付けられる数値(例えば、血圧を変数とする任意の関数によって規定される数値)が一例としてあげられる。
また、「血流リスクレベル」は、生体の体調が良好であるか否か(或いは、良好でないか否か)又は生体の体調がどのような状態であるかを直接的に又は間接的に示す任意の指標であって、且つ、血流量に基づいて算出される任意の指標を意味している。このような血流リスクレベルとして、血流量と一意に対応付けられる数値(例えば、血流量を変数とする任意の関数によって規定される数値)が一例としてあげられる。
<3>
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変位量の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出する。
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変位量の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、血圧計測部が計測した血圧の比例値(例えば、血圧そのものの値や、血圧を所定数倍することで得られる値)及び血圧計測部が計測した血圧の変化状態(例えば、血圧の変化率や、基準値に対する血圧の比率や、基準値に対する血圧の変化量や、所定時間当たりの血圧の変化量や、血圧のn(但し、nは1以上の整数)階微分値等)の少なくとも一方に基づいて算出される血圧リスクレベルに基づいて、体調リスクレベルを算出することができる。
加えて、体調算出部は、血流計測部が計測した血流量の比例値(例えば、血流量そのものの値や、血流量を所定数倍することで得られる値)及び血流計測部が計測した血流量の変化状態(例えば、血流量の変化率や、基準値に対する血流量の比率や、基準値に対する血流量の変化量や、所定時間当たりの血流量の変化量や、血流量のn階微分値等)の少なくとも一方に基づいて算出される血流リスクレベルに基づいて、体調リスクレベルを算出することができる。
<4>
上述の如く血圧リスクレベル及び血流リスクレベルを算出することで体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルとを加算することで又は乗算することで、前記体調リスクレベルを算出する。
上述の如く血圧リスクレベル及び血流リスクレベルを算出することで体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルとを加算することで又は乗算することで、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、血圧リスクレベル及び血流リスクレベルから、体調リスクレベルを比較的容易に算出することができる。
<5>
上述の如く血圧リスクレベル及び血流リスクレベルを算出することで体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルとを用いて、体調リスクレベルを算出する。
上述の如く血圧リスクレベル及び血流リスクレベルを算出することで体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルとを用いて、体調リスクレベルを算出する。
この態様によれば、体調算出部は、生体毎の個人差等を考慮した重み付け処理が少なくとも一方に施された血圧リスクレベル及び血流リスクレベルから、体調リスクレベルを算出することができる。従って、体調を監視する生体毎の個人差が存在していたとしても、このような重み付け処理により、当該個人差を吸収するように血圧リスクレベル及び血流リスクレベルの少なくとも一方が補正される。従って、体調算出部は、体調リスクレベルをより一層好適に算出することができる。
<6>
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量に加えて、前記血流量から算出される心拍数及び前記血流量から算出される脈波振幅の少なくとも一方に基づいて、前記体調リスクレベルを算出する。
本実施形態の体調監視装置の他の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量に加えて、前記血流量から算出される心拍数及び前記血流量から算出される脈波振幅の少なくとも一方に基づいて、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、より多くの計測値(つまり、血圧計測部が計測した血圧及び血流計測部が計測した血流量、並びに、血流計測部が計測した血流量から算出される心拍数及び脈波振幅の少なくとも一方)に基づいて、体調リスクレベルを算出することができる。従って、この態様によれば、体調算出部は、生体の体調をより一層好適に(例えば、より高精度に)監視することができる。
<7>
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数に応じた前記生体の体調を示す心拍リスクレベル及び前記血流量から算出される脈波振幅に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出する。
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数に応じた前記生体の体調を示す心拍リスクレベル及び前記血流量から算出される脈波振幅に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、血圧計測部が計測した血圧に基づいて算出される血圧リスクレベル及び血流計測部が計測した血流量に基づいて算出される血流リスクレベル、並びに血流計測部が計測した血流量から算出される心拍数に基づいて算出される心拍リスクレベル及び血流計測部が計測した血流量から算出される脈波振幅に基づいて算出される脈波リスクレベルの少なくとも一方に基づいて、体調リスクレベルを算出することができる。
尚、「心拍数リスクレベル」は、生体の体調が良好であるか否か(或いは、良好でないか否か)又は生体の体調がどのような状態であるかを直接的に又は間接的に示す任意の指標であって、且つ、心拍数から算出される任意の指標を意味している。このような心拍リスクレベルとして、心拍数と一意に対応付けられる数値(例えば、心拍数を変数とする任意の関数によって規定される数値)が一例としてあげられる。
また、「脈波リスクレベル」は、生体の体調が良好であるか否か(或いは、良好でないか否か)又は生体の体調がどのような状態であるかを直接的に又は間接的に示す任意の指標であって、且つ、脈波振幅から算出される任意の指標を意味している。このような脈波リスクレベルとして、脈波振幅と一意に対応付けられる数値(例えば、脈波振幅を変数とする任意の関数によって規定される数値)が一例としてあげられる。
<8>
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変化状態の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数の比例値及び当該心拍数の変化状態の少なくとも一方に応じた前記生体の体調を示す心拍リスクレベル並びに前記血流量から算出される脈波振幅の比例値及び当該脈波振幅の変化状態の少なくとも一方に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出する。
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変化状態の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数の比例値及び当該心拍数の変化状態の少なくとも一方に応じた前記生体の体調を示す心拍リスクレベル並びに前記血流量から算出される脈波振幅の比例値及び当該脈波振幅の変化状態の少なくとも一方に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、血流計測部が計測した血流量から算出される心拍数の比例値(例えば、心拍数そのものの値や、心拍数を所定数倍することで得られる値)及び血流計測部が計測した血流量から算出される心拍数の変化状態(例えば、心拍数の変化率や、基準値に対する心拍数の比率や、基準値に対する心拍数の変化量や、所定時間当たりの心拍数の変化量や、心拍数のn階微分値等)の少なくとも一方に基づいて算出される心拍リスクレベルに基づいて、体調リスクレベルを算出することができる。
加えて又は代えて、体調算出部は、血流計測部が計測した血流量から算出される脈波振幅の比例値(例えば、脈波振幅そのものの値や、脈波振幅を所定数倍することで得られる値)及び血流計測部が計測した血流量から算出される脈波振幅の微分値(例えば、脈波振幅の変化率や、基準値に対する脈波振幅の比率や、基準値に対する脈波振幅の変化量や、所定時間当たりの脈波振幅の変化量や、脈波振幅のn階微分値等)の少なくとも一方に基づいて算出される脈波リスクレベルに基づいて、体調リスクレベルを算出することができる。
<9>
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルと前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを加算することで又は乗算することで、前記体調リスクレベルを算出することを特徴とする請求項7に記載の体調監視装置。
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルと前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを加算することで又は乗算することで、前記体調リスクレベルを算出することを特徴とする請求項7に記載の体調監視装置。
この態様によれば、体調算出部は、血圧リスクレベル及び血流リスクレベルと心拍リスクレベル及び脈波リスクレベルの少なくとも一方から、体調リスクレベルを比較的容易に算出することができる。
<10>
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルと第3重み付け係数により重み付け処理が施された前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを用いて、前記体調リスクレベルを算出する。
上述の如く心拍数及び脈波振幅の少なくとも一方に基づいて体調リスクレベルを算出する体調監視装置の態様では、前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルと第3重み付け係数により重み付け処理が施された前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを用いて、前記体調リスクレベルを算出する。
この態様によれば、体調算出部は、生体毎の個人差等を考慮した重み付け処理が少なくとも一つに施された血圧リスクレベル及び血流リスクレベル並びに心拍リスクレベル及び脈波リスクレベルの少なくとも一方から、体調リスクレベルを算出することができる。従って、体調を監視する生体毎の個人差が存在していたとしても、当該個人差を吸収するように血圧リスクレベル、血流リスクレベル心拍リスクレベル及び脈波リスクレベルの少なくとも一つが補正される。従って、体調算出部は、体調リスクレベルをより一層好適に算出することができる。
