WO2013160346A1 - Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile - Google Patents
Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile Download PDFInfo
- Publication number
- WO2013160346A1 WO2013160346A1 PCT/EP2013/058483 EP2013058483W WO2013160346A1 WO 2013160346 A1 WO2013160346 A1 WO 2013160346A1 EP 2013058483 W EP2013058483 W EP 2013058483W WO 2013160346 A1 WO2013160346 A1 WO 2013160346A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crankcase
- flow
- settling
- impact
- circulation member
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
- F01M13/04—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
- F01M2013/0433—Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a deflection device, e.g. screen
Definitions
- the present invention relates to an oil decantation system, and more specifically to a system for extracting the oil contained in crankcase gases of a heat engine, in particular a motor vehicle engine.
- crankcase gases In an internal combustion engine, there are several causes causing the emission of highly charged gas in fine oil droplets (having a size that can vary approximately from 0.01 ⁇ to 10 ⁇ ) and which are called “crankcase gases”. or “blow-by gas”.
- crankcase gases can result from leaking of the segments from the combustion chamber to the piston volumes, and / or from the turbocharger bearing leakage from the turbine and compressor bodies to the crankcase by the return of the engine.
- oil, and / or leaks through the valve stem seals from the intake and exhaust manifolds to the cylinder head, and / or leakage of the oil pump gases from the braking circuit to the cylinder head.
- Crankcase gases are usually composed of combustion gases
- crankcase gases mainly water, carbon dioxide and nitrogen
- unburned gases air, fuel and nitrogen
- oil oil
- the oil concentration of the crankcase gases is specific to each engine.
- the flow rate of these crankcase gases can vary over a range from approximately 50 L / min to 350 L / min, this flow being a function of the type of engine (petrol / diesel), its capacity, its age, and engine technology.
- crankcase gases must absolutely be re-aspired. This recirculation of gases is possible, by connecting the low engine (oil sump) to the engine air intake line (the vacuum is used) generally via the cylinder block and the cylinder head cover. However, these gases must be treated before being reinjected at the intake, to comply with pollution standards and to limit oil consumption.
- crankcase gases enter a chamber of section much greater than the crankcase circuit.
- This ratio of section generates a decrease in speed of the same ratio, and such a slowing of the gas flow allows the oil droplets to be deposited on the bottom of the settler.
- This decantation principle allows only large particles of oil to be treated, and therefore lacks efficiency in the treatment of the oil spray contained in the crankcase gases.
- crankcase gases pass through a quibbled zone generating, prior to impact on a wall, a succession of point accelerations of the flow of gas to be treated and decelerations by increasing the passage section.
- This principle also has the disadvantage of not allowing a treatment of any type of oil particle, since only the large and medium particles (generally> 2 ⁇ ) are extracted from the crankcase gas.
- such a quenching settling system can generate high pressure losses under a high crankcase gas flow.
- the solution proposed in the document WO 2007/075018 published on July 5, 2007 makes it possible to reduce the losses due to the variations of the flow of crankcase gas in a settling device by baffling, but the proposed arrangement is complex to implement. and still does not treat any type of oil particle.
- cyclone settling Another possibility is cyclone settling.
- This solution consists of bringing the casing gases into a casing of generally conical or cylindrical shape, at the top and tangentially to the inner surface of the casing whose specific shape makes it possible to swirl the flow of crankcase gas, that is, to form a cyclone. Rotating the crankcase gases allows the centrifugal force to be used to separate the oil droplets from the gas.
- the purified gases are sucked upwards in the lower part of the cyclone by a vertical pipe located in the center of the cyclone. Decanted oil droplets flow into the bottom of the cyclone.
- Coalescing media settling systems have also been developed.
- a housing enclosing a coalescing media through which the crankcase gas flows.
- This coalescing media consists of a fiber entanglement and is intended to capture the oil droplets so that they flow along the fibers and agglomerate together to form drops of oil of greater size which, subject to gravity, flow in the lower part of the media and are thus removed from the stream.
- One of the major problems of such a system lies in its maintenance. Indeed, when the media is crossed, it is loaded with impurities (including combustion residues) that will foul it, which increases its loss of charge if it is not cleaned regularly.
- An object of the present invention is therefore to provide an oil settling system contained in the crankcase gases of a motor vehicle engine that solves at least one of the aforementioned drawbacks.
- an object of the present invention is to provide an oil settling system contained in crankcase gases of a motor vehicle engine, which is effective regardless of the flow rate of the crankcase gas flow, and or whose associated pressure loss remains low regardless of the flow rate of the crankcase gas flow.
- Yet another object of the present invention is to provide an oil settling system contained in the crankcase gases of a motor vehicle engine, which is adapted to remove from the flow of crankcase gas any type of oil particles. , both fine particles of oil of the order of 0.01 ⁇ , and large particles of the order of 10 ⁇ .
- an oil settling system contained in the crankcase gases of a heat engine comprising a separation device intended to be interposed in a crankcase circulation circuit, characterized in that separation comprises at least one circulation member formed in an elastic material and comprising an outlet section having a variable diameter as a function of the flow of crankcase gas.
- the circulation member is a channel having a narrowed shape, with an inlet section wider than the exit section.
- Preferred but not limiting aspects of this settling system, taken alone, are the following:
- the system further comprises an impact device comprising at least one impact wall positioned downstream of the outlet section of the circulation member for intercepting the flow of crankcase gas from the circulation member,
- the impact wall has an impact surface in a material promoting the retention of the oil contained in the crankcase gases.
- the impact wall has an impact surface comprising a filtering medium, preferably of a coalescent nature.
- the impact wall has an impact surface comprising a screen
- the impact wall has a porous or multi-faceted impact surface, the impact wall has a second inclination, the second inclination being perpendicular to the inclination towards the first exit orifice,
- the circulation member is formed such that the position of the outlet section with respect to the impact wall varies as a function of the flow of crankcase gas
- the circulation member has a shape to prevent the introduction of a countercurrent flow of the flow of the crankcase gases
- the circulation member has substantially the shape of a beak.
- the separation device comprises a plurality of circulation members distributing the flow of crankcase gas at the separation device from an upstream zone to a downstream zone in the direction of the crankcase gas flow
- the system further comprises a housing with the separating device forming a settling chamber at the outlet of the circulation member, said settling chamber having at least one first outlet orifice for the removal of the oil recovered from the settling chamber at the level of the settling chamber; crankcase gas and at least a second outlet for evacuation of purified crankcase gases.
- the impact wall is arranged in the discharge chamber in an inclined manner towards the first outlet orifice.
