WO2013159500A1 - 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法 - Google Patents

一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法 Download PDF

Info

Publication number
WO2013159500A1
WO2013159500A1 PCT/CN2012/083752 CN2012083752W WO2013159500A1 WO 2013159500 A1 WO2013159500 A1 WO 2013159500A1 CN 2012083752 W CN2012083752 W CN 2012083752W WO 2013159500 A1 WO2013159500 A1 WO 2013159500A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
magnesium
coating
arc oxidation
self
Prior art date
Application number
PCT/CN2012/083752
Other languages
English (en)
French (fr)
Inventor
李扬德
Original Assignee
Li Yangde
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Yangde filed Critical Li Yangde
Publication of WO2013159500A1 publication Critical patent/WO2013159500A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention belongs to the field of surface modification of biomedical materials, in particular to a micro-arc oxidation self-sealing active coating of magnesium-based metal implant material and a preparation method thereof, which can be applied to the surface of various degradable magnesium-based metal implanted instruments. Modified treatment.
  • Magnesium-based metal materials with biodegradable properties have unique advantages in repairing damaged bone tissue.
  • these materials have higher specific strength and specific stiffness, and the elastic modulus is 45GPa or so, close to the human body's natural bone, can effectively reduce the stress shielding effect after implantation, and can be dissolved, absorbed or excreted in the human body, can disappear after the bone tissue heals, no need for secondary surgery, relieve the patient's pain .
  • the large amount of magnesium ions produced by the magnesium-based metal material during the degradation process can promote the deposition of calcium phosphate salt, accelerate the differentiation of osteoblasts, induce the formation of new bone, and have good bone histocompatibility and osteoinductivity. . Therefore, degradable magnesium-based metals have attractive application potential as hard tissue implant materials.
  • micro-arc oxidation has been applied to the field of biomedical materials as a simple surface modification technology.
  • This technology can grow a dense layer in situ on the surface of titanium, magnesium and its alloys and has strong binding to the substrate. Ceramic film.
  • most of the coatings are concentrated on the silicate coating system, and there are few studies on the bioactive coatings containing calcium and phosphorus on the surface.
  • the selected electrolyte calcium hydroxide is slightly soluble in water, and the addition of trisodium phosphate leads to the formation of more insoluble calcium phosphate, which causes the electrolyte to precipitate, and the electrolyte stability is poor, which is not conducive to the repetition of the electrolyte. use.
  • the domestic Harbin Institute of Technology A micro-arc oxidation coating containing calcium and phosphorus was also prepared on the surface of AZ91D magnesium alloy, and different Ca/P were obtained by adjusting the process parameters. Specific coatings, but many of the micron-sized micropores are still distributed on these coatings, and some of the micropores are even connected to the matrix magnesium alloy.
  • micro-arc oxidation coatings The surface of these micro-arc oxidation coatings is an open porous structure, and the corrosive liquid can easily penetrate into the substrate through these holes to corrode with magnesium, which causes pitting corrosion and induces large-area corrosion, so these coatings are not well Control the degradation rate of magnesium-based metal implant materials. Therefore, some micro-arc oxidation coatings also require post-sealing treatment, which increases the processing procedure and cost, and the bio-safety and degradability of the subsequent sealing treatment of the magnesium-based metal implant material also needs to be considered. There have been many problems with its clinical application.
  • the object of the present invention is to provide a magnesium-based implant material micro-arc oxidation self-sealing active coating and a preparation method thereof, and by adjusting the formula combination of the micro-arc oxidation electrolyte, the self-sealing hole can be directly prepared on the surface of the magnesium-based metal material and A bioactive coating of calcium and phosphorus that greatly enhances the corrosion resistance of the magnesium-based metal while improving the biological activity of the surface of the micro-arc oxidation coating.
  • the coating can be applied to the surface modification of a degradable magnesium-based metal implanted medical device, thereby solving the problems of rapid degradation and poor degradation compatibility of the degradable magnesium-based metal implant material/device, and is beneficial to the implant material/device.
  • the combination with bone tissue accelerates bone healing.
  • the invention provides a micro-arc oxidation self-sealing active coating of a magnesium-based implant material, which is a micro-arc oxidation active coating containing calcium and phosphorus and self-sealing pores, the coating containing biologically active calcium and phosphorus Element; Ca
  • the percentage of atomic content is 3 ⁇ 6%, phosphorus element, and the atomic percentage of P is 9 ⁇ 15%.
  • the invention provides a micro-arc oxidation self-sealing active coating of a magnesium-based implant material, which is different from a conventional micro-arc oxidation coating micro-morphology, and realizes a self-sealing hole and a porous hole on the surface in the micro-arc oxidation process. Most of them are filled, the coating density is high, the chemical composition of the filling compound is consistent with other parts of the surface, and the calcium and phosphorus elements on the surface are evenly distributed, which greatly improves the biological activity of the coating.
  • micro-arc oxidation active coating containing calcium and phosphorus on the surface of the magnesium-based metal implant material and self-sealing pores is relatively simple, and only one step of micro-arc oxidation can be completed.
  • the key points are the formulation of the electrolyte and the choice of process parameters.
  • the electrolyte formula combination is: calcium hydroxide 0.2 ⁇ 2g/L, potassium fluoride 3 ⁇ 12g/L, sodium hexametaphosphate 1 ⁇ 8 g/L. After the electrolyte is prepared, it is thoroughly dissolved by ultrasonic vibration.