<11>
本実施形態の体調監視装置の他の態様では、前記体調算出部は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に、前記体調リスクレベルを算出し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記体調リスクレベルを算出しない。
本実施形態の体調監視装置の他の態様では、前記体調算出部は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に、前記体調リスクレベルを算出し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記体調リスクレベルを算出しない。
この態様によれば、体調算出部は、血圧が所定条件を満たす場合(例えば、体調を監視する又は体調リスクレベルを算出することが好ましい場合)に体調リスクレベルを算出することができる。言い換えれば、体調算出部は、血圧が所定条件を満たさない場合(例えば、体調を監視しなくともよい又は体調リスクレベルを算出しなくともよい場合)に体調リスクレベルを算出しなくともよい。従って、体調算出部が常に体調リスクレベルを算出し続ける比較例の体調監視装置と比較して、体調監視装置の消費電力が低減される。
<12>
本実施形態の体調監視装置の他の態様では、前記血流計測部は、(i)前記血圧計測部が計測した前記血圧が前記所定条件を満たす場合に、前記血流量を計測し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記血流量を計測しない。
本実施形態の体調監視装置の他の態様では、前記血流計測部は、(i)前記血圧計測部が計測した前記血圧が前記所定条件を満たす場合に、前記血流量を計測し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記血流量を計測しない。
この態様によれば、血流計測部は、血圧が所定条件を満たす場合(例えば、体調を監視する又は体調リスクレベルを算出することが好ましい場合)に血流量を計測することができる。言い換えれば、血流計測部は、血圧が所定条件を満たさない場合(例えば、体調を監視しなくともよい又は体調リスクレベルを算出しなくともよい場合)に血流量を計測しなくともよい。従って、血流計測部が常に血流量を計測し続ける比較例の体調監視装置と比較して、体調監視装置の消費電力が低減される。
<13>
本実施形態の体調監視装置の他の態様では、前記血圧計測部が前記血圧を計測するタイミングを設定するタイマ手段を更に備え、前記血圧計測部は、前記タイマ手段が設定する前記タイミングに前記血圧を計測することで、自動的に前記血圧を計測する。
本実施形態の体調監視装置の他の態様では、前記血圧計測部が前記血圧を計測するタイミングを設定するタイマ手段を更に備え、前記血圧計測部は、前記タイマ手段が設定する前記タイミングに前記血圧を計測することで、自動的に前記血圧を計測する。
この態様によれば、血圧計測部は、自動的に血圧を計測することができる。具体的には、血圧計測部は、例えば、自動的に所定周期毎に血圧を計測することができる。尚、血圧計測部は、例えば、計測者の手動での作業を伴う血圧計(例えば、カフを腕に巻きつけると共に当該カフを介して腕を加圧する非侵襲型の血圧計)を備えていることが多い。このような場合であっても、血圧計測部は、タイマ部が設定するタイミングに応じて、計測者がタイミングを図ることなく(或いは、計測者が手動で作業を行うことなく)、自動的に血圧を計測することができる。
<14>
上述の如くタイマ手段を備える体調監視装置の他の態様では、前記タイマ手段は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に前記血圧を計測する前記タイミングの頻度が、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に前記血圧を計測する前記タイミングの頻度よりも高くなるように、前記タイミングを設定する。
上述の如くタイマ手段を備える体調監視装置の他の態様では、前記タイマ手段は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に前記血圧を計測する前記タイミングの頻度が、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に前記血圧を計測する前記タイミングの頻度よりも高くなるように、前記タイミングを設定する。
この態様によれば、タイマ手段は、血圧計測部が計測する血圧に応じて、血圧計測部が血圧を計測するタイミングを好適に設定することができる。例えば、タイマ手段は、血圧が所定条件を満たす場合(例えば、体調を監視する又は体調リスクレベルを算出することが好ましい場合)に、相対的に高頻度に血圧が計測されるように、血圧計測部が血圧を計測するタイミングを設定することができる。他方で、例えば、タイマ手段は、血圧が所定条件を満たさない場合(例えば、体調を監視しなくともよい又は体調リスクレベルを算出しなくともよい場合)に、相対的に低頻度に血圧が計測されるように、血圧計測部が血圧を計測するタイミングを設定することができる。
(体調監視方法の実施形態)
<15>
本実施形態の体調監視方法は、生体の血圧を計測する血圧計測工程と、前記生体の血流量を計測する血流計測工程と、前記血圧計測工程が計測した前記血圧及び前記血流計測工程が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出工程とを備える。
<15>
本実施形態の体調監視方法は、生体の血圧を計測する血圧計測工程と、前記生体の血流量を計測する血流計測工程と、前記血圧計測工程が計測した前記血圧及び前記血流計測工程が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出工程とを備える。
本実施形態の体調監視方法によれば、上述した本実施形態の体調監視装置が享受する各種効果を好適に享受することができる。
尚、本実施形態の体調監視装置が採用する各種態様に対応して、本実施形態の体調監視方法も、各種態様を採用してもよい。
本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。
以上説明したように、本実施形態の体調監視装置は、血圧計測手段と、血流計測手段と、体調算出手段とを備える。本実施形態の体調監視方法は、血圧計測工程と、血流計測工程と、体調算出工程とを備える。従って、生体の体調をより好適に監視することができる。
以下、図面を参照しながら、体調監視装置の実施例について説明する。
(1)第1実施例
はじめに、図1から図8を参照しながら、第1実施例の体調監視装置1について説明を進める。
はじめに、図1から図8を参照しながら、第1実施例の体調監視装置1について説明を進める。
(1-1)体調監視装置の構成
はじめに、図1を参照しながら、第1実施例の体調監視装置1の構成について説明する。図1は、第1実施例の体調監視装置1の構成を示すブロック図である。
はじめに、図1を参照しながら、第1実施例の体調監視装置1の構成について説明する。図1は、第1実施例の体調監視装置1の構成を示すブロック図である。
図1に示すように、第1実施例の体調監視装置1は、血圧計測部11と、血流計測部12と、制御部13とを備えている。
血圧計測部11は、生体(例えば、人間や動物等)の血圧BPを計測する。血圧計測部11は、例えば、非侵襲型の血圧計(例えば、カフを腕に巻きつけると共に当該カフを介して腕を加圧することで血圧BPを計測する血圧計)であってもよい。但し、血圧計測部11は、血圧BPを何らかの手法で計測することができる限りは、どのような構成を有していてもよい。
血流計測部12は、生体の血流量(つまり、血管内を流れる血液の流量)BFを計測する。このような血流計測部12として、例えば、レーザドップラ血流計が用いられてもよい。但し、血流計測部12は、血流量BFを何らかの手法で計測することができる限りは、どのような構成を有していてもよい。以下、説明の便宜上、血流計測部12がレーザドップラ血流計である場合を例にあげて説明を進める。
血流計測部12は、レーザ素子121と、受光素子122と、増幅器123と、A/D(Analogue to Digital)コンバータ124と、演算回路125とを備えている。
レーザ素子121は、生体に対してレーザ光を照射する。このとき、レーザ素子121は、生体内の血管に対してレーザ光を照射することが好ましい。特に、レーザ素子121は、耳朶の血管に対してレーザ光を照射することが好ましい。但し、レーザ素子121は、それ以外の箇所の結果に対してレーザ光を照射してもよい。
受光素子122は、生体からのレーザ光の反射光と生体からのレーザ光LBの散乱光との相互干渉によって生ずるビート信号光を受光する。受光素子12は、受光したビート信号光を電気信号に変換することで得られる検出電流を生成する。
増幅器123は、受光素子122から出力される検出電流を、電圧信号に変換した上で増幅する。
A/Dコンバータ124は、増幅器123の出力(つまり、受光素子122が受光したビート信号光に応じた電圧信号)に対してA/D変換処理(つまり、量子化処理)を行う。その結果、A/Dコンバータ124は、受光素子122が受光したビート信号光に応じた電圧信号のサンプル値(つまり、量子化された電圧信号)を、演算回路125に出力する。
演算回路125は、A/Dコンバータ124の出力(つまり、受光素子122が受光したビート信号光に応じた電圧信号のサンプル値)に対して、FFT(Fast Fourier Transform)を用いた周波数解析を行う。その結果、演算回路125は、血流量BFを算出する。
制御部13は、体調監視装置1を制御するための中央制御装置(例えば、CPU:Central Processing Unit)である。制御部13は、その内部に物理的に実現される処理回路として又はその内部に論理的に実現される処理ブロックとして、血圧保存部131と、血流量保存部132と、リスクレベル算出部133と、出力部134とを備えている。
血圧保存部131は、血圧計測部11が計測した血圧BPを保存するメモリである。尚、血圧保存部131は、一定期間以内に血圧計測部11が計測した血圧BPを保存することが好ましい。或いは、血圧保存部131は、血圧計測部11が計測した全ての血圧BPを保存してもよい。
血流量保存部132は、血流計測部12が計測した血流量BFを保存するメモリである。尚、血流量保存部132は、一定期間以内に血流計測部12が計測した血流量BFを保存することが好ましい。或いは、血流量保存部132は、血流計測部12が計測した全ての血流量BFを保存してもよい。
尚、血圧保存部131は、血流保存部132と物理的に独立していてもよい。或いは、血圧保存部131及び血流保存部132は、単一のメモリから構成されていてもよい。