- the settling chamber further comprises at least one inlet for the admission of the crankcase gases to the interior of the settling chamber, the separating device being placed inside the settling chamber so as to form the settling chamber on the side of the first and second outlets and an inlet chamber at the inlet port.
- Figure 1 is a sectional view illustrating the separator of the settling system according to the invention
- Figure 2 is a sectional view illustrating the operation of the separator of the settling system illustrated in Figure 1;
- Figure 3 is a sectional view illustrating the different adjustment parameters of the separator of the settling system illustrated in Figure 1;
- Figure 4 is a sectional view illustrating another type of separator of the settling system according to the invention.
- Figure 5 is a perspective view showing the settling system according to the invention.
- Figure 6 is a side view of the settling system illustrated in Figure 5;
- Figure 7 is a front view showing the interior of the settling system shown in Figure 5;
- FIG. 8 is a view along section A-A showing the inside of the settling system illustrated in FIG. 5.
- a decantation system intended to be integrated in the architecture of a heat engine, in particular a motor vehicle, is described here.
- Such a settling system is preferably integrated in the (s) settling circuit (s) crankcase gases, also called blow-by gases. It is used to remove and recover the oil contained in the crankcase gases, so as to purify these crankcase gases before they are reinjected into the combustion circuit in particular. It is called purified crankcase gas, the crankcase gases having been treated by the proposed settling system, that is to say crankcase gases in which the amount of oil remaining is very low, or even zero.
- the proposed settling system comprises a separation device intended to be interposed in the crankcase circulation circuit, this separation device
- the section of output of the circulation member 21 increases when the flow of the crankcase gases increases.
- the separation device 20 comprises at least one circulation member 21 whose function is to regulate the flow of crankcase gas flowing from an upstream zone towards a downstream zone in the direction of flow of the crankcase gases. More specifically, the circulation member 21 is formed to limit the variations in speed of the gas flow at the outlet of the separation device 20. According to a preferred embodiment, the circulation member 21 is formed so that the speed of this gas flow at the outlet of the separation device 20 is substantially constant regardless of the flow rate of the inlet crankcase gas flow.
- the separating device 20 preferably comprises a plurality of circulation members 21 whose number and dimensions are optimized according to the characteristics of the casing gas flow to be treated, such as in particular the operating flow range.
- the circulation member (s) (21) are preferably positioned on a support (23), which is a part that is interposed in the crankcase circulation circuit so that the crankcase gases necessarily flow through the circulation members. 21.
- the circulation members 21 may be arranged in line, or in parallel, or in another configuration, according to the sizing of the crankcase circulation circuit and the space available in the engine block of the vehicle.
- a settling system comprising a plurality of separation devices 20 placed in series in the crankcase circulation circuit, that is to say one after the other in the gas flow.
- This arrangement may for example be considered for successively treating the gas according to particular characteristics, for example for a treatment of oil particles of different sizes.
- the circulation member 21 is a pipe having a narrowed shape, with an inlet section (upstream in the direction of flow of the crankcase gases) wider than the outlet section (downstream in the direction flow of the crankcase gases).
- a conduit terminated by a section restriction The fact that the outlet section is both restricted and of variable diameter allows the crankcase gas to increase the speed of circulation of the crankcase gases, while maintaining a speed of this gas flow at the outlet of the separation device substantially. constant regardless of the flow rate of the inlet crankcase gas flow. Increasing the flow rate of the crankcase gases improves the settling of the gases in the separation device 20. In particular, the impaction of the crankcase gases at high speed on an impact wall 30 as described below.
- the circulation member 21 may for example have substantially a nozzle shape as shown in Figures 1 and 2. When no flow through this conduit as shown in Figure 1, the outlet of this conduit 21 may be closed this closure may for example be constrained by the shape and elasticity of the circulation member 21.
- the conduit opens at its end, by the force exerted by the flow of the crankcase gases, this opening allowing the passage of the crankcase gases from an upstream zone to a downstream zone in which the settling takes place.
- the circulation member 21 could also have a slightly more complex shape, comprising for example a substantially tubular inlet portion and an outlet portion extending the inlet portion and formed of several convergent tongues at the outlet of the outlet. circulation member 21 to close the outlet section.
- the elasticity of the arrangement allows these tabs to deviate when a flow passes through the flow member from the inlet portion, so as to enlarge the diameter of the outlet section.
- a circulation member 21 comprising four tabs arranged substantially in a cross.
- the separation device 20 of the settling system can be directly interposed in the crankcase circulation circuit but it is preferably associated with a settling chamber 10 which promotes the settling downstream of the separation device 20.
- the settling chamber 10 is provided to form with the separating device 20 a settling chamber 15 at the outlet of the circulation member 21.
- the settling chamber 10 comprises, at this settling chamber 15, at least a first outlet orifice 12 for discharging the oil recovered from the crankcase gases and at least a second outlet orifice 13 for evacuation of the purified crankcase gases.
- the first outlet port 12 can be connected to the oil circuit of the engine, which allows recycling of the oil recovered from the crankcase gases.
- the second outlet port 13 is in turn generally connected to the air intake circuit of the engine. This configuration also makes it possible to exploit the depression due to the air intake circuit for the circulation of the crankcase gases through the settling chamber 10.
- the settling chamber 10 further comprises at least one inlet port 1 1 for the admission of the crankcase gases inside the settling chamber 10, the separating device 20 being able in this case case to be positioned inside the settling box 10 separating the interior space of the housing two-chamber settling chamber: the settling chamber 15 on the one hand, and on the other hand an inlet chamber 14 at the inlet orifice January 1.
- the settling system associates the particular architecture of the separation device 20 with an impact device 30 finalizing the separation between the oil and the crankcase gases, which allows even more efficient decantation of the oil contained in the crankcase gases.
- the impact device 30 preferably comprises at least one impact wall 30 which is positioned downstream of the circulation member with respect to the flow of the crankcase gases in order to intercept the flow of crankcase gas from the body 21, so that the stream of crankcase gas leaving the circulation member 21 impact the impact wall 30.
- the impact wall 30 is arranged opposite the outlet section of the circulation member 21.
- the impact device is preferably placed inside the settling chamber 15.
- the impact wall 30 is preferably arranged in the settling chamber 15 in an inclined manner towards the first outlet orifice 12, this impact wall 30 being positioned opposite the outlet orifice of the circulation member. 21.
- This inclined impact wall 30 is positioned relative to the circulation member 21 so as to promote the separation of the oil relative to the gas at the moment of impact. Due to the particular shape of the circulation member 21, the casing gas flow has a speed at the output of the separation device which is substantially constant, or at least a speed which varies only slightly compared to the variations. flow rate of the crankcase gas flow.