  • micro-arc oxidation treatment voltage 280 ⁇ 500V processing time 3 ⁇ 20min
  • AC frequency selection 500 ⁇ 1000Hz AC frequency selection
  • micro-arc oxidation active coating is ultrasonically cleaned by acetone and alcohol before preparation. 10 min, the air is naturally dry. Finish the coating preparation, rinse with deionized water, and dry naturally.
  • the thickness of the coating obtained is 10 ⁇ 30 ⁇ m, the thickness can be adjusted by process parameters. Immersion experiments in simulated body fluids revealed that the coating achieved relatively uniform degradation, solution pH The change is relatively stable, which is beneficial to the adhesion growth of tissue cells and tissue healing, increases the stability of the implant material, achieves a good match between the degradation of the implant material and the growth of the new tissue, and exhibits excellent degradation matching, and It is accompanied by the deposition of calcium and phosphorus during the degradation process and shows good biological activity.
  • the surface porous structure of the formed sample is directly filled with a substance containing calcium and phosphorus, and the filling rate is up to More than 60%, no subsequent sealing treatment is required.
  • the preparation method of the micro-arc oxidation self-sealing active coating of the magnesium-based implant material provided by the invention is applied to pure magnesium, Mg-Zn system and Mg-Ca A surface of a binary or multi-alloy magnesium-based metal material of a Mg-Al system, a Mg-RE system, or a Mg-Mn system.
  • the present invention can directly obtain a self-sealing porous and calcium-phosphorus-containing bioactive coating on the surface of a magnesium-based metal by micro-arc oxidation, and the obtained coating has a surface structure which is not possessed by a conventional micro-arc oxidation coating. Most of the discharge holes are filled directly with the compound. It can be speculated that at the moment of micro-arc oxidation spark discharge, the extremely high temperature in the discharge region causes a large amount of molten material to be ejected from the discharge channel, and then deposited by cooling solidification around the discharge channel, which causes the surface of the coating to be discharged. Formation of a porous structure.
  • the filling compound may be filled in the micro-arc oxidation discharge channel by electrophoretic deposition.
  • This forms a surface structure of the self-sealing pores, the surface density is greatly improved, and the filled compound has a chemical composition consistent with the porous structure, and the uniformity of the composition is achieved.
  • Figure 1 (a), (b) are the surface and cross-sectional microscopic morphology of the micro-arc oxidation bioactive coating on the pure magnesium surface prepared by the present invention
  • Figure 3 is an EDS spectrum of the microporous filler on the surface of a pure magnesium bioactive coating prepared by the present invention
  • Figure 4 is a pure magnesium (a) which has not been subjected to coating treatment, and a bioactive coating of pure magnesium (b) containing calcium phosphate and self-sealing pores prepared by the present invention. Macroscopic morphology after 30 days of immersion in Hank’s solution;
  • Figure 5 is a comparison of the Nyquist electrochemical impedance spectroscopy of a conventional silicate system coating with the self-sealing calcium phosphate coating of the present invention.
  • the pure magnesium was cut into a ⁇ 11 ⁇ 2mm wafer sample, and the water-resistant sandpaper was polished to the stage. 2000#, ultrasonically cleaned with acetone and alcohol for 10 min, air dried for use.
  • the chemical composition of the micro-arc oxidation electrolyte is as follows: sodium hexametaphosphate 1.5g/L, potassium fluoride 5g/L, calcium hydroxide 0.4g / L, the rest is deionized water. Ultrasonic vibration was used to fully dissolve the components. After the solution was thoroughly mixed, it was poured into a micro-arc oxidation cell. Pure magnesium is immersed in the electrolyte as an anode, and a stainless steel electrolytic cell serves as a cathode.
  • the micro-arc oxidation treatment voltage is 360V, AC frequency 1000Hz, processing for 5min. After the micro-arc oxidation is completed, the sample is rinsed with deionized water and naturally dried.
  • Figure 1 (a) shows the SEM of the pure magnesium surface bioactive coating prepared by the present example. Microtopography. It can be seen from the figure that the micro-arc oxidation coating of the self-sealing pores is directly prepared on the surface of pure magnesium by the process of the present invention, and more than 80% of the pores are directly filled with the gray-white compound particles, and the resulting coating has a high density.
  • Figure 1(b) is the cross-sectional morphology of the coating, and the coating thickness is about 10 ⁇ m. It can also be seen that the coating is relatively dense.
  • FIGS. 2 and Figure 3 show the porous structure of the coating surface and the EDS of the off-white filling compound.
  • the energy spectrum shows that the porous structure and the pore filling material of the coating have the same chemical composition, and all contain elements such as Mg, F, Ca, P, O, and Ca and P on the surface.
  • the elements give the coating a certain biological activity.
  • the coating is uniformly degraded, and the Ca and P contents on the surface are continuously increased, showing excellent biological activity.
  • Degradation 8 After the week, the surface coating was nearly completely degraded, and the base metal was observed by SEM.
  • the pH value remained stable at around 7.8 in the late stage of degradation, indicating that the coating can effectively control the degradation of pure magnesium, lower pH. The value is beneficial to the adhesion growth of the cells.
  • AZ91 magnesium alloy As the research object, it was cut into a ⁇ 11 ⁇ 2 mm wafer sample, and the water-resistant sandpaper was polished to the stage. 2000#, ultrasonically cleaned with acetone and alcohol for 10 minutes, air dried for use.
  • the chemical composition of the micro-arc oxidation electrolyte is as follows: sodium hexametaphosphate 3g/L, potassium fluoride 6g/L, calcium hydroxide 0.6g / L, the rest is deionized water. Ultrasonic vibration was used to fully dissolve the components. After the solution was thoroughly mixed, it was poured into a micro-arc oxidation cell. AZ91 The magnesium alloy disc is immersed in the electrolyte as an anode, and the electrolytic cell of stainless steel serves as a cathode. Micro-arc oxidation treatment voltage is 400V, AC frequency is 1000Hz, processing 8min. After the micro-arc oxidation is completed, the sample is rinsed with deionized water and naturally dried.