リスクレベル算出部133は、血圧保存部131に保存されている血圧BP及び血流量保存部132に保存されている血流量BFに基づいて、生体の体調が良好であるか否かを示す(或いは、生体の体調の状態を示す)体調リスクレベルを算出する。
出力部134は、リスクレベル算出部133が算出した体調リスクレベルを、体調管理装置1の外部の機器に対して出力する。或いは、出力部134は、リスクレベル算出部133が算出した体調リスクレベルを、体調管理装置1が備える不図示の表示部に対して出力する。その結果、表示部は、体調リスクレベルを表示してもよい。
(1-2)体調監視装置の動作
続いて、図2を参照して、第1実施例の体調監視装置1の動作の流れについて説明する。図2は、第1実施例の体調監視装置1の動作の流れを示すフローチャートである。
続いて、図2を参照して、第1実施例の体調監視装置1の動作の流れについて説明する。図2は、第1実施例の体調監視装置1の動作の流れを示すフローチャートである。
図2に示すように、血流計測部12は、生体の血流量BFを計測する(ステップS11)。尚、血流計測部12による生体の血流量BFの計測は、体調監視装置1による生体の体調の監視動作が終了するまで継続して行われる(ステップS16)。
具体的には、まず、レーザ素子121は、生体に対してレーザ光を照射する。
その後、受光素子122は、生体からのレーザ光の散乱光の相互干渉(より具体的には、移動する散乱体である血球によって散乱された散乱光と静止している組織(例えば、皮膚組織)によって散乱された散乱光との相互干渉)によって生ずるビート信号光を受光する。具体的には、レーザ光が生体に照射されると、生体内の血管の内部の血液の流れ(即ち、散乱体である赤血球の移動)に起因した散乱光が発生する。この散乱光の周波数は、元のレーザ光の周波数と比較して、血液の移動速度に対応したレーザドップラ作用によって変化している。受光素子122は、このような散乱光の相互干渉により生ずるビート信号光(いわゆる、周波数差分信号)を受光する。尚、ビート信号光を生じさせる散乱光として、生体に照射されたレーザ光の透過光に相当する前方散乱光が用いられてもよいし、生体に照射されたレーザ光の反射光に相当する後方散乱光が用いられてもよい。
その後、受光素子122は、受光したビート信号光を電気信号に変換することで得られる検出電流を生成する。受光素子122は、生成した検出電流を、増幅器123に出力する。増幅器123は、受光素子122から出力される検出電流(つまり、受光素子122が受光したビート信号光に応じた検出電流)を、電圧信号に変換した上で増幅する。増幅器は、電圧信号をA/Dコンバータ124に出力する。
その後、A/Dコンバータ124は、増幅器123の出力(つまり、受光素子122が受光したビート信号光に応じた電圧信号)に対してA/D変換処理(つまり、量子化処理)を行う。その結果、A/Dコンバータ124は、受光素子122が受光したビート信号光に応じた電圧信号のサンプル値(つまり、量子化された電圧信号)を、演算回路125に出力する。具体的には、例えば、A/Dコンバータ124は、A/Dコンバータ124のサンプリング周期をTaとすると、周期Ta毎に、受光素子122が受光したビート信号光に応じた電圧信号のサンプル値(つまり、量子化された電圧信号)を出力する。
その後、演算回路125は、A/Dコンバータ124の出力(つまり、受光素子12が受光したビート信号光に応じた電圧信号のサンプル値)に対して、FFT(Fast Fourier Transform)を用いた周波数解析を行う。その結果、演算回路125は、血流量BFを算出する。具体的には、例えば、演算回路125は、ビート信号光に応じた電圧信号のサンプル値に対してFFTを行う。演算回路125は、当該FFTを行うことで得られるパワースペクトルと周波数ベクトルとの乗算結果である1次モーメントを用いて、血流量BFを算出する。尚、FFTを用いた周波数解析による血流量BFの算出方法については、公知の方法(例えば、特許第3313841号公報に開示された方法等)が用いられてもよいため、詳細な説明を省略する。演算回路125は、算出した血流量BFを、制御部13(特に、血流量保存部132)に出力する。その結果、血流量保存部132は、血流計測部12が計測した血流量BFを保存する(ステップS11)。
ステップS11での血流量BFの計測に続いて若しくは相前後して又は並行して、血圧計測部11は、生体の血圧BPを計測する(ステップS12)。その後、血圧計測部11が計測した血圧BPは、制御部13(特に、血圧保存部131)に出力される。その結果、血圧保存部131は、血圧計測部11が計測した血圧BPを保存する(ステップS12)。尚、血圧計測部11による生体の血圧BPの計測は、体調監視装置1による生体の体調の監視動作が終了するまで継続して行われる(ステップS16)。
血圧計測部11は、一定時間毎に(例えば、20分毎に)血圧BPを計測してもよい。例えば、計測者が一定時間毎に血圧計測部11を操作する(例えば、カフを生体の腕に巻きつけると共に、当該カフを介して生体の腕を圧迫する)ことで、一定時間毎に血圧BPが計測される。
ここで、血圧計測部11が血圧BPを計測する周期は、血流計測部12が血流量BFを計測する周期よりも長くてもよい。例えば、血圧計測部11は、20分毎に血圧BPを計測する一方で、血流計測部12は、20分よりも短い周期毎に(例えば、数十ミリ秒から数十秒毎に)血流量BFを計測してもよい。尚、血圧計測部11が非侵襲型の血圧計であり且つ血流計測部12がレーザドップラ血流計である場合には、血圧BPの計測の手間等の関係上、血圧計測部11が血圧BPを計測する周期は、血流計測部12が血流量BFを計測する周期よりも長くなることが多い。
ステップS11での血流量BFの計測及びステップS12での血圧BPの計測に続いて若しくは相前後して又は並行して、リスクレベル算出部133は、生体の体調が良好であるか否かを示す(或いは、生体の体調の状態を示す)体調リスクレベルを算出する(ステップS13からステップS15)。尚、リスクレベル算出部133による体調リスクレベルの算出は、体調監視装置1による生体の体調の監視動作が終了するまで継続して行われる(ステップS16)。
具体的には、リスクレベル算出部133は、まず、血圧保存部131が保存している血圧BPに基づいて、血圧リスクレベルを算出する(ステップS13)。尚、血圧リスクレベルは、生体の体調の状態を示す指標であって且つ血圧BPの値に応じた指標である。
ここで、図3を参照して、血圧リスクレベルの算出の態様の一例について説明する。図3は、血圧リスクレベルと血圧BPとの間の対応関係を示すテーブルである。
図3に示すように、リスクレベル算出部133は、例えば、血圧BPと血圧リスクレベルとの間の対応関係を示すテーブルを参照することで、血圧リスクレベルを算出してもよい。具体的には、リスクレベル算出部133は、血圧BPが160mmHgより大きく且つ180mmHg以下である場合には、「1」という数値を、血圧リスクレベルとして算出する。同様に、リスクレベル算出部133は、血圧BPが180mmHgより大きい場合には、「2」という数値を、血圧リスクレベルとして算出する。同様に、リスクレベル算出部133は、血圧BPが140mmHgより大きく且つ160mmHg以下である場合には、「3」という数値を、血圧リスクレベルとして算出する。同様に、リスクレベル算出部133は、血圧BPが120mmHgより大きく且つ140mmHg以下である場合には、「4」という数値を、血圧リスクレベルとして算出する。同様に、リスクレベル算出部133は、血圧BPが100mmHgより大きく且つ120mmHg以下である場合には、「5」という数値を、血圧リスクレベルとして算出する。同様に、リスクレベル算出部133は、血圧BPが100mmHg以下である場合には、「6」という数値を、血圧リスクレベルとして算出する。
尚、図3に示す血圧リスクレベルは、数値が大きくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示している。というのも、図3に示す血圧リスクレベルは、主として、生体が人工透析を行っている場合の血圧BPを対象としているからである。生体が人工透析を行っている場合には、血圧BPの低下が体調の悪化(つまり、状態の悪化)を示すことが多い。従って、図3に示す血圧リスクレベルは、血圧BPが低くなる(つまり、人工透析中の生体の体調が悪化する)ほど、数値が大きくなっている。
但し、血圧リスクレベルは、数値が小さくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示してもよい。或いは、血圧リスクレベルは、その他の態様で生体の体調を示してもよい。つまり、血圧BPとの間に何らかの対応関係を有する任意の指標であって且つ生体の体調との間に何らかの対応関係を有する任意の指標が、血圧リスクレベルとして用いられてもよい。
また、リスクレベル算出部133は、血圧BPと血圧リスクレベルとの間の対応関係を示すテーブルに加えて又は代えて、血圧BPと血圧リスクレベルとの間の対応関係を示す任意の情報(例えば、マップや、数式や、関数等)を参照することで、血圧リスクレベルを算出してもよい。
また、リスクレベル算出部133は、血圧BPの比例値(例えば、血圧BPそのものの値や、血圧BPを所定係数Kで乗算することで得られる値K×BP)と血圧リスクレベルとの間の対応関係を示す任意の情報を参照することで、血圧リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、血圧BPの変化率(例えば、所定の基準値(例えば、所定時間(例えば、10分)前の血圧BP)を基準とする現在の血圧BPの変化率)ΔBPと血圧リスクレベルとの間の対応関係を示す任意の情報を参照することで、血圧リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、血圧BPの変化の態様を示す任意の情報(例えば、所定の基準値を基準とする現在の血圧BPの変化量や、所定の基準値を基準とする現在の血圧BPの比率や、所定時間当たりの血圧BPの変化量若しくは変化率や、血圧BPのn(但し、nは1以上の整数)階微分値等)と血圧リスクレベルとの間の対応関係を示す任意の情報を参照することで、血圧リスクレベルを算出してもよい。
再度図2において、続いて、リスクレベル算出部133は、血流保存部132が保存している血流量BFに基づいて、血流リスクレベルを算出する(ステップS14)。尚、血流リスクレベルは、生体の体調の状態を示す指標であって且つ血流量BFの値に応じた指標である。
ここで、図4を参照して、血流リスクレベルの算出の態様の一例について説明する。図4は、血流リスクレベルと血流量BFとの間の対応関係を示すテーブルである。
図4に示すように、リスクレベル算出部133は、例えば、所定の基準値(例えば、所定時間(例えば、10分)前の血流量BF)を基準とする現在の血流量BFの変化率ΔBFと血流リスクレベルとの間の対応関係を示すテーブルを参照することで、血流リスクレベルを算出してもよい。