- this particular architecture of the separation device 20 associated with the impact device 30 makes it possible to ensure effective separation of the oil with respect to the gas, whatever the flow rate of the crankcase gases since their impact on the wall of the impact 30 will be the same.
- the impact wall 30 is provided to promote separation and recovery of the oil relative to the gases at the moment of impact.
- the impact wall 30 may for example comprise an impact surface 31, flat or curved, the surface state is chosen to promote the capture of the oil droplets contained in the gas.
- the impact surface 31 may for example comprise or consist of a filter medium, such as a coalescent media, that is to say a material comprising synthetic microfibers or glass fibers that may have hydrophobic properties and / or or oleophiles.
- the impact wall 30 may further comprise a screen for the collection of oils. It can also be formed in a porous element that will promote the recovery of oils. It can also be multifaceted.
- the impact wall 30 may also comprise an organic element.
- the performance of the settling, in particular the performance of the separation and the recovery of the oils contained in the crankcase gases at the level of the impact wall 30 can be optimized according to the following criteria:
- the settling system is dimensioned by playing on several parameters, alone or in combination, which are illustrated in FIG.
- the circulation member 21 is formed so that the position of the outlet section 22 with respect to the impact wall 30 varies as a function of the flow of crankcase gas.
- the flexible duct forming the circulation member 21 may be designed so as to modify the impact position of the casing gas flow on the impact surface 31 as a function of the conditions of the operation (flow, pressure) and thus vary the parameter d mentioned above, that is to say the distance between the output end of the circulation member 21 and the impact wall 30. This result can be obtained by deformation of the geometry of the flexible conduit.
- the circulation member 21 has a shape to prevent the introduction of a countercurrent flow of the crankcase flow. The circulation member 21 thus forms a non-return valve thereby preventing the introduction of a flow in the opposite direction in the intended direction of circulation of the crankcase gases.
- the decanting system may consist mainly of a circulation member 21 of elastic flexible material, of elastomer type, the other parts of the system, in particular the settling chamber 10 and / or the impact wall 30, if appropriate, being able to be made of thermoplastic material, thermosetting, or any other composite material, aluminum or in a metal alloy.
- the support 23 of the separating device 20 is, for example, injected in thermoplastic material of polyamide type and the conduit flexible forming the circulation member 21 is overmolded on the support 23 of a material of the elastomer type.
- the cohesion between the two types of parts can be ensured by chemical and / or mechanical type bonding.
- the seal between the separating device 20 and the settling chamber 10 can also be ensured by the addition or overmoulding of a flexible element forming a seal.
- Figures 5 to 8 illustrate a particular embodiment of the proposed settling device, optimized for the treatment of crankcase gas in a gasoline engine with 6 cylinders, flowing with a flow rate ranging between 80 L / min and 180 L / min.
- These circulation members 21 are arranged so that the distance d is of the order of 3 mm. Moreover, the angle of inclination ⁇ of the impact wall 30 is of the order of 70 °.
- the circulation members 21 are formed of elastomer and associated with a given geometry which thus define the permeability P of the system.
- the settling system proposed is very effective regardless of the size of the oil particles to be separated.
- crankcase gas flow rates 80 L / min, 135 L / min or 180 L / min.
- crankcase gas flow rates 80 L / min, 135 L / min or 180 L / min.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
Abstract
L'invention concerne un système de décantation d'huile contenue dans des gaz de carter d'un moteur thermique, comprenant un dispositif de séparation (20) destiné à être interposé dans un circuit de circulation des gaz de carter, caractérisé en ce que dispositif de séparation (20) comprend au moins un organe de circulation (21) étant un conduit formé dans un matériau élastique selon une forme rétrécie, avec une section d'entrée plus large que la section de sortie, ladite section de sortie ayant un diamètre variable en fonction du débit de gaz de carter.
Description
Système de décantation d'huile contenue dans des gaz de carter d'un moteur de véhicule automobile
DOMAINE DE L'INVENTION
La présente invention concerne un système de décantation d'huile, et plus précisément un système pour extraire l'huile contenue dans des gaz de carter d'un moteur thermique, notamment un moteur de véhicule automobile. ETAT DE LA TECHNIQUE
Dans un moteur à combustion interne, il existe plusieurs causes entraînant l'émission de gaz fortement chargés en fines gouttelettes d'huile (ayant une taille pouvant varier approximativement de 0,01 μηη à 10 μηη) et qui sont appelés « gaz de carter » ou « gaz blow-by ». Ces gaz de carter peuvent résulter de fuites au niveau des segments depuis la chambre de combustion vers les volumes sous piston, et/ou de fuites au niveau des paliers du turbocompresseur depuis les corps de turbine et de compresseur vers le carter moteur par le retour d'huile, et/ou de fuites par les joints de queue de soupape depuis les tubulures d'admission et d'échappement vers la culasse, et/ou de fuites des gaz de pompe à huile depuis le circuit de freinage vers la culasse.
Les gaz de carter sont généralement composés de gaz de combustion
(essentiellement de l'eau, du dioxyde de carbone et du diazote), de gaz imbrûlés (air, carburant et diazote) et d'huile. La nature, la concentration en huile des gaz de carter est propre à chaque moteur thermique. Par ailleurs, le débit de ces gaz de carter peut varier sur une plage allant approximativement de 50 L/min à 350 L/min, ce débit étant fonction du type de moteur (Essence / Diesel), de sa cylindrée, de son âge, et de la technologie du moteur.
Pour éviter notamment la montée en pression du carter d'huile (ce qui détruirait les joints spi de vilebrequin), les gaz de carter doivent absolument être réaspirés. Cette recirculation des gaz est possible, en connectant le bas moteur (carter d'huile) à la ligne d'admission d'air moteur (on exploite la dépression) généralement via le carter cylindre et le couvre culasse. Cependant, ces gaz doivent être traités avant d'être réinjectés à l'admission, pour respecter les normes de pollution et de limiter la consommation d'huile.
C'est la raison pour laquelle les moteurs thermiques sont équipés aujourd'hui de systèmes de décantation prévus pour épurer les gaz de carter en leur retirant l'huile qu'ils contiennent.
Selon l'architecture moteur, ces systèmes de décantation peuvent être exposés à une phase d'huile liquide générée principalement par le barbotage de l'attelage mobile en bas moteur.
Il existe aujourd'hui divers systèmes de décantation de l'huile contenue dans les gaz de carter d'un moteur de véhicule automobile.
Tout d'abord, il existe des systèmes de décantation par tranquillisation. Dans de tels systèmes, les gaz de carter entrent dans une chambre de section nettement supérieure au circuit des gaz de carter. Ce ratio de section génère une diminution de vitesse de même rapport, et un tel ralentissement du flux de gaz permet aux gouttelettes d'huile de se déposer sur le fond du décanteur. Ce principe de décantation permet toutefois de traiter uniquement les grosses particules d'huile, et manque donc d'efficacité dans le traitement du spray d'huile contenu dans les gaz de carter.