  • the coating layer is relatively dense, and the coating thickness is 16 ⁇ m.
  • the coating's self-corrosion current is two orders of magnitude higher than the uncoated AZ91 magnesium alloy.
  • the selected magnesium alloy is ZK60, and the processing voltage for micro-arc oxidation is higher, reaching 450V, prepared surface coating More than 90% of the holes are directly filled with grayish white compound particles, and the white appearance is smooth.
  • the surface topography of the coating that a part of the grayish white filler has a massive accumulation. Coating thickness reached 22 ⁇ m Left and right, the corrosion resistance is further improved, and the content of Ca and P elements on the surface is improved.
  • Figure 4 shows the untreated ZK60 magnesium alloy and the micro-arc oxidation coating of this example soaked in simulated body fluids. After the macroscopic appearance of the day, it can be seen that the surface morphology of the ZK60 after the coating treatment has not changed substantially.
  • the self-sealing calcium-phosphorus bioactive coating can protect the ZK60 at an early stage.
  • the substrate is not corroded.
  • the coating thickness prepared by the higher processing voltage is thicker. After 8 weeks of immersion degradation experiments, the coating only undergoes partial degradation and degradation, and the coating thickness is still about 15 ⁇ m.
  • WE43 magnesium alloy As the research object, it was cut into small square pieces of 10 ⁇ 10 ⁇ 2mm, and the water-resistant sandpaper was polished to the level. 2000#, ultrasonically cleaned with acetone and alcohol for 10 minutes, air dried for use.
  • the chemical composition of the micro-arc oxidation electrolyte is as follows: sodium hexametaphosphate 8g/L, potassium fluoride 4g/L, calcium hydroxide 1g / L, the rest is deionized water. Ultrasonic vibration was used to fully dissolve the components. After the solution was thoroughly mixed, it was poured into a micro-arc oxidation cell. WE43 The magnesium alloy is immersed in the electrolyte as an anode, and the electrolytic cell of stainless steel serves as a cathode. Micro-arc oxidation treatment voltage is 450V, AC frequency is 1000Hz, processing 5min. After the micro-arc oxidation is completed, the sample is rinsed with deionized water and naturally dried.
  • the calcium phosphate self-sealing bioactive coating obtained in this example was soaked in PBS solution for 7 days, and the pH was around 8.35, while untreated.
  • the pH of the WE43 magnesium alloy has reached about 10.4.
  • the coating has high corrosion resistance and effectively inhibits the corrosion of the WE43 magnesium alloy substrate.
  • Mg-1.0Zn-0.8Mn magnesium alloy As the research object, it was cut into small pieces of ⁇ 11 ⁇ 2 mm, and the water-resistant sandpaper was polished to the stage. 2000#, ultrasonically cleaned with acetone and alcohol for 10 minutes, air dried for use.
  • the chemical composition of the micro-arc oxidation electrolyte is as follows: sodium hexametaphosphate 3g/L, potassium fluoride 4g/L, calcium hydroxide 0.4g / L, the rest is deionized water. Ultrasonic vibration was used to fully dissolve the components. After the solution was thoroughly mixed, it was poured into a micro-arc oxidation cell. The magnesium alloy is immersed in the electrolyte as an anode, and the electrolytic cell of stainless steel serves as a cathode.
  • the micro-arc oxidation treatment voltage is 410V, AC frequency 1000Hz, processing for 10min. After the micro-arc oxidation is completed, the sample is rinsed with deionized water and naturally dried.
  • a self-sealing porous bioactive coating containing calcium and phosphorus was prepared on the surface of Mg-1.0Zn-0.8Mn magnesium alloy, and the sealing ratio was greater than 70%, the coating is denser.
  • the content of calcium and phosphorus on the surface was similar to that of Examples 1 to 4, and the distribution was uniform.
  • the pH of the uncoated magnesium alloy rose to 11.4, while the magnesium alloy using the coating of the present invention has a pH of only about 8.35. Therefore, the coating prepared in this example has excellent corrosion resistance, and the rapid degradation of the magnesium alloy is well suppressed.
  • the pure magnesium was cut into ⁇ 11 ⁇ 2 mm wafer samples, and the water-resistant sandpaper was polished to the stage. 2000#, ultrasonically cleaned with acetone and alcohol for 10 minutes, air dried for use.
  • the composition of the silicate electrolyte system is as follows: sodium silicate 10g / L, potassium hydroxide 1g / L, potassium fluoride 8g / L;
  • the composition of the electrolyte system of the present invention is: sodium hexametaphosphate 3 g/L, potassium fluoride 8 g/L, and calcium hydroxide 0.4 g/L.
  • the two micro-arc oxidation treated samples were then electrochemically tested.
  • Figure 5 shows the electrochemical impedance spectroscopy of Nyquist It can be seen that the capacitive anti-arc ratio of the coating (MAO-2) obtained by the electrolyte system of the present invention is significantly increased compared with the silicate system coating (MAO-1), which is improved by 30. Times around. It is indicated that the corrosion resistance of the self-sealing pore calcium phosphate coating obtained by the invention is significantly improved compared with the conventional silicon-based coating.
  • the present invention directly prepares a self-sealing pore-containing and calcium-phosphorus-containing bioactive coating on the surface of the magnesium-based metal implant material by micro-arc oxidation in a specific electrolyte.
  • the method is simple in operation, the density of the obtained coating is high, the characteristics of the self-sealing pores further improve the corrosion resistance, and have good biological activity, and the coating has certain degradation controllability, thereby effectively controlling the magnesium-based metal.
  • the rate of degradation of the implant material in the organism allows the surrounding tissue growth and coating degradation to match each other.
  • the invention is applicable to the surface modification treatment of a degradable magnesium-based metal material/device for hard tissue repair.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Prostheses (AREA)