具体的には、リスクレベル算出部133は、血流量BFの変化率ΔBFが-5%以上である(つまり、0.95×所定の基準値≦現在の血流量BFとなる)場合には、「1」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、血流量BFの変化率ΔBFが-10%以上であり且つ-5%未満である(つまり、0.90×所定の基準値≦現在の血流量BF<0.95×所定の基準値となる)場合には、「2」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、血流量BFの変化率ΔBFが-20%以上であり且つ-10%未満である(つまり、0.80×所定の基準値≦現在の血流量BF<0.90×所定の基準値となる)場合には、「3」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、血流量BFの変化率ΔBFが-30%以上であり且つ-20%未満である(つまり、0.70×所定の基準値≦現在の血流量BF<0.80×所定の基準値となる)場合には、「4」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、血流量BFの変化率ΔBFが-40%以上であり且つ-30%未満である(つまり、0.60×所定の基準値≦現在の血流量BF<0.70×所定の基準値となる)場合には、「5」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、血流量BFの変化率ΔBFが-40%未満である(つまり、現在の血流量BF<0.60×所定の基準値となる)場合には、「6」という数値を、血流リスクレベルとして算出する。
尚、図4に示す血流リスクレベルは、数値が大きくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示している。というのも、図4に示す血流リスクレベルは、主として、生体が人工透析を行っている場合の血流量BFを対象としているからである。生体が人工透析を行っている場合には、血流量BFの急激な低下が体調の悪化(つまり、状態の悪化)を示すことが多い。従って、図4に示す血流リスクレベルは、血流量BFの変化率ΔBFが小さくなる(つまり、血流量BFが急激に低下する、言い換えれば、人工透析中の生体の体調が悪化する)ほど、数値が大きくなっている。
但し、血流リスクレベルは、数値が小さくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示してもよい。或いは、血流リスクレベルは、その他の態様で生体の体調を示してもよい。つまり、血流量BFの変化率ΔBFとの間に何らかの対応関係を有する任意の指標であって且つ生体の体調との間に何らかの対応関係を有する任意の指標が、血流リスクレベルとして用いられてもよい。
また、リスクレベル算出部133は、血流量BFの変化率ΔBFと血流リスクレベルとの間の対応関係を示すテーブルに加えて又は代えて、血流量BFの変化率ΔBFと血流リスクレベルとの間の対応関係を示す任意の情報(例えば、マップや、数式や、関数等)を参照することで、血流リスクレベルを算出してもよい。
また、リスクレベル算出部133は、血流量BFの比例値(例えば、血流量BFそのものの値や、血流量BFを所定係数Kで乗算することで得られる値K×BF)と血流リスクレベルとの間の対応関係を示す任意の情報を参照することで、血流リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、血流量BFの変化の態様を示す任意の情報(例えば、所定の基準値を基準とする現在の血流量BFの変化量や、所定の基準値を基準とする現在の血流量BFの比率や、所定時間当たりの血流量BFの変化量若しくは変化率や、血流量BFのn階微分値等)と血流リスクレベルとの間の対応関係を示す任意の情報を参照することで、血流リスクレベルを算出してもよい。
加えて、血流量BFの変化率ΔBFを算出する際の基準値として所定時間前の血流量BFを用いる場合には、当該所定時間は、生体毎に変更されてもよい。例えば、相対的に短い期間における血流量BFの変化の状態を監視したいという要請がある場合には、所定時間として、相対的に短い時間(例えば、1分ないしは10分)が設定されることが好ましい。或いは、相対的に長い期間における血流量BFの変化の状態を監視したいという要請がある場合には、所定時間として、相対的に長い時間(例えば、5分ないしは15分)が設定されることが好ましい。或いは、所定時間として、血流量BFの平均値に基づいて、生体の体動や電気的ノイズを除去可能な適切な値が設定されてもよい。或いは、血流量BFの変化率ΔBFを算出する際の基準値として、血圧計測部11が血圧BPを計測する時間に血流計測部12によって計測される血流量BFが用いられてもよい。上述した血圧BPの変化率ΔBPや後述する心拍数HRの変化率ΔHRや後述する脈波振幅PAの変化率ΔPAを算出する場合にもおいても同様である。
再度図2において、続いて、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベルとステップS14で算出した血流リスクレベルに基づいて、生体の体調が良好であるか否かを示す(或いは、生体の体調の状態を示す)体調リスクレベルを算出する(ステップS15)。
例えば、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベルとステップS14で算出した血流リスクレベルとを加算することで得られる値を、体調リスクレベルとして算出してもよい。つまり、リスクレベル算出部133は、体調リスクレベル=血圧リスクレベル+血流リスクレベルという数式を用いて、体調リスクレベルを算出してもよい。
ここで、図5を参照して、体調リスクレベル=血圧リスクレベル+血流リスクレベルという数式を用いた体調リスクレベルの算出の態様の一例について説明する。図5は、体調リスクレベル=血圧リスクレベル+血流リスクレベルという数式を用いた体調リスクレベルの算出の態様を示すグラフである。
図5(a)は、図2のステップS13で算出した血圧リスクレベルの一例を示している。図5(a)に示すように、計測経過時間が「0分」となる時点で計測された血圧BPが170mmHgであるがゆえに、計測経過時間が「0分」から「20分」となる期間の血圧リスクレベルは「1」となる。同様に、図5(a)に示すように、計測経過時間が「20分」となる時点で計測された血圧BPが190mmHgであるがゆえに、計測経過時間が「20分」から「40分」となる期間の血圧リスクレベルは「2」となる。同様に、図5(a)に示すように、計測経過時間が「40分」となる時点で計測された血圧BPが150mmHgであるがゆえに、計測経過時間が「40分」から「60分」となる期間の血圧リスクレベルは「3」となる。
図5(b)は、図2のステップS14で算出した血流リスクレベルの一例を示している。図5(b)に示すように、計測経過時間が「0分」から「23分」となる期間、計測経過時間が「37分」から「45分」となる期間及び計測経過時間が「53分」から「58分」となる期間において血流量BFが増加しているがゆえに、これらの期間の血流リスクレベルは「1」となる。同様に、図5(b)に示すように、計測経過時間が「23分」から「37分」となる期間において血流量BFが相対的に急激に減少しているがゆえに、計測経過時間が「23分」から「37分」となる期間における血流リスクレベルは「3」となる。同様に、図5(b)に示すように、計測経過時間が「45分」から「53分」となる期間及び計測経過時間が「58分」から「60分」となる期間において血流量BFが相対的に緩やかに減少しているがゆえに、これらの期間における血流リスクレベルは「2」となる。
図5(c)は、図5(a)に示す血圧リスクレベルと図5(b)に示す血流リスクレベルとを加算することで算出される体調リスクレベルを示している。
図5(c)に示すように、計測経過時間が「0分」から「20分」となる期間は、血圧リスクレベルが「1」となり且つ血流リスクレベルが「1」となる。従って、計測経過時間が「0分」から「20分」となる期間は、体調リスクレベルが「2」となる。
同様に、図5(c)に示すように、計測経過時間が「20分」から「23分」となる期間は、血圧リスクレベルが「2」となり且つ血流リスクレベルが「1」となる。従って、計測経過時間が「20分」から「23分」となる期間は、体調リスクレベルが「3」となる。
同様に、図5(c)に示すように、計測経過時間が「23分」から「37分」となる期間は、血圧リスクレベルが「2」となり且つ血流リスクレベルが「3」となる。従って、計測経過時間が「23分」から「37分」となる期間は、体調リスクレベルが「5」となる。
同様に、図5(c)に示すように、計測経過時間が「37分」から「40分」となる期間は、血圧リスクレベルが「2」となり且つ血流リスクレベルが「1」となる。従って、計測経過時間が「20分」から「23分」となる期間は、体調リスクレベルが「3」となる。
同様に、図5(c)に示すように、計測経過時間が「40分」から「45分」となる期間は、血圧リスクレベルが「3」となり且つ血流リスクレベルが「1」となる。従って、計測経過時間が「20分」から「23分」となる期間は、体調リスクレベルが「4」となる。
同様に、図5(c)に示すように、計測経過時間が「45分」から「53分」となる期間は、血圧リスクレベルが「3」となり且つ血流リスクレベルが「2」となる。従って、計測経過時間が「20分」から「23分」となる期間は、体調リスクレベルが「5」となる。
同様に、図5(c)に示すように、計測経過時間が「53分」から「58分」となる期間は、血圧リスクレベルが「3」となり且つ血流リスクレベルが「1」となる。従って、計測経過時間が「20分」から「23分」となる期間は、体調リスクレベルが「4」となる。
同様に、図5(c)に示すように、計測経過時間が「58分」から「60分」となる期間は、血圧リスクレベルが「3」となり且つ血流リスクレベルが「2」となる。従って、計測経過時間が「58分」から「60分」となる期間は、体調リスクレベルが「5」となる。
以上説明したように、第1実施例の体調監視装置1は、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BFの夫々に基づいて、体調リスクレベルを算出することができる。つまり、第1実施例の体調監視装置1は、血圧計測部11が計測した血圧BPのみに基づいて体調リスクレベルを算出することに代えて、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BFの夫々に基づいて体調リスクレベルを算出することができる。更に言い換えれば、第1実施例の体調監視装置1は、血流計測部12が計測した血流量BFのみに基づいて体調リスクレベルを算出することに代えて、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BFの夫々に基づいて体調リスクレベルを算出することができる。つまり、第1実施例の体調監視装置1は、単一の計測値に代えて、複数の計測値(つまり、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BF)に基づいて、体調リスクレベルを算出することができる。従って、第1実施例の体調監視装置1は、単一の計測値に基づいて体調リスクレベルを算出する比較例の体調監視装置と比較して、生体の体調をより好適に(例えば、より高精度に)監視することができる。
