WO2013157253A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2013157253A1
WO2013157253A1 PCT/JP2013/002580 JP2013002580W WO2013157253A1 WO 2013157253 A1 WO2013157253 A1 WO 2013157253A1 JP 2013002580 W JP2013002580 W JP 2013002580W WO 2013157253 A1 WO2013157253 A1 WO 2013157253A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
fuel cell
heat
amount
unit
Prior art date
Application number
PCT/JP2013/002580
Other languages
French (fr)
Japanese (ja)
Inventor
貴彬 藤川
佳典 岡
洋 永里
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013157253A1 publication Critical patent/WO2013157253A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell unit that supplies electric power and heat, and a hot water storage unit that includes a hot water storage tank that stores heat supplied from the fuel cell unit as hot water.
  • a fuel cell and a heat exchanger for exchanging heat between exhaust gas from the fuel cell and water, a fuel cell unit that supplies electric power and heat, and heat supplied from the fuel cell unit are heated.
  • a fuel cell system composed of a hot water storage unit equipped with a hot water storage tank.
  • the temperature of the water in the hot water storage tank becomes higher than a predetermined temperature, there is a problem that heat cannot be exchanged between the exhaust gas from the fuel cell and the water in the hot water storage tank, and the fuel cell system cannot generate power.
  • FIGS. 18 and 19 are disclosed (see, for example, Patent Documents 1 and 2).
  • the fuel cell system shown in FIG. 18 includes a fuel cell device (power generation unit) including a fuel cell 1 and a heat exchanger 5 for exchanging heat between the exhaust gas from the fuel cell 1 and water, and after heat exchange.
  • a device 13 It is a fuel cell system. In such a fuel cell system, when the temperature of the water measured by the temperature sensor 19 is measured at a first predetermined temperature or higher continuously for a predetermined time, the water storage device 25 is automatically supplied.
  • the drainage device is provided with an external drain pipe 21 having a valve 22 for draining water from the hot water storage tank 17 to the outside, and a water storage device supply having a valve 24 for supplying water from the hot water storage tank 17 to the water storage device. And a tube 23.
  • the water storage provided with the external drain pipe 21 provided with the valve 22 for draining the water of the hot water storage tank 17 outside, and the valve 24 for supplying the water of the hot water storage tank to the water storage device. Since the apparatus supply pipe 23 is provided, it is possible to easily control whether the water in the hot water storage tank is drained to the outside or supplied to the water storage apparatus 25.
  • the fuel cell system shown in FIG. 19 includes a hot water storage tank 31, tank lower hot water temperature detecting means 43 for detecting the temperature of hot water in the lower part of the hot water storage tank 31, one end communicating with the lower part in the hot water storage tank, and the other end in the hot water storage tank.
  • a hot water tank circulating pump 33 for circulating hot water in the heat recovery pipe 32 and a remote controller 42 having a notification means are provided.
  • the notification means performs a hot water supply operation from the hot water supply pipe 36 to the user within a predetermined time. It is configured to prompt you.
  • the use of hot water in the hot water storage tank 31 is small, and the temperature of the hot water in the lower part of the hot water storage tank 31 rises, so that the heat dissipation efficiency of the fuel cell deteriorates, If there is no use of hot water in the hot water storage tank 31 (hot water supply), the temperature of the hot water in the lower part of the hot water storage tank 31 will soon rise to reach the system stop temperature at which the system needs to be stopped and the system will stop.
  • the notifying means prompts the user to perform the hot water supply operation from the hot water supply pipe 36 within a predetermined time, so that the user is more likely to perform the hot water supply operation from the hot water supply pipe 36 within the predetermined time.
  • the temperature of the water measured by the temperature sensor 19 is continuously measured for a predetermined time at the first predetermined temperature or higher, and the water level of the water storage device 25 is high, and the hot water storage tank 17
  • the hot water in the hot water storage tank 17 is drained to the outside.
  • the hot water in the hot water storage tank 17 is drained without taking into consideration the economic effect such as the water charge that is wasted due to the hot water drainage of the hot water storage tank 17 and the gas charge that is increased as power generation continues. Therefore, in some cases, there is a problem that the user of the fuel cell system is economically damaged.
  • the provision of the water storage device 25 in the fuel cell cogeneration system in order to reduce the water in the hot water storage tank 17 that drains to the outside also causes an increase in the installation area or the installation volume, thus reducing the installation opportunity in the market. It also has the problem of being connected to
  • This invention solves the conventional subject, and it aims at providing the fuel cell system which can exhaust the heat of a hot water storage tank, considering economical efficiency.
  • a fuel cell system generates power with heat generated by supplying fuel gas, and supplies a fuel cell unit for supplying electric power and heat, and heat supplied from the fuel cell unit.
  • Hot water storage unit equipped with a hot water storage tank that stores hot water, an exhaust heat unit that exhausts heat stored in the hot water storage tank, a heat storage amount detection unit that detects the amount of heat stored in the hot water tank, and the heat storage amount of the hot water tank
  • a control unit that stops the power generation of the fuel cell unit when reaching the value, and when the control unit detects that the heat storage amount detection unit is equal to or greater than the first predetermined heat storage amount, the amount of power supplied by the fuel cell unit Whether or not the system user's water, electricity, and gas usage charges are calculated based on the prediction of heat usage in the hot water storage tank, and whether or not heat is discharged by the exhaust heat unit based on the calculated usage charges Control That.
  • the sum of water charges, electricity charges, and gas charges used when exhausting heat is the sum of water charges, electricity charges, and gas charges used when stopping the power generation of the fuel cell system without exhausting heat from the hot water storage tank. Only when it is cheaper can it be drained.
  • the fuel cell system of the present invention when the temperature of the hot water storage tank rises and the hot water storage tank does not perform exhaust heat, the fuel cell system becomes incapable of generating power.
  • Reduce the economic burden of water charges, electricity charges, and gas charges used by system users by exhausting heat from the hot water storage tank and generating power or shutting down the system without exhausting heat so that the total gas charge is reduced. Can do.
  • this can reduce the economic loss due to the exhaust heat of the hot water storage tank, it is not necessary to provide a water storage device, leading to an increase in installation opportunities in the market.
  • FIG. 1 is a block diagram of a fuel cell system in Embodiment 1 of the present invention.
  • FIG. It is a block diagram which shows the structure of the controller of the fuel cell system of FIG. It is a flowchart which shows the processing operation of the controller of FIG. It is a block diagram which shows the structure of the controller of the fuel cell system in Embodiment 2 of this invention. It is a flowchart which shows the processing operation of the controller of FIG. It is a graph which shows an example of the demand forecast of a fuel cell system in case the continuation of electric power generation is obtained in the processing operation of FIG. 5, and a user burden. It is a graph which shows an example of the demand forecast of a fuel cell system when a power generation stop is obtained in the processing operation of FIG.
  • a fuel cell system includes a fuel cell unit that supplies power and heat by supplying fuel gas and generates heat, and a hot water storage tank that stores the heat supplied from the fuel cell unit as hot water.
  • a hot water storage unit a heat exhaust section that exhausts heat stored in the hot water storage tank, a heat storage amount detection section that detects the heat storage amount of the hot water storage tank, and a fuel cell unit
  • a controller that stops power generation, and the controller uses the amount of power supplied by the fuel cell unit and heat of the hot water storage tank when the heat storage amount detection unit detects that the first heat storage amount is equal to or greater than the first predetermined heat storage amount.
  • the system user calculates usage charges for water, electricity, and gas, and controls whether or not to exhaust heat by the exhaust heat unit based on the calculated usage charges.
  • the system user's usage fees for water, electricity, and gas are calculated based on the prediction of the amount of supplied power and the amount of hot water. Therefore, it is possible to select one of exhausting heat from the hot water storage tank to generate power, or stopping the system without exhausting heat, and the economic burden on the system user can be reduced. Moreover, since it is possible to reduce the economic loss due to the exhaust heat of the hot water storage tank, it is not necessary to provide a water storage device, which is useful for increasing installation opportunities in the market.
  • the exhaust heat unit may exhaust heat by, for example, draining hot water stored in the hot water storage tank, or may exhaust heat by dissipating heat of the hot water storage tank by a radiator.
  • heat When heat is radiated by the radiator, water charges are not generated unlike the case of draining hot water, so that the economic burden on the system user can be further reduced.
  • the heat storage amount detection unit detects the temperature of hot water in the hot water storage tank, and the control unit indicates that the heat storage amount detection unit is equal to or higher than the first predetermined temperature.
  • a prediction unit that predicts the amount of power and hot water supply used by the fuel cell unit in a predetermined period, and the heat exhausted by the heat exhaust unit in a predetermined period based on the prediction in the predetermined period, Calculate the sum of the usage charges for water, electricity, and gas, and the usage fee calculation unit that calculates the sum of the usage charges for water, electricity, and gas when exhaust heat is not used for a specified period Compare the usage fee when the exhaust heat is used and the usage fee when the exhaust heat is not performed. If the usage fee when the exhaust heat is exhausted is lower than the usage fee when the exhaust heat is not exhausted, An exhaust heat control unit that heats Obtain.
  • the predetermined period may be, for example, the time from when the fuel cell system is stopped until the power generation state is restored.
  • control unit controls the exhaust heat so that the temperature detected by the heat storage amount detection unit is equal to or lower than a second predetermined temperature lower than the first predetermined temperature.
  • the control unit calculates an amount of heat exhausted by the exhaust heat unit based on prediction of an amount of electric power and hot water supply usage that the fuel cell unit supplies in a predetermined period, and calculates the calculation It controls so that the amount of exhausted heat is exhausted.
  • the temperature of the hot water in the hot water storage tank can be efficiently lowered to a temperature at which the system can be continued based on the prediction of the amount of supplied power and the amount of hot water used, so that the system can be prevented from stopping.
  • control unit performs control so that the calculated exhaust heat amount is divided and exhausted.
  • the control unit performs control so that the calculated exhaust heat amount is divided and exhausted.
  • the sixth invention is the amount obtained by selling the electric power generated by the fuel cell unit from the sum of the usage charges for water, electricity and gas when exhaust heat is exhausted in the second invention.
  • the exhaust heat may be performed.
  • the exhaust heat of the hot water storage tank can be controlled so that the sum of the water usage fee, the electricity usage fee considering the sold electricity fee, and the gas usage fee can be reduced. This is useful for reducing the economic burden on system users in areas where power can be sold.
  • the control unit is obtained by using the electric power generated by the fuel cell unit from the sum of usage charges of water, electricity, and gas when exhaust heat is performed. If the amount of money after subtracting the subsidy is cheaper than when the exhaust heat is not performed, the exhaust heat may be performed.
  • the exhaust heat of the hot water storage tank can be controlled so that the sum of the water usage fee, the electricity usage fee considering the subsidies for using the generated power, and the gas usage fee can be reduced. This is useful for reducing the economic burden on system users in areas where subsidies can be obtained by using the power generated by the unit.
  • the controller is configured to reduce the amount of heat loss in the hot water storage tank that is wasted due to exhaust heat in the sum of usage charges for water, electricity, and gas when exhaust heat is performed. If the amount of money is less than when the exhaust heat is not performed, the exhaust heat may be performed.
  • the exhaust heat of the hot water storage tank is controlled so that the sum of the usage fee of the gas, considering the exhaust gas used for the amount of heat that is wasted due to the waste heat of the hot water storage tank, electricity usage fee, and hot water storage tank is reduced. Therefore, it is useful for reducing the economic burden on the system user and improving the accuracy when calculating the economic burden.
  • a ninth invention further comprises a power storage unit for storing the generated power of the fuel cell unit according to the second invention, wherein the control unit further determines the usage charges of water, electricity and gas when exhaust heat is performed. If the amount obtained by subtracting the amount of reduction in the electricity usage fee obtained by storing electricity in the electricity storage unit from the sum is lower than when the exhaust heat is not performed, the exhaust heat may be performed.
  • the exhaust heat of the hot water storage tank is controlled so that the total amount of electricity and gas usage considering the use of water supply, stored electricity is reduced, so the system usage when the fuel cell system is equipped with a storage unit This is useful for reducing the economic burden on the user.
  • control unit controls to restart power generation while the fuel cell unit is stopped, and controls to exhaust heat in the exhaust heat unit. May be.
  • FIG. 1 is a block diagram of a fuel cell system according to Embodiment 1 of the present invention.
  • the fuel cell system generates power with heat generation by being supplied with fuel gas, and stores the fuel cell unit 10 that supplies power and heat, and the heat supplied from the fuel cell unit 10 as hot water.
  • a hot water storage unit 11 having a hot water storage tank 103, a heat removal unit 12 that exhausts heat stored in the hot water storage tank 103, a heat storage amount detection unit 104 that detects a heat storage amount of the hot water storage tank 103, and a heat storage amount of the hot water storage tank 103 includes a controller 13 that stops the power generation of the fuel cell unit 10 when the value reaches the upper limit.
  • the fuel cell unit 10 is supplied with fuel gas, generates electricity with heat generation, supplies power and heat, and a heat exchanger for exchanging heat between exhaust gas and water from the fuel cell 100. 101 and a hot water storage circulation pump 102 for circulating the water in the hot water storage tank 103 in a heat recovery pipe 110 having a heat exchanger 101.
  • the fuel cell unit 10 supplies power to a power load (not shown), and supplies heat to the water in the hot water storage tank 103 using the heat exchanger 101.
  • the hot water storage unit 11 includes a hot water storage tank 103 that stores heat supplied from the fuel cell unit 10 through the heat exchanger 101 as hot water, a heat storage amount detection unit 104 that detects a heat storage amount of the hot water storage tank 103, and a hot water supply pipe 108.
  • a hot water heater 105 that performs a hot water supply operation of the hot water storage tank 103 and a water heater 106 that performs a water supply operation of the hot water storage tank 103 from the water supply pipe 109 are provided, and the hot water in the hot water storage tank 103 is kept at a predetermined amount.
  • the heat storage amount detection unit 104 is configured by a temperature detector that detects the temperature of hot water in the hot water storage tank 103.
  • the exhaust heat unit 111 exhausts the heat stored in the hot water storage tank 103. Since the amount of heat stored in the hot water storage tank 103 decreases due to the exhaust heat, it is possible to avoid stopping the fuel cell system.
  • the exhaust heat unit 111 is configured by a drain that drains the hot water in the hot water storage tank 103 from the drain pipe 107 provided to throw away the hot water in the hot water storage tank 103 to the outside.
  • the controller 13 is configured to receive data related to the temperature of the hot water in the hot water storage tank 103 detected by the temperature detector 104, and the temperature detector 104 determines that the temperature of the hot water in the hot water storage tank 103 is the first predetermined temperature.
  • the system user's usage charges for water, electricity, and gas are calculated based on the prediction of the amount of power supplied by the fuel cell unit 10 and the amount of heat used in the hot water storage tank 103. Based on the calculated usage fee, it is controlled whether or not the drainage by the drainage device 12 is performed.
  • FIG. 2 is a block diagram showing the configuration of the controller 13 of FIG.
  • the controller 13 includes a demand prediction unit 131, a charge calculation unit 132 that calculates a user's burden, a drainage control unit 133 that determines whether or not to drain, and a storage unit 134.
  • the controller 13 includes a calculation device such as a microcontroller or PLC (programmable logic controller), and the demand prediction unit 131, the charge calculation unit 132, the drainage control unit 133, and the like are incorporated in the calculation device.
  • the storage unit 134 includes an internal memory such as a microcontroller.
  • the storage unit 134 stores information such as current and past demand data, an operation plan of the fuel cell system, and the like.
  • the demand prediction unit 131 predicts the amount of power and hot water usage used by the fuel cell unit 10 in a predetermined period.
  • the charge calculation unit 132 calculates the sum of the usage charges of water, electricity, and gas when drainage is performed by the drainage device 12 during a predetermined period based on the predicted amount predicted by the demand prediction unit 131, and the predetermined amount Calculate the sum of usage charges for water, electricity, and gas when there is no drainage during the period.
  • the drainage control unit 133 compares the usage fee when draining is performed with the usage fee when draining is not performed, and the usage fee when draining is lower than the usage fee when draining is not performed. In case, drain.
  • FIG. 3 is a flowchart showing the processing operation of the controller 13 that controls the drainage of the fuel cell system according to Embodiment 1 of the present invention.
  • the controller 13 requests the drainer 12 to drain until the temperature of the temperature detector 104 falls to a predetermined temperature. This will be described with reference to FIGS.
  • the branch Y) of S20 predicts the amount of power and hot water usage used by the fuel cell system during the predetermined period ⁇ .
  • the predetermined period ⁇ is set to a time from when the fuel cell system is stopped until the power generation state is resumed.
  • prediction based on past data may be used for prediction of the amount of power supplied by the fuel cell system and use of hot water, for example, the current amount of power and use of hot water.
  • the charge calculation unit 132 continues the system operation in which the temperature of the temperature detector 104 is lower than the first predetermined temperature in the predetermined period ⁇ based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used.
  • the power generation is continued by draining the hot water storage tank 103 so that the temperature falls to the second predetermined temperature possible, and when the system is shut down without draining during the predetermined period ⁇ , the water charge, electricity charge, gas in each case The sum of the charges is calculated (step S21 in FIG. 3).
  • the drainage control unit 133 compares the usage fee when draining is performed with the usage fee when draining is not performed based on the calculation result, and the usage fee when draining is not drained. In the case where the price is lower than the usage fee, the drainage is performed so that the temperature of the temperature detector 104 falls below the first predetermined temperature to a second predetermined temperature at which the system operation can be continued.
  • the drainage control unit 133 determines that it is cheaper to drain the hot water storage tank 103 and continue power generation (branch Y in step S22 in FIG. 3), the drainage control unit 133 transmits a signal requesting drainage to the drainer 12 (FIG. 3). Step S23).
  • the drain control unit 133 stops the signal requesting drain that has been transmitted to the drain 12 (Step S25 in FIG. 3).
  • the drainage control unit 133 transmits a signal to stop the power generation to the fuel cell unit 10 when it is determined in step 22 that the hot water storage tank 103 is drained and power generation is continued (highly, not cheap). (NO in step S22 of FIG. 3).
  • the hot water storage tank 103 is drained so that the sum of water charges, electricity charges, and gas charges used by system users is reduced and power generation is continued, or the system is not drained. Since it can be stopped, the economic burden on the system user can be reduced.
  • the water charge which increases with drainage is determined by the amount drained when the temperature of the temperature detector 104 falls to the second predetermined temperature, but the amount of drainage depends on the temperature of the water supplied from the water supply 106. Therefore, for example, if a certain amount of water is drained, a second water temperature detector (not shown) that calculates an increasing water charge or measures the temperature of the supplied water at or near the water supply 106 or the water supply pipe 109 is provided.
  • the calculation method of the water bill, the electricity bill, and the gas bill in the first embodiment is not limited to the first embodiment.