Abstract

一种镁基植入材料微弧氧化自封孔活性涂层及制备方法。该涂层中微弧氧化放电形成的孔洞绝大部分直接被含有钙磷的物质充填,涂层致密度高,无论是放电形成的多孔结构或是多孔中的充填化合物都具有同样的化学成分,表面含有的钙、磷元素的原子含量百分比分别达到了3-6%和9-15%,涂层含有的钙、磷、氟元素能提高该涂层的生物活性。该方法可用作各类镁植入材料的表面处理。

Description

一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法
技术领域:
本发明属于生物医用材料的表面改性领域,具体为一种镁基金属植入材料微弧氧化自封孔活性涂层及其制备方法,可应用于各类可降解镁基金属植入器械的表面改性处理。
背景技术:
具有生物可降解特性的镁基金属材料在修复受损骨组织方面具有独特的优势。一方面,这些材料具有较高的比强度和比刚度,弹性模量在 45GPa左右,与人体自然骨更为接近,植入后能有效减轻应力遮挡效应,并且可在人体中溶解、吸收或者排出体外,在骨组织愈合后可以自行消失,无需二次手术,减轻病人痛苦。另一方面,镁基金属材料在降解过程中产生的大量镁离子可以促进磷酸钙盐的沉积,加快成骨细胞的分化,诱导新骨的形成,具有良好的骨组织相容性和骨诱导性。所以,可降解镁基金属作为硬组织植入材料具有诱人的应用潜力。
但是,由于镁基金属的化学性质极为活泼,特别是在生理环境下腐蚀速度太快,由此导致局部碱化,而析氢过快又会造成皮下鼓泡,不利于组织愈合,并且极有可能在组织愈合前就失去了机械完整性。因此,为了提高可降解镁基金属的耐腐蚀性能,许多研究都集中在表面涂层技术上,例如碱热处理、等离子喷涂、化学转换膜、电化学沉积、阳极氧化等。但是这些涂层都存在一定的问题,具体表现在涂层与基底的结合力较差、耐磨性差、不够致密、控制涂层降解不够理想等。
近年来,微弧氧化作为一种简便的表面改性技术已应用于生物医用材料领域,该技术可以在钛、镁及其合金表面上原位生长一层致密且与基体有较强结合力的陶瓷薄膜。但是在对镁基金属的微弧氧化表面改性处理中,大多数涂层都集中在硅酸盐涂层体系上,对表面含钙磷的生物活性涂层的研究较少。德国的 P. Bala Srinivasan 等人采用氢氧化钙和磷酸三钠电解液体系在 AM50 镁合金表面上制备出了含钙磷的微弧氧化涂层,并研究了不同电解液成分配比对涂层性能及结构的影响,所制备的涂层表面均为多孔的开放结构,并且涂层的自腐蚀电位都比未处理 AM50 合金的要低,腐蚀倾向更大。值得一提的是,所选择的电解质氢氧化钙微溶于水,磷酸三钠的加入会导致生成更难溶的磷酸钙而使得电解液发生沉淀,电解液稳定性差,不利于电解液的重复利用。另外,国内哈尔滨工业大学在 AZ91D 镁合金表面上也制备出了含钙磷的微弧氧化涂层,并且通过调整工艺参数获得了不同 Ca/P 比的涂层,但是这些涂层上依然分布着许多微米级的微孔,有的微孔甚至连通到基体镁合金。这些微弧氧化涂层表面都是开放的多孔结构,腐蚀液体很容易通过这些孔洞渗入到基底与镁发生腐蚀反应,从而出现点蚀,诱发大面积的腐蚀,因此这些涂层还不能很好地控制镁基金属植入材料的降解速率。所以有些微弧氧化涂层还需要进行后期的封孔处理,从而增加了处理工序和成本,并且作为镁基金属植入材料的后续封孔处理还需考虑其生物安全性和可降解性,这就为其临床应用增加了很多问题。
实用新型内容:
本发明的目的是提供一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法,通过调整微弧氧化电解液的配方组合,可以直接在镁基金属材料表面制备自封孔且含钙磷的生物活性涂层,该涂层大大提高了镁基金属的耐腐蚀性能,同时提高了微弧氧化涂层表面的生物活性。该涂层可应用于可降解镁基金属植入医疗器械的表面改性,从而解决可降解镁基金属植入材料/器件的降解速度快、降解匹配性差等问题,有利于植入材料/器件与骨组织之间的结合,加快骨愈合。
本发明提供了一种镁基植入材料微弧氧化自封孔活性涂层,该涂层是一种含钙磷且自封孔的微弧氧化活性涂层,所述涂层含有生物活性钙、磷元素;Ca 所占的原子含量百分比为 3~6%、磷元素,P 所占的原子含量百分比 9~15%。
本发明提供的镁基植入材料微弧氧化自封孔活性涂层,所述涂层区别于常规的微弧氧化涂层微观形貌,在微弧氧化过程中实现了自封孔,表面的多孔孔洞绝大部分被充填,涂层致密度高,充填化合物所含化学成分与表面其他部位一致,并且表面含有的钙磷元素分布均匀,大大提高了涂层的生物活性。
一种镁基金属植入材料表面含钙磷且自封孔的微弧氧化活性涂层的制备方法比较简单,只需微弧氧化一步即可完成。其关键点在于电解液的配制以及工艺参数的选择。