尚、上述した説明では、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベルとステップS14で算出した血流リスクレベルとを加算することで得られる値を、体調リスクレベルとして算出している。しかしながら、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベルとステップS14で算出した血流リスクレベルとを乗算することで得られる値を、体調リスクレベルとして算出している。つまり、リスクレベル算出部133は、体調リスクレベル=血圧リスクレベル×血流リスクレベルという数式を用いて、体調リスクレベルを算出してもよい。
或いは、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベル及びステップS14で算出した血流リスクレベルの双方を変数とする任意の関数に基づいて、体調リスクレベルを算出してもよい。つまり、リスクレベル算出部133は、体調リスクレベル=f(血圧リスクレベル、血流リスクレベル)という関数を用いて、体調リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベル及びステップS14で算出した血流リスクレベルから、何らかの手法を用いて体調リスクレベルを算出してもよい。
加えて、上述した説明では、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベル及びステップS14で算出した血流リスクレベルの夫々をそのまま用いて、体調リスクレベルを算出している。しかしながら、リスクレベル算出部133は、ステップS13で算出した血圧リスクレベル及びステップS14で算出した血流リスクレベルの少なくとも一方に対して所定の重み付け係数αを用いた重み付け処理を施した後に、体調リスクレベルを算出してもよい。例えば、リスクレベル算出部133は、体調リスクレベル=α1×血圧リスクレベル+α2×血流リスクレベルという数式(但し、α1は血圧リスクレベルに対する重み付け係数であり、α2は血流リスクレベルに対する重み付け係数である)を用いて、体調リスクレベルを算出してもよい。或いは、例えば、リスクレベル算出部133は、体調リスクレベル=α1×血圧リスクレベル×α2×血流リスクレベルという数式を用いて、体調リスクレベルを算出してもよい。或いは、例えば、リスクレベル算出部133は、体調リスクレベル=f(α1×血圧リスクレベル、α2×血流リスクレベル)という数式を用いて、体調リスクレベルを算出してもよい。このような重み付け係数αを用いた重み付け処理が施されることで、体調を監視する生体毎の個人差が存在していたとしても、当該個人差を吸収するように血圧リスクレベル及び血流リスクレベルの少なくとも一方が補正される。従って、体調監視装置1は、体調リスクレベルをより一層好適に算出することができる
尚、重み付け係数αには、体調監視装置1による監視の対象となっている生体毎に(言い換えれば、個人別に)適切な値が設定されてもよい。或いは、重み付け係数αには、体調監視装置1による監視の対象となっている生体の体調に応じた適切な値が設定されてもよい。
尚、重み付け係数αには、体調監視装置1による監視の対象となっている生体毎に(言い換えれば、個人別に)適切な値が設定されてもよい。或いは、重み付け係数αには、体調監視装置1による監視の対象となっている生体の体調に応じた適切な値が設定されてもよい。
また、上述した説明では、リスクレベル算出部133は、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BPの夫々を用いて、体調リスクレベルを算出している。しかしながら、リスクレベル算出部133は、血圧計測部11が計測した血圧BP及び血流計測部12が計測した血流量BPの夫々に加えて、血流計測部12が計測した血流量BFから算出される心拍数HR及び脈波振幅PAの夫々を更に用いて、体調リスクレベルを算出してもよい。より具体的には、リスクレベル算出部133は、血圧リスクレベル及び血流リスクレベルの夫々に加えて、生体の体調の状態を示す指標であって且つ心拍数HRに応じた指標である心拍リスクレベル及び生体の体調の状態を示す指標であって且つ脈波振幅PAに応じた指標である脈波リスクレベルの夫々を更に用いて、体調リスクレベルを算出してもよい。
ここで、図6から図8を参照して、心拍数HR及び脈波振幅PAの少なくとも一方を更に用いて体調リスクレベルを算出する態様について説明する。図6は、心拍数HR及び脈波振幅PAと血流量BFとの間の関係を示す波形図である。図7は、心拍リスクレベルと心拍数HRとの間の対応関係を示すテーブルである。図8は、脈波リスクレベルと脈波振幅PAとの間の対応関係を示すテーブルである。
図6に示すように、血流計測部12が血流量BFを計測する際に得られる血流波形において、脈波に相当する波形の振動数(つまり、血流波形の周期Aの逆数(1/A))が、心拍数HRに相当する。このような図6に示す心拍数HRに対して、リスクレベル算出部133は、例えば、所定の基準値(例えば、所定時間(例えば、10分)前の心拍数HR)を基準とする現在の心拍数HRの変化率ΔHRと心拍リスクレベルとの間の対応関係を示すテーブルを参照することで、心拍リスクレベルを算出してもよい。
具体的には、図7に示すように、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が5%以下である(つまり、|0.95×所定の基準値|≦|現在の心拍数HR|となる)場合には、「1」という数値を、心拍リスクレベルとして算出する。同様に、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が5%より大きく且つ10%以下である(つまり、|0.90×所定の基準値|≦|現在の心拍数HR|<|0.95×所定の基準値|となる)場合には、「2」という数値を、心拍リスクレベルとして算出する。同様に、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が10%より大きく且つ20%以下である(つまり、|0.80×所定の基準値|≦|現在の心拍数HR|<|0.90×所定の基準値|となる)場合には、「3」という数値を、心拍リスクレベルとして算出する。同様に、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が20%より大きく且つ30%以下である(つまり、|0.70×所定の基準値|≦|現在の心拍数HR|<|0.80×所定の基準値|となる)場合には、「4」という数値を、心拍リスクレベルとして算出する。同様に、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が30%より大きく且つ40%以下である(つまり、|0.60×所定の基準値|≦|現在の心拍数HR|<|0.70×所定の基準値|となる)場合には、「5」という数値を、心拍リスクレベルとして算出する。同様に、リスクレベル算出部133は、心拍数HRの変化率ΔHRの絶対値が40%より大きくなる(つまり、|現在の心拍数HR|<|0.60×所定の基準値|となる)場合には、「6」という数値を、心拍リスクレベルとして算出する。
尚、図7に示す心拍リスクレベルは、数値が大きくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示している。というのも、図7に示す心拍リスクレベルは、主として、生体が人工透析を行っている場合の心拍数HRを対象としているからである。生体が人工透析を行っている場合には、心拍数HRの急激な変動が体調の悪化(つまり、状態の悪化)を示すことが多い。従って、図7に示す心拍リスクレベルは、心拍数HRの変化率ΔHRの絶対値が大きくなる(つまり、心拍数HRが急激に変化する、言い換えれば、人工透析中の生体の体調が悪化する)ほど、数値が大きくなっている。
但し、心拍リスクレベルは、数値が小さくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示してもよい。或いは、心拍リスクレベルは、その他の態様で生体の体調を示してもよい。つまり、心拍数HRの変化率ΔHRとの間に何らかの対応関係を有する任意の指標であって且つ生体の体調との間に何らかの対応関係を有する指標が、心拍リスクレベルとして用いられてもよい。
また、リスクレベル算出部133は、心拍数HRの変化率ΔHRと心拍リスクレベルとの間の対応関係を示すテーブルに加えて又は代えて、心拍数HRの変化率ΔHRと心拍リスクレベルとの間の対応関係を示す任意の情報(例えば、マップや、数式や、関数等)を参照することで、血流リスクレベルを算出してもよい。
また、リスクレベル算出部133は、心拍数HRの比例値(例えば、心拍数HRそのものの値や、心拍数HRを所定係数Kで乗算することで得られる値K×HR)と心拍リスクレベルとの間の対応関係を示す任意の情報を参照することで、心拍リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、心拍数HRの変化の態様を示す任意の情報(例えば、所定の基準値を基準とする現在の心拍数HRの変化量や、所定の基準値を基準とする現在の心拍数HRの比率や、所定時間当たりの心拍数HRの変化量若しくは変化率や、心拍数HRのn階微分値等)と心拍リスクレベルとの間の対応関係を示す任意の情報を参照することで、心拍リスクレベルを算出してもよい。
一方で、図6に示すように、血流計測部12が血流量BFを計測する際に得られる血流波形において、脈波に相当する波形の振幅Cが、脈波振幅PAに相当する。このような図6に示す脈波振幅PAに対して、リスクレベル算出部133は、例えば、所定の基準値(例えば、所定時間(例えば、10分)前の脈波振幅PA)を基準とする現在の脈波振幅PAの変化率ΔPAと脈波リスクレベルとの間の対応関係を示すテーブルを参照することで、脈波リスクレベルを算出してもよい。
具体的には、図8に示すように、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-5%以上である(つまり、0.95×所定の基準値≦現在の脈波振幅となる)場合には、「1」という数値を、脈波リスクレベルとして算出する。同様に、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-10%以上であり且つ-5%未満である(つまり、0.90×所定の基準値≦現在の脈波振幅PA<0.95×所定の基準値となる)場合には、「2」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-20%以上であり且つ-10%未満である(つまり、0.80×所定の基準値≦現在の脈波振幅PA<0.90×所定の基準値となる)場合には、「3」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-30%以上であり且つ-20%未満である(つまり、0.70×所定の基準値≦現在の脈波振幅PA<0.80×所定の基準値となる)場合には、「4」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-40%以上であり且つ-30%未満である(つまり、0.60×所定の基準値≦現在の脈波振幅PA<0.70×所定の基準値となる)場合には、「5」という数値を、血流リスクレベルとして算出する。同様に、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAが-40%未満である(つまり、現在の脈波振幅PA<0.60×所定の基準値となる)場合には、「6」という数値を、血流リスクレベルとして算出する。