  • the hot water storage tank 103 when a temperature profile (hereinafter referred to as “lamination”) of the hot water stored in the hot water stored in the hot water increases from bottom to top is generated. As shown in FIG. 1, it is desirable that the temperature detector 104 and the heat recovery pipe 110 are located below the hot water storage tank 103. Thereby, hot water with a low temperature advantageous for heat exchange can be supplied to the heat exchanger 101. Further, in the case where a stack is created in the hot water storage tank 103, it is desirable that the drainage device 12 discharges hot water from the upper part of the hot water storage tank 103 as shown in FIG. 1. Accordingly, hot water having a high temperature in the hot water storage tank 103 can be discarded, which is advantageous for lowering the temperature of the hot water in the hot water storage tank 103, and is useful for reducing water bills by reducing the amount of drainage.
  • lamination a temperature profile of the hot water stored in the hot water stored in the hot water stored in the hot water increases from bottom to top is generated.
  • the drainer 12 is configured to drain the hot water in the hot water storage tank 103 through a drain pipe branched from the branch point (point A in FIG. 1) of the heat recovery pipe 110 at the lower part of the hot water storage tank 103. Also good. In that case, it is desirable that the temperature detector 104 for detecting the temperature of hot water is disposed at a position downstream of the branch point A of the heat recovery pipe 110 (point B in FIG. 1).
  • the controller 13 determines whether or not to perform the drainage treatment of the hot water storage tank 103 and requests the drainer 12 to drain the water.
  • the fuel cell unit 10 includes a controller and drainage (not shown). There is no problem if the internal control unit determines the cost cost and drains it.
  • FIG. 4 is a block diagram showing the configuration of the controller 13 of the fuel cell system according to Embodiment 2 of the present invention.
  • the controller 13 includes a drainage amount calculation unit 135 that calculates the amount of drainage by the drainage control unit 133 based on the prediction of the amount of power and hot water supply usage that the fuel cell unit 10 supplies in a predetermined period ⁇ . Furthermore, the point which drains the calculated waste_water
  • the controller 13 calculates the amount drained from the hot water storage tank 103 and puts it in the drainer 12 until the drainage is completed. The case where drainage is required will be described with reference to FIGS.
  • FIG. 5 is a flowchart showing the processing operation of the controller 13 that controls the drainage of the fuel cell system according to Embodiment 2 of the present invention.
  • the amount of drainage is uniquely determined when the temperature of the water supplied from the water supply 106 is constant, whereas in the flow of the second embodiment, the fuel cell system It differs in that it depends on the prediction of the amount of power to be supplied and the amount of hot water used.
  • the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S30 in FIG. 5), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • FIG. 6A is a graph showing the demand prediction of the fuel cell system when it is possible to continue the power generation.
  • the demand prediction part 131 is the state (full condition) in which the temperature of the hot water of the hot water storage tank 103 exceeded the 1st predetermined temperature lower than the system stop temperature which needs to make a system stop.
  • a predetermined period ⁇ (the time from full time t 0 to time t 1 in FIG. 6) is predicted.
  • the predetermined period ⁇ is set to a time from when the fuel cell system is stopped until it again enters a power generation state, for example, 2 hours.
  • a power demand of 500 [W] is predicted through a predetermined period ⁇
  • a total hot water supply demand of 60 [l] is predicted from time t 01
  • a total hot water supply demand of 80 [l] is predicted from time t 02 .
  • a prediction that the current power load and the use of hot water supply will continue or a prediction based on past data may be used.
  • the drainage amount calculation unit 135 calculates the amount of water drained from the hot water storage tank 103 necessary for continuation of power generation based on the prediction of the amount of power supplied by the fuel cell system during the predetermined period ⁇ and the amount of hot water used (see FIG. Step S31). As shown in the graph of FIG. 6A, since a hot water supply demand of a total of 60 [l] is predicted from the time t 01 , the drainage amount calculation unit 135 is 500 [W] from the time t 0 to the time t 01 . Calculate the amount of drainage required to drain excess heat to achieve electricity demand.
  • the charge calculation unit 132 uses the calculated amount of drainage to perform power generation by draining the hot water storage tank 103 during a predetermined period ⁇ , and when it stops without draining during the predetermined period ⁇ . In this case, the sum of water charges, electricity charges, and gas charges is calculated (step S32 in FIG. 5).
  • FIG. 6B is a graph illustrating an example of a user's charge burden when power generation is continued in the predetermined period ⁇ .
  • water rate A due to waste water amount calculated from the time t 0 to time t 01 becomes the burden of the user.
  • the gas charge B used for power generation is also included in the user's burden.
  • the charge calculation unit 132 adds the water charge A and the gas charge B, and calculates the sum of the charges when power generation is continued.
  • FIG. 6C is a graph showing an example of the user's charge burden when power generation is stopped during the predetermined period ⁇ .
  • FIG. 6 (c) since the power generation of the fuel cell system is stopped in the predetermined period ⁇ , only the electricity bill for covering the power generation by the fuel cell system becomes the burden on the user.
  • the same graph shows a case in which electricity rates are at night discount at time t 03.
  • the charge calculation unit 132 calculates the electricity charge C as the sum of charges when power generation is stopped.
  • the drainage control unit 133 determines that it is cheaper to continue the power generation by draining the hot water storage tank 103 based on the calculation result (YES in step S33 in FIG. 5).
  • a signal requesting drainage to the drainer 12 is sent. Transmit (step S34 in FIG. 5).
  • the drainage control unit 133 uses the user's charge (water charge A and gas charge B) when power generation is continued and the user's charge when power generation is stopped.
  • (electricity charge C) is compared, it is determined that the user's charge is lower when power generation is continued, and therefore a drainage request signal is transmitted.
  • the drainage control unit 133 stops the signal requesting drainage that has been transmitted to the drainer 12 (step in FIG. 5). S36).
  • the graph of FIG. 6 shows an example when the power generation continuation is advantageous, but the graph of FIG. 7 shows an example of the demand prediction of the fuel cell system and the user burden when the power generation stop is advantageous.
  • the demand prediction unit 131 again has a state where the temperature of the hot water in the hot water storage tank 103 exceeds a first predetermined temperature lower than the system stop temperature at which the system needs to be stopped (full state).
  • the demand in the predetermined period ⁇ (2 hours) is predicted from the (livestock state) (step S30 in FIG. 5).
  • a power demand of 500 [W] is predicted through the predetermined period ⁇ , and a hot water supply demand is not predicted.
  • the drainage amount calculation unit 135 calculates the amount of drainage necessary for draining excess heat to realize only the power demand of 500 [W] in the predetermined period ⁇ . .
  • the amount of drainage is calculated (step S31 in FIG. 5)
  • the calculation method of the amount of drainage in this Embodiment 1 is not limited to Embodiment 1.
  • FIG. 1 the calculation method of the amount of drainage in this Embodiment 1.
  • FIG. 7B is a graph showing an example of a user's charge burden when power generation is continued in a predetermined period ⁇ .
  • the water charge A associated with the amount of drainage calculated in the predetermined period ⁇ is the user's burden.
  • the gas charge B used for power generation is also included in the user's burden.
  • the charge calculation unit 132 adds the water charge A and the gas charge B, and calculates the sum of the charges when power generation is continued.
  • FIG. 7C is a graph showing an example of a user's charge burden when power generation is stopped during a predetermined period ⁇ .
  • the electricity charge for covering the power generation by the fuel cell system becomes a burden on the user.
  • the charge calculation unit 132 calculates the electricity charge C as the sum of charges when power generation is stopped.
  • the drainage control unit 133 uses the user's charge (water charge A and gas charge B) when power generation is continued and the user's charge when power generation is stopped.
  • (electricity charge) is compared, it is determined that the user's charge is higher when power generation is continued, and therefore a signal for stopping power generation is transmitted to the fuel cell unit 10 (NO in step S33 of FIG. 5).
  • the hot water storage tank so that the sum of water charges, electricity charges, and gas charges used by the system user is reduced.
  • 103 can be drained and power generation can be continued, or the system can be stopped without draining, so the economic burden on the system user can be reduced.
  • the economic loss due to the drainage of the hot water storage tank can be reduced, it is not necessary to provide a water storage device, which is useful for increasing the installation opportunity in the market.
  • the amount of wastewater is calculated only by temperature, there is an advantage that it is easy to calculate the amount of wastewater.
  • the amount of wastewater is uniquely determined, the processing when the demand fluctuates is not considered. The second embodiment solves this problem.
  • FIG. 8 is a graph showing an example of the user burden when the demand fluctuation of the fuel cell system occurs when it is predicted that the power generation continuation is obtained in the second embodiment.
  • the demand prediction unit 131 again has a state in which the temperature of the hot water in the hot water storage tank 103 exceeds a first predetermined temperature lower than the system stop temperature at which the system needs to be stopped (full state).
  • the demand in the predetermined period ⁇ (2 hours) is predicted from the (livestock state) (step S30 in FIG. 5).
  • a power demand of 500 [W] is predicted over a predetermined period ⁇
  • a total hot water supply demand of 60 [l] is predicted from time t 01 .
  • the charge calculation unit 132 calculates the sum of the charges using the calculated amount of drainage (step 32 in FIG. 5), and the drainage control unit 133 determines that the user burden is enough to continue the power generation. The drainage amount is reduced (step 33 in FIG. 5).
  • the drainage control unit 133 sums the charges when the power generation shown in FIG. 8B is continued (water charge A + gas charge B) and the charges when the power generation shown in FIG. 8C is stopped. Continue draining until (Electricity Charge C) is equal. That is, the drainage control unit 133 continues draining to the breakeven point so that the user of the fuel cell system does not lose.
  • the temperature of the hot water in the hot water storage tank can be efficiently lowered to a temperature at which the system can be continued based on the prediction of the amount of supplied power and the amount of hot water used. It becomes the minimum amount of drainage and can save water charges more.
  • the controller 13 when the electric power generated by the fuel cell unit 10 can be sold, the controller 13 is different from the first and second embodiments in that the controller 13 performs drainage in consideration of the electric charge that can be sold.
  • the controller 13 when the controller 13 requests drainage from the drainer 12 until the temperature of the temperature detector 104 falls to a predetermined temperature (hereinafter, processing operation of the first embodiment), the controller 13 In the case where the amount drained from the hot water storage tank 103 is calculated and drainage is requested to the drainage device 12 until drainage is completed (hereinafter, processing operation of the second embodiment), the power generated by the fuel cell unit 10 can be sold. In this case, the controller 13 performs drainage in consideration of the electricity charge that can be sold.
  • FIG. 9 is a flowchart showing the processing operation when the controller 13 according to Embodiment 3 of the present invention considers power sale.
  • the flow diagram of FIG. 9 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
  • the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S40 in FIG. 9), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued.
  • the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 9 step S41).
  • the fee calculation unit 132 calculates the amount of money obtained by selling the power generated by the fuel cell unit 10 (step S42 in FIG. 9).
  • the value obtained by subtracting the amount calculated in step S42 of FIG. 9 from the sum of the water rate, the electricity rate, and the gas rate to be used when draining is lower than when the drainage is not performed.
  • drainage is performed.
  • the hot water storage tank 103 is drained so that the sum of the water bill to be used, the electricity bill considering the sold electricity bill, and the gas bill is reduced, and the power generation is continued, or the system can be stopped without draining. Therefore, it is useful for reducing the economic burden on the system user in an area where the power generated by the fuel cell unit 10 can be sold.
  • the amount of money obtained by selling the power generated by the fuel cell unit 10 is the power selling price per unit power input by the user of the fuel cell system or the power selling price per unit power acquired from the net or the like. You may calculate based on.
  • FIG. 10 is a flowchart showing a processing operation in the case of considering subsidies in the controller 13 according to the fourth embodiment of the present invention.
  • the flow diagram of FIG. 10 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
  • the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S50 in FIG. 10), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued.
  • the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 10 step S51).
  • the fee calculation unit 132 calculates a subsidy obtained when the user of the fuel cell system uses the electric power generated by the fuel cell unit 10 (step S52 in FIG. 10).
  • the drainage control unit 133 deducts the subsidy calculated in step S52 of FIG. 10 from the sum of water charges, electricity charges, and gas charges to be used when draining, and is cheaper than when drainage is not performed. If this is the case (YES in step S53 in FIG. 10), drainage is performed. As a result, the hot water storage tank 103 is drained so that the sum of water charges to be used, subsidies for using generated power, and gas charges is reduced, and the power generation is continued or the system is stopped without draining. Therefore, it is useful for reducing the economic burden on system users in areas where subsidies can be obtained by using the power generated by the power generation unit. Further, the subsidy obtained by using the power generated by the fuel cell unit 10 may be calculated based on a fee input by a user of the fuel cell system or a fee acquired from the net or the like.
  • the fifth embodiment is different from the first and second embodiments in that drainage is performed in consideration of the amount of heat loss associated with drainage of hot water stored in the hot water storage tank 103.
  • FIG. 11 is a flowchart showing the processing operation when the controller 13 according to the fifth embodiment of the present invention considers the amount of heat loss.
  • the flow diagram of FIG. 11 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
  • the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S60 in FIG. 11), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued.
  • the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 11 step S61).
  • the charge calculation unit 132 calculates the amount of heat loss due to the drainage of hot water stored in the hot water storage tank 103 by heat exchange with the exhaust gas of the fuel cell unit 10 (step S62 in FIG. 11).
  • the drainage control unit 133 adds the loss amount calculated in step S62 in FIG. 11 to the sum of the water charges, electricity charges, and gas charges to be used when draining, and is cheaper than when drainage is not performed. If this is the case (YES in step S63 in FIG. 11), drainage is performed. As a result, drainage of the hot water storage tank 103 is continued and power generation is continued so that the sum of the gas charge considering the gas charge used for the heat rate of the hot water storage tank 103 that is wasted due to the water charge, electricity charge, and drainage used is reduced. Alternatively, the system can be stopped without draining, which is useful for reducing the economic burden on the system user and improving the accuracy when calculating the economic burden.
  • the fuel cell system further includes a temperature sensor (not shown) in the vicinity of the drain pipe 107 and the water supply pipe 109 to supply water with the temperature of hot water detected by the temperature sensor.
  • the amount of hot water in the hot water storage tank 103 may be calculated based on the difference from the temperature of the water, and the charge of the gas used as the amount of heat may be calculated based on the exhaust heat recovery efficiency of the heat exchanger 101.
  • a flow meter (not shown) that can measure the flow rate of the gas passing through the heat exchanger 101 is provided, and the gas charge used as the amount of heat for the hot water in the hot water storage tank 103 is calculated from the total amount of the gas flow rate used in the fuel cell unit 10. It doesn't matter.
  • the exhaust gas from the fuel cell 100 is 70% of the gas used in the fuel cell unit 10, and the exhaust heat of the heat exchanger 101 is calculated.
  • the gas charge used for the heat quantity may be gas charge used by the fuel cell unit 10 ⁇ 0.7 ⁇ 0.9.
  • the used gas fee may be calculated excluding the amount of heat generated by the operation of the heat source.
  • the electricity charge is significantly higher than the water charge or gas charge. Even if the amount of heat stored in the hot water storage tank 103 is taken into account, if the total amount of water, electricity, and gas used by the person who drains all of the hot water in the hot water storage tank 103 becomes cheaper, empty the tank once. It doesn't matter.
  • the fuel cell system is further provided with a power storage unit (not shown) that stores the generated power of the fuel cell unit 10 and drains in consideration of a reduction in the electricity bill obtained by power storage.
  • a power storage unit (not shown) that stores the generated power of the fuel cell unit 10 and drains in consideration of a reduction in the electricity bill obtained by power storage.
  • FIG. 12 is a flowchart showing a processing operation when the controller 13 according to the sixth embodiment of the present invention considers reduction of the electricity bill due to power storage.
  • the flow diagram of FIG. 12 describes, as an example, the case where the processing operation is added to the processing operation of the first embodiment, but the same applies to the case where the processing operation is added to the processing operation of the second embodiment.
  • the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S70 in FIG. 12), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued.
  • the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 12 step S71).
  • the charge calculation unit 132 acquires the power that can be stored in the power storage unit (step S72 in FIG. 12), and calculates the reduction amount of the electricity charge obtained by power storage based on the acquired power that can be stored (FIG. 12). Step S73).
  • the drainage control unit 133 did not drain the amount calculated by subtracting the amount of electricity bill calculated in step S73 of FIG. 12 from the sum of the water bill, electricity bill, and gas bill to be used when draining. If it is cheaper than usual (branch Y in step S74 in FIG. 12), drainage is performed. As a result, the hot water storage tank 103 is drained so that the sum of the water charge to be used, the electricity charge considering the use of the power charged in the power storage unit, and the gas charge is reduced, and the power generation is continued or the system is stopped without draining. Therefore, it is useful for reducing the economic burden on the system user in the case where the fuel cell system includes an electricity storage unit.
  • the seventh embodiment is different from the processing operation of the second embodiment in that the amount drained by the drainer 12 is calculated and the amount is controlled to be divided and drained.
  • FIG. 13 is a flowchart showing a processing operation when the controller 13 according to Embodiment 2 of the present invention calculates the amount drained by the drainer 12 and controls to divide and drain the amount. .
  • the demand prediction unit 131 shown in FIG. 4 has a first predetermined temperature lower than the system stop temperature at which the hot water storage tank 103 needs to be stopped.
  • the temperature is exceeded (step S80 in FIG. 13)
  • the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period ⁇ .
  • the drainage amount calculation unit 135 calculates the amount of drainage by the drainage device 12 based on the power load supplied by the fuel cell system and the prediction of hot water supply use (step S81 in FIG. 13).
  • the charge calculation unit 132 uses the calculated amount of drainage to perform power generation by draining the hot water storage tank 103 during a predetermined period ⁇ , and when it stops without draining during the predetermined period ⁇ . In this case, the sum of the water charge, the electricity charge, and the gas charge is calculated (step S82 in FIG. 13).
  • step S84 in FIG. 13 a signal requesting drainage to the drainer 12 is sent.
  • step S86 in FIG. 13 When the drainage control unit 133 completes a certain amount of drainage obtained by dividing the drainage amount calculated in step S81 in FIG. 13 (branch Y in step S85 in FIG. 13), the drainage amount calculated in step S81 in FIG. It is confirmed whether it has been completed (step S86 in FIG. 13).
  • step S87 in FIG. 13 the drainage control unit 133 checks whether drainage needs to be continued. At this time, for example, when there is actually a hot water supply demand, it may be determined that there is no need to continue draining.
  • step 87 If the drainage control unit 133 determines in step 87 that drainage needs to be continued (YES in step S87 in FIG. 13), the drainage control unit 133 continues to transmit a signal requesting drainage to the drainer 12 (in FIG. 13). Step S84), draining is continued.
  • the drainage control unit 133 checks whether the drainage of the drainage amount calculated in step S81 of FIG. 13 is completed (step S86 of FIG. 13), and when the drainage of the drainage amount calculated in step S81 of FIG. 13, YES in step S86), and confirms whether drainage is to be continued (step S87 in FIG. 13). If drainage is not required (NO in step S87 in FIG. 13), the drainage control unit 133 performs drainage. The signal for requesting drainage to the vessel 12 is stopped (step S88 in FIG. 13), and the drainage process is terminated.