Une autre technologie réside dans la décantation par chicanage. Dans ce cas, les gaz de carter traversent une zone chicanée générant, avant impact sur une paroi, une succession d'accélérations ponctuelles du flux de gaz à traiter et de décélérations par augmentation de la section de passage. Ce principe présente également l'inconvénient de ne pas permettre un traitement de tout type de particule d'huile, puisque seules les grosses et moyennes particules (généralement > 2 μηη) sont extraites du gaz de carter. Par ailleurs, un tel système de décantation par chicanage peut générer de fortes pertes de charges sous un débit de gaz de carter élevé. La solution proposée dans le document WO 2007/075018 publié le 5 juillet 2007 permet de réduire les pertes de charges dues aux variations du débit de gaz de carter dans un dispositif de décantation par chicanage, mais l'agencement proposé est complexe à mettre en œuvre et ne permet toujours pas de traiter tout type de particule d'huile.
Encore une autre possibilité réside dans la décantation par cyclone. Cette solution consiste à faire entrer les gaz de carter dans un boîtier de forme généralement conique ou cylindrique, en partie haute et tangentiellement à la surface intérieur du boîtier dont la forme spécifique permet de faire tourbillonner le flux de gaz de carter, c'est-à-dire former un cyclone. La mise en rotation des gaz de carter permet d'utiliser la force centrifuge pour séparer les gouttelettes d'huiles du gaz. Les gaz épurés sont aspirés vers le haut en partie basse du cyclone par un conduit vertical situé au centre de celui-ci. Les gouttelettes d'huile décantées s'écoulent quant à elles dans le bas du cyclone. Une fois encore, un tel système est trop sélectif. Il n'est en effet réellement efficace que pour un débit donné de flux de gaz de carter. Enfin, les pertes de charges générées par un tel système de décantation par cyclone sont élevées.
Il a également été développé des systèmes de décantation par média coalescent. Dans ce cas, il est prévu un boîtier enfermant un média coalescent à travers lequel le gaz de carter circule. Ce média coalescent est constitué d'un enchevêtrement de fibres et est destiné à capter les gouttelettes d'huile afin qu'elles s'écoulent le long des fibres et s'agglomèrent entre elles pour former des gouttes d'huile de taille supérieure qui, sujettes à la gravité, s'écoulent en partie basse du média et sont ainsi prélevées du flux. Un des problèmes majeurs d'un tel système réside dans son entretien. En effet, lorsque le média est traversé, il se charge en impuretés (notamment des résidus de combustions) qui vont l'encrasser, ce qui augmente sa perte de charge s'il n'est pas nettoyé régulièrement. Le document JP 7-243318 publié le 19 septembre 1995 décrit une solution de décantation par média coalescent dans lequel le flux de gaz de carter destiné à traverser ledit média coalescent est régulé par utilisation d'un orifice dont l'ouverture est plus ou moins obturée par un volet pivotant selon le débit des gaz de carter.
Un but de la présente invention est donc de proposer un système de décantation d'huile contenue dans des gaz de carter d'un moteur de véhicule automobile qui permet de résoudre au moins l'un des inconvénients précités.
Plus précisément, un but de la présente invention est de proposer un système de décantation d'huile contenue dans des gaz de carter d'un moteur de véhicule automobile, qui est efficace quel que soit le débit du flux de gaz de carter, et/ou dont la perte de charge associée reste faible quel que soit le débit du flux de gaz de carter.
Encore un autre but de la présente invention est de proposer un système de décantation d'huile contenue dans des gaz de carter d'un moteur de véhicule automobile, qui est adapté pour retirer du flux de gaz de carter tout type de particules d'huile, aussi bien de fines particules d'huile de l'ordre de 0,01 μηι, que des particules de grande taille de l'ordre de 10 μηη.
EXPOSE DE L'INVENTION
A cette fin, on propose un système de décantation d'huile contenue dans des gaz de carter d'un moteur thermique, comprenant un dispositif de séparation destiné à être interposé dans un circuit de circulation des gaz de carter, caractérisé en ce que dispositif de séparation comprend au moins un organe de circulation formé dans un matériau élastique et comprenant une section de sortie ayant un diamètre variable en fonction du débit de gaz de carter.
De préférence, l'organe de circulation est un conduit ayant une forme rétrécie, avec une section d'entrée plus large que la section de sortie.
Des aspects préférés mais non limitatifs de ce système de décantation, pris seulsombinaison, sont les suivants :
le système comprend en outre un dispositif d'impact comprenant au moins une paroi d'impact positionnée en aval de la section de sortie de l'organe de circulation pour intercepter le flux de gaz de carter issu de l'organe de circulation,
la paroi d'impact a une surface d'impact dans un matériau favorisant la retenue de l'huile contenue dans les gaz de carter.
la paroi d'impact a une surface d'impact comprenant un média filtrant, de préférence de nature coalescente.
la paroi d'impact a une surface d'impact comprenant un tamis,
lequel la paroi d'impact a une surface d'impact poreuse ou à multiples facettes, la paroi d'impact a une deuxième inclinaison, la deuxième inclinaison étant perpendiculaire à l'inclinaison en direction du premier orifice de sortie,
l'organe de circulation est formé de sorte que la position de la section de sortie par rapport à la paroi d'impact varie en fonction du flux de gaz de carter,
l'organe de circulation a une forme pour empêcher l'instauration d'un flux à contre- courant du flux des gaz de carter,
l'organe de circulation a sensiblement la forme d'un bec.
le dispositif de séparation comprend une pluralité d'organes de circulation répartissant le flux de gaz de carter au niveau du dispositif de séparation depuis une zone amont vers une zone avale dans le sens du flux de gaz de carter, le système comprend en outre un boîtier de décantation formant avec le dispositif de séparation une chambre de décantation en sortie de l'organe de circulation, ledit boîtier de décantation ayant au niveau de la chambre de décantation au moins un premier orifice de sortie pour l'évacuation de l'huile récupérée des gaz de carter et au moins un deuxième orifice de sortie pour l'évacuation des gaz de carter épurés.
la paroi d'impact est agencée dans la chambre d'évacuation de manière inclinée en direction du premier orifice de sortie.
le boîtier de décantation comprend en outre au moins un orifice d'entrée pour l'admission des gaz de carter à l'intérieur du boîtier de décantation, le dispositif de séparation étant placé à l'intérieur du boîtier de décantation de manière à former la chambre de décantation du côté des premier et deuxième orifices de sortie et une chambre d'admission au niveau de l'orifice d'entrée.
DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés, sur lesquels :
la figure 1 est une vue en coupe illustrant le séparateur du système de décantation selon l'invention ;
la figure 2 est une vue en coupe illustrant le fonctionnement du séparateur du système de décantation illustré à la figure 1 ;
la figure 3 est une vue en coupe illustrant les différents paramètres de réglage du séparateur du système de décantation illustré à la figure 1 ;
la figure 4 est une vue en coupe illustrant un autre type de séparateur du système de décantation selon l'invention ;
la figure 5 est une vue en perspective représentant le système de décantation selon l'invention ;
la figure 6 est une vue de côté du système de décantation illustré à la figure 5 ; la figure 7 est une vue de face représentant l'intérieur du système de décantation illustré à la figure 5 ;
la figure 8 est une vue selon la coupe A-A représentant l'intérieur du système de décantation illustré à la figure 5.
DESCRIPTION DETAILLEE DE L'INVENTION
On décrit ici un système de décantation prévu pour être intégré dans l'architecture d'un moteur thermique, notamment de véhicule automobile.
Un tel système de décantation s'intègre de préférence dans le(s) circuit(s) de décantation des gaz de carter, appelés également gaz blow-by. Il est utilisé pour retirer et récupérer l'huile contenue dans les gaz de carter, de manière à épurer ces gaz de carter avant qu'ils ne soient réinjectés dans le circuit de combustion notamment. On qualifie de gaz de carter épurés, les gaz de carter ayant été traités par le système de décantation proposé, c'est-à-dire des gaz de carter dans lesquels la quantité d'huile restante est très faible, voire nulle.
Le système de décantation proposé comprend un dispositif de séparation destiné à être interposé dans le circuit de circulation des gaz de carter, ce dispositif de séparation
20 comprenant au moins un organe de circulation 21 formé dans un matériau élastique et comprenant une section de sortie ayant un diamètre variable en fonction du débit de gaz de carter qui le traverse. Ainsi, la section de passage en sortie de l'organe de circulation
21 évolue en fonction du débit instauré à travers le système. De préférence, la section de
sortie de l'organe de circulation 21 augmente lorsque le débit des gaz de carter augmente.
Ainsi, le dispositif de séparation 20 comprend au moins un organe de circulation 21 dont la fonction est de réguler le flux de gaz de carter circulant depuis une zone amont en direction d'une zone avale dans le sens d'écoulement des gaz de carter. Plus précisément, l'organe de circulation 21 est formé pour limiter les variations de vitesse du flux de gaz en sortie du dispositif de séparation 20. Selon un mode de réalisation préféré, l'organe de circulation 21 est formé pour que la vitesse de ce flux de gaz en sortie du dispositif de séparation 20 soit sensiblement constante quel que soit le débit du flux de gaz de carter en entrée.
Le dispositif de séparation 20 comprend de préférence une pluralité d'organes de circulation 21 dont le nombre et les dimensions sont optimisés en fonction des caractéristiques du flux de gaz de carter à traiter, comme notamment la plage de débit de fonctionnement. Le ou les organes de circulation 21 sont de préférence positionnés sur un support 23, qui est une pièce venant s'interposer dans le circuit de circulation des gaz de carter de sorte que les gaz de carter s'écoulent nécessairement à travers les organes de circulation 21 . Sur ce support 23, les organes de circulation 21 peuvent être agencés en ligne, ou en parallèle, ou selon une autre configuration, selon le dimensionnement du circuit de circulation des gaz de carter et de l'espace disponible dans le bloc moteur du véhicule.
Il peut également être prévu un système de décantation comprenant plusieurs dispositifs de séparation 20 placés en série dans le circuit de circulation des gaz de carter, c'est-à-dire les uns après les autres dans le flux de gaz. Cet agencement peut par exemple être envisagé pour traiter successivement le gaz selon des caractéristiques particulières, par exemple pour un traitement de particules d'huile de tailles différentes.
De préférence, l'organe de circulation 21 est un conduit ayant une forme rétrécie, avec une section d'entrée (en amont dans le sens d'écoulement des gaz de carter) plus large que la section de sortie (en aval dans le sens d'écoulement des gaz de carter). On parle de conduit terminé par une restriction de section. Le fait que la section de sortie soit à la fois restreinte et de diamètre variable permet au gaz de carter d'augmenter la vitesse de circulation des gaz de carter, tout en maintenant une vitesse de ce flux de gaz en sortie du dispositif de séparation sensiblement constante quel que soit le débit du flux de gaz de carter en entrée. Le fait d'augmenter la vitesse de circulation des gaz de carter améliore la décantation des gaz dans le dispositif de séparation 20. En particulier, l'impaction des gaz de carter à grande vitesse sur une paroi d'impact 30 comme décrite ci-dessous améliore sensiblement la séparation qu'offre un tel agencement.
L'organe de circulation 21 peut par exemple avoir sensiblement une forme de bec comme illustré aux figures 1 et 2. Lorsqu'aucun débit ne traverse ce conduit comme illustré à la figure 1 , l'orifice de sortie de ce conduit 21 peut être fermé, cette fermeture pouvant par exemple être contrainte par la forme et l'élasticité de l'organe de circulation 21 . Lorsqu'un débit de gaz de carter est instauré dans le circuit de circulation des gaz de carter, comme illustré à la figure 2, la conduit s'ouvre en son extrémité, par la force exercée par le flux des gaz de carter, cette ouverture permettant le passage des gaz de carter depuis une zone amont, vers une zone avale dans laquelle se déroule la décantation.
L'organe de circulation 21 pourrait également avoir une forme un peu plus complexe, comprenant par exemple une portion d'entrée sensiblement tubulaire et une portion de sortie prolongeant la portion d'entrée et formée de plusieurs languettes convergentes au niveau de la sortie de l'organe de circulation 21 pour fermer la section de sortie. L'élasticité de l'agencement permet à ces languettes de s'écarter lorsqu'un flux traverse l'organe de circulation depuis la portion d'entrée, de sorte à agrandir le diamètre de la section de sortie. On peut par exemple envisager un organe de circulation 21 comprenant quatre languettes agencées sensiblement en croix.
Le dispositif de séparation 20 du système de décantation peut être directement interposé dans le circuit de circulation des gaz de carter mais il est de préférence associé à un boîtier de décantation 10 qui favorise la décantation en aval du dispositif de séparation 20. Dans ce cas, le boîtier de décantation 10 est prévu pour former avec le dispositif de séparation 20 une chambre de décantation 15 en sortie de l'organe de circulation 21. Le boîtier de décantation 10 comprend, au niveau de cette chambre de décantation 15, au moins un premier orifice de sortie 12 pour l'évacuation de l'huile récupérée des gaz de carter et au moins un deuxième orifice de sortie 13 pour l'évacuation des gaz de carter épurés.