尚、図8に示す脈波リスクレベルは、数値が大きくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示している。というのも、図8に示す脈波リスクレベルは、主として、生体が人工透析を行っている場合の脈波振幅PAを対象としているからである。生体が人工透析を行っている場合には、脈波振幅PAの急激な低下が体調の悪化(つまり、状態の悪化)を示すことが多い。従って、図8に示す脈波リスクレベルは、脈波振幅PAの変化率ΔPAが小さくなる(つまり、脈波振幅PAが急激に低下する、言い換えれば、人工透析中の生体の体調が悪化する)ほど、数値が大きくなっている。
但し、脈波リスクレベルは、数値が小さくなるほど生体の体調が悪化している(言い換えれば、良好でない)ことを示してもよい。或いは、脈波リスクレベルは、その他の態様で生体の体調を示してもよい。つまり、脈波振幅PAの変化率ΔPAとの間に何らかの対応関係を有する任意の指標であって且つ生体の体調との間に何らかの対応関係を有する任意の指標が、脈波リスクレベルとして用いられてもよい。
また、リスクレベル算出部133は、脈波振幅PAの変化率ΔPAと脈波リスクレベルとの間の対応関係を示すテーブルに加えて又は代えて、脈波振幅PAの変化率ΔPAと脈波リスクレベルとの間の対応関係を示す任意の情報(例えば、マップや、数式や、関数等)を参照することで、脈波リスクレベルを算出してもよい。
また、リスクレベル算出部133は、脈波振幅PAの比例値(例えば、脈波振幅PAそのものの値や、脈波振幅PAを所定係数Kで乗算することで得られる値K×PA)と脈波リスクレベルとの間の対応関係を示す任意の情報を参照することで、脈波リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、脈波振幅PAの変化の態様を示す任意の情報(例えば、所定の基準値を基準とする現在の脈波振幅PAの変化量や、所定の基準値を基準とする現在の脈波振幅PAの比率や、所定時間当たりの脈波振幅PAの変化量若しくは変化率や、脈波振幅PAのn階微分値等)ΔPAと脈波リスクレベルとの間の対応関係を示す任意の情報を参照することで、脈波リスクレベルを算出してもよい。
尚、上述した説明では、リスクレベル算出部133は、心拍リスクレベル及び脈波リスクレベルの夫々を更に用いて体調リスクレベルを算出している。しかしながら、リスクレベル算出部133は、心拍リスクレベルを用いる一方で脈波リスクレベルを用いることなく、体調リスクレベルを算出してもよい。或いは、リスクレベル算出部133は、脈波リスクレベルを用いる一方で心拍リスクレベルを用いることなく、体調リスクレベルを算出してもよい。
(2)第2実施例
続いて、図9から図10を参照しながら、第2実施例の体調監視装置2について説明を進める。尚、以下の説明では、第1実施例の体調監視装置1と同一の構成及び動作については、同一の参照符号及びステップ番号を付してその詳細な説明を省略する。
続いて、図9から図10を参照しながら、第2実施例の体調監視装置2について説明を進める。尚、以下の説明では、第1実施例の体調監視装置1と同一の構成及び動作については、同一の参照符号及びステップ番号を付してその詳細な説明を省略する。
(2-1)体調監視装置の構成
はじめに、図9を参照しながら、第2実施例の体調監視装置2の構成について説明する。図9は、第2実施例の体調監視装置2の構成を示すブロック図である。
はじめに、図9を参照しながら、第2実施例の体調監視装置2の構成について説明する。図9は、第2実施例の体調監視装置2の構成を示すブロック図である。
図9に示すように、第2実施例の体調監視装置2は、第1実施例の体調監視装置1と同様に、血圧計測部11と、血流計測部12とを備えている。
第2実施例の体調監視装置2は更に、制御部23を備えている。第2実施例の制御部23は、第1実施例の制御部13と比較して、計測指示部235を更に備えているという点で異なっている。第2実施例の制御部23が備えるその他の構成要素は、第1実施例の制御部12が備えるその他の構成要素と同一であってもよい。
計測指示部235は、血圧計測部11が計測した血圧BPが所定条件を満たす場合に血流計測部12が血流量BFを計測するように、血流計測部12を制御してもよい。言い換えれば、計測指示部235は、血圧計測部11が計測した血圧BPが所定条件を満たしていない場合に血流計測部12が血流量BFを計測しないように、血流計測部12を制御してもよい。
血流計測部12を制御することに加えて又は代えて、計測指示部235は、血圧計測部11が計測した血圧BPが所定条件を満たす場合にリスクレベル算出部133が体調リスクレベルを算出するように、リスクレベル算出部133を制御してもよい。言い換えれば、計測指示部235は、血圧計測部11が計測した血圧BPが所定条件を満たしていない場合にリスクレベル算出部133が体調リスクレベルを算出しないように、リスクレベル算出部133を制御してもよい。
(2-2)体調監視装置の動作
続いて、図10を参照して、第2実施例の体調監視装置2の動作の流れについて説明する。図10は、第2実施例の体調監視装置2の動作の流れを示すフローチャートである。
続いて、図10を参照して、第2実施例の体調監視装置2の動作の流れについて説明する。図10は、第2実施例の体調監視装置2の動作の流れを示すフローチャートである。
図10に示すように、第2実施例においても、第1実施例と同様に、血圧計測部11は、生体の血圧BPを計測する(ステップS12)。また、血圧保存部131は、血圧計測部11が計測した血圧BPを保存する(ステップS12)。
第2実施例では特に、計測指示部235は、ステップS12で計測された血圧BPが、所定条件を満たすか否かを判定する(ステップS21)。
例えば、計測指示部235は、ステップS12で計測された血圧BPが、継続的な監視を必要とする値(例えば、正常値ではない値や、正常値ではあるものの注意を要する値等)であるか否かを判定してもよい。ステップS12で計測された血圧BPが継続的な監視を必要とする値である場合には、ステップS12で計測された血圧BPが所定条件を満たすと判定されてもよい。他方で、ステップS12で計測された血圧BPが継続的な監視を必要とする値でない場合には、ステップS12で計測された血圧BPが所定条件を満たさないと判定されてもよい。
或いは、計測指示部235は、ステップS12で計測された血圧BPがその他の所望値ないしは所定値であるか否か又は所定範囲に収まるか否かを判定することで、ステップS12で計測された血圧BPが所定条件を満たすと判定してもよい。例えば、計測指示部235は、ステップS12で計測された血圧BPが、生体の体調の継続的な監視を必要とすることを示す所定値であるか否か(或いは、生体の体調の継続的な監視を必要とすることを示す所定範囲に収まるか否か)を判定することで、ステップS12で計測された血圧BPが所定条件を満たすと判定してもよい。ステップS12で計測された血圧BPが、生体の体調の継続的な監視を必要とすることを示す所定値である(或いは、生体の体調の継続的な監視を必要とすることを示す所定範囲に収まる)場合には、ステップS12で計測された血圧BPが所定条件を満たすと判定されてもよい。他方で、ステップS12で計測された血圧BPが、生体の体調の継続的な監視を必要とすることを示す所定値でない(或いは、生体の体調の継続的な監視を必要とすることを示す所定範囲に収まらない)場合には、ステップS12で計測された血圧BPが所定条件を満たさないと判定されてもよい。
ステップS21の判定の結果、ステップS12で計測された血圧BPが所定条件を満たさないと判定される場合には(ステップS21:No)、ステップS12及びステップS21の動作が繰り返される。つまり、血圧計測部11は、生体の血圧BPを計測する。血圧保存部131は、血圧計測部11が計測した血圧BPを保存する。計測指示部235は、ステップS12で計測された血圧BPが、所定条件を満たすか否かを判定する。
加えて、この場合には、計測指示部235は、血流計測部12が血流量BFを計測しないように、血流計測部12を制御してもよい。その結果、血流計測部12は、血流量BFを計測しなくともよい。また、計測指示部235は、血流計測部12を制御することに加えて又は代えて、リスクレベル算出部133が体調リスクレベルを算出しないように、リスクレベル算出部133を制御してもよい。その結果、リスクレベル算出部133は、体調リスクレベルを算出しなくともよい。
他方で、ステップS21の判定の結果、ステップS12で計測された血圧BPが所定条件を満たすと判定される場合には(ステップS21:Yes)、計測指示部235は、血流計測部12が血流量BFを計測するように、血流計測部12を制御してもよい。その結果、血流計測部12は、血流量BFを計測する(ステップS11)。また、計測指示部235は、血流計測部12を制御することに加えて又は代えて、リスクレベル算出部133が体調リスクレベルを算出するように、リスクレベル算出部133を制御する。その結果、リスクレベル算出部133は、体調リスクレベルを算出する(ステップS13からステップS15)。
加えて、ステップS12で計測された血圧BPが所定条件を満たすと判定される場合にも、血圧計測部11は、生体の血圧BPを計測することが好ましい。血圧計測部11が血圧BPを計測した場合には、計測指示部235は、新たに計測された血圧BPが、所定条件を満たすか否かを判定することが好ましい。
以上説明したように、第2実施例の体調監視装置2は、第1実施例の体調監視装置1が享受することができる各種効果と同様の効果を好適に享受することができる。
加えて、第2実施例の体調監視装置2は、血圧計測部11が計測した血圧が所定条件を満たす場合に、血流量BFの計測及び体調リスクレベルの算出を行う。言い換えれば、第2実施例の体調監視装置2は、血圧計測部11が計測した血圧BPが所定条件を満たさない場合に、血流量BFの計測及び体調リスクレベルの算出を行わなくともよい。このため、血流量BFの計測及び体調リスクレベルの算出を常に行う比較例の体調監視装置と比較して、体調監視装置2の消費電力が低減される。
(3)第3実施例
続いて、図11から図12を参照しながら、第3実施例の体調監視装置3について説明を進める。尚、以下の説明では、第1実施例の体調監視装置1から第2実施例の体調監視装置2と同一の構成及び動作については、同一の参照符号及びステップ番号を付してその詳細な説明を省略する。