  • the prediction of the amount of drainage calculated by the controller 13 deviates, and the power load to which the fuel cell unit 10 supplies electric power is reduced more than expected, so that it is not necessary to continue the power generation, or the hot water storage tank more than expected.
  • the hot water drainage of the hot water storage tank 103 is divided and drained at regular intervals, but may be drained at regular intervals, for example.
  • Embodiment 8 Next, the power supply system in Embodiment 8 of this invention is demonstrated using drawing.
  • FIG. 1 The block diagram of the fuel cell system in the eighth embodiment is FIG. 1 similar to that in the first embodiment of the present invention, and a description thereof will be omitted.
  • FIG. 14 is a flowchart showing the processing operation of the controller 13 for controlling the drainage of the fuel cell system in the eighth embodiment.
  • the controller 13 requests the drainer 12 to drain until the temperature of the temperature detector 104 falls to a predetermined temperature.
  • the processing operation in this case will be described with reference to FIGS.
  • the charge calculation unit 132 can restart the fuel cell system in a predetermined period ⁇ based on the prediction of the power load supplied by the fuel cell system and the use of hot water supply, and the temperature of the temperature detector 104 is lower than the system stop temperature.
  • the temperature of the temperature detector 104 is lower than the system stop temperature.
  • step S92 in FIG. 14 the fuel cell unit 10 resumes power generation.
  • a request signal is transmitted (step S93 in FIG. 14), and a signal requesting drainage is transmitted to the drainage device 12 (step S94 in FIG. 14).
  • the drain controller 133 The signal for requesting drainage that has been transmitted to is stopped (step S96 in FIG. 14).
  • the hot water storage tank 103 is drained to restart the power generation so that the sum of water charges, electricity charges, and gas charges to be used is reduced, or power generation is resumed or the stopped state is continued without draining. Therefore, it is useful for reducing the economic burden on the system user. (Embodiment 9) Next, the ninth embodiment will be described.
  • the controller 13 calculates the amount drained from the hot water storage tank 103, and the drainage unit 12 is requested to drain until the drainage of the calculated drainage amount is completed. This will be described with reference to FIG. 1, FIG. 4, and FIG.
  • FIG. 15 is a flowchart showing the processing operation for controlling the drainage of the fuel cell system according to Embodiment 9 of the present invention.
  • the amount of drainage is uniquely determined when the temperature of the water supplied from the water supply 106 is constant, whereas in the flow of the ninth embodiment, the fuel cell system Differing in that it depends on the power load supplied by and the prediction of hot water usage.
  • step S100 predicts the amount of electric power and the amount of hot water used by the fuel cell system during the predetermined period ⁇ .
  • the drainage amount calculation unit 135 calculates the amount of drainage from the hot water storage tank 103 necessary for restarting the fuel cell system based on the power load supplied by the fuel cell system and the prediction of hot water supply usage (step of FIG. 15). S101).
  • the drainage control unit 133 uses the calculated drainage amount to restart the drainage of the hot water storage tank 103 and when the drainage control unit 133 continues the stopped state without draining, in each case, the water rate, the electricity rate, The sum of gas charges is calculated (step S102 in FIG. 15).
  • the drainage control unit 133 If the drainage control unit 133 subsequently determines that it is cheaper to drain and restart the hot water storage tank 103 based on the calculation result (YES in step S103 in FIG. 15), the drainage control unit 133 requests the fuel cell unit 10 to start up. A signal is transmitted (step S104 in FIG. 15), and a signal requesting drainage is transmitted to the drainage device 12 (step S105 in FIG. 15).
  • this method also generates power by draining the hot water storage tank 103 so that the sum of water charges, electricity charges, and gas charges to be used is reduced in the stopped fuel cell system. Can be resumed, or the stopped state can be continued without draining, which is useful for reducing the economic burden on the system user. (Embodiment 10) Next, the tenth embodiment will be described. In the tenth embodiment, in the stopped fuel cell system, as in the second embodiment, the controller 13 calculates the amount drained by the drainage device 12 and controls to divide the amount and drain the water. .
  • FIG. 16 is a flowchart showing a processing operation when the controller 13 according to the tenth embodiment of the present invention calculates the amount drained by the drainer 12 and controls to divide and drain the amount. .
  • the drainage amount calculation unit 135 calculates the amount of drainage by the drainer 12 based on the prediction of the power load and hot water supply used by the fuel cell system in the predetermined period ⁇ (step S111 in FIG. 16).
  • the drainage control unit 133 determines that it is cheaper to drain and restart the hot water storage tank 103 based on the calculation result (YES in step S113 in FIG. 16)
  • the drainage control unit 133 requests the fuel cell unit 10 to restart power generation.
  • a signal for requesting drainage is transmitted to the drainage device 12 (step S115 in FIG. 16).
  • step S116 of FIG. 16 When the drainage control unit 133 completes a certain amount of drainage obtained by dividing the drainage amount calculated in step S111 of FIG. 16 (YES in step S116 of FIG. 16), the drainage of the drainage amount calculated in step S111 of FIG. 16 is completed. 16 (step S117 in FIG. 16), and if drainage of the drainage amount calculated in step S111 in FIG. 16 is not completed (NO in step S117 in FIG. 16), it is confirmed whether drainage needs to be continued ( FIG. 11 step S118). At this time, for example, when there is actually a hot water supply demand, it may be determined that there is no need to continue draining.
  • the drainage control unit 133 When the drainage control unit 133 needs to continue draining (YES in step S118 in FIG. 16), the drainage control unit 133 continues to send a signal requesting drainage to the drainer 12 (step S115 in FIG. 16) and continues draining. .
  • the drainage control unit 133 checks whether the drainage of the drainage amount calculated in step S111 of FIG. 16 is completed (step S117 of FIG. 16), and the drainage of the drainage amount calculated in step S111 of FIG. 16 (YES in step S117), and confirms whether or not continuation of drainage is necessary (step S118 in FIG. 16). If continuation of drainage is not necessary (NO in step S118 in FIG. 16), the drainage device 12 is drained. The requested signal is stopped (step S119 in FIG. 16), and the drainage process is terminated.
  • the hot water drainage of the hot water storage tank 103 is divided and drained at regular intervals, but may be drained at regular intervals, for example. Absent.
  • the controller 13 sells the power generated by the fuel cell unit 10 based on the power load supplied by the fuel cell system and the prediction of hot water supply use. Or subsidies obtained by the user of the fuel cell system using the electric power generated by the fuel cell unit 10, or the amount of loss associated with the drainage of the amount of heat stored in the hot water storage tank 103, or storage It is also possible to calculate a reduction amount of the electricity charge obtained by the above and control whether to restart by performing drainage based on the above-mentioned calculation result and the sum of the water charge, electricity charge and gas charge to be used.
  • FIG. 17 is a block diagram of the fuel cell system according to Embodiment 11 of the present invention.
  • a radiator (radiator) 111 is arranged in the hot water storage tank 103 of the fuel cell system.
  • the hot water storage tank 103 is provided with a flow path from the upper part to the lower part of the hot water storage tank 103, and a pump and a radiator 111 (not shown) are provided in the flow path.
  • the controller When the heat is radiated, the controller is controlled by the controller 13 so that the hot water is supplied from the upper part to the lower part of the hot water storage tank 103. Then, the hot water is taken out from the upper part of the hot water storage tank 103 and radiates heat in the radiator 111 to decrease the temperature, and the hot water whose temperature has decreased is returned to the lower part of the hot water storage tank 103.
  • the eleventh embodiment configured as described above, since the heat of the hot water storage tank 103 is radiated by the radiator, there is no charge for water supply as in the case where the hot water is drained by the drain. Thereby, the economic burden on the system user can be further reduced.
  • the predetermined period ⁇ is set to a time from when the fuel cell system is stopped until the power generation state is restored, for example, 2 hours.
  • the present invention is not limited to this, and may be determined based on an operation plan in the installation area of the fuel cell system.
  • the fuel cell system when the fuel cell system according to the present invention drains hot water from a hot water storage tank to generate power from the fuel cell system, the water charge, electricity charge, gas used when the hot water is drained from the hot water storage tank.
  • the fuel cell By draining the fuel cell only when the sum of the charges is lower than the sum of the water, electricity, and gas charges used when stopping the fuel cell system without draining hot water from the hot water storage tank, Even when the system drains hot water from the hot water storage tank, the impact on the economy can be taken into account, so it can be applied to the use of a power supply system including a power generation device such as a fuel cell system and a hot water storage tank. it can.
  • Fuel Cell Unit 11 Hot Water Storage Unit 12 Drainage Unit (Exhaust Heat Unit) 13 Controller 100 Fuel cell 101 Heat exchanger 103 Hot water storage tank 104 Temperature detector (heat storage amount detection unit) 110 Heat recovery piping 111 Radiator (heat exhaust part) 131 Demand prediction unit 132 Charge calculation unit 133 Drainage control unit 134 Storage unit 135 Drainage amount calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system, provided with: a fuel cell unit (10), which is supplied with a fuel gas and which performs power generation accompanied by generation of heat and supplies electrical power and heat; a hot water storage unit (11) provided with a hot water storage tank (103) for storing, as hot water, heat supplied by the fuel cell unit; a heat discharge part (12) for discharging heat stored in the hot water storage tank; a heat storage amount detector (104) for detecting the amount of heat stored in the hot water storage tank; and a controller (12) for discontinuing generation of power by the fuel cell unit when the amount of heat stored in the hot water storage tank reaches an upper limit value. When the heat storage amount detector detects that the amount of heat stored is equal to or greater than a first predetermined heat storage amount, the controller calculates, on the basis of the predicted usage amount of heat in the hot water tank and the amount of electrical power supplied by the fuel cell unit, the water, electricity, and gas usage fees chargable to the system user, and performs control, on the basis of the calculated usage fees, as to whether or not to discharge heat through the heat discharge part.

Description

燃料電池システムFuel cell system
 本発明は、電力および熱を供給する燃料電池ユニットと、燃料電池ユニットから供給された熱を湯として蓄える貯湯タンクを備える貯湯ユニットを備える燃料電池システムに関するものである。 The present invention relates to a fuel cell system including a fuel cell unit that supplies electric power and heat, and a hot water storage unit that includes a hot water storage tank that stores heat supplied from the fuel cell unit as hot water.
 従来から、燃料電池セルと燃料電池セルからの排ガスと水の熱交換をするための熱交換器とを備え、電力および熱を供給する燃料電池ユニットと、燃料電池ユニットから供給された熱を湯として蓄える貯湯タンクを備える貯湯ユニットから構成される燃料電池システムが存在した。しかし、貯湯タンクの水の温度が所定温度より高くなると、燃料電池セルからの排ガスと貯湯タンクの水とで熱交換ができず、燃料電池システムは発電することができないといった問題点がある。この問題を解決するため、この種の燃料電池システムでは、例えば図18や図19に示す構成が開示されている(例えば、特許文献1および2参照)。 2. Description of the Related Art Conventionally, a fuel cell and a heat exchanger for exchanging heat between exhaust gas from the fuel cell and water, a fuel cell unit that supplies electric power and heat, and heat supplied from the fuel cell unit are heated. There has been a fuel cell system composed of a hot water storage unit equipped with a hot water storage tank. However, if the temperature of the water in the hot water storage tank becomes higher than a predetermined temperature, there is a problem that heat cannot be exchanged between the exhaust gas from the fuel cell and the water in the hot water storage tank, and the fuel cell system cannot generate power. In order to solve this problem, in this type of fuel cell system, for example, configurations shown in FIGS. 18 and 19 are disclosed (see, for example, Patent Documents 1 and 2).
 以下に、特許文献1に示されている図18の燃料電池システムについて説明する。 The fuel cell system shown in FIG. 18 shown in Patent Document 1 will be described below.
 図18に示す燃料電池システムは、燃料電池セル1と燃料電池セル1からの排ガスと水とで熱交換するための熱交換器5とを備える燃料電池装置(発電ユニット)と、熱交換後の水を貯水するための貯湯タンク17と、熱交換器5と貯湯タンク17との間で水を循環させるための循環配管16と、貯湯タンク17に貯水された水を排水するための排水装置と、熱交換器5と貯湯タンク17との間で循環される水の温度を測定するための温度センサ19と、貯湯タンク17の水を蓄水するための蓄水装置25と、温度センサにより測定される水の温度が所定時間継続して第1の所定温度以上で測定された場合に、貯湯タンク17に貯水された水を蓄水装置25に供給するように排水装置の動作を制御する制御装置13と、を備えることを特徴とする燃料電池システムである。このような燃料電池システムにおいては、温度センサ19により測定される水の温度が所定時間継続して第1の所定温度以上で測定された場合に、蓄水装置25に自動的に供給するように排水装置の動作を制御することにより、熱交換により生成されたお湯を効率よく利用することができ、運転効率(総合効率)の向上した燃料電池システムとすることができる。 The fuel cell system shown in FIG. 18 includes a fuel cell device (power generation unit) including a fuel cell 1 and a heat exchanger 5 for exchanging heat between the exhaust gas from the fuel cell 1 and water, and after heat exchange. A hot water storage tank 17 for storing water, a circulation pipe 16 for circulating water between the heat exchanger 5 and the hot water storage tank 17, and a drainage device for draining water stored in the hot water storage tank 17. The temperature sensor 19 for measuring the temperature of the water circulated between the heat exchanger 5 and the hot water storage tank 17, the water storage device 25 for storing the water in the hot water storage tank 17, and the temperature sensor. Control for controlling the operation of the drainage device so that the water stored in the hot water storage tank 17 is supplied to the water storage device 25 when the temperature of the water to be stored is measured above the first predetermined temperature for a predetermined time. And a device 13. It is a fuel cell system. In such a fuel cell system, when the temperature of the water measured by the temperature sensor 19 is measured at a first predetermined temperature or higher continuously for a predetermined time, the water storage device 25 is automatically supplied. By controlling the operation of the drainage device, hot water generated by heat exchange can be used efficiently, and a fuel cell system with improved operating efficiency (total efficiency) can be obtained.
 また、排水装置は、貯湯タンク17の水を外部に排水するための弁22を備える外部排水管21と、貯湯タンク17の水を蓄水装置に供給するための弁24を備える蓄水装置供給管23とを備えてなることを特徴とする。このような燃料電池システムにおいては、貯湯タンク17の水を外部に排水するための弁22を備える外部排水管21と、貯湯タンクの水を蓄水装置に供給するための弁24を備える蓄水装置供給管23とを備えることから、貯湯タンクの水を外部に排水するか、蓄水装置25に供給するかを容易に制御することができる。 In addition, the drainage device is provided with an external drain pipe 21 having a valve 22 for draining water from the hot water storage tank 17 to the outside, and a water storage device supply having a valve 24 for supplying water from the hot water storage tank 17 to the water storage device. And a tube 23. In such a fuel cell system, the water storage provided with the external drain pipe 21 provided with the valve 22 for draining the water of the hot water storage tank 17 outside, and the valve 24 for supplying the water of the hot water storage tank to the water storage device. Since the apparatus supply pipe 23 is provided, it is possible to easily control whether the water in the hot water storage tank is drained to the outside or supplied to the water storage apparatus 25.
 次に、特許文献2に示されている図19の燃料電池システムについて説明する。
図19に示す燃料電池システムは、貯湯タンク31と、貯湯タンク31内下部の湯水の温度を検出するタンク下部湯水温度検出手段43と、一端が貯湯タンク内下部に連通し他端が貯湯タンク内上部に連通し途中に燃料電池の発電時の排熱を回収する熱回収用熱交換器40を有する熱回収配管32と、貯湯タンク31内上部の湯水を給湯する給湯配管36と、貯湯タンク内31下部に連通して貯湯タンク31内の湯水を所定量に保つように給水する給水配管35と、貯湯タンク31内の湯水を貯湯タンク31内下部から導入して貯湯タンク内31上部に戻す方向に熱回収配管32内の湯水を循環させる貯湯タンク循環ポンプ33と、報知手段を有するリモコン42とを備えている。そして特に、タンク下部湯水温度検出手段43の温度がシステム停止させる必要があるシステム停止温度より低い所定温度を超えた場合に報知手段が利用者に所定時間内に給湯配管36からの給湯動作を行うことを促すように構成されている。このような燃料電池システムにおいては、貯湯タンク31内の湯水の使用(給湯)が少なく、貯湯タンク31内の下部の湯水の温度が上昇し、そのため、燃料電池の放熱効率が悪くなり、このまま、貯湯タンク31内の湯水の使用(給湯)がなければ、まもなく貯湯タンク31内の下部の湯水の温度が上昇してシステム停止させる必要があるシステム停止温度に達してシステムが停止するような場合に、報知手段が利用者に、所定時間内に給湯配管36からの給湯動作を行うことを促すので、所定時間内に利用者が、給湯配管36から給湯動作を行う可能性が高くなり、所定時間内に利用者が給湯配管36から給湯動作を行えば、貯湯タンク31内の湯水が減った分だけ、貯湯タンク31内下部に給水が行われて、貯湯タンク31内の下部の湯水の温度が低下するので、発電の停止を回避できる。
Next, the fuel cell system of FIG. 19 shown in Patent Document 2 will be described.
The fuel cell system shown in FIG. 19 includes a hot water storage tank 31, tank lower hot water temperature detecting means 43 for detecting the temperature of hot water in the lower part of the hot water storage tank 31, one end communicating with the lower part in the hot water storage tank, and the other end in the hot water storage tank. A heat recovery pipe 32 having a heat recovery heat exchanger 40 for recovering exhaust heat during power generation of the fuel cell in the middle of communication with the upper part, a hot water supply pipe 36 for supplying hot water in the upper part of the hot water storage tank 31, and a hot water storage tank 31 is connected to the lower part of the hot water storage tank 31 so as to keep the hot water in the hot water tank 31 at a predetermined amount, and the hot water in the hot water storage tank 31 is introduced from the lower part of the hot water tank 31 and returned to the upper part of the hot water tank 31. A hot water tank circulating pump 33 for circulating hot water in the heat recovery pipe 32 and a remote controller 42 having a notification means are provided. In particular, when the temperature of the tank lower hot water temperature detection means 43 exceeds a predetermined temperature lower than the system stop temperature at which the system needs to be stopped, the notification means performs a hot water supply operation from the hot water supply pipe 36 to the user within a predetermined time. It is configured to prompt you. In such a fuel cell system, the use of hot water in the hot water storage tank 31 (hot water supply) is small, and the temperature of the hot water in the lower part of the hot water storage tank 31 rises, so that the heat dissipation efficiency of the fuel cell deteriorates, If there is no use of hot water in the hot water storage tank 31 (hot water supply), the temperature of the hot water in the lower part of the hot water storage tank 31 will soon rise to reach the system stop temperature at which the system needs to be stopped and the system will stop. The notifying means prompts the user to perform the hot water supply operation from the hot water supply pipe 36 within a predetermined time, so that the user is more likely to perform the hot water supply operation from the hot water supply pipe 36 within the predetermined time. If the user performs hot water supply operation from the hot water supply pipe 36, water is supplied to the lower part of the hot water storage tank 31 as much as the hot water in the hot water storage tank 31 is reduced. Since the temperature of the water is lowered, it can be avoided to stop the power generation.