电解液配方组合为:氢氧化钙 0.2~2g/L、氟化钾 3~12g/L、六偏磷酸钠1~8 g/L。电解液配制完毕后采用超声波振荡使其充分溶解。
工艺参数的选择:微弧氧化处理电压 280~500V,处理时间 3~20min,交流频率选择在 500~1000Hz。
所述微弧氧化活性涂层在制备前,镁基金属材料经过丙酮、酒精各超声清洗 10min,空气中自然干燥。涂层制备结束,去离子水冲洗,自然晾干即可。
所获得的涂层厚度为 10~30μm,厚度可以通过工艺参数来调节。在模拟体液中浸泡实验发现,该涂层可实现相对均匀降解,溶液 pH 变化比较稳定,从而有利于组织细胞的黏附生长以及组织愈合,增加了植入材料的稳定性,使植入材料的降解与新生组织的生长达到良好的匹配,表现出优异的降解匹配性,并且在降解过程中伴随着钙磷元素的沉积,表现出良好的生物活性。
所述微弧氧化过程中,所形成的样品表面多孔结构直接被含有钙磷的物质填充,填充率可达 60%以上,无须进行后续的封孔处理。
本发明提供的镁基植入材料微弧氧化自封孔活性涂层的制备方法应用于纯镁、Mg-Zn 系、Mg-Ca 系、Mg-Al 系、Mg-RE 系、Mg-Mn 系的二元或多元合金镁基金属材料表面。
需要强调的是,本发明可以在镁基金属表面通过微弧氧化直接获得自封孔且含钙磷的生物活性涂层,所获得的涂层具有常规微弧氧化涂层不具备的表面结构,绝大多数放电孔洞被化合物直接充填。可以推测,在微弧氧化火花放电的瞬间,放电区域内极高的温度使得大量的熔融物从放电通道喷出,然后经冷却凝固沉积在放电通道周围,这种放电击穿导致了涂层表面多孔结构的形成。然而,由于本发明所选择电解液的特殊性,在微弧放电的同时,一部分熔融物与电解液中的离子发生反应作为充填化合物可能通过电泳沉积的方式填充在微弧氧化的放电通道中,这就形成了自封孔的表面结构,表面致密度大大提高,并且所充填的化合物具有和多孔结构一致的化学成分,又实现了成分的均一性。
附图说明:
图 1 中(a)、(b)分别为采用本发明制备的纯镁表面微弧氧化生物活性涂层的表面和截面微观形貌;
图 2 是采用本发明制备的纯镁生物活性涂层表面多孔结构处的 EDS 能谱;
图 3 是采用本发明制备的纯镁生物活性涂层表面微孔内填充物的 EDS能谱;
图 4 是未进行涂层处理的纯镁(a)与采用本发明所制备的含钙磷且自封孔的生物活性涂层纯镁(b)在 Hank’s 溶液中浸泡 30 天后的宏观形貌;
图 5 是常规硅酸盐体系涂层与本发明所得自封孔钙磷涂层的 Nyquist电化学阻抗谱对比图。
具体实施方式:
下面结合具体实施例和附图对本发明进一步说明。
实施例 1
以铸态商业纯镁(纯度为 99.99%)为研究对象,将纯镁切割成Ф11×2mm 的圆片试样,耐水砂纸逐级打磨至 2000#,依次用丙酮、酒精超声清洗10min,空气干燥待用。
微弧氧化电解液化学组成如下:六偏磷酸钠 1.5g/L,氟化钾 5g/L,氢氧化钙 0.4g/L,其余为去离子水。采用超声振荡使各组成充分溶解,待溶液充分混合均匀后,将其倒入微弧氧化电解池。纯镁作为阳极浸没在电解液中,不锈钢的电解池作为阴极。微弧氧化处理电压为 360V,交流频率1000Hz,处理 5min。微弧氧化结束后,样品用去离子水冲洗,自然干燥。
图 1(a)为采用本实施例制备出的纯镁表面生物活性涂层的 SEM 微观形貌图。从图中可以看出,通过本发明的工艺直接在纯镁表面制备出自封孔的微弧氧化涂层,80%以上的孔洞被灰白色化合物颗粒直接充填,所得到的涂层致密度高。图 1(b)为该涂层的截面形貌,涂层厚度约为 10μm,同样可以看出涂层比较致密。
图 2、图 3 分别为涂层表面多孔结构以及灰白色充填化合物的 EDS 能谱,可以看出,组成涂层的多孔结构和孔内充填物具有相同的化学组成,都含有 Mg、F、Ca、P、O 等元素,表面含有的 Ca、P 等元素使得该涂层又具有了一定的生物活性。在模拟体液浸泡过程中,涂层均匀降解,表面上的 Ca、P 含量不断增加,表现出优异的生物活性。降解 8 周后,表面涂层已经接近完全降解,SEM 可观察到基底金属,在降解后期 pH 值仍稳定在 7.8 左右,说明该涂层能有效地控制纯镁的降解,较低的 pH 值有利于细胞的黏附生长。
实施例 2
以 AZ91 镁合金为研究对象,将其切割成Ф11×2 mm 的圆片试样,耐水砂纸逐级打磨至 2000#,依次用丙酮、酒精超声清洗 10min,空气干燥待用。
微弧氧化电解液化学组成如下:六偏磷酸钠 3g/L,氟化钾 6g/L,氢氧化钙 0.6g/L,其余为去离子水。采用超声振荡使各组成充分溶解,待溶液充分混合均匀后,将其倒入微弧氧化电解池。AZ91 镁合金圆片作为阳极浸没在电解液中,不锈钢的电解池作为阴极。微弧氧化处理电压为 400V,交流频率 1000Hz,处理 8min。微弧氧化结束后,样品用去离子水冲洗,自然干燥。