続いて、図11から図12を参照しながら、第3実施例の体調監視装置3について説明を進める。尚、以下の説明では、第1実施例の体調監視装置1から第2実施例の体調監視装置2と同一の構成及び動作については、同一の参照符号及びステップ番号を付してその詳細な説明を省略する。
(3-1)体調監視装置の構成
はじめに、図11を参照しながら、第3実施例の体調監視装置3の構成について説明する。図11は、第3実施例の体調監視装置3の構成を示すブロック図である。
はじめに、図11を参照しながら、第3実施例の体調監視装置3の構成について説明する。図11は、第3実施例の体調監視装置3の構成を示すブロック図である。
図11に示すように、第3実施例の体調監視装置3は、第1実施例の体調監視装置1と同様に、血圧計測部11と、血流計測部12とを備えている。
第3実施例の体調監視装置3は更に、制御部33を備えている。第3実施例の制御部33は、第1実施例の制御部13と比較して、タイマ部336を更に備えているという点で異なっている。第3実施例の制御部33が備えるその他の構成要素は、第1実施例の制御部12が備えるその他の構成要素と同一であってもよい。
タイマ部336は、血圧計測部11が血圧BPを計測するタイミングを設定する。加えて、タイマ部336は、血圧計測部11が血圧BPを計測するタイミングが到来した場合には、血圧BPを計測するように血圧計測部11を制御する。
(3-2)体調監視装置の動作
続いて、図12を参照して、第3実施例の体調監視装置4の動作の流れについて説明する。図12は、第3実施例の体調監視装置3の動作の流れを示すフローチャートである。
続いて、図12を参照して、第3実施例の体調監視装置4の動作の流れについて説明する。図12は、第3実施例の体調監視装置3の動作の流れを示すフローチャートである。
図12に示すように、タイマ部336は、血圧計測部11が血圧BPを計測するタイミングを設定する(ステップS31)。例えば、タイマ部336は、血圧計測部11が血圧BPを計測するタイミングとして、周期(例えば、20分という周期)を設定してもよい。タイマ部336は、血圧計測部11が血圧BPを計測するタイミングとして、時刻そのもの(例えば、20分、40分、60分・・・という時刻)を設定してもよい。
その後、第3実施例においても、第1実施例と同様に、血流計測部12は、生体の血流量BFを計測する(ステップS11)。加えて、第3実施例においても、第1実施例と同様に、リスクレベル算出部133は、体調リスクレベルを算出する(ステップS13からステップS15)。
また、第3実施例においても、第1実施例と同様に、ステップS11での血流量BFの計測に続いて若しくは相前後して又は並行して、血圧計測部11は、生体の血圧BPを計測する(ステップS12)。加えて、血圧保存部131は、血圧計測部11が計測した血圧BPを保存する(ステップS12)。
その後、第3実施例では、タイマ部336は、現在のタイミングが、ステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)であるか否かを判定する(ステップS32)。言い換えれば、タイマ部336は、ステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)が到来したか否かを判定する(ステップS32)。
ステップS32の判定の結果、現在のタイミングがステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)であると判定される場合には(ステップS32:Yes)、ステップS12の動作が再度行われる。つまり、血圧計測部11は、生体の血圧BPを計測する(ステップS12)。加えて、血圧保存部131は、血圧計測部11が計測した血圧BPを保存する(ステップS12)。
他方で、ステップS32の判定の結果、現在のタイミングがステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)でないと判定される場合には(ステップS32:No)、ステップS12の動作が行われなくともよい。つまり、血圧計測部11は、ステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)が再度到来するまでは、生体の血圧BPを計測しなくともよい。加えて、血圧保存部131は、ステップS31で設定したタイミング(つまり、血圧計測部11が血圧BPを計測するタイミング)が再度到来するまでは、血圧計測部11が計測した血圧BPを保存しなくともよい。
以上説明したように、第3実施例の体調監視装置3は、第1実施例の体調監視装置1が享受することができる各種効果と同様の効果を好適に享受することができる。
加えて、第3実施例の体調監視装置3は、タイマ部336の動作により、所望のタイミングで自動的に血圧BPを計測することができる。このため、第3実施例の体調監視装置3は、計測者がタイミングを図ることなく(或いは、計測者が手動で作業を行うことなく)、自動的に血圧BPを計測することができる。
尚、タイマ部336は、血圧計測部11が計測した血圧BPが所定条件を満たすか否かに応じて、設定するタイミングを変えてもよい。例えば、タイマ部336は、血圧計測部11が計測した血圧BP3が所定条件を満たす(例えば、継続的な監視を必要とする値である)場合に、血圧計測部11が血圧BPを計測するタイミングとして、相対的に短い周期を設定してもよい。その結果、血圧計測部11が計測した血圧BPが所定条件を満たす場合に、血圧計測部11は、相対的に高い頻度で血圧BPを計測する。他方で、タイマ部336は、血圧計測部11が計測した血圧BPが所定条件を満たさない(例えば、継続的な監視を必要とする値でない)場合に、血圧計測部11が血圧BPを計測するタイミングとして、相対的に長い周期を設定してもよい。その結果、血圧計測部11が計測した血圧BPが所定条件を満たさない場合に、血圧計測部11は、相対的に低い頻度で血圧BPを計測する。これにより、血圧計測部11は、血圧BPが継続的な監視を必要とする値か否かに応じた好適な頻度で、血圧BPを計測することができる。
尚、第1実施例から第3実施例で説明した各構成の一部を適宜組み合わせてもよい。この場合であっても、第1実施例から第3実施例で説明した各構成の一部を適宜組み合わせることで得られる血流量検出装置は、上述した各種効果を好適に享受することができる。
また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う体調監視装置及び方法もまた本発明の技術思想に含まれる。
1、2、3 体調監視装置
11 血圧計測部
12 血流計測部
121 レーザ素子
122 受光素子
123 増幅器
124 A/Dコンバータ
125 演算回路
13、23、33 制御部
131 血圧保存部
132 血流量保存部
133 リスクレベル算出部
134 出力部
235 計測指示部
336 タイマ部
11 血圧計測部
12 血流計測部
121 レーザ素子
122 受光素子
123 増幅器
124 A/Dコンバータ
125 演算回路
13、23、33 制御部
131 血圧保存部
132 血流量保存部
133 リスクレベル算出部
134 出力部
235 計測指示部
336 タイマ部
Claims (15)
- 生体の血圧を計測する血圧計測部と、
前記生体の血流量を計測する血流計測部と、
前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出部と
を備えることを特徴とする体調監視装置。 - 前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出することを特徴とする請求項1に記載の体調監視装置。
- 前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変化状態の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルを算出することで、前記体調リスクレベルを算出することを特徴とする請求項1に記載の体調監視装置。
- 前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルとを加算することで又は乗算することで、前記体調リスクレベルを算出することを特徴とする請求項2に記載の体調監視装置。
- 前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルとを用いて、体調リスクレベルを算出することを特徴とする請求項2に記載の体調監視装置。
- 前記体調算出部は、前記血圧計測部が計測した前記血圧及び前記血流計測部が計測した前記血流量に加えて、前記血流量から算出される心拍数及び前記血流量から算出される脈波振幅の少なくとも一方に基づいて、前記体調リスクレベルを算出することを特徴とする請求項1に記載の体調監視装置。
- 前記体調算出部は、前記血圧計測部が計測した前記血圧に応じた前記生体の体調を示す血圧リスクレベル及び前記血流計測部が計測した前記血流量に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数に応じた前記生体の体調を示す心拍リスクレベル及び前記血流量から算出される脈波振幅に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出することを特徴とする請求項6に記載の体調監視装置。
- 前記体調算出部は、前記血圧計測部が計測した前記血圧の比例値及び当該血圧の変化状態の少なくとも一方に応じた前記生体の体調を示す血圧リスクレベル並びに前記血流計測部が計測した前記血流量の比例値及び当該血流量の変化状態の少なくとも一方に応じた前記生体の体調を示す血流リスクレベルに加えて、前記血流量から算出される心拍数の比例値及び当該心拍数の変化状態の少なくとも一方に応じた前記生体の体調を示す心拍リスクレベル並びに前記血流量から算出される脈波振幅の比例値及び当該脈波振幅の変化状態の少なくとも一方に応じた前記生体の体調を示す脈波リスクレベルの少なくとも一方を算出することで、前記体調リスクレベルを算出することを特徴とする請求項6に記載の体調監視装置。
- 前記体調算出部は、前記血圧リスクレベルと前記血流リスクレベルと前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを加算することで又は乗算することで、前記体調リスクレベルを算出することを特徴とする請求項7に記載の体調監視装置。
- 前記体調算出部は、第1重み付け係数による重み付け処理が施された前記血圧リスクレベルと第2重み付け係数により重み付け処理が施された前記血流リスクレベルと第3重み付け係数により重み付け処理が施された前記心拍リスクレベル及び前記脈波リスクレベルの少なくとも一方とを用いて、前記体調リスクレベルを算出することを特徴とする請求項7に記載の体調監視装置。