特開2011―49020号公報JP 2011-49020 A 特開2011―174626号公報JP 2011-174626 A
 しかしながら、図18に示す従来の構成では、温度センサ19により測定される水の温度が所定時間継続して第1の所定温度以上で測定され、かつ蓄水装置25の水位が高く、貯湯タンク17の水を蓄水装置25に供給することが出来ない場合、貯湯タンク17の湯は外部へ排水されることになる。この場合、貯湯タンク17の湯の排水に伴い無駄になる水道料金や、発電の継続に伴い増加するガス料金等、経済性への影響が考慮されずに、貯湯タンク17の湯が排水されるため、場合によっては燃料電池システムの利用者が経済的に損するという課題を有している。更に、外部に排水する貯湯タンク17の水を減らすため燃料電池コージェネレーションシステムに蓄水装置25を備えること自体も、設置面積あるいは設置容積の増加の原因となるため、市場での設置機会の低下に繋がるという課題も有している。 However, in the conventional configuration shown in FIG. 18, the temperature of the water measured by the temperature sensor 19 is continuously measured for a predetermined time at the first predetermined temperature or higher, and the water level of the water storage device 25 is high, and the hot water storage tank 17 When the water cannot be supplied to the water storage device 25, the hot water in the hot water storage tank 17 is drained to the outside. In this case, the hot water in the hot water storage tank 17 is drained without taking into consideration the economic effect such as the water charge that is wasted due to the hot water drainage of the hot water storage tank 17 and the gas charge that is increased as power generation continues. Therefore, in some cases, there is a problem that the user of the fuel cell system is economically damaged. Furthermore, the provision of the water storage device 25 in the fuel cell cogeneration system in order to reduce the water in the hot water storage tank 17 that drains to the outside also causes an increase in the installation area or the installation volume, thus reducing the installation opportunity in the market. It also has the problem of being connected to
 また、図19に示す従来の構成では、利用者が給湯動作を行わず、貯湯タンク31の温度がシステム停止温度を超える場合、燃料電池システムは停止し、発電不可状態となる。発電不可状態では、不足する電力を系統電源から購入する必要があるため、燃料電池システムの利用による経済的メリットが得られないという課題を有している。 In the conventional configuration shown in FIG. 19, when the user does not perform the hot water supply operation and the temperature of the hot water storage tank 31 exceeds the system stop temperature, the fuel cell system is stopped and the power generation is disabled. In the power generation disabled state, it is necessary to purchase insufficient power from the system power supply, and thus there is a problem that the economic merit by using the fuel cell system cannot be obtained.
 本発明は、従来の課題を解決するもので、経済性を考慮しつつ貯湯タンクの熱を排熱することが可能な燃料電池システムを提供することを目的とする。 This invention solves the conventional subject, and it aims at providing the fuel cell system which can exhaust the heat of a hot water storage tank, considering economical efficiency.
 従来の課題を解決するために、本発明の燃料電池システムは、燃料ガスが供給されて発熱を伴う発電を行い、電力および熱を供給する燃料電池ユニットと、燃料電池ユニットから供給された熱を湯として蓄える貯湯タンクを備えた貯湯ユニットと、貯湯タンクに蓄えられた熱を排熱する排熱部と、貯湯タンクの蓄熱量を検出する蓄熱量検出部と、貯湯タンクの蓄熱量が上限値に到達すると燃料電池ユニットの発電を停止する制御部と、を備え、制御部は、蓄熱量検出部が第1所定蓄熱量以上であることを検出した場合に、燃料電池ユニットが供給する電力量および貯湯タンクの熱の使用量の予測に基づいて、システム利用者の水道、電気、及びガスの使用料金を算出し、算出した使用料金に基づいて、排熱部による排熱を行うか否かを制御する。 In order to solve the conventional problems, a fuel cell system according to the present invention generates power with heat generated by supplying fuel gas, and supplies a fuel cell unit for supplying electric power and heat, and heat supplied from the fuel cell unit. Hot water storage unit equipped with a hot water storage tank that stores hot water, an exhaust heat unit that exhausts heat stored in the hot water storage tank, a heat storage amount detection unit that detects the amount of heat stored in the hot water tank, and the heat storage amount of the hot water tank A control unit that stops the power generation of the fuel cell unit when reaching the value, and when the control unit detects that the heat storage amount detection unit is equal to or greater than the first predetermined heat storage amount, the amount of power supplied by the fuel cell unit Whether or not the system user's water, electricity, and gas usage charges are calculated based on the prediction of heat usage in the hot water storage tank, and whether or not heat is discharged by the exhaust heat unit based on the calculated usage charges Control That.
 これによって、貯湯タンクから燃料電池ユニットへ供給される水の温度が高く、燃料電池システムが発電不可状態になることを回避するために、貯湯タンクから排熱する必要がある場合は、貯湯タンクから排熱する際の、使用する水道料金、電気料金、ガス料金の総和が、貯湯タンクから排熱せずに燃料電池システムを発電停止させる際の、使用する水道料金、電気料金、ガス料金の総和より安くなる場合にのみ、排水を行うことができる。 As a result, if the temperature of water supplied from the hot water storage tank to the fuel cell unit is high and it is necessary to exhaust heat from the hot water storage tank in order to avoid the fuel cell system from being in a power generation disabled state, The sum of water charges, electricity charges, and gas charges used when exhausting heat is the sum of water charges, electricity charges, and gas charges used when stopping the power generation of the fuel cell system without exhausting heat from the hot water storage tank. Only when it is cheaper can it be drained.
 本発明の燃料電池システムは、貯湯タンクの温度が上がり貯湯タンクの排熱を行わなければ燃料電池システムが発電不可状態となる場合に、燃料電池システムの利用者の使用する水道料金、電気料金、ガス料金の総和が安くなるように貯湯タンクを排熱し発電する、または排熱せずシステムを停止することで、システム利用者の使用する水道料金、電気料金、ガス料金の経済的負担を低減することができる。また、これにより、貯湯タンクの排熱による経済的損失を低減できるため、蓄水装置を備える必要が無く、市場での設置機会の増加に繋がる。 In the fuel cell system of the present invention, when the temperature of the hot water storage tank rises and the hot water storage tank does not perform exhaust heat, the fuel cell system becomes incapable of generating power. Reduce the economic burden of water charges, electricity charges, and gas charges used by system users by exhausting heat from the hot water storage tank and generating power or shutting down the system without exhausting heat so that the total gas charge is reduced. Can do. Moreover, since this can reduce the economic loss due to the exhaust heat of the hot water storage tank, it is not necessary to provide a water storage device, leading to an increase in installation opportunities in the market.
本発明の実施の形態1における燃料電池システムのブロック図である。1 is a block diagram of a fuel cell system in Embodiment 1 of the present invention. FIG. 図1の燃料電池システムの制御器の構成を示すブロック図である。It is a block diagram which shows the structure of the controller of the fuel cell system of FIG. 図2の制御器の処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the controller of FIG. 本発明の実施の形態2における燃料電池システムの制御器の構成を示すブロック図である。It is a block diagram which shows the structure of the controller of the fuel cell system in Embodiment 2 of this invention. 図4の制御器の処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the controller of FIG. 図5の処理動作において発電継続が得である場合の燃料電池システムの需要予測及びユーザ負担額の一例を示すグラフである。It is a graph which shows an example of the demand forecast of a fuel cell system in case the continuation of electric power generation is obtained in the processing operation of FIG. 5, and a user burden. 図5の処理動作において発電停止が得である場合の燃料電池システムの需要予測及びユーザ負担額の一例を示すグラフである。It is a graph which shows an example of the demand forecast of a fuel cell system when a power generation stop is obtained in the processing operation of FIG. 5, and a user burden. 図5の処理動作において発電継続が得であると予測した場合に燃料電池システムの需要変動に伴うユーザ負担額の一例を示すグラフである。It is a graph which shows an example of the user burden amount accompanying the demand fluctuation of a fuel cell system, when it is estimated that continuation of power generation is obtained in the processing operation of FIG. 本発明の実施の形態3における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 3 of this invention. 本発明の実施の形態4における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 4 of this invention. 本発明の実施の形態5における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 5 of this invention. 本発明の実施の形態6における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 6 of this invention. 本発明の実施の形態7における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 7 of this invention. 本発明の実施の形態8における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 8 of this invention. 本発明の実施の形態9における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 9 of this invention. 本発明の実施の形態10における燃料電池システムの処理動作を示すフロー図である。It is a flowchart which shows the processing operation of the fuel cell system in Embodiment 10 of this invention. 本発明の実施の形態11における燃料電池システムのブロック図である。It is a block diagram of the fuel cell system in Embodiment 11 of this invention. 特許文献1の燃料電池システムのブロック図である。1 is a block diagram of a fuel cell system of Patent Document 1. FIG. 特許文献2の燃料電池システムのブロック図である。2 is a block diagram of a fuel cell system of Patent Document 2. FIG.
 第1の発明の燃料電池システムは、燃料ガスが供給されて発熱を伴う発電を行い、電力および熱を供給する燃料電池ユニットと、燃料電池ユニットから供給された熱を湯として蓄える貯湯タンクを備えた貯湯ユニットと、貯湯タンクに蓄えられた熱を排熱する排熱部と、貯湯タンクの蓄熱量を検出する蓄熱量検出部と、貯湯タンクの蓄熱量が上限値に到達すると燃料電池ユニットの発電を停止する制御部と、を備え、制御部は、蓄熱量検出部が第1所定蓄熱量以上であることを検出した場合に、燃料電池ユニットが供給する電力量および貯湯タンクの熱の使用量の予測に基づいて、システム利用者の水道、電気、及びガスの使用料金を算出し、算出した使用料金に基づいて、排熱部による排熱を行うか否かを制御する。 A fuel cell system according to a first aspect of the present invention includes a fuel cell unit that supplies power and heat by supplying fuel gas and generates heat, and a hot water storage tank that stores the heat supplied from the fuel cell unit as hot water. A hot water storage unit, a heat exhaust section that exhausts heat stored in the hot water storage tank, a heat storage amount detection section that detects the heat storage amount of the hot water storage tank, and a fuel cell unit A controller that stops power generation, and the controller uses the amount of power supplied by the fuel cell unit and heat of the hot water storage tank when the heat storage amount detection unit detects that the first heat storage amount is equal to or greater than the first predetermined heat storage amount. Based on the amount prediction, the system user calculates usage charges for water, electricity, and gas, and controls whether or not to exhaust heat by the exhaust heat unit based on the calculated usage charges.
 これにより、貯湯タンクの蓄熱量が第1所定蓄熱量以上の状態となった場合に、供給電力量および給湯量の予測に基づいて、システム利用者の水道、電気、ガスの使用料金を算出するので、貯湯タンクの熱を排熱し発電するか、排熱せずシステムを停止するかの一方を選択することができ、システム利用者の経済的負担を低減することができる。また、貯湯タンクの熱の排熱による経済的損失を低減できるため、蓄水装置を備える必要が無く、市場での設置機会の増加に有用である。ここで排熱部は、例えば貯湯タンクに蓄えられた湯を排水することにより排熱してもよく、ラジエータにより貯湯タンクの熱を放熱することにより排熱してもよい。ラジエータにより放熱する場合は、湯を排水する場合のように水道料金が発生することはないのでシステム利用者の経済的負担をより低減することができる。 As a result, when the amount of heat stored in the hot water storage tank is equal to or greater than the first predetermined amount of stored heat, the system user's usage fees for water, electricity, and gas are calculated based on the prediction of the amount of supplied power and the amount of hot water. Therefore, it is possible to select one of exhausting heat from the hot water storage tank to generate power, or stopping the system without exhausting heat, and the economic burden on the system user can be reduced. Moreover, since it is possible to reduce the economic loss due to the exhaust heat of the hot water storage tank, it is not necessary to provide a water storage device, which is useful for increasing installation opportunities in the market. Here, the exhaust heat unit may exhaust heat by, for example, draining hot water stored in the hot water storage tank, or may exhaust heat by dissipating heat of the hot water storage tank by a radiator. When heat is radiated by the radiator, water charges are not generated unlike the case of draining hot water, so that the economic burden on the system user can be further reduced.
 第2の発明は、第1の発明において、蓄熱量検出部は、貯湯タンクの湯の温度を検出するものであって、制御部は、蓄熱量検出部が第1所定温度以上であることを検出した場合に、所定期間において燃料電池ユニットが供給する電力量および給湯使用量を予測する予測部と、所定期間における予測に基づいて、所定期間において排熱部による排熱を行った場合の、水道、電気、及びガスの使用料金の総和を算出するとともに、所定期間において排熱を行わなかった場合の水道、電気、及びガスの使用料金の総和を算出する使用料金算出部と、排熱を行った場合の使用料金と排熱を行わなかった場合の使用料金とを比較し、排熱を行った場合の使用料金が排熱を行わなかった場合の使用料金より安くなる場合には、排熱を行う排熱制御部とを備える。 In a second aspect based on the first aspect, the heat storage amount detection unit detects the temperature of hot water in the hot water storage tank, and the control unit indicates that the heat storage amount detection unit is equal to or higher than the first predetermined temperature. When detected, a prediction unit that predicts the amount of power and hot water supply used by the fuel cell unit in a predetermined period, and the heat exhausted by the heat exhaust unit in a predetermined period based on the prediction in the predetermined period, Calculate the sum of the usage charges for water, electricity, and gas, and the usage fee calculation unit that calculates the sum of the usage charges for water, electricity, and gas when exhaust heat is not used for a specified period Compare the usage fee when the exhaust heat is used and the usage fee when the exhaust heat is not performed.If the usage fee when the exhaust heat is exhausted is lower than the usage fee when the exhaust heat is not exhausted, An exhaust heat control unit that heats Obtain.
 これにより、貯湯タンクの湯が高温状態となった場合に、所定期間における供給電力量及び給湯使用量の予測に基づいて、所定期間において排熱を行った場合にシステム利用者の水道、電気、及びガスの使用料金の総和が安くなる場合に貯湯タンクの排熱を行うので、システム利用者の経済的負担を低減することができる。ここで所定期間とは例えば、燃料電池システムが停止してから再び発電状態となるまでの時間であってもよい。 As a result, when the hot water in the hot water storage tank is in a high temperature state, the system user's water supply, electricity, In addition, when the sum of the gas usage charges is reduced, the hot water storage tank is exhausted, so that the economic burden on the system user can be reduced. Here, the predetermined period may be, for example, the time from when the fuel cell system is stopped until the power generation state is restored.
 第3の発明は、第2の発明において、制御部は、蓄熱量検出部の検出する温度が第1所定温度よりも低い第2所定温度以下になるように、排熱を制御する。これにより、貯湯タンクの湯の温度をシステムの継続可能な温度まで下げることができるので、システムの停止を回避することができる。 In a third aspect based on the second aspect, the control unit controls the exhaust heat so that the temperature detected by the heat storage amount detection unit is equal to or lower than a second predetermined temperature lower than the first predetermined temperature. Thereby, since the temperature of the hot water in the hot water storage tank can be lowered to a temperature at which the system can be continued, it is possible to avoid the system from being stopped.
 第4の発明は、第2の発明において、制御部は、燃料電池ユニットが所定期間において供給する電力量及び給湯使用量の予測に基づいて排熱部が排熱する量を算出し、当該算出した排熱量を排熱するように制御する。これにより、供給電力量及び給湯使用量の予測に基づいて、貯湯タンクの湯の温度をシステムの継続可能な温度まで効率的に下げることができるので、システムの停止を回避することができる。 In a fourth aspect based on the second aspect, the control unit calculates an amount of heat exhausted by the exhaust heat unit based on prediction of an amount of electric power and hot water supply usage that the fuel cell unit supplies in a predetermined period, and calculates the calculation It controls so that the amount of exhausted heat is exhausted. As a result, the temperature of the hot water in the hot water storage tank can be efficiently lowered to a temperature at which the system can be continued based on the prediction of the amount of supplied power and the amount of hot water used, so that the system can be prevented from stopping.
 第5の発明は、第4の発明において、制御部は、算出した排熱量を分割して排熱するよう制御する。これにより、制御部が算出した排熱量の予測が、予測できない水道、電気、ガスの使用によりずれた場合にも、その量を分割して排熱することで、予測のずれによる排熱の無駄を低減することができるため、システム利用者の経済的負担の低減に有用である。 In a fifth aspect based on the fourth aspect, the control unit performs control so that the calculated exhaust heat amount is divided and exhausted. As a result, even if the prediction of the amount of exhaust heat calculated by the control unit deviates due to unpredictable use of water, electricity, or gas, the amount is exhausted by dividing the amount and exhausting waste heat due to mispredictions. Therefore, it is useful for reducing the economic burden on the system user.
 第6の発明は、第2の発明において、制御部は、排熱を行った際の、水道、電気、及びガスの使用料金の総和から燃料電池ユニットで発電した電力を売却して得られる金額を差し引いた値が、排熱を行わなかった際より安くなる場合には、排熱を行うようにしてもよい。これにより、水道の使用料金、売却した電気料金を考慮した電気の使用料金、およびガス使用料金の総和が安くなるように貯湯タンクの排熱を制御することができるので、燃料電池ユニットで発電した電力を売却できる地域における、システム利用者の経済的負担の低減に有用である。 The sixth invention is the amount obtained by selling the electric power generated by the fuel cell unit from the sum of the usage charges for water, electricity and gas when exhaust heat is exhausted in the second invention. When the value obtained by subtracting is cheaper than when the exhaust heat is not performed, the exhaust heat may be performed. As a result, the exhaust heat of the hot water storage tank can be controlled so that the sum of the water usage fee, the electricity usage fee considering the sold electricity fee, and the gas usage fee can be reduced. This is useful for reducing the economic burden on system users in areas where power can be sold.
 第7の発明は、第2の発明において、制御部は、排熱を行った際の、水道、電気、及びガスの使用料金の総和から燃料電池ユニットが発電した電力を使用することで得られる補助金を差し引いた金額が、排熱を行わなかった際より安くなる場合には、排熱を行うようにしてもよい。 According to a seventh aspect, in the second aspect, the control unit is obtained by using the electric power generated by the fuel cell unit from the sum of usage charges of water, electricity, and gas when exhaust heat is performed. If the amount of money after subtracting the subsidy is cheaper than when the exhaust heat is not performed, the exhaust heat may be performed.
 これにより、水道の使用料金、発電電力の使用による補助金を考慮した電気の使用料金、およびガスの使用料金の総和が安くなるように貯湯タンクの排熱を制御することができるので、燃料電池ユニットで発電した電力を使用することで補助金が得られる地域における、システム利用者の経済的負担の低減に有用である。 As a result, the exhaust heat of the hot water storage tank can be controlled so that the sum of the water usage fee, the electricity usage fee considering the subsidies for using the generated power, and the gas usage fee can be reduced. This is useful for reducing the economic burden on system users in areas where subsidies can be obtained by using the power generated by the unit.