Le premier orifice de sortie 12 peut être connecté au circuit d'huile du moteur thermique, ce qui permet un recyclage de l'huile récupérée depuis les gaz de carter. Le deuxième orifice de sortie 13 est quant à lui généralement connecté au circuit d'admission d'air du moteur thermique. Cette configuration permet en outre d'exploiter la dépression due au circuit d'admission d'air pour la circulation des gaz de carter à travers le boîtier de décantation 10.
Selon un mode de réalisation particulier, le boîtier de décantation 10 comprend en outre au moins un orifice d'entrée 1 1 pour l'admission des gaz de carter à l'intérieur du boîtier de décantation 10, le dispositif de séparation 20 pouvant dans ce cas être positionné à l'intérieur du boîtier de décantation 10 séparant l'espace intérieur du boîtier
de décantation en deux chambres : la chambre de décantation 15 d'une part, et d'autre part une chambre d'admission 14 au niveau de l'orifice d'entrée 1 1 .
Selon un mode de réalisation particulier de l'invention, préféré mais non obligatoire, le système de décantation associe l'architecture particulière du dispositif de séparation 20 à un dispositif d'impact 30 finalisant la séparation entre l'huile et les gaz de carter, ce qui permet une décantation encore plus efficace de l'huile contenue dans les gaz de carter.
Le dispositif d'impact 30 comprend de préférence au moins une paroi d'impact 30 qui est positionnée en aval de l'organe de circulation par rapport au flux des gaz de carter, pour intercepter le flux de gaz de carter issu de l'organe de circulation 21 , afin que ce flux de gaz de carter en sortie de l'organe de circulation 21 viennent impacter la paroi d'impact 30. De préférence, la paroi d'impact 30 est agencée en regard de la section de sortie de l'organe de circulation 21 .
Lorsque le système de décantation comprend un boîtier de décantation 10, le dispositif d'impact est de préférence placé à l'intérieur de la chambre de décantation 15.
La paroi d'impact 30 est de préférence agencée dans la chambre de décantation 15 de manière inclinée en direction du premier orifice de sortie 12, cette paroi d'impact 30 étant positionnée en regard de l'orifice de sortie de l'organe de circulation 21.
Cette paroi d'impact 30 inclinée est positionnée par rapport à l'organe de circulation 21 de manière à favoriser la séparation de l'huile par rapport aux gaz au moment de l'impact. Grâce à la forme particulière de l'organe de circulation 21 , le flux de gaz de carter a une vitesse en sortie du dispositif de séparation qui est sensiblement constante, où à tout le moins une vitesse qui ne varie que très peu par rapport aux variations de débit du flux de gaz de carter. Ainsi, cette architecture particulière du dispositif de séparation 20 associée au dispositif d'impact 30 permet d'assurer une séparation efficace de l'huile par rapport au gaz, quel que soit le débit des gaz de carter puisque leur impact sur la paroi d'impact 30 sera la même.
De préférence, la paroi d'impact 30 est prévue pour favoriser la séparation et la récupération de l'huile par rapport aux gaz au moment de l'impact.
La paroi d'impact 30 peut par exemple comprendre une surface d'impact 31 , plane ou galbée, dont l'état de surface est choisi pour favoriser le captage des gouttelettes d'huile contenues dans le gaz.
La surface d'impact 31 peut par exemple comprendre ou être constituée d'un média filtrant, tel qu'un média coalescent, c'est-à-dire un matériau comprenant des microfibres synthétiques ou fibres de verre pouvant avoir des propriétés hydrophobes et/ou oléophiles.
La paroi d'impact 30 peut en outre comprendre un tamis favorisant le captage des huiles. Elle peut également être formée dans un élément poreux qui favorisera la récupération des huiles. Elle peut aussi être à multiple facettes.
En outre, la paroi d'impact 30 peut également comprendre un élément organique. La performance de la décantation, notamment la performance de la séparation et la récupération des huiles contenues dans les gaz de carter au niveau de la paroi d'impact 30 peut être optimisée selon les critères suivants :
la plage de débit des gaz de carter à traiter ;
la perte de charge maximale admise par l'architecture moteur ;
- la population de gouttelettes d'huile entrantes ;
le niveau de performance en décantation à atteindre.
Pour optimiser cette performance, le système de décantation est dimensionné en jouant sur plusieurs paramètres, seuls ou en combinaison, qui sont illustrés sur la figure 3 :
- le nombre N d'organes de circulation 21 , choisi notamment en fonction du débit des gaz de carter à traiter ;
la perméabilité P des organes de circulation 21 , pouvant influer sur la perte de charge du décanteur - la perméabilité se traduit par une courbe donnant la perte de charges de l'organe de circulation 21 en fonction du débit le traversant ;
- la distance d entre l'extrémité de sortie de l'organe de circulation 21 et la paroi d'impact 30 ;
la nature n de la paroi d'impact 30 ;
l'angle d'inclinaison Θ de la paroi d'impact 30 illustré sur la figure 3, et formé entre la paroi d'impact 30 et le fond du décanteur, cet angle constituant l'angle d'inclinaison en direction du premier orifice de sortie 12.
Selon un mode de réalisation particulier, l'organe de circulation 21 est formé de sorte que la position de la section de sortie 22 par rapport à la paroi d'impact 30 varie en fonction du flux de gaz de carter. Par exemple, comme illustré à la figure 4, le conduit souple formant l'organe de circulation 21 peut être conçu de manière à modifier la position d'impact du flux de gaz de carter sur la surface d'impact 31 en fonction des conditions de fonctionnement (débit, pression) et faire varier ainsi le paramètre d évoqué précédemment, c'est-à-dire la distance entre l'extrémité de sortie de l'organe de circulation 21 et la paroi d'impact 30. Ce résultat peut être obtenu par déformation de la géométrie du conduit souple.
Il peut également être prévu que l'organe de circulation 21 ait une forme pour empêcher l'instauration d'un flux à contre-courant du flux des gaz de carter. L'organe de circulation 21 forme ainsi un clapet anti-retour empêchant de ce fait l'instauration d'un débit en sens inverse au sens prévu de circulation des gaz de carter.
Le système de décantation peut être constitué principalement d'un organe de circulation 21 en matière souple élastique, de type élastomère, les autres pièces du système, notamment le boîtier de décantation 10 et/ou la paroi d'impact 30 le cas échéant, pouvant être réalisées en matière thermoplastique, thermodurcissable, ou toute autre matière composite, aluminium ou encore dans un alliage métallique.