- 前記体調算出部は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に、前記体調リスクレベルを算出し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記体調リスクレベルを算出しないことを特徴とする請求項1に記載の体調監視装置。
- 前記血流計測部は、(i)前記血圧計測部が計測した前記血圧が前記所定条件を満たす場合に、前記血流量を計測し、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に、前記血流量を計測しないことを特徴とする請求項1に記載の体調監視装置。
- 前記血圧計測部が前記血圧を計測するタイミングを設定するタイマ手段を更に備え、
前記血圧計測部は、前記タイマ手段が設定する前記タイミングに前記血圧を計測することで、自動的に前記血圧を計測することを特徴とする請求項1に記載の体調監視装置。 - 前記タイマ手段は、(i)前記血圧計測部が計測した前記血圧が所定条件を満たす場合に前記血圧を計測する前記タイミングの頻度が、(ii)前記血圧計測部が計測した前記血圧が前記所定条件を満たさない場合に前記血圧を計測する前記タイミングの頻度よりも高くなるように、前記タイミングを設定することを特徴とする請求項13に記載の体調監視装置。
- 生体の血圧を計測する血圧計測工程と、
前記生体の血流量を計測する血流計測工程と、
前記血圧計測工程が計測した前記血圧及び前記血流計測工程が計測した前記血流量の夫々に基づいて、前記生体の体調を示す体調リスクレベルを算出する体調算出工程と
を備えることを特徴とする体調監視方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/061434 WO2013161074A1 (ja) | 2012-04-27 | 2012-04-27 | 体調監視装置及び方法 |
JP2014512269A JP5940652B2 (ja) | 2012-04-27 | 2012-04-27 | 体調監視装置及び方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/061434 WO2013161074A1 (ja) | 2012-04-27 | 2012-04-27 | 体調監視装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161074A1 true WO2013161074A1 (ja) | 2013-10-31 |
Family
ID=49482440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061434 WO2013161074A1 (ja) | 2012-04-27 | 2012-04-27 | 体調監視装置及び方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5940652B2 (ja) |
WO (1) | WO2013161074A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017130414A1 (ja) * | 2016-01-29 | 2017-08-03 | パイオニア株式会社 | 情報出力装置、情報出力方法、並びにコンピュータプログラム |
JP2017176340A (ja) * | 2016-03-29 | 2017-10-05 | シチズン時計株式会社 | 電子血圧計 |
JP2020073078A (ja) * | 2020-02-05 | 2020-05-14 | パイオニア株式会社 | 情報出力装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0871046A (ja) * | 1994-09-02 | 1996-03-19 | Matsushita Electric Ind Co Ltd | 監視装置 |
JP2003067489A (ja) * | 2001-08-22 | 2003-03-07 | Medica 21 Nippon Kenko Iryo Kenkyusho:Kk | 検査結果データ出力システム |
JP2005334527A (ja) * | 2004-05-31 | 2005-12-08 | Nikkiso Co Ltd | 在宅医療装置 |
JP2011519704A (ja) * | 2008-05-12 | 2011-07-14 | カーディオ・アート・テクノロジーズ・リミテッド | 健康状態を監視する方法およびシステム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3840816B2 (ja) * | 1998-10-02 | 2006-11-01 | オムロンヘルスケア株式会社 | 血圧監視装置 |
JP2007125079A (ja) * | 2005-11-01 | 2007-05-24 | Omron Healthcare Co Ltd | 電子血圧計 |
-
2012
- 2012-04-27 JP JP2014512269A patent/JP5940652B2/ja active Active
- 2012-04-27 WO PCT/JP2012/061434 patent/WO2013161074A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0871046A (ja) * | 1994-09-02 | 1996-03-19 | Matsushita Electric Ind Co Ltd | 監視装置 |
JP2003067489A (ja) * | 2001-08-22 | 2003-03-07 | Medica 21 Nippon Kenko Iryo Kenkyusho:Kk | 検査結果データ出力システム |
JP2005334527A (ja) * | 2004-05-31 | 2005-12-08 | Nikkiso Co Ltd | 在宅医療装置 |
JP2011519704A (ja) * | 2008-05-12 | 2011-07-14 | カーディオ・アート・テクノロジーズ・リミテッド | 健康状態を監視する方法およびシステム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017130414A1 (ja) * | 2016-01-29 | 2017-08-03 | パイオニア株式会社 | 情報出力装置、情報出力方法、並びにコンピュータプログラム |
JPWO2017130414A1 (ja) * | 2016-01-29 | 2018-11-22 | パイオニア株式会社 | 情報出力装置、情報出力方法、並びにコンピュータプログラム |
JP2017176340A (ja) * | 2016-03-29 | 2017-10-05 | シチズン時計株式会社 | 電子血圧計 |
JP2020073078A (ja) * | 2020-02-05 | 2020-05-14 | パイオニア株式会社 | 情報出力装置 |
JP2021184839A (ja) * | 2020-02-05 | 2021-12-09 | パイオニア株式会社 | 情報出力装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5940652B2 (ja) | 2016-06-29 |
JPWO2013161074A1 (ja) | 2015-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010210731B2 (en) | Calculating cardiovascular parameters | |
EP2730302B1 (en) | Hypotension-predicting device | |
JP2018533381A5 (ja) | ||
JP2005329237A (ja) | 血液力学パラメータの測定装置 | |
JP5946904B2 (ja) | 体調監視装置及び方法 | |
AU2010210791A1 (en) | Detection of vascular conditions using arterial pressure waveform data | |
JP2016508386A (ja) | 非観血式血圧測定に基づき患者の脈波を近似させるための方法、論理演算装置及びシステム | |
JP5833228B2 (ja) | 血圧推定装置及び方法 | |
JP5940652B2 (ja) | 体調監視装置及び方法 | |
JP5705959B2 (ja) | 血圧低下予測装置 | |
JP2015107310A (ja) | 血圧計測装置および血圧計測方法 | |
Thambiraj et al. | Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio | |
TWI484938B (zh) | 用以推導出中央主動脈收縮壓值之方法、系統及電腦可讀媒體 | |
EP3019075B1 (en) | Determination of a hemodynamic parameter | |
JP2017192629A (ja) | 計測装置、計測方法、および電子機器 | |
US20100268097A1 (en) | Monitoring Peripheral Decoupling | |
JP6607728B2 (ja) | 静脈圧測定装置、静脈圧測定方法、及びプログラム | |
JP6027210B2 (ja) | 血圧推定装置及び方法 | |
EP3019076B1 (en) | Arterial pressure-based determination of cardiovascular parameters | |
JP2006247193A (ja) | 血圧測定システムおよび血圧測定方法 | |
CN117426761B (zh) | 一种电子血压计自适应泄压速度的控制方法、装置及设备 | |
RU2697227C1 (ru) | Способ определения артериального давления | |
KR101476730B1 (ko) | 중심 대동맥 수축기압을 나타내는 값의 유도 방법 및 중심 대동맥 수축기압을 나타내는 값을 유도하기 위해 동맥압 파형 데이터를 분석하는 방법 | |
JP5705960B2 (ja) | 血圧低下予測装置 | |
JP5705961B2 (ja) | 血圧低下予測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12875202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014512269 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12875202 Country of ref document: EP Kind code of ref document: A1 |