 第8の発明は、第2の発明において、制御部は、排熱を行った際の、水道、電気、及びガスの使用料金の総和に排熱に伴い無駄になる貯湯タンクの熱量の損失金額を足した金額が、排熱を行わなかった際より安くなる場合には、排熱を行うようにしてもよい。 In an eighth aspect based on the second aspect, the controller is configured to reduce the amount of heat loss in the hot water storage tank that is wasted due to exhaust heat in the sum of usage charges for water, electricity, and gas when exhaust heat is performed. If the amount of money is less than when the exhaust heat is not performed, the exhaust heat may be performed.
 これにより、水道の使用料金、電気の使用料金、および貯湯タンクの排熱に伴い無駄になる熱量に使用した排ガスを考慮したガスの使用料金の総和が安くなるように貯湯タンクの排熱を制御するので、システム利用者の経済的負担の低減および、経済的負担算出時の精度の向上に有用である。 As a result, the exhaust heat of the hot water storage tank is controlled so that the sum of the usage fee of the gas, considering the exhaust gas used for the amount of heat that is wasted due to the waste heat of the hot water storage tank, electricity usage fee, and hot water storage tank is reduced. Therefore, it is useful for reducing the economic burden on the system user and improving the accuracy when calculating the economic burden.
 第9の発明は、第2の発明において、燃料電池ユニットの発電電力を蓄える蓄電ユニットを更に備え、制御部は、さらに、排熱を行った際の、水道、電気、及びガスの使用料金の総和から蓄電ユニットへの蓄電によって得られる電気の使用料金の削減額を差し引いた金額が、排熱を行わなかった際より安くなる場合には、排熱を行うようにしてもよい。 A ninth invention further comprises a power storage unit for storing the generated power of the fuel cell unit according to the second invention, wherein the control unit further determines the usage charges of water, electricity and gas when exhaust heat is performed. If the amount obtained by subtracting the amount of reduction in the electricity usage fee obtained by storing electricity in the electricity storage unit from the sum is lower than when the exhaust heat is not performed, the exhaust heat may be performed.
 これにより、水道、蓄電電力の使用を考慮した電気、およびガスの使用料金の総和が安くなるように貯湯タンクの排熱を制御するので、燃料電池システムに蓄電ユニットを備えた場合における、システム利用者の経済的負担の低減に有用である。 As a result, the exhaust heat of the hot water storage tank is controlled so that the total amount of electricity and gas usage considering the use of water supply, stored electricity is reduced, so the system usage when the fuel cell system is equipped with a storage unit This is useful for reducing the economic burden on the user.
 第10の発明は、第1~第9のいずれかの発明において、制御部は、燃料電池ユニットの停止中に、発電を再開するよう制御するとともに、排熱部にて排熱するよう制御してもよい。 In a tenth aspect based on any one of the first to ninth aspects, the control unit controls to restart power generation while the fuel cell unit is stopped, and controls to exhaust heat in the exhaust heat unit. May be.
 これにより、燃料電池システムの停止時においても、水道、電気、ガスの使用料金の総和が安くなるように貯湯タンクの排熱を制御するので、システム利用者の経済的負担の低減に有用である。 As a result, even when the fuel cell system is stopped, the exhaust heat of the hot water storage tank is controlled so that the sum of the usage charges for water, electricity and gas is reduced, which is useful for reducing the economic burden on the system user. .
 (実施の形態1)
 以下に、本発明の実施の形態1における燃料電池システムについて、詳細に説明する。
(Embodiment 1)
Hereinafter, the fuel cell system according to Embodiment 1 of the present invention will be described in detail.
 図1は、本発明の実施の形態1における燃料電池システムのブロック図である。 FIG. 1 is a block diagram of a fuel cell system according to Embodiment 1 of the present invention.
 図1に示すように、燃料電池システムは、燃料ガスを供給されて発熱を伴う発電を行い、電力及び熱を供給する燃料電池ユニット10と、燃料電池ユニット10から供給された熱を湯として蓄える貯湯タンク103を有する貯湯ユニット11と、貯湯タンク103に蓄えられた熱を排熱する排熱部12と、貯湯タンク103の蓄熱量を検出する蓄熱量検出部104と、貯湯タンク103の蓄熱量が上限値に到達すると燃料電池ユニット10の発電を停止する制御器13と、を備える。 As shown in FIG. 1, the fuel cell system generates power with heat generation by being supplied with fuel gas, and stores the fuel cell unit 10 that supplies power and heat, and the heat supplied from the fuel cell unit 10 as hot water. A hot water storage unit 11 having a hot water storage tank 103, a heat removal unit 12 that exhausts heat stored in the hot water storage tank 103, a heat storage amount detection unit 104 that detects a heat storage amount of the hot water storage tank 103, and a heat storage amount of the hot water storage tank 103 Includes a controller 13 that stops the power generation of the fuel cell unit 10 when the value reaches the upper limit.
 燃料電池ユニット10は、燃料ガスを供給されて発熱を伴う発電を行い、電力及び熱を供給する燃料電池セル100と、燃料電池セル100からの排ガスと水の熱交換をするための熱交換器101と、熱交換器101を有する熱回収配管110に貯湯タンク103の水を循環させる貯湯循環ポンプ102を備える。燃料電池ユニット10は、図示しない電力負荷へ電力を供給し、また熱交換器101を用いて貯湯タンク103の水に熱を供給する。 The fuel cell unit 10 is supplied with fuel gas, generates electricity with heat generation, supplies power and heat, and a heat exchanger for exchanging heat between exhaust gas and water from the fuel cell 100. 101 and a hot water storage circulation pump 102 for circulating the water in the hot water storage tank 103 in a heat recovery pipe 110 having a heat exchanger 101. The fuel cell unit 10 supplies power to a power load (not shown), and supplies heat to the water in the hot water storage tank 103 using the heat exchanger 101.
 貯湯ユニット11は、熱交換器101を介して燃料電池ユニット10から供給される熱を湯として蓄える貯湯タンク103と、貯湯タンク103の蓄熱量を検出する蓄熱量検出部104と、給湯配管108から貯湯タンク103の給湯動作を行う給湯器105と、給水配管109から貯湯タンク103の給水動作を行う給水器106を備え、貯湯タンク103の湯を所定量に保つ。本実施の形態では、蓄熱量検出部104は、貯湯タンク103の湯の温度を検出する温度検出器で構成される。 The hot water storage unit 11 includes a hot water storage tank 103 that stores heat supplied from the fuel cell unit 10 through the heat exchanger 101 as hot water, a heat storage amount detection unit 104 that detects a heat storage amount of the hot water storage tank 103, and a hot water supply pipe 108. A hot water heater 105 that performs a hot water supply operation of the hot water storage tank 103 and a water heater 106 that performs a water supply operation of the hot water storage tank 103 from the water supply pipe 109 are provided, and the hot water in the hot water storage tank 103 is kept at a predetermined amount. In the present embodiment, the heat storage amount detection unit 104 is configured by a temperature detector that detects the temperature of hot water in the hot water storage tank 103.
 排熱部111は、貯湯タンク103に蓄えられた熱を排熱する。排熱により貯湯タンク103の蓄熱量が低下するので燃料電池システムの停止を回避することができる。本実施の形態では、排熱部111は、貯湯タンク103の湯を外部へ捨てるために設けられた排水配管107から、貯湯タンク103の湯を排水する排水器で構成される。 The exhaust heat unit 111 exhausts the heat stored in the hot water storage tank 103. Since the amount of heat stored in the hot water storage tank 103 decreases due to the exhaust heat, it is possible to avoid stopping the fuel cell system. In the present embodiment, the exhaust heat unit 111 is configured by a drain that drains the hot water in the hot water storage tank 103 from the drain pipe 107 provided to throw away the hot water in the hot water storage tank 103 to the outside.
 制御器13は、温度検出器104により検出された貯湯タンク103の湯の温度に関するデータを受信するように構成されており、温度検出器104が、貯湯タンク103の湯の温度が第1所定温度以上であることを検出した場合に、燃料電池ユニット10が供給する電力量および貯湯タンク103の熱の使用量の予測に基づいて、システム利用者の水道、電気、及びガスの使用料金を算出し、算出した使用料金に基づいて、排水器12による排水を行うか否かを制御する。 The controller 13 is configured to receive data related to the temperature of the hot water in the hot water storage tank 103 detected by the temperature detector 104, and the temperature detector 104 determines that the temperature of the hot water in the hot water storage tank 103 is the first predetermined temperature. When it is detected that the above is true, the system user's usage charges for water, electricity, and gas are calculated based on the prediction of the amount of power supplied by the fuel cell unit 10 and the amount of heat used in the hot water storage tank 103. Based on the calculated usage fee, it is controlled whether or not the drainage by the drainage device 12 is performed.
 図2は、図1の制御器13の構成を示すブロック図である。図2に示すように、制御器13は、需要予測部131と、ユーザの負担額を算出する料金算出部132と、排水するか否かを判定する排水制御部133と、記憶部134とを備える。制御器13は、例えば、マイクロコントローラ、PLC(programmable logic controller)等の演算装置で構成され、需要予測部131、料金算出部132、及び排水制御部133等は、上記演算装置においてそれに内蔵されているプログラムが実行されることにより実現される機能ブロックであり、記憶部134はマイクロコントローラ等の内部メモリ等で構成される。記憶部134には、例えば現在及び過去の需要データ、燃料電池システムの運転計画等の情報が記憶されている。 FIG. 2 is a block diagram showing the configuration of the controller 13 of FIG. As shown in FIG. 2, the controller 13 includes a demand prediction unit 131, a charge calculation unit 132 that calculates a user's burden, a drainage control unit 133 that determines whether or not to drain, and a storage unit 134. Prepare. For example, the controller 13 includes a calculation device such as a microcontroller or PLC (programmable logic controller), and the demand prediction unit 131, the charge calculation unit 132, the drainage control unit 133, and the like are incorporated in the calculation device. The storage unit 134 includes an internal memory such as a microcontroller. The storage unit 134 stores information such as current and past demand data, an operation plan of the fuel cell system, and the like.
 需要予測部131は、温度検出器104が第1所定温度以上であることを検出した場合に、所定期間において燃料電池ユニット10が供給する電力量および給湯使用量を予測する。 When the temperature detector 104 detects that the temperature detector 104 is equal to or higher than the first predetermined temperature, the demand prediction unit 131 predicts the amount of power and hot water usage used by the fuel cell unit 10 in a predetermined period.
 料金算出部132は、需要予測部131が予測した予測量に基づいて、所定期間において排水器12による排水を行った場合の、水道、電気、及びガスの使用料金の総和を算出するとともに、所定期間において排水を行わなかった場合の水道、電気、及びガスの使用料金の総和を算出する。 The charge calculation unit 132 calculates the sum of the usage charges of water, electricity, and gas when drainage is performed by the drainage device 12 during a predetermined period based on the predicted amount predicted by the demand prediction unit 131, and the predetermined amount Calculate the sum of usage charges for water, electricity, and gas when there is no drainage during the period.
 排水制御部133は、排水を行った場合の使用料金と排水を行わなかった場合の使用料金とを比較し、排水を行った場合の使用料金が排水を行わなかった場合の使用料金より安くなる場合には、排水を行う。 The drainage control unit 133 compares the usage fee when draining is performed with the usage fee when draining is not performed, and the usage fee when draining is lower than the usage fee when draining is not performed. In case, drain.
 以下に、本実施の形態1の燃料電池システムの排水を制御する制御器13の処理動作について、図1~図3を用いて説明する。 Hereinafter, the processing operation of the controller 13 for controlling the drainage of the fuel cell system according to the first embodiment will be described with reference to FIGS.
 図3は、本発明の実施の形態1における燃料電池システムの排水を制御する制御器13の処理動作を示すフロー図である。 FIG. 3 is a flowchart showing the processing operation of the controller 13 that controls the drainage of the fuel cell system according to Embodiment 1 of the present invention.
 はじめに、本実施の形態1の燃料電池システムの排水を制御する制御器13の処理動作において、制御器13が温度検出器104の温度が所定温度に下がるまで排水器12に排水を要求する場合について図1~図3を用いて説明する。 First, in the processing operation of the controller 13 that controls the drainage of the fuel cell system according to the first embodiment, the controller 13 requests the drainer 12 to drain until the temperature of the temperature detector 104 falls to a predetermined temperature. This will be described with reference to FIGS.
 需要予測部131は、温度検出器104において検出される、貯湯タンク103の湯の温度が、システムを停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図3のステップS20の分岐Y)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。ここで所定期間αは、本実施の形態では、例えば、燃料電池システムが停止してから再び発電状態となるまでの時間に設定される。また、燃料電池システムが供給する電力量および給湯利用の予測には、例えば、現在の電力量および給湯使用が継続するという予測、或いは過去のデータに基づく予測を用いてもよい。 When the temperature of the hot water in the hot water storage tank 103 detected by the temperature detector 104 exceeds the first predetermined temperature lower than the system stop temperature at which the system needs to be stopped (step in FIG. 3) The branch Y) of S20 predicts the amount of power and hot water usage used by the fuel cell system during the predetermined period α. Here, in the present embodiment, for example, the predetermined period α is set to a time from when the fuel cell system is stopped until the power generation state is resumed. In addition, for example, prediction based on past data may be used for prediction of the amount of power supplied by the fuel cell system and use of hot water, for example, the current amount of power and use of hot water.
 次に、料金算出部132は、燃料電池システムが供給する電力量および給湯使用量の予測に基づいて、所定期間αにおいて温度検出器104の温度が、第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるよう貯湯タンク103の排水を行うことで発電継続した場合と、所定期間αにおいて排水を行わずシステム停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図3のステップS21)。 Next, the charge calculation unit 132 continues the system operation in which the temperature of the temperature detector 104 is lower than the first predetermined temperature in the predetermined period α based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used. When the power generation is continued by draining the hot water storage tank 103 so that the temperature falls to the second predetermined temperature possible, and when the system is shut down without draining during the predetermined period α, the water charge, electricity charge, gas in each case The sum of the charges is calculated (step S21 in FIG. 3).
 その後、排水制御部133は、算出結果に基づき、排水を行った場合の使用料金と排水を行わなかった場合の使用料金とを比較し、排水を行った場合の使用料金が排水を行わなかった場合の使用料金より安くなる場合には、温度検出器104の温度が第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるように排水を行う。排水制御部133は、貯湯タンク103の排水を行い発電継続したほうが安いと判断した場合(図3のステップS22の分岐Y)は、排水器12に排水を要求する信号を送信する(図3のステップS23)。そして、排水制御部133は、温度検出器104の温度が第2の所定温度まで下がった場合(図3のステップS24でYES)は、排水器12に送信していた排水を要求する信号を停止する(図3のステップS25)。一方、排水制御部133は、ステップ22において貯湯タンク103の排水を行い発電継続したほうが高い(正確には、安くない)と判断した場合には燃料電池ユニット10に発電を停止する信号を送信する(図3のステップS22でNO)。これにより、発電中の燃料電池システムにおいて、システム利用者の使用する水道料金、電気料金、ガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステムを停止することができるので、システム利用者の経済的負担を低減することができる。 After that, the drainage control unit 133 compares the usage fee when draining is performed with the usage fee when draining is not performed based on the calculation result, and the usage fee when draining is not drained. In the case where the price is lower than the usage fee, the drainage is performed so that the temperature of the temperature detector 104 falls below the first predetermined temperature to a second predetermined temperature at which the system operation can be continued. When the drainage control unit 133 determines that it is cheaper to drain the hot water storage tank 103 and continue power generation (branch Y in step S22 in FIG. 3), the drainage control unit 133 transmits a signal requesting drainage to the drainer 12 (FIG. 3). Step S23). Then, when the temperature of the temperature detector 104 falls to the second predetermined temperature (YES in step S24 in FIG. 3), the drain control unit 133 stops the signal requesting drain that has been transmitted to the drain 12 (Step S25 in FIG. 3). On the other hand, the drainage control unit 133 transmits a signal to stop the power generation to the fuel cell unit 10 when it is determined in step 22 that the hot water storage tank 103 is drained and power generation is continued (highly, not cheap). (NO in step S22 of FIG. 3). As a result, in the fuel cell system during power generation, the hot water storage tank 103 is drained so that the sum of water charges, electricity charges, and gas charges used by system users is reduced and power generation is continued, or the system is not drained. Since it can be stopped, the economic burden on the system user can be reduced.
 また、これにより、貯湯タンクの排水による経済的損失を低減できるため、蓄水装置を備える必要が無く、市場での設置機会の増加に有用である。ここで、図3のステップS21において算出する、排水に伴い増加する水道料金について説明する。排水に伴い増加する水道料金は、温度検出器104の温度が第2の所定温度まで下がる際に排水する量から決まるが、その排水量は給水器106から給水される水の温度に依存する。そのため、例えば、一定量排水するとして、増加する水道料金を算出する、或いは、給水器106もしくは給水配管109もしくはその近傍に、給水される水の温度を測定する図示しない第2の温度検出器を設け、第2の温度検出器で検出された温度に基づいて貯湯タンク103の排水量を算出し、増加する水道料金を算出してもかまわない。また、電気料金やガス料金を算出する際(図3のステップS21)は、燃料電池システム利用者が入力した単位電力、単位ガスあたりの料金、或いはネット等から取得した単位電力、単位ガスあたりの料金を用いて予測を基に算出してもかまわない。なお、本実施の形態1における水道料金、電気料金、ガス料金の算出方法は、実施の形態1に限定されない。 Also, this can reduce the economic loss due to the drainage of the hot water storage tank, so there is no need to provide a water storage device, which is useful for increasing installation opportunities in the market. Here, the water charge which increases with drainage calculated in step S21 of FIG. 3 will be described. The water charge that increases with drainage is determined by the amount drained when the temperature of the temperature detector 104 falls to the second predetermined temperature, but the amount of drainage depends on the temperature of the water supplied from the water supply 106. Therefore, for example, if a certain amount of water is drained, a second water temperature detector (not shown) that calculates an increasing water charge or measures the temperature of the supplied water at or near the water supply 106 or the water supply pipe 109 is provided. It is also possible to calculate the drainage amount of the hot water storage tank 103 based on the temperature detected by the second temperature detector and calculate the increasing water charge. Further, when calculating the electricity charge or gas charge (step S21 in FIG. 3), the unit power input by the user of the fuel cell system, the charge per unit gas, or the unit power obtained from the net or the like, per unit gas You may calculate based on the forecast using the charge. In addition, the calculation method of the water bill, the electricity bill, and the gas bill in the first embodiment is not limited to the first embodiment.