本实施例中,所得到的涂层 70%以上的孔洞被灰白色化合物颗粒直接充填,涂层比较致密,涂层厚度在 16μm 左右,表面上的 Ca、P、O 等元素分布均匀,涂层的自腐蚀电流比未涂层的 AZ91 镁合金提高了两个数量级。
实施例 3
与实施例 1 不同的是,所选镁合金为 ZK60,微弧氧化所采用的处理电压更高,达到了 450V,所制备的表面涂层 90%以上的孔洞被灰白色化合物颗粒直接充填,白色光滑外观。但是从涂层表面微观形貌可以看出,部分灰白色填充物发生了块状的聚集。涂层厚度达到了 22μm 左右,耐蚀性得到进一步提高,表面上的 Ca、P 元素含量有所提升。图 4 为未处理 ZK60 镁合金与本实例微弧氧化处理涂层在模拟体液中浸泡 30 天后的宏观形貌,可以看到经过涂层处理后的 ZK60 表面形貌基本没有发生变化。该自封孔的钙磷生物活性涂层在初期能够很好地保护了 ZK60 基体不被腐蚀。较高的处理电压制备出的涂层厚度较厚,经过 8 周的浸泡降解实验,涂层只发生了部分降解退化,涂层厚度仍在 15μm 左右。
实施例 4
以 WE43 镁合金为研究对象,将其切割成 10×10×2mm 的小方片,耐水砂纸逐级打磨至 2000#,依次用丙酮、酒精超声清洗 10min,空气干燥待用。
微弧氧化电解液化学组成如下:六偏磷酸钠 8g/L,氟化钾 4g/L,氢氧化钙 1g/L,其余为去离子水。采用超声振荡使各组成充分溶解,待溶液充分混合均匀后,将其倒入微弧氧化电解池。WE43 镁合金作为阳极浸没在电解液中,不锈钢的电解池作为阴极。微弧氧化处理电压为 450V,交流频率1000Hz,处理 5min。微弧氧化结束后,样品用去离子水冲洗,自然干燥。
本实例中所得到的钙磷自封孔生物活性涂层在 PBS 溶液中浸泡 7 天后,pH 值在 8.35 左右,而未处理 WE43 镁合金的 pH 值达到了 10.4 左右。相比之下,说明该涂层具有较高的耐腐蚀性能,有效抑制了 WE43 镁合金基底的腐蚀。
实施例 5
以 Mg-1.0Zn-0.8Mn 镁合金为研究对象,将其切割成Ф11×2 mm 的小圆片,耐水砂纸逐级打磨至 2000#,依次用丙酮、酒精超声清洗 10min,空气干燥待用。
微弧氧化电解液化学组成如下:六偏磷酸钠 3g/L,氟化钾 4g/L,氢氧化钙 0.4g/L,其余为去离子水。采用超声振荡使各组成充分溶解,待溶液充分混合均匀后,将其倒入微弧氧化电解池。该镁合金作为阳极浸没在电解液中,不锈钢的电解池作为阴极。微弧氧化处理电压为 410V,交流频率1000Hz,处理 10min。微弧氧化结束后,样品用去离子水冲洗,自然干燥。
本实例在 Mg-1.0Zn-0.8Mn 镁合金表面上制备出含钙磷的自封孔生物活性涂层,封孔率大于 70%,涂层致密性较高。表面上的钙磷含量与实施例1~4 类似,分布均匀。模拟体液浸泡 1 天后,未涂层的镁合金 pH 值升至 11.4,而采用本发明涂层的镁合金 pH 值仅为 8.35 左右。因此本实例中所制备涂层具有优异的耐腐蚀性能,很好地抑制了该镁合金的快速降解。
实施例 6
以铸态商业纯镁为研究对象,将纯镁切割成Ф11×2 mm 的圆片试样,耐水砂纸逐级打磨至 2000#,依次用丙酮、酒精超声清洗 10min,空气干燥待用。
采用常规的硅酸盐电解液体系和本发明的电解液体系对纯镁进行微弧氧化处理,处理电压 360V,处理时间 5min,所得涂层分别标记为 MAO-1和 MAO-2。硅酸盐电解液体系的组成如下:硅酸钠 10g/L,氢氧化钾 1g/L,氟化钾 8g/L; 本发明的电解液体系组成为:六偏磷酸钠 3g/L,氟化 钾 8g/L,氢氧化钙 0.4g/L。然后对上述两种微弧氧化处理过的试样进行电化学测试。
图 5 为电化学阻抗谱的 Nyquist 图,可以看出,本发明电解液体系所获涂层(MAO-2)的容抗弧比硅酸盐体系涂层(MAO-1)明显增大,提高了30 倍左右。说明采用本发明所得的自封孔钙磷涂层的耐腐蚀性能与常规的硅基涂层相比有明显的提升。
以上结果表明,本发明在特定的电解液中通过微弧氧化直接在镁基金属植入材料表面上制备出自封孔且含钙磷的生物活性涂层。该方法操作简单,所得涂层致密度较高,自封孔的特性使得耐腐蚀性能得到进一步提高,同时具有良好的生物活性,并且涂层具有一定的降解可控性,从而可有效控制镁基金属植入材料在生物体内的降解速度,使得周围组织生长与涂层降解能够相互匹配起来。该发明可应用于硬组织修复用可降解镁基金属材料/器件的表面改性处理。