Ces deux types de pièces, et notamment l'organe de circulation 21 d'une part et le support 23 du dispositif de séparation 20 d'autre part, peuvent être assemblés mécaniquement par serrage, par clippage ou bien encore par soudure vibration, ultrason, lame chauffante, par collage, ou par combinaison de ces technologies.
Ces deux types de pièces peuvent tout particulièrement être obtenus par surmoulage de l'organe de circulation 21 et des autres pièces du dispositif de séparation 20. Le support 23 du dispositif de séparation 20 est par exemple injecté en matière thermoplastique de type polyamide et le conduit souple formant l'organe de circulation 21 est surmoulé sur ce support 23 en une matière de type élastomère. La cohésion entre les deux types de pièces peut être assurée par liaison de type chimique et/ou mécanique.
L'étanchéité entre le dispositif de séparation 20 et le boîtier de décantation 10peut en outre être assurée par l'ajout ou le surmoulage d'un élément souple formant joint.
Les figures 5 à 8 illustrent un mode de réalisation particulier du dispositif de décantation proposé, optimisé pour le traitement de gaz de carter dans un moteur essence à 6 cylindres, circulant avec un débit pouvant varier entre 80 L/min et 180 L/min.
Comme on le voit illustré à la figure 7, le dispositif de séparation 20 comprend 13 organes de circulation 21 (N=13) ayant une forme de bec, agencés en ligne dans le boîtier de décantation 10.
Ces organes de circulations 21 sont agencés pour que la distance d soit de l'ordre de 3 mm. Par ailleurs l'angle d'inclinaison Θ de la paroi d'impact 30 est de l'ordre de 70°.
Les organes de circulation 21 sont formés en élastomère et associés à une géométrie donnée qui définissent ainsi la perméabilité P du système.
Le système de décantation proposé est très efficace quelle que soit la taille des particules d'huile à séparer.
Par ailleurs, l'efficacité du dispositif de décantation proposé est sensiblement la même quel que soit le débit des gaz de carter. Pour l'exemple donné ci-dessus, il n'y a presque pas de différence pour des débits de gaz de carter de 80 L/min, 135 L/min ou 180 L/min.
Le lecteur aura compris que de nombreuses modifications peuvent être apportées sans sortir matériellement des nouveaux enseignements et des avantages décrits ici. Par conséquent, toutes les modifications de ce type sont destinées à être incorporées à l'intérieur de la portée du système de décantation présenté.
Claims
1. Système de décantation d'huile contenue dans des gaz de carter d'un moteur thermique, comprenant un dispositif de séparation (20) destiné à être interposé dans un circuit de circulation des gaz de carter, caractérisé en ce que dispositif de séparation (20) comprend au moins un organe de circulation (21 ) étant un conduit formé dans un matériau élastique selon une forme rétrécie, avec une section d'entrée plus large que la section de sortie, ladite section de sortie ayant un diamètre variable en fonction du débit de gaz de carter.
2. Système selon la revendication 1 , comprenant en outre un dispositif d'impact (30) comprenant au moins une paroi d'impact (30) positionnée en aval de la section de sortie de l'organe de circulation (21 ) pour intercepter le flux de gaz de carter issu de l'organe de circulation (21 ).
3. Système selon la revendication 2, dans lequel la paroi d'impact (30) a une surface d'impact (31 ) dans un matériau favorisant la retenue de l'huile contenue dans les gaz de carter.
4. Système selon l'une quelconque des revendications 2 à 3, dans lequel la paroi d'impact (30) a une surface d'impact (31 ) comprenant un média filtrant, de préférence de nature coalescente.
5. Système selon l'une quelconque des revendications 2 à 4, dans lequel la paroi d'impact (30) a une surface d'impact (31 ) comprenant un tamis.
6. Système selon l'une quelconque des revendications 2 à 5, dans lequel la paroi d'impact (30) a une surface d'impact (31 ) poreuse ou à multiples facettes.
7. Système selon l'une quelconque des revendications 2 à 6, dans lequel la paroi d'impact (30) a une deuxième inclinaison, la deuxième inclinaison étant perpendiculaire à l'inclinaison en direction du premier orifice de sortie (12).
8. Système selon l'une quelconque des revendications 2 à 7, dans lequel l'organe de circulation (21 ) est formé de sorte que la position de la section de sortie par rapport à la paroi d'impact (30) varie en fonction du flux de gaz de carter.
9. Système selon l'une quelconque des revendications 1 à 8, dans lequel l'organe de circulation (21 ) a une forme pour empêcher l'instauration d'un flux à contre-courant du flux des gaz de carter.
10. Système selon l'une quelconque des revendications 1 à 9, dans lequel l'organe de circulation (21 ) a sensiblement la forme d'un bec.
11. Système selon l'une quelconque des revendications 1 à 10, dans lequel le dispositif de séparation (20) comprend une pluralité d'organes de circulation (21 ) répartissant le flux de gaz de carter au niveau du dispositif de séparation (20) depuis une zone amont vers une zone avale dans le sens du flux de gaz de carter.
12. Système selon l'une quelconque des revendications 1 à 1 1 , comprenant en outre un boîtier de décantation (10) formant avec le dispositif de séparation (20) une chambre de décantation (15) en sortie de l'organe de circulation (21 ), ledit boîtier de décantation (10) ayant au niveau de la chambre de décantation (15) au moins un premier orifice de sortie (12) pour l'évacuation de l'huile récupérée des gaz de carter et au moins un deuxième orifice de sortie (13) pour l'évacuation des gaz de carter épurés.
13. Système selon la revendication 12 pris en combinaison avec l'une quelconque des revendications 2 à 7, dans lequel la paroi d'impact (30) est agencée dans la chambre d'évacuation (15) de manière inclinée en direction du premier orifice de sortie (12).