 なお、本実施の形態1で示した燃料電池システムにおいて、貯湯タンク103内に、下から上に向かって貯湯水の温度が高くなる当該貯湯水の温度プロファイル(以下、積層という)が生まれる場合は、図1に示すように、温度検出器104および熱回収配管110が貯湯タンク103の下部にあることが望ましい。これにより、熱交換器101へ、熱交換に有利な温度の低い湯を供給することができる。また、貯湯タンク103内に積層が生まれる場合は、図1に示すように、排水器12が貯湯タンク103の上部から出湯することが望ましい。これにより、貯湯タンク103内の温度の高い湯を捨てることができるため、貯湯タンク103の湯の温度の低下に有利であり、排水量の低減による水道料金の低減に有用である。 In the fuel cell system shown in the first embodiment, in the hot water storage tank 103, when a temperature profile (hereinafter referred to as “lamination”) of the hot water stored in the hot water stored in the hot water increases from bottom to top is generated. As shown in FIG. 1, it is desirable that the temperature detector 104 and the heat recovery pipe 110 are located below the hot water storage tank 103. Thereby, hot water with a low temperature advantageous for heat exchange can be supplied to the heat exchanger 101. Further, in the case where a stack is created in the hot water storage tank 103, it is desirable that the drainage device 12 discharges hot water from the upper part of the hot water storage tank 103 as shown in FIG. 1. Accordingly, hot water having a high temperature in the hot water storage tank 103 can be discarded, which is advantageous for lowering the temperature of the hot water in the hot water storage tank 103, and is useful for reducing water bills by reducing the amount of drainage.
 また、排水器12は、貯湯タンク103の下部にある熱回収配管110の分岐点(図1の点A)から分岐された排水管を通じて、貯湯タンク103の湯を排水するような構成であってもよい。その場合は、湯の温度を検知する温度検出器104は熱回収配管110の分岐点Aよりも下流の位置(図1の点B)に配置されることが望ましい。 The drainer 12 is configured to drain the hot water in the hot water storage tank 103 through a drain pipe branched from the branch point (point A in FIG. 1) of the heat recovery pipe 110 at the lower part of the hot water storage tank 103. Also good. In that case, it is desirable that the temperature detector 104 for detecting the temperature of hot water is disposed at a position downstream of the branch point A of the heat recovery pipe 110 (point B in FIG. 1).
 また、本実施の形態1では、制御器13において貯湯タンク103の排水処理を行うか否か判定し、排水器12に排水を要求したが、例えば、燃料電池ユニット10が図示しない制御器および排水器を内部に備え、その内部の制御器が料金コストを判定し、排水してもかまわない。 Further, in the first embodiment, the controller 13 determines whether or not to perform the drainage treatment of the hot water storage tank 103 and requests the drainer 12 to drain the water. For example, the fuel cell unit 10 includes a controller and drainage (not shown). There is no problem if the internal control unit determines the cost cost and drains it.
 (実施の形態2)
 次に、本実施の形態2について説明する。図4は、本発明の実施の形態2における燃料電池システムの制御器13の構成を示すブロック図である。図4に示すように、制御器13は、燃料電池ユニット10が所定期間αにおいて供給する電力量及び給湯使用量の予測に基づいて排水制御部133が排水する量を算出する排水量算出部135を更に備え、当該算出した排水量を排水する点が実施の形態1の構成と異なる。
(Embodiment 2)
Next, the second embodiment will be described. FIG. 4 is a block diagram showing the configuration of the controller 13 of the fuel cell system according to Embodiment 2 of the present invention. As shown in FIG. 4, the controller 13 includes a drainage amount calculation unit 135 that calculates the amount of drainage by the drainage control unit 133 based on the prediction of the amount of power and hot water supply usage that the fuel cell unit 10 supplies in a predetermined period α. Furthermore, the point which drains the calculated waste_water | drain amount differs from the structure of Embodiment 1. FIG.
 以下では、本実施の形態2の燃料電池システムの排水を制御する制御器13の処理動作において、制御器13が、貯湯タンク103から排水する量を算出し、排水が完了するまで排水器12に排水を要求する場合について、図1、図4及び図5を用いて説明する。 In the following, in the processing operation of the controller 13 that controls the drainage of the fuel cell system according to the second embodiment, the controller 13 calculates the amount drained from the hot water storage tank 103 and puts it in the drainer 12 until the drainage is completed. The case where drainage is required will be described with reference to FIGS.
 図5は、本発明の実施の形態2における燃料電池システムの排水を制御する制御器13の処理動作を示すフロー図である。実施の形態1の処理動作(図3)では給水器106から給水される水の温度が一定である場合において、排水量が一意に決まるのに対し、本実施の形態2のフローでは燃料電池システムが供給する電力量および給湯使用量の予測に依存するという点で異なる。 FIG. 5 is a flowchart showing the processing operation of the controller 13 that controls the drainage of the fuel cell system according to Embodiment 2 of the present invention. In the processing operation of the first embodiment (FIG. 3), the amount of drainage is uniquely determined when the temperature of the water supplied from the water supply 106 is constant, whereas in the flow of the second embodiment, the fuel cell system It differs in that it depends on the prediction of the amount of power to be supplied and the amount of hot water used.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図5のステップS30でYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of the hot water in the hot water storage tank 103, the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S30 in FIG. 5), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 図6(a)は、発電継続が得である場合の燃料電池システムの需要予測を示すグラフである。図6(a)に示すように、需要予測部131は、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた状態(満畜状態)から所定期間α(図6の満畜時刻tから時刻tまでの時間)における需要を予測している。ここで所定期間αは、燃料電池システムが停止してから再び発電状態となるまでの時間に設定され、例えば2時間に設定される。ここでは所定期間αを通じて500[W]の電力需要が予測され、時刻t01からは合計60[l]の給湯需要及び時刻t02からは合計80[l]の給湯需要がそれぞれ予測されている。ここで、燃料電池システムが供給する電力量および給湯使用量の予測には、例えば、現在の電力負荷および給湯使用が継続するという予測、或いは過去のデータに基づく予測を用いてもよい。 FIG. 6A is a graph showing the demand prediction of the fuel cell system when it is possible to continue the power generation. As shown to Fig.6 (a), the demand prediction part 131 is the state (full condition) in which the temperature of the hot water of the hot water storage tank 103 exceeded the 1st predetermined temperature lower than the system stop temperature which needs to make a system stop. To a predetermined period α (the time from full time t 0 to time t 1 in FIG. 6) is predicted. Here, the predetermined period α is set to a time from when the fuel cell system is stopped until it again enters a power generation state, for example, 2 hours. Here, a power demand of 500 [W] is predicted through a predetermined period α, and a total hot water supply demand of 60 [l] is predicted from time t 01 and a total hot water supply demand of 80 [l] is predicted from time t 02 . . Here, for the prediction of the amount of power and the amount of hot water supply used by the fuel cell system, for example, a prediction that the current power load and the use of hot water supply will continue or a prediction based on past data may be used.
 次に、排水量算出部135は、燃料電池システムが所定期間αにおいて供給する電力量および給湯使用量の予測に基づいて、発電継続に必要な貯湯タンク103から排水する量を算出する(図5のステップS31)。図6(a)のグラフに示すように時刻t01から合計60[l]の給湯需要が予測されているので、排水量算出部135は、時刻tから時刻t01までに500[W]の電力需要を実現するのに余分な熱量を排水すべく、必要な排水量を算出する。 Next, the drainage amount calculation unit 135 calculates the amount of water drained from the hot water storage tank 103 necessary for continuation of power generation based on the prediction of the amount of power supplied by the fuel cell system during the predetermined period α and the amount of hot water used (see FIG. Step S31). As shown in the graph of FIG. 6A, since a hot water supply demand of a total of 60 [l] is predicted from the time t 01 , the drainage amount calculation unit 135 is 500 [W] from the time t 0 to the time t 01 . Calculate the amount of drainage required to drain excess heat to achieve electricity demand.
 次に、料金算出部132は、算出した排水量を用いて、所定期間αにおいて貯湯タンク103の排水を行うことで発電継続した場合と、所定期間αにおいて排水を行わず停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図5のステップS32)。 Next, the charge calculation unit 132 uses the calculated amount of drainage to perform power generation by draining the hot water storage tank 103 during a predetermined period α, and when it stops without draining during the predetermined period α. In this case, the sum of water charges, electricity charges, and gas charges is calculated (step S32 in FIG. 5).
 図6(b)は、所定期間αにおいて発電を継続した場合のユーザの料金の負担額の一例を示すグラフである。図6(b)に示すように、時刻tから時刻t01までに算出された排水量に伴う水道料金Aがユーザの負担額となる。更に所定期間αにおいて燃料電池システムの発電が継続されるので、発電に伴い使用するガス料金Bもまたユーザの負担額に含まれる。料金算出部132は、水道料金Aとガス料金Bを加算して、発電を継続した場合の料金の総和を算出する。 FIG. 6B is a graph illustrating an example of a user's charge burden when power generation is continued in the predetermined period α. As shown in FIG. 6 (b), water rate A due to waste water amount calculated from the time t 0 to time t 01 becomes the burden of the user. Further, since the power generation of the fuel cell system is continued during the predetermined period α, the gas charge B used for power generation is also included in the user's burden. The charge calculation unit 132 adds the water charge A and the gas charge B, and calculates the sum of the charges when power generation is continued.
 図6(c)は、所定期間αにおいて発電を停止した場合のユーザの料金の負担額の一例を示すグラフである。図6(c)に示すように、所定期間αにおいて燃料電池システムの発電が停止されるので、燃料電池システムによる発電を賄うための電気料金のみがユーザの負担額となる。同グラフでは時刻t03において電気料金が夜間割引されている場合を示している。このように、所定期間αにおいて排水及び発電が行われないため、排水に伴う水道料金Aも発電に伴う燃料電池の燃料ガスの料金も発生しない。料金算出部132は、電気料金Cを、発電を停止した場合の料金の総和として算出する。 FIG. 6C is a graph showing an example of the user's charge burden when power generation is stopped during the predetermined period α. As shown in FIG. 6 (c), since the power generation of the fuel cell system is stopped in the predetermined period α, only the electricity bill for covering the power generation by the fuel cell system becomes the burden on the user. In the same graph shows a case in which electricity rates are at night discount at time t 03. Thus, since drainage and power generation are not performed during the predetermined period α, neither the water charge A associated with drainage nor the fuel gas charge of the fuel cell associated with power generation is generated. The charge calculation unit 132 calculates the electricity charge C as the sum of charges when power generation is stopped.
 その後、排水制御部133は、算出結果に基づき、貯湯タンク103の排水を行い発電継続したほうが安いと判断した場合(図5のステップS33でYES)は、排水器12に排水を要求する信号を送信する(図5のステップS34)。図6(b)及び図6(c)の例では、排水制御部133は、発電を継続した場合のユーザの料金(水道料金A及びガス料金B)と、発電を停止した場合のユーザの料金(電気料金C)を比較した場合、発電を継続した場合のユーザの料金の方が安いと判断するので、排水要求信号を送信する。 Thereafter, if the drainage control unit 133 determines that it is cheaper to continue the power generation by draining the hot water storage tank 103 based on the calculation result (YES in step S33 in FIG. 5), a signal requesting drainage to the drainer 12 is sent. Transmit (step S34 in FIG. 5). In the example of FIG. 6B and FIG. 6C, the drainage control unit 133 uses the user's charge (water charge A and gas charge B) when power generation is continued and the user's charge when power generation is stopped. When (electricity charge C) is compared, it is determined that the user's charge is lower when power generation is continued, and therefore a drainage request signal is transmitted.
 そして、排水制御部133は、算出した排水量の排水が完了した場合(図5のステップS35の分岐Y)は、排水器12に送信していた排水を要求する信号を停止する(図5のステップS36)。 Then, when the drainage of the calculated drainage amount is completed (branch Y in step S35 in FIG. 5), the drainage control unit 133 stops the signal requesting drainage that has been transmitted to the drainer 12 (step in FIG. 5). S36).
 図6のグラフは、発電継続が得である場合の一例を示したが、図7のグラフは、発電停止が得である場合の燃料電池システムの需要予測及びユーザ負担額の一例を示している。図7(a)に示すように、ここでも、需要予測部131は、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた状態(満畜状態)から所定期間α(2時間)における需要を予測している(図5のステップS30)。ここでは所定期間αを通じて500[W]の電力需要が予測されており、給湯需要は予測されていない。 The graph of FIG. 6 shows an example when the power generation continuation is advantageous, but the graph of FIG. 7 shows an example of the demand prediction of the fuel cell system and the user burden when the power generation stop is advantageous. . As shown in FIG. 7 (a), the demand prediction unit 131 again has a state where the temperature of the hot water in the hot water storage tank 103 exceeds a first predetermined temperature lower than the system stop temperature at which the system needs to be stopped (full state). The demand in the predetermined period α (2 hours) is predicted from the (livestock state) (step S30 in FIG. 5). Here, a power demand of 500 [W] is predicted through the predetermined period α, and a hot water supply demand is not predicted.
 排水量算出部135は、所定期間αにおいて給湯需要は予測されていないので、所定期間αにおいて500[W]の電力需要のみを実現するのに余分な熱量を排水すべく、必要な排水量を算出する。ここで排水量を算出する際(図5のステップS31)は、電力量が500[W]を所定期間α(2時間)継続し且つ給湯動作が無いと予測されているので、例えば、500[W]の発電が1時間継続する際に必要な貯湯タンク103の湯の排水量を熱交換器101の排熱回収効率を基にA[l]と定め、その値を基に、排水量を2×Aと算出する。なお、本実施の形態1における排水量の算出方法は、実施の形態1に限定されない。 Since the demand for hot water supply is not predicted in the predetermined period α, the drainage amount calculation unit 135 calculates the amount of drainage necessary for draining excess heat to realize only the power demand of 500 [W] in the predetermined period α. . Here, when the amount of drainage is calculated (step S31 in FIG. 5), it is predicted that the electric energy will continue for 500 [W] for a predetermined period α (2 hours) and there is no hot water supply operation. ] Is determined as A [l] based on the exhaust heat recovery efficiency of the heat exchanger 101, and the amount of drainage is 2 × A based on the value. And calculate. In addition, the calculation method of the amount of drainage in this Embodiment 1 is not limited to Embodiment 1. FIG.
 図7(b)は、所定期間αにおいて発電を継続した場合のユーザの料金の負担額の一例を示すグラフである。図7(b)に示すように、所定期間αにおいて算出された排水量に伴う水道料金Aがユーザの負担額となる。更に所定期間αにおいて燃料電池システムの発電が継続されるので、発電に伴い使用するガス料金Bもまたユーザの負担額に含まれる。料金算出部132は、水道料金Aとガス料金Bを加算して、発電を継続した場合の料金の総和を算出する。 FIG. 7B is a graph showing an example of a user's charge burden when power generation is continued in a predetermined period α. As shown in FIG. 7 (b), the water charge A associated with the amount of drainage calculated in the predetermined period α is the user's burden. Further, since the power generation of the fuel cell system is continued during the predetermined period α, the gas charge B used for power generation is also included in the user's burden. The charge calculation unit 132 adds the water charge A and the gas charge B, and calculates the sum of the charges when power generation is continued.
 図7(c)は、所定期間αにおいて発電を停止した場合のユーザの料金の負担額の一例を示すグラフである。図7(c)に示すように、所定期間αにおいて燃料電池システムの発電が停止されるので、燃料電池システムによる発電を賄うための電気料金がユーザの負担額となる。このように所定期間αにおいて排水及び発電が行われないため、排水に伴う水道料金Aも発電に伴う燃料電池の燃料ガスの料金も発生しない。料金算出部132は、電気料金Cを、発電を停止した場合の料金の総和として算出する。 FIG. 7C is a graph showing an example of a user's charge burden when power generation is stopped during a predetermined period α. As shown in FIG. 7C, since the power generation of the fuel cell system is stopped in the predetermined period α, the electricity charge for covering the power generation by the fuel cell system becomes a burden on the user. Thus, since drainage and power generation are not performed during the predetermined period α, neither the water charge A associated with the drainage nor the fuel gas charge of the fuel cell associated with the power generation occurs. The charge calculation unit 132 calculates the electricity charge C as the sum of charges when power generation is stopped.
 図7(b)及び図7(c)の例では、排水制御部133は、発電を継続した場合のユーザの料金(水道料金A及びガス料金B)と、発電を停止した場合のユーザの料金(電気料金)を比較した場合、発電を継続した場合のユーザの料金の方が高いと判断するので、燃料電池ユニット10に発電を停止する信号を送信する(図5のステップS33でNO)。 In the example of FIG. 7B and FIG. 7C, the drainage control unit 133 uses the user's charge (water charge A and gas charge B) when power generation is continued and the user's charge when power generation is stopped. When (electricity charge) is compared, it is determined that the user's charge is higher when power generation is continued, and therefore a signal for stopping power generation is transmitted to the fuel cell unit 10 (NO in step S33 of FIG. 5).
 本実施の形態2によれば、実施の形態1の処理動作と同様、発電中の燃料電池システムにおいて、システム利用者の使用する水道料金、電気料金、ガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステムを停止することができるので、システム利用者の経済的負担を低減することができる。また、貯湯タンクの排水による経済的損失を低減できるため、蓄水装置を備える必要が無く、市場での設置機会の増加に有用である。 According to the second embodiment, similar to the processing operation of the first embodiment, in the fuel cell system that is generating power, the hot water storage tank so that the sum of water charges, electricity charges, and gas charges used by the system user is reduced. 103 can be drained and power generation can be continued, or the system can be stopped without draining, so the economic burden on the system user can be reduced. Moreover, since the economic loss due to the drainage of the hot water storage tank can be reduced, it is not necessary to provide a water storage device, which is useful for increasing the installation opportunity in the market.
 上記実施の形態1では、温度のみで排水量を算出するので排水量の算出が容易であるという利点がある一方で、排水量が一意に決まるため需要が変動した場合の処理が考慮されていなかった。本実施の形態2はこの問題を解決するものである。 In the first embodiment, since the amount of wastewater is calculated only by temperature, there is an advantage that it is easy to calculate the amount of wastewater. On the other hand, since the amount of wastewater is uniquely determined, the processing when the demand fluctuates is not considered. The second embodiment solves this problem.
 図8は、本実施の形態2において発電継続が得であると予測した場合に燃料電池システムの需要変動が発生した場合のユーザ負担額の一例を示すグラフである。 FIG. 8 is a graph showing an example of the user burden when the demand fluctuation of the fuel cell system occurs when it is predicted that the power generation continuation is obtained in the second embodiment.
 図8(a)に示すように、ここでも、需要予測部131は、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた状態(満畜状態)から所定期間α(2時間)における需要を予測している(図5のステップS30)。ここでは所定期間αを通じて500[W]の電力需要が予測され、時刻t01から合計60[l]の給湯需要が予測されている。 As shown in FIG. 8 (a), the demand prediction unit 131 again has a state in which the temperature of the hot water in the hot water storage tank 103 exceeds a first predetermined temperature lower than the system stop temperature at which the system needs to be stopped (full state). The demand in the predetermined period α (2 hours) is predicted from the (livestock state) (step S30 in FIG. 5). Here, a power demand of 500 [W] is predicted over a predetermined period α, and a total hot water supply demand of 60 [l] is predicted from time t 01 .