Claims (1)

  1. 1、一种镁基植入材料微弧氧化自封孔活性涂层,其特征在于:该涂层是一种含钙磷且自封孔的微弧氧化活性涂层。
    2、按照权利要求 1 所述镁基植入材料微弧氧化自封孔活性涂层,其特征在于:所述涂层含有生物活性钙、磷元素;Ca 所占的原子含量百分比为3~6%,P 所占的原子含量百分比 9~15%。
    3、权利要求 1 所述镁基植入材料微弧氧化自封孔活性涂层的制备方法,其特征在于:将电解液混合均匀后,倒入微弧氧化电解池中进行微弧氧化。
    4、按照权利要求 3 所述镁基植入材料微弧氧化自封孔活性涂层的制备方法,其特征在于:所述电解液组成为六偏磷酸钠 1~8g/L、氢氧化钙0.2~2g/L、氟化钾 3~12g/L。
    5、按照权利要求 3 所述镁基植入材料微弧氧化自封孔活性涂层的制备方法,其特征在于:所述微弧氧化电压为 280~500V,微弧氧化时间为3~20min,交流频率为 500~1000Hz。
    6、按照权利要求 3 所述镁基植入材料微弧氧化自封孔活性涂层的制备方法,其特征在于:所述微弧氧化过程中,所形成的样品表面多孔结构直接被含有钙磷的物质填充,填充率可达 60%以上,无须进行后续的封孔处理。
    7、权利要求 3 所述镁基植入材料微弧氧化自封孔活性涂层的制备方法应用于纯镁、Mg-Zn 系、Mg-Ca 系、Mg-Al 系、Mg-RE 系、Mg-Mn 系的二元或多元合金镁基金属材料表面。
PCT/CN2012/083752 2012-04-27 2012-10-30 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法 WO2013159500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210127249.XA CN103372232B (zh) 2012-04-27 2012-04-27 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法
CN201210127249.X 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013159500A1 true WO2013159500A1 (zh) 2013-10-31