14. Système selon l'une quelconque des revendication 12 ou 13, dans lequel le boîtier de décantation (10) comprend en outre au moins un orifice d'entrée (1 1 ) pour l'admission des gaz de carter à l'intérieur du boîtier de décantation (10), le dispositif de séparation (20) étant placé à l'intérieur du boîtier de décantation (10) de manière à former la chambre de décantation (15) du côté des premier (12) et deuxième (13) orifices de sortie et une chambre d'admission (14) au niveau de l'orifice d'entrée (1 1 ).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13719791.9A EP2841724B2 (fr) | 2012-04-25 | 2013-04-24 | Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile |
ES13719791T ES2586565T5 (es) | 2012-04-25 | 2013-04-24 | Sistema de decantación de aceite contenido en gases de cárter de un motor de vehículo automóvil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1253783 | 2012-04-25 | ||
FR1253783A FR2989995B1 (fr) | 2012-04-25 | 2012-04-25 | Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013160346A1 true WO2013160346A1 (fr) | 2013-10-31 |
Family
ID=48236904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/058483 WO2013160346A1 (fr) | 2012-04-25 | 2013-04-24 | Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2841724B2 (fr) |
ES (1) | ES2586565T5 (fr) |
FR (1) | FR2989995B1 (fr) |
WO (1) | WO2013160346A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114320527A (zh) * | 2021-12-13 | 2022-04-12 | 重庆长安汽车股份有限公司 | 一种曲轴箱通风结构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07243318A (ja) | 1994-02-28 | 1995-09-19 | Tsuchiya Mfg Co Ltd | オイルミストセパレ−タ |
WO2007075018A1 (fr) | 2005-12-29 | 2007-07-05 | Lg Chem, Ltd. | Appareil pour la séparation d'huile et de gaz perdus dans un moteur |
DE102006024817A1 (de) * | 2006-05-29 | 2007-12-06 | Mahle International Gmbh | Zylinderkopf eines Verbrennungsmotors |
WO2010142544A1 (fr) * | 2009-06-12 | 2010-12-16 | Mahle International Gmbh | Séparateur de brouillard d'huile |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10309278A1 (de) † | 2003-03-04 | 2004-09-16 | Robert Bosch Gmbh | Vorrichtung zur Abscheidung von Flüssigkeit aus einem Gasstrom |
DE102004010583B4 (de) † | 2004-03-02 | 2006-01-12 | Ab Skf | Ölabscheider |
US7473291B2 (en) | 2004-09-21 | 2009-01-06 | Cummins Filtration Ip, Inc. | Inertial gas-liquid separator with variable flow actuator |
DE102005042198A1 (de) † | 2005-09-06 | 2007-03-08 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Crashtyperkennung für ein Fahrzeug |
DE102007012483B4 (de) † | 2007-03-15 | 2013-07-04 | Reinz-Dichtungs-Gmbh | Ventil, Ölabscheider, Abscheideverfahren und deren Verwendung |
-
2012
- 2012-04-25 FR FR1253783A patent/FR2989995B1/fr active Active
-
2013
- 2013-04-24 EP EP13719791.9A patent/EP2841724B2/fr active Active
- 2013-04-24 ES ES13719791T patent/ES2586565T5/es active Active
- 2013-04-24 WO PCT/EP2013/058483 patent/WO2013160346A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07243318A (ja) | 1994-02-28 | 1995-09-19 | Tsuchiya Mfg Co Ltd | オイルミストセパレ−タ |
WO2007075018A1 (fr) | 2005-12-29 | 2007-07-05 | Lg Chem, Ltd. | Appareil pour la séparation d'huile et de gaz perdus dans un moteur |
DE102006024817A1 (de) * | 2006-05-29 | 2007-12-06 | Mahle International Gmbh | Zylinderkopf eines Verbrennungsmotors |
WO2010142544A1 (fr) * | 2009-06-12 | 2010-12-16 | Mahle International Gmbh | Séparateur de brouillard d'huile |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114320527A (zh) * | 2021-12-13 | 2022-04-12 | 重庆长安汽车股份有限公司 | 一种曲轴箱通风结构 |
CN114320527B (zh) * | 2021-12-13 | 2024-03-22 | 重庆长安汽车股份有限公司 | 一种曲轴箱通风结构 |
Also Published As
Publication number | Publication date |
---|---|
ES2586565T3 (es) | 2016-10-17 |
FR2989995A1 (fr) | 2013-11-01 |
EP2841724B1 (fr) | 2016-05-18 |
FR2989995B1 (fr) | 2015-11-20 |
EP2841724A1 (fr) | 2015-03-04 |
ES2586565T5 (es) | 2020-05-07 |
EP2841724B2 (fr) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2933626A1 (fr) | Dispositif avec rotor a media coalesceur pour separer l'huile des gaz de carter d'un moteur a combustion interne. | |
EP0907823B1 (fr) | Dispositif et procede de filtration des gaz d'echappement d'un moteur a combustion interne et vehicule equipe d'un tel dispositif | |
EP3285908B1 (fr) | Dispositif et agencement à élément filtrant pour séparer l'huile des gaz de carter d'un moteur à combustion interne | |
FR2918932A1 (fr) | Vehicule, en particulier vehicule automobile avec systeme de degazage de reservoir | |
FR2931199A1 (fr) | Decanteur d'huile pour moteur a combustion interne | |
EP1684888B1 (fr) | Dispositif separateur d'huile | |
EP3067547B1 (fr) | Connecteur d entree de turbocompresseur avec diffuseur de gaz egr | |
FR3033503A1 (fr) | Dispositif pour separer l'huile des gaz de carter d'un moteur a combustion interne | |
EP2841724B1 (fr) | Systeme de decantation d'huile contenue dans des gaz de carter d'un moteur de vehicule automobile | |
EP1859128B1 (fr) | Dispositif d'amplification de l'aspiration de gaz recirculant dans le conduit d'admission d'un moteur à combustion interne. | |
EP3720586B1 (fr) | Systeme de decantation d'huile pour un moteur a combustion interne | |
FR2830284A1 (fr) | Filtre de carburant comportant une soupape de purge du cote brut | |
FR2893667A1 (fr) | Conduit d'entree pour filtre a particules | |
EP2788610B1 (fr) | Dispositif de centrifugation de l'air | |
EP2260188B1 (fr) | Dispositif de recuperation de l'huile contenue dans les gaz de combustion a efficacite amelioree | |
FR2929985A1 (fr) | Dispositif separateur dote d'un media filtrant, destine a separer l'huile des gaz de carter d'un moteur a combustion interne | |
FR2927131A1 (fr) | Pompe a membrane | |
WO2016079390A1 (fr) | Connecteur d'entree de turbocompresseur avec connexions egr et blow-by | |
FR3092360A1 (fr) | Dispositif séparateur doté d’au moins un cyclone et procédé, pour séparer l’huile des gaz de carter d’un moteur à combustion interne | |
FR2919826A1 (fr) | Circuit d'admission d'air possedant deux dispositifs de filtration | |
FR2961262A3 (fr) | Amortisseur pneumatique pour capsule manometrique de correction des pompes a injection mecanique pour moteur diesel suralimente. | |
EP1965044A2 (fr) | Moteur a combustion interne dote d'un dispositif de ventilation | |
FR2894155A1 (fr) | Dispositif de separation des phases liquide et gazeuse contenues dans les gaz circulant dans une conduite d'admission d'un moteur a combustion interne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13719791 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013719791 Country of ref document: EP |