 排水量算出部135は、図8(a)のグラフに示すように、時刻t01から合計60[l]の給湯需要が予測されているので、時刻tから時刻t01までに500[W]の電力需要を実現するのに余分な熱量を排水すべく、必要な排水量を算出する(図5のステップS31)。 Wastewater calculating unit 135, as shown in the graph of FIG. 8 (a), since the hot-water demand of the total 60 [l] from the time t 01 is predicted, 500 from time t 0 to time t 01 [W] In order to drain an excessive amount of heat to realize the power demand, a necessary amount of drainage is calculated (step S31 in FIG. 5).
 料金算出部132は、算出した排水量を用いて、料金の総和を算出し(図5のステップ32)、排水制御部133は、ユーザ負担額は、発電継続が得であると判断するので、算出した排水量の排水が行われる(図5のステップ33)。 The charge calculation unit 132 calculates the sum of the charges using the calculated amount of drainage (step 32 in FIG. 5), and the drainage control unit 133 determines that the user burden is enough to continue the power generation. The drainage amount is reduced (step 33 in FIG. 5).
 しかし、図8(a)に示すように、実際の給湯需要(二点鎖線)は時刻t02まで発生することはない。この場合、排水制御部133は、図8(b)で示す発電を継続した場合の料金の総和(水道料金A+ガス料金B)と図8(c)で示す発電を停止した場合の料金の総和(電気料金C)が等しくなるまで排水を継続する。すなわち、排水制御部133は、燃料電池システムのユーザが損をしないように損益分岐点まで排水を継続する。 However, as shown in FIG. 8 (a), (two-dot chain line) Actual hot water demand does not occur until time t 02. In this case, the drainage control unit 133 sums the charges when the power generation shown in FIG. 8B is continued (water charge A + gas charge B) and the charges when the power generation shown in FIG. 8C is stopped. Continue draining until (Electricity Charge C) is equal. That is, the drainage control unit 133 continues draining to the breakeven point so that the user of the fuel cell system does not lose.
 このように、本実施の形態2によれば、供給電力量及び給湯使用量の予測に基づいて、貯湯タンクの湯の温度をシステムの継続可能な温度まで効率的に下げることができるので、必要最小限の排水量になり、水道料金をより節約することができる。 As described above, according to the second embodiment, the temperature of the hot water in the hot water storage tank can be efficiently lowered to a temperature at which the system can be continued based on the prediction of the amount of supplied power and the amount of hot water used. It becomes the minimum amount of drainage and can save water charges more.
 (実施の形態3)
 次に、本実施の形態3について説明する。本実施の形態3では、燃料電池ユニット10で発電した電力を売却できる場合、制御器13は売却できる電気料金を考慮して排水を行う点で実施形態1及び実施形態2と異なる。
(Embodiment 3)
Next, the third embodiment will be described. In the third embodiment, when the electric power generated by the fuel cell unit 10 can be sold, the controller 13 is different from the first and second embodiments in that the controller 13 performs drainage in consideration of the electric charge that can be sold.
 本実施の形態3では、制御器13が、温度検出器104の温度が所定温度に下がるまで排水器12に排水を要求する場合(以下、実施の形態1の処理動作)および、制御器13が、貯湯タンク103から排水する量を算出し、排水が完了するまで排水器12に排水を要求する場合(以下、実施の形態2の処理動作)において、燃料電池ユニット10で発電した電力を売却できる場合、制御器13は売却できる電気料金を考慮して排水を行う。 In the third embodiment, when the controller 13 requests drainage from the drainer 12 until the temperature of the temperature detector 104 falls to a predetermined temperature (hereinafter, processing operation of the first embodiment), the controller 13 In the case where the amount drained from the hot water storage tank 103 is calculated and drainage is requested to the drainage device 12 until drainage is completed (hereinafter, processing operation of the second embodiment), the power generated by the fuel cell unit 10 can be sold. In this case, the controller 13 performs drainage in consideration of the electricity charge that can be sold.
 以下に、燃料電池ユニット10で発電した電力を売却できる場合の制御器13の処理動作について、図1、図2及び図9を用いて説明する。 Hereinafter, the processing operation of the controller 13 when the electric power generated by the fuel cell unit 10 can be sold will be described with reference to FIGS. 1, 2, and 9.
 図9は、本発明の実施の形態3における制御器13が、売電を考慮する場合の処理動作を示すフロー図である。ここで、図9のフロー図は、例として、実施の形態1の処理動作に追加する場合について説明しているが、実施の形態2の処理動作に追加する場合についても同様である。 FIG. 9 is a flowchart showing the processing operation when the controller 13 according to Embodiment 3 of the present invention considers power sale. Here, the flow diagram of FIG. 9 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図9のステップS40のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of the hot water in the hot water storage tank 103, the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S40 in FIG. 9), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 次に、料金算出部132は、燃料電池システムが供給する電力量および給湯使用量の予測に基づいて、温度検出器104の温度が、第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるよう貯湯タンク103の排水を行うことで発電継続した場合と、排水を行わずシステム停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図9のステップS41)。さらに料金算出部132は、燃料電池ユニット10で発電した電力を売却して得られる金額を算出する(図9のステップS42)。 Next, based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used, the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued. When the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 9 step S41). Furthermore, the fee calculation unit 132 calculates the amount of money obtained by selling the power generated by the fuel cell unit 10 (step S42 in FIG. 9).
 排水制御部133は、排水を行った際の、使用する水道料金、電気料金、ガス料金の総和から図9のステップS42で算出した金額を差し引いた値が、排水を行わなかった際より安くなる場合(図9のステップS43のYES)には、排水を行う。これにより、使用する水道料金、売却した電気料金を考慮した電気料金、およびガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステム停止することができるので、燃料電池ユニット10で発電した電力を売却できる地域におけるシステム利用者の経済的負担の低減に有用である。また、燃料電池ユニット10で発電した電力を売却して得られる金額は、燃料電池システムの利用者が入力する単位電力あたりの売電価格、或いはネット等から取得する単位電力あたりの売電価格を基に算出してもかまわない。 In the drainage control unit 133, the value obtained by subtracting the amount calculated in step S42 of FIG. 9 from the sum of the water rate, the electricity rate, and the gas rate to be used when draining is lower than when the drainage is not performed. In the case (YES in step S43 in FIG. 9), drainage is performed. As a result, the hot water storage tank 103 is drained so that the sum of the water bill to be used, the electricity bill considering the sold electricity bill, and the gas bill is reduced, and the power generation is continued, or the system can be stopped without draining. Therefore, it is useful for reducing the economic burden on the system user in an area where the power generated by the fuel cell unit 10 can be sold. The amount of money obtained by selling the power generated by the fuel cell unit 10 is the power selling price per unit power input by the user of the fuel cell system or the power selling price per unit power acquired from the net or the like. You may calculate based on.
 (実施の形態4)
 次に、本実施の形態4について説明する。本実施の形態4では、燃料電池ユニット10で発電した電力を使用することで補助金が得られる場合、制御器13は補助金を考慮して排水を行う点で実施の形態1及び実施の形態2と異なる。
(Embodiment 4)
Next, the fourth embodiment will be described. In the fourth embodiment, when the subsidy is obtained by using the electric power generated by the fuel cell unit 10, the controller 13 performs the drainage in consideration of the subsidy and the first embodiment and the first embodiment. Different from 2.
 以下に、燃料電池ユニット10で発電した電力を使用することで補助金が得られる場合の制御器13の処理動作について、図1、図2、及び図10を用いて説明する。 Hereinafter, the processing operation of the controller 13 when subsidies are obtained by using the power generated by the fuel cell unit 10 will be described with reference to FIGS. 1, 2, and 10.
 図10は、本発明の実施の形態4における制御器13において、補助金を考慮する場合の処理動作を示すフロー図である。ここで、図10のフロー図は、例として、実施の形態1の処理動作に追加する場合について説明しているが、実施の形態2の処理動作に追加する場合についても同様である。 FIG. 10 is a flowchart showing a processing operation in the case of considering subsidies in the controller 13 according to the fourth embodiment of the present invention. Here, the flow diagram of FIG. 10 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図10のステップS50のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of the hot water in the hot water storage tank 103, the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S50 in FIG. 10), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 次に、料金算出部132は、燃料電池システムが供給する電力量および給湯使用量の予測に基づいて、温度検出器104の温度が、第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるよう貯湯タンク103の排水を行うことで発電継続した場合と、排水を行わずシステム停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図10のステップS51)。さらに料金算出部132は、燃料電池ユニット10が発電した電力を燃料電池システムの利用者が使用することで得られる補助金を算出する(図10のステップS52)。 Next, based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used, the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued. When the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 10 step S51). Furthermore, the fee calculation unit 132 calculates a subsidy obtained when the user of the fuel cell system uses the electric power generated by the fuel cell unit 10 (step S52 in FIG. 10).
 排水制御部133は、排水を行った際の、使用する水道料金、電気料金、ガス料金の総和から図10のステップS52で算出した補助金を差し引いた金額が、排水を行わなかった際より安くなる場合(図10のステップS53のYES)には、排水を行う。これにより、使用する水道料金、発電電力の使用による補助金を考慮した電気料金、およびガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステム停止することができるので、発電ユニットで発電した電力を使用することで補助金が得られる地域におけるシステム利用者の経済的負担の低減に有用である。また、燃料電池ユニット10で発電した電力を使用することで得られる補助金は、燃料電池システムの利用者が入力する料金、或いはネット等から取得する料金を基に算出してもかまわない。 The drainage control unit 133 deducts the subsidy calculated in step S52 of FIG. 10 from the sum of water charges, electricity charges, and gas charges to be used when draining, and is cheaper than when drainage is not performed. If this is the case (YES in step S53 in FIG. 10), drainage is performed. As a result, the hot water storage tank 103 is drained so that the sum of water charges to be used, subsidies for using generated power, and gas charges is reduced, and the power generation is continued or the system is stopped without draining. Therefore, it is useful for reducing the economic burden on system users in areas where subsidies can be obtained by using the power generated by the power generation unit. Further, the subsidy obtained by using the power generated by the fuel cell unit 10 may be calculated based on a fee input by a user of the fuel cell system or a fee acquired from the net or the like.
 (実施の形態5)
 次に、本実施の形態5について説明する。本実施の形態5では、貯湯タンク103に蓄えられる湯の排水に伴う熱量の損失金額を考慮して排水を行う点で実施の形態1及び実施の形態2と異なる。
(Embodiment 5)
Next, the fifth embodiment will be described. The fifth embodiment is different from the first and second embodiments in that drainage is performed in consideration of the amount of heat loss associated with drainage of hot water stored in the hot water storage tank 103.
 以下に、制御器13が、貯湯タンク103に蓄えられる湯の排水に伴う熱量の損失金額を考慮する場合の処理動作について、図1、図2及び図11を用いて説明する。 Hereinafter, the processing operation in the case where the controller 13 considers the amount of heat loss associated with the drainage of hot water stored in the hot water storage tank 103 will be described with reference to FIGS. 1, 2, and 11.
 図11は、本発明の実施の形態5における制御器13が、熱量の損失金額を考慮する場合の処理動作を示すフロー図である。ここで、図11のフロー図は、例として、実施の形態1の処理動作に追加する場合について説明しているが、実施の形態2の処理動作に追加する場合についても同様である。 FIG. 11 is a flowchart showing the processing operation when the controller 13 according to the fifth embodiment of the present invention considers the amount of heat loss. Here, the flow diagram of FIG. 11 describes, as an example, the case of adding to the processing operation of the first embodiment, but the same applies to the case of adding to the processing operation of the second embodiment.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図11のステップS60のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of the hot water in the hot water storage tank 103, the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S60 in FIG. 11), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 次に、料金算出部132は、燃料電池システムが供給する電力量および給湯使用量の予測に基づいて、温度検出器104の温度が、第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるよう貯湯タンク103の排水を行うことで発電継続した場合と、排水を行わずシステム停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図11のステップS61)。さらに料金算出部132は、燃料電池ユニット10の排ガスとの熱交換により貯湯タンク103に蓄えられる湯の排水に伴う熱量の損失金額を算出する(図11のステップS62)。 Next, based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used, the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued. When the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 11 step S61). Furthermore, the charge calculation unit 132 calculates the amount of heat loss due to the drainage of hot water stored in the hot water storage tank 103 by heat exchange with the exhaust gas of the fuel cell unit 10 (step S62 in FIG. 11).
 排水制御部133は、排水を行った際の、使用する水道料金、電気料金、ガス料金の総和に図11のステップS62で算出した損失金額を足した金額が、排水を行わなかった際より安くなる場合(図11のステップS63のYES)には、排水を行う。これにより、使用する水道料金、電気料金、および排水に伴い無駄になる貯湯タンク103の熱量に使用したガス料金を考慮したガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステム停止することができるので、システム利用者の経済的負担の低減および、経済的負担算出時の精度の向上に有用である。 The drainage control unit 133 adds the loss amount calculated in step S62 in FIG. 11 to the sum of the water charges, electricity charges, and gas charges to be used when draining, and is cheaper than when drainage is not performed. If this is the case (YES in step S63 in FIG. 11), drainage is performed. As a result, drainage of the hot water storage tank 103 is continued and power generation is continued so that the sum of the gas charge considering the gas charge used for the heat rate of the hot water storage tank 103 that is wasted due to the water charge, electricity charge, and drainage used is reduced. Alternatively, the system can be stopped without draining, which is useful for reducing the economic burden on the system user and improving the accuracy when calculating the economic burden.
 また、排水に伴う熱量の損失金額は、例えば、燃料電池システムは、さらに、排水配管107および給水配管109の近傍に図示しない温度センサを備え、温度センサで検出した排水する湯の温度と給水する水の温度との違いから、貯湯タンク103の湯の熱量を計算し、熱量として使用したガスの料金を、熱交換器101の排熱回収効率を基に算出してもかまわない。或いは、熱交換器101を通るガスの流量を測定できる図示しない流量計を備え、燃料電池ユニット10で使用したガス流量の総量から、貯湯タンク103の湯に熱量として使用したガス料金を算出してもかまわない。 In addition, for example, the fuel cell system further includes a temperature sensor (not shown) in the vicinity of the drain pipe 107 and the water supply pipe 109 to supply water with the temperature of hot water detected by the temperature sensor. The amount of hot water in the hot water storage tank 103 may be calculated based on the difference from the temperature of the water, and the charge of the gas used as the amount of heat may be calculated based on the exhaust heat recovery efficiency of the heat exchanger 101. Alternatively, a flow meter (not shown) that can measure the flow rate of the gas passing through the heat exchanger 101 is provided, and the gas charge used as the amount of heat for the hot water in the hot water storage tank 103 is calculated from the total amount of the gas flow rate used in the fuel cell unit 10. It doesn't matter.
 また、ガス流量の総量から熱量に使用したガス料金を算出する場合は、例えば、燃料電池セル100からの排ガスが燃料電池ユニット10で使用するガスの70%であり、熱交換器101の排熱回収効率が90%である場合、熱量に使用したガス料金は、燃料電池ユニット10で使用するガス料金×0.7×0.9としてもかまわない。また、貯湯タンク103に熱源を備える場合は、熱源の動作による熱量を除いて、使用したガス料金を算出してもかまわない。 Moreover, when calculating the gas charge used for the heat quantity from the total amount of the gas flow rate, for example, the exhaust gas from the fuel cell 100 is 70% of the gas used in the fuel cell unit 10, and the exhaust heat of the heat exchanger 101 is calculated. When the recovery efficiency is 90%, the gas charge used for the heat quantity may be gas charge used by the fuel cell unit 10 × 0.7 × 0.9. In addition, when the hot water storage tank 103 is provided with a heat source, the used gas fee may be calculated excluding the amount of heat generated by the operation of the heat source.
 なお、図5に示した実施の形態2の処理動作の場合において、貯湯タンク103に蓄えられる湯の排水に伴う熱量の損失金額を考慮する場合、水道料金やガス料金に比べて電気料金が著しく高く、貯湯タンク103に蓄えられる熱量を考慮しても、貯湯タンク103内の湯を全て排水した方が使用する水道料金、電気料金、ガス料金の総和が安くなる場合は、一度タンクを空にしてもかまわない。 In the case of the processing operation of the second embodiment shown in FIG. 5, when considering the amount of heat loss due to the drainage of hot water stored in the hot water storage tank 103, the electricity charge is significantly higher than the water charge or gas charge. Even if the amount of heat stored in the hot water storage tank 103 is taken into account, if the total amount of water, electricity, and gas used by the person who drains all of the hot water in the hot water storage tank 103 becomes cheaper, empty the tank once. It doesn't matter.
 (実施の形態6)
 次に、本実施の形態6について説明する。本実施の形態6では、燃料電池システムは、さらに、燃料電池ユニット10の発電電力を蓄える図示しない蓄電ユニットを備え、蓄電によって得られる電気料金の削減額を考慮して排水を行う点で実施の形態1及び実施の形態2と異なる。
(Embodiment 6)
Next, the sixth embodiment will be described. In the sixth embodiment, the fuel cell system is further provided with a power storage unit (not shown) that stores the generated power of the fuel cell unit 10 and drains in consideration of a reduction in the electricity bill obtained by power storage. Different from Embodiment 1 and Embodiment 2.
 以下に、燃料電池ユニット10で発電した電力を蓄電ユニットに蓄電することで電気料金が削減される場合の制御器13の処理動作について、図1、図2及び図12を用いて説明する。 Hereinafter, the processing operation of the controller 13 when the electricity bill is reduced by storing the electric power generated by the fuel cell unit 10 in the power storage unit will be described with reference to FIGS. 1, 2, and 12.
 図12は、本発明の実施の形態6における制御器13が、蓄電による電気料金の削減を考慮する場合の処理動作を示すフロー図である。ここで、図12のフロー図は、例として、実施の形態1の処理動作に追加した場合について説明しているが、実施の形態2の処理動作に追加した場合についても同様である。 FIG. 12 is a flowchart showing a processing operation when the controller 13 according to the sixth embodiment of the present invention considers reduction of the electricity bill due to power storage. Here, the flow diagram of FIG. 12 describes, as an example, the case where the processing operation is added to the processing operation of the first embodiment, but the same applies to the case where the processing operation is added to the processing operation of the second embodiment.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図12のステップS70のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of the hot water in the hot water storage tank 103, the demand prediction unit 131 has exceeded the first predetermined temperature that is lower than the system stop temperature at which the system needs to be stopped. In the case (YES in step S70 in FIG. 12), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 次に、料金算出部132は、燃料電池システムが供給する電力量および給湯使用量の予測に基づいて、温度検出器104の温度が、第1の所定温度より低くシステム動作の継続可能な第2の所定温度まで下がるよう貯湯タンク103の排水を行うことで発電継続した場合と、排水を行わずシステム停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図12のステップS71)。さらに料金算出部132は、蓄電ユニットに蓄えられる蓄電可能な電力を取得し(図12のステップS72)、取得した蓄電可能電力を基に蓄電によって得られる電気料金の削減額を算出する(図12のステップS73)。 Next, based on the prediction of the amount of power supplied by the fuel cell system and the amount of hot water used, the charge calculation unit 132 has a second temperature at which the temperature of the temperature detector 104 is lower than the first predetermined temperature and the system operation can be continued. When the power generation is continued by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when the system is shut down without draining, the sum of water charges, electricity charges, and gas charges in each case is calculated (Fig. 12 step S71). Furthermore, the charge calculation unit 132 acquires the power that can be stored in the power storage unit (step S72 in FIG. 12), and calculates the reduction amount of the electricity charge obtained by power storage based on the acquired power that can be stored (FIG. 12). Step S73).