Family

ID=49458469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083752 WO2013159500A1 (zh) 2012-04-27 2012-10-30 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN103372232B (zh)
WO (1) WO2013159500A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556203A (zh) * 2013-11-04 2014-02-05 佳木斯大学 镁表面超声微弧氧化-hf-硅溶胶多级复合生物活性涂层复合材料的制备方法
CN109602947A (zh) * 2019-01-25 2019-04-12 黑龙江科技大学 一种在镁合金表面制备上转换荧光显影涂层的方法
CN109778278A (zh) * 2019-03-08 2019-05-21 北京致成生物医学科技有限公司 具备抗磨屑涂层的钉棒系统的制备方法及制备的钉棒系统
CN113186579A (zh) * 2021-04-20 2021-07-30 北京科技大学 一种钛合金口腔修复体表面美白自清洁涂层及其制备方法
CN113730655A (zh) * 2021-09-14 2021-12-03 天津工业大学 一种用于牙槽骨缺损修复的医用镁合金屏障膜及其制备方法
CN113774462A (zh) * 2021-10-22 2021-12-10 上海康德莱医疗器械股份有限公司 一种镁合金表面处理方法和处理后的镁合金
CN113862751A (zh) * 2021-09-25 2021-12-31 桂林理工大学 一种镁合金表面自封孔微弧氧化膜的制备方法
CN113981502A (zh) * 2021-10-29 2022-01-28 大连海事大学 一种铝合金表面耐蚀减摩复合涂层及其制备方法
CN114016106A (zh) * 2021-12-23 2022-02-08 中国科学技术大学先进技术研究院 一种提高微弧氧化效果的合金处理方法及设备
CN114164475A (zh) * 2021-11-25 2022-03-11 攀枝花学院 镁或镁合金表面电化学处理的方法
CN114703530A (zh) * 2022-04-28 2022-07-05 徐州工程学院 一种在镁合金表面利用电泳/微弧氧化技术复合构筑钐掺杂羟基磷灰石梯度涂层的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10871256B2 (en) 2015-07-27 2020-12-22 Schlumberger Technology Corporation Property enhancement of surfaces by electrolytic micro arc oxidation
CN109745152A (zh) * 2019-03-27 2019-05-14 东莞宜安科技股份有限公司 一种生物活性节段骨缺损修复体的性能评估方法
CN112237648B (zh) * 2020-09-29 2022-10-11 上海理工大学 一种含磷珍珠质涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877018A1 (fr) * 2004-10-25 2006-04-28 Snecma Moteurs Sa Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation
CN101632842A (zh) * 2009-08-20 2010-01-27 华南理工大学 一种用于镁合金血管内支架表面的改性方法
CN102220620A (zh) * 2011-08-02 2011-10-19 山东大学 一种镁合金表面富含钙磷相的生物陶瓷涂层的制备方法
CN102304745A (zh) * 2011-09-26 2012-01-04 长安大学 镁及镁合金表面微弧氧化制备生物陶瓷膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845636A (zh) * 2009-03-25 2010-09-29 中国科学院金属研究所 一种镁及镁合金表面致密性氟化物陶瓷膜的制备方法
CN101994145B (zh) * 2009-08-19 2012-05-23 中国科学院金属研究所 镁合金表面微弧氧化制备高耐蚀性陶瓷涂层溶液及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877018A1 (fr) * 2004-10-25 2006-04-28 Snecma Moteurs Sa Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation
CN101632842A (zh) * 2009-08-20 2010-01-27 华南理工大学 一种用于镁合金血管内支架表面的改性方法
CN102220620A (zh) * 2011-08-02 2011-10-19 山东大学 一种镁合金表面富含钙磷相的生物陶瓷涂层的制备方法
CN102304745A (zh) * 2011-09-26 2012-01-04 长安大学 镁及镁合金表面微弧氧化制备生物陶瓷膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, ZHI: "Research progress of biomedical ceramic coatings obtained by micro-arc oxidation on the surface of magnesium-based materials", ELECTROPLATING & FINISHING, vol. 30, no. 6, June 2011 (2011-06-01), pages 29 - 33 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556203A (zh) * 2013-11-04 2014-02-05 佳木斯大学 镁表面超声微弧氧化-hf-硅溶胶多级复合生物活性涂层复合材料的制备方法
CN109602947A (zh) * 2019-01-25 2019-04-12 黑龙江科技大学 一种在镁合金表面制备上转换荧光显影涂层的方法
CN109778278A (zh) * 2019-03-08 2019-05-21 北京致成生物医学科技有限公司 具备抗磨屑涂层的钉棒系统的制备方法及制备的钉棒系统
CN113186579A (zh) * 2021-04-20 2021-07-30 北京科技大学 一种钛合金口腔修复体表面美白自清洁涂层及其制备方法
CN113186579B (zh) * 2021-04-20 2024-02-27 北京科技大学 一种钛合金口腔修复体表面美白自清洁涂层及其制备方法
CN113730655A (zh) * 2021-09-14 2021-12-03 天津工业大学 一种用于牙槽骨缺损修复的医用镁合金屏障膜及其制备方法
CN113862751A (zh) * 2021-09-25 2021-12-31 桂林理工大学 一种镁合金表面自封孔微弧氧化膜的制备方法
CN113774462A (zh) * 2021-10-22 2021-12-10 上海康德莱医疗器械股份有限公司 一种镁合金表面处理方法和处理后的镁合金
CN113981502A (zh) * 2021-10-29 2022-01-28 大连海事大学 一种铝合金表面耐蚀减摩复合涂层及其制备方法
CN114164475A (zh) * 2021-11-25 2022-03-11 攀枝花学院 镁或镁合金表面电化学处理的方法
CN114164475B (zh) * 2021-11-25 2024-03-15 攀枝花学院 镁或镁合金表面电化学处理的方法
CN114016106A (zh) * 2021-12-23 2022-02-08 中国科学技术大学先进技术研究院 一种提高微弧氧化效果的合金处理方法及设备
CN114703530A (zh) * 2022-04-28 2022-07-05 徐州工程学院 一种在镁合金表面利用电泳/微弧氧化技术复合构筑钐掺杂羟基磷灰石梯度涂层的方法
CN114703530B (zh) * 2022-04-28 2023-08-25 徐州工程学院 一种在镁合金表面利用电泳/微弧氧化技术复合构筑钐掺杂羟基磷灰石梯度涂层的方法

Also Published As

Publication number Publication date
CN103372232A (zh) 2013-10-30
CN103372232B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2013159500A1 (zh) 一种镁基植入材料微弧氧化自封孔活性涂层及其制备方法
Kaluđerović et al. Titanium dental implant surfaces obtained by anodic spark deposition–from the past to the future
Chen et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation
Matykina et al. Role of PEO coatings in long-term biodegradation of a Mg alloy
Shi et al. MAO-DCPD composite coating on Mg alloy for degradable implant applications
Tang et al. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment
Zhao et al. Preparation and properties of composite MAO/ECD coatings on magnesium alloy
Mohedano et al. Metal release from ceramic coatings for dental implants
Yeo et al. Biomechanical and histomorphometric study of dental implants with different surface characteristics
Shi et al. Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank's solution
Wan et al. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants
Feng et al. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy
Gan et al. Bioactive Ca–P coating with self-sealing structure on pure magnesium
Wang et al. Structure, corrosion resistance and in vitro bioactivity of Ca and P containing TiO2 coating fabricated on NiTi alloy by plasma electrolytic oxidation
CN111973812B (zh) 可降解镁基骨内植物表面具有生物活性、分级结构的羟基磷灰石涂层及制备方法
Shen et al. Corrosion behavior of different coatings prepared on the surface of AZ80 magnesium alloy in simulated body fluid
Mousa et al. Surface modification of magnesium and its alloys using anodization for orthopedic implant application
Zhu et al. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium
Wang et al. Preparation and degradation behavior of composite bio-coating on ZK60 magnesium alloy using combined micro-arc oxidation and electrophoresis deposition
Liu et al. Effect of microarc oxidation time on electrochemical behaviors of coated bio-compatible magnesium alloy
Zhai et al. Fluoride coatings on magnesium alloy implants
WO2007029602A1 (ja) 骨代替材料、該骨代替材料を含む医療用材料、及び該骨代替材料の製造方法
Wang et al. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation
CN106283154B (zh) 一种两步制备镁合金表面硅钙磷生物陶瓷涂层的方法与应用
Huang et al. Direct bioactive ceramics coating via reactive growing integration layer method on α-Ti-alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875699

Country of ref document: EP

Kind code of ref document: A1