 排水制御部133は、排水を行った際の、使用する水道料金、電気料金、ガス料金の総和から図12のステップS73で算出した電気料金の削減額をひいた金額が、排水を行わなかった際より安くなる場合(図12のステップS74の分岐Y)には、排水を行う。これにより、使用する水道料金、蓄電ユニットに充電した電力の使用を考慮した電気料金、およびガス料金の総和が安くなるように貯湯タンク103の排水を行い発電継続する、或いは排水せずにシステム停止することができるので、燃料電池システムに蓄電ユニットを備えた場合における、システム利用者の経済的負担の低減に有用である。 The drainage control unit 133 did not drain the amount calculated by subtracting the amount of electricity bill calculated in step S73 of FIG. 12 from the sum of the water bill, electricity bill, and gas bill to be used when draining. If it is cheaper than usual (branch Y in step S74 in FIG. 12), drainage is performed. As a result, the hot water storage tank 103 is drained so that the sum of the water charge to be used, the electricity charge considering the use of the power charged in the power storage unit, and the gas charge is reduced, and the power generation is continued or the system is stopped without draining. Therefore, it is useful for reducing the economic burden on the system user in the case where the fuel cell system includes an electricity storage unit.
 (実施の形態7)
 次に、本実施の形態7について説明する。本実施の形態7では、排水器12が排水する量を算出して、その量を分割して排水するよう制御する点が実施の形態2の処理動作と異なる。
(Embodiment 7)
Next, the seventh embodiment will be described. The seventh embodiment is different from the processing operation of the second embodiment in that the amount drained by the drainer 12 is calculated and the amount is controlled to be divided and drained.
 以下に、制御器13が、排水器12が排水する量を算出して、その量を分割して排水するよう制御する場合の処理動作について、図1、図4、図13を用いて説明する。 Hereinafter, the processing operation in the case where the controller 13 calculates the amount drained by the drainer 12 and performs control to divide and drain the amount will be described with reference to FIGS. 1, 4, and 13. .
 図13は、本発明の実施の形態2における制御器13が、排水器12が排水する量を算出して、その量を分割して排水するよう制御する場合の処理動作を示すフロー図である。 FIG. 13 is a flowchart showing a processing operation when the controller 13 according to Embodiment 2 of the present invention calculates the amount drained by the drainer 12 and controls to divide and drain the amount. .
 図4に示す需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度より低い第1の所定温度を超えた場合(図13のステップS80)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 In the temperature detector 104 that detects the temperature of hot water in the hot water storage tank 103, the demand prediction unit 131 shown in FIG. 4 has a first predetermined temperature lower than the system stop temperature at which the hot water storage tank 103 needs to be stopped. When the temperature is exceeded (step S80 in FIG. 13), the amount of electric power and the amount of hot water supply used by the fuel cell system are predicted for a predetermined period α.
 次に、排水量算出部135は、燃料電池システムが供給する電力負荷および給湯使用の予測に基づいて、排水器12が排水する量を算出する(図13のステップS81)。 Next, the drainage amount calculation unit 135 calculates the amount of drainage by the drainage device 12 based on the power load supplied by the fuel cell system and the prediction of hot water supply use (step S81 in FIG. 13).
 次に、料金算出部132は、算出した排水量を用いて、所定期間αにおいて貯湯タンク103の排水を行うことで発電継続した場合と、所定期間αにおいて排水を行わず停止した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図13のステップS82)。 Next, the charge calculation unit 132 uses the calculated amount of drainage to perform power generation by draining the hot water storage tank 103 during a predetermined period α, and when it stops without draining during the predetermined period α. In this case, the sum of the water charge, the electricity charge, and the gas charge is calculated (step S82 in FIG. 13).
 その後、排水制御部133は、算出結果に基づき、貯湯タンク103の排水を行い発電継続したほうが安いと判断した場合(図13のステップS83のYES)は、排水器12に排水を要求する信号を送信する(図13のステップS84)。 Thereafter, if the drainage control unit 133 determines that it is cheaper to drain the hot water storage tank 103 and continue power generation based on the calculation result (YES in step S83 in FIG. 13), a signal requesting drainage to the drainer 12 is sent. Transmit (step S84 in FIG. 13).
 そして、排水制御部133は、図13のステップS81で算出した排水量を分割した一定量の排水が完了すると(図13のステップS85の分岐Y)、図13のステップS81で算出した排水量の排水が完了したか確認する(図13のステップS86)。 When the drainage control unit 133 completes a certain amount of drainage obtained by dividing the drainage amount calculated in step S81 in FIG. 13 (branch Y in step S85 in FIG. 13), the drainage amount calculated in step S81 in FIG. It is confirmed whether it has been completed (step S86 in FIG. 13).
 排水制御部133は、図13のステップS81で算出した排水量の排水が完了していない場合(図13のステップS86の分岐N)には、排水の継続が必要か確認する(図13のステップS87)。このとき例えば現に給湯需要が有る場合には排水を継続する必要は無いと判断してもよい。 If the drainage amount calculated in step S81 in FIG. 13 is not completed (branch N in step S86 in FIG. 13), the drainage control unit 133 checks whether drainage needs to be continued (step S87 in FIG. 13). ). At this time, for example, when there is actually a hot water supply demand, it may be determined that there is no need to continue draining.
 排水制御部133は、ステップ87において排水の継続が必要であると判断した場合(図13のステップS87のYES)には、引き続き、排水器12に排水を要求する信号を送信し(図13のステップS84)、排水を継続する。 If the drainage control unit 133 determines in step 87 that drainage needs to be continued (YES in step S87 in FIG. 13), the drainage control unit 133 continues to transmit a signal requesting drainage to the drainer 12 (in FIG. 13). Step S84), draining is continued.
 一方、排水制御部133は、図13のステップS81で算出した排水量の排水が完了したか確認し(図13のステップS86)、図13のステップS81で算出した排水量の排水が完了した場合(図13のステップS86のYES)、および排水の継続が必要か確認し(図13のステップS87)、排水の継続が必要でない場合(図13のステップS87のNO)には、排水制御部133は排水器12に排水を要求する信号を停止し(図13のステップS88)、排水処理を終了する。 On the other hand, the drainage control unit 133 checks whether the drainage of the drainage amount calculated in step S81 of FIG. 13 is completed (step S86 of FIG. 13), and when the drainage of the drainage amount calculated in step S81 of FIG. 13, YES in step S86), and confirms whether drainage is to be continued (step S87 in FIG. 13). If drainage is not required (NO in step S87 in FIG. 13), the drainage control unit 133 performs drainage. The signal for requesting drainage to the vessel 12 is stopped (step S88 in FIG. 13), and the drainage process is terminated.
 これにより、制御器13が算出した排水する量の予測がずれ、予測以上に燃料電池ユニット10が電力を供給する電力負荷が低下し、発電継続する必要がなくなった場合や、予測以上の貯湯タンク103からの給湯使用により排水を継続する必要がなくなった場合に、排水を中断することで予測のずれによる排水の無駄を低減することができるため、システム利用者の経済的負担の低減に有用である。なお、本実施の形態7における図13のフロー図では、貯湯タンク103の湯の排水を、一定量毎に分割して排水したが、例えば一定時間毎に分割して排水してもかまわない。 Thereby, the prediction of the amount of drainage calculated by the controller 13 deviates, and the power load to which the fuel cell unit 10 supplies electric power is reduced more than expected, so that it is not necessary to continue the power generation, or the hot water storage tank more than expected. When it is no longer necessary to continue drainage by using hot water from 103, it is possible to reduce wasteful wastewater due to mispredictions by interrupting drainage, which is useful for reducing the economic burden on system users. is there. In the flow chart of FIG. 13 in the seventh embodiment, the hot water drainage of the hot water storage tank 103 is divided and drained at regular intervals, but may be drained at regular intervals, for example.
 (実施の形態8)
 次に、本発明の実施の形態8における電力供給システムについて、図面を用いて説明する。
(Embodiment 8)
Next, the power supply system in Embodiment 8 of this invention is demonstrated using drawing.
 本実施の形態8における燃料電池システムのブロック図は、本発明の実施の形態1と同様の図1であるため、説明を省略する。 The block diagram of the fuel cell system in the eighth embodiment is FIG. 1 similar to that in the first embodiment of the present invention, and a description thereof will be omitted.
 図14は、本実施の形態8における、燃料電池システムの排水を制御する制御器13の処理動作を示すフロー図である。図14と、実施の形態1で図示した燃料電池システムの排水を制御する制御器13の処理動作を示すフロー図(図3、図9~図13)とは、燃料電池システムが停止中であるか発電中であるかという点で大きく異なる。 FIG. 14 is a flowchart showing the processing operation of the controller 13 for controlling the drainage of the fuel cell system in the eighth embodiment. FIG. 14 and the flow charts (FIGS. 3 and 9 to 13) showing the processing operation of the controller 13 for controlling the drainage of the fuel cell system shown in the first embodiment, the fuel cell system is stopped. It differs greatly in whether it is generating electricity.
 はじめに、本実施の形態8において停止中の燃料電池システムの排水を制御する制御器13の処理動作において、制御器13が温度検出器104の温度が所定温度に下がるまで排水器12に排水を要求する場合の処理動作について図1、図2及び図14を用いて説明する。 First, in the processing operation of the controller 13 that controls the drainage of the fuel cell system that is stopped in the eighth embodiment, the controller 13 requests the drainer 12 to drain until the temperature of the temperature detector 104 falls to a predetermined temperature. The processing operation in this case will be described with reference to FIGS.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度以上であるため再起動できない場合(図14のステップS90のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 When the temperature detector 104 that detects the temperature of hot water in the hot water storage tank 103 cannot restart the demand prediction unit 131 because the hot water temperature in the hot water storage tank 103 is equal to or higher than the system stop temperature at which the system needs to be stopped (see FIG. 14 in step S90) predicts the amount of power and the amount of hot water used by the fuel cell system during the predetermined period α.
 次に、料金算出部132は、燃料電池システムが供給する電力負荷および給湯使用の予測に基づいて、所定期間αにおいて温度検出器104の温度が、システム停止温度より低く燃料電池システムの再起動可能な所定温度まで下がるよう貯湯タンク103の排水を行うことで再起動した場合と、所定期間αにおいて排水を行わず停止状態を継続した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図14のステップS91)。 Next, the charge calculation unit 132 can restart the fuel cell system in a predetermined period α based on the prediction of the power load supplied by the fuel cell system and the use of hot water supply, and the temperature of the temperature detector 104 is lower than the system stop temperature. When water is restarted by draining the hot water storage tank 103 so that the temperature drops to a predetermined temperature, and when it is stopped without draining for a predetermined period α, water charges, electricity charges, and gas charges in each case The sum is calculated (step S91 in FIG. 14).
 その後、排水制御部133は、算出結果に基づき、貯湯タンク103の排水を行い再起動したほうが安いと判断した場合(図14のステップS92のYES)には、燃料電池ユニット10に発電の再開を要求する信号を送信し(図14のステップS93)、排水器12に排水を要求する信号を送信する(図14のステップS94)。 After that, if the drainage control unit 133 determines that it is cheaper to drain and restart the hot water storage tank 103 based on the calculation result (YES in step S92 in FIG. 14), the fuel cell unit 10 resumes power generation. A request signal is transmitted (step S93 in FIG. 14), and a signal requesting drainage is transmitted to the drainage device 12 (step S94 in FIG. 14).
 そして、排水制御部133は、温度検出器104の温度が、システム停止温度より低い燃料電池システムの再起動可能な所定温度まで下がった場合(図14のステップS95のYES)には、排水器12に送信していた排水を要求する信号を停止する(図14のステップS96)。これにより、停止中の燃料電池システムにおいて、使用する水道料金、電気料金、ガス料金の総和が安くなるように貯湯タンク103の排水を行い発電を再開する、或いは排水せずに停止状態を継続することができるので、システム利用者の経済的負担の低減に有用である。
(実施の形態9)
 次に、本実施の形態9について説明する。本実施の形態9では、燃料電池システムの排水を制御する処理動作において、制御器13が貯湯タンク103から排水する量を算出し、算出した排水量の排水が完了するまで排水器12に排水を要求する場合について、図1、図4、及び図15を用いて説明する。
Then, when the temperature of the temperature detector 104 is lowered to a predetermined temperature at which the fuel cell system can be restarted lower than the system stop temperature (YES in step S95 in FIG. 14), the drain controller 133 The signal for requesting drainage that has been transmitted to is stopped (step S96 in FIG. 14). As a result, in the fuel cell system being stopped, the hot water storage tank 103 is drained to restart the power generation so that the sum of water charges, electricity charges, and gas charges to be used is reduced, or power generation is resumed or the stopped state is continued without draining. Therefore, it is useful for reducing the economic burden on the system user.
(Embodiment 9)
Next, the ninth embodiment will be described. In the ninth embodiment, in the processing operation for controlling the drainage of the fuel cell system, the controller 13 calculates the amount drained from the hot water storage tank 103, and the drainage unit 12 is requested to drain until the drainage of the calculated drainage amount is completed. This will be described with reference to FIG. 1, FIG. 4, and FIG.
 図15は、本発明の実施の形態9における燃料電池システムの排水を制御する処理動作を示すフロー図である。実施の形態8の処理動作(図14)では、給水器106から給水される水の温度が一定である場合において、排水量が一意に決まるのに対し、本実施の形態9のフローでは燃料電池システムが供給する電力負荷および給湯使用の予測に依存するという点で異なる。 FIG. 15 is a flowchart showing the processing operation for controlling the drainage of the fuel cell system according to Embodiment 9 of the present invention. In the processing operation of the eighth embodiment (FIG. 14), the amount of drainage is uniquely determined when the temperature of the water supplied from the water supply 106 is constant, whereas in the flow of the ninth embodiment, the fuel cell system Differing in that it depends on the power load supplied by and the prediction of hot water usage.
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度以上であるため再起動できない場合(図15のステップS100のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 When the temperature detector 104 that detects the temperature of hot water in the hot water storage tank 103 cannot restart the demand prediction unit 131 because the hot water temperature in the hot water storage tank 103 is equal to or higher than the system stop temperature at which the system needs to be stopped (see FIG. 15 in step S100) predicts the amount of electric power and the amount of hot water used by the fuel cell system during the predetermined period α.
 次に、排水量算出部135は、燃料電池システムが供給する電力負荷および給湯使用の予測に基づいて、燃料電池システムの再起動に必要な貯湯タンク103から排水する量を算出する(図15のステップS101)。 Next, the drainage amount calculation unit 135 calculates the amount of drainage from the hot water storage tank 103 necessary for restarting the fuel cell system based on the power load supplied by the fuel cell system and the prediction of hot water supply usage (step of FIG. 15). S101).
 排水制御部133は、算出した排水量を用いて、貯湯タンク103の排水を行うことで再起動した場合と、排水を行わず停止状態を継続した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図15のステップS102)。 The drainage control unit 133 uses the calculated drainage amount to restart the drainage of the hot water storage tank 103 and when the drainage control unit 133 continues the stopped state without draining, in each case, the water rate, the electricity rate, The sum of gas charges is calculated (step S102 in FIG. 15).
 排水制御部133は、その後、算出結果に基づき、貯湯タンク103の排水を行い再起動したほうが安いと判断した場合(図15のステップS103のYES)には、燃料電池ユニット10に起動を要求する信号を送信し(図15のステップS104)、排水器12に排水を要求する信号を送信する(図15のステップS105)。 If the drainage control unit 133 subsequently determines that it is cheaper to drain and restart the hot water storage tank 103 based on the calculation result (YES in step S103 in FIG. 15), the drainage control unit 133 requests the fuel cell unit 10 to start up. A signal is transmitted (step S104 in FIG. 15), and a signal requesting drainage is transmitted to the drainage device 12 (step S105 in FIG. 15).
 そして、排水制御部133は、算出した排水量の排水が完了した場合(図15のステップS106のYES)には、排水器12に送信していた排水を要求する信号を停止する(図15のステップS107)。この方法も、上記実施の形態8の処理動作のフローと同様、停止中の燃料電池システムにおいて、使用する水道料金、電気料金、ガス料金の総和が安くなるように貯湯タンク103の排水を行い発電を再開する、或いは排水せずに停止状態を継続することができるので、システム利用者の経済的負担の低減に有用である。
(実施の形態10)
 次に、本実施の形態10について説明する。本実施の形態10では、停止中の燃料電池システムにおいて実施の形態2と同様に、制御器13において、排水器12が排水する量を算出して、その量を分割して排水するよう制御する。
Then, when the drainage of the calculated drainage amount is completed (YES in step S106 in FIG. 15), the drainage control unit 133 stops the signal requesting drainage that has been transmitted to the drainer 12 (step in FIG. 15). S107). Similarly to the flow of the processing operation of the eighth embodiment, this method also generates power by draining the hot water storage tank 103 so that the sum of water charges, electricity charges, and gas charges to be used is reduced in the stopped fuel cell system. Can be resumed, or the stopped state can be continued without draining, which is useful for reducing the economic burden on the system user.
(Embodiment 10)
Next, the tenth embodiment will be described. In the tenth embodiment, in the stopped fuel cell system, as in the second embodiment, the controller 13 calculates the amount drained by the drainage device 12 and controls to divide the amount and drain the water. .
 以下に、制御器13において、排水器12が排水する量を算出して、その量を分割して排水するよう制御する場合の処理動作について、図1、図4、及び図16を用いて説明する。 Hereinafter, the processing operation in the case where the controller 13 calculates the amount of drainage by the drainer 12 and controls to divide and drain the amount will be described with reference to FIGS. 1, 4, and 16. To do.
 図16は、本発明の実施の形態10における制御器13が、排水器12が排水する量を算出して、その量を分割して排水するよう制御する場合の処理動作を示すフロー図である。 FIG. 16 is a flowchart showing a processing operation when the controller 13 according to the tenth embodiment of the present invention calculates the amount drained by the drainer 12 and controls to divide and drain the amount. .
 需要予測部131は、貯湯タンク103の湯の温度を検出する温度検出器104において、貯湯タンク103の湯の温度が、システム停止させる必要があるシステム停止温度以上であるため再起動できない場合(図16のステップS110のYES)は、所定期間αにおいて燃料電池システムが供給する電力量および給湯使用量を予測する。 When the temperature detector 104 that detects the temperature of hot water in the hot water storage tank 103 cannot restart the demand prediction unit 131 because the hot water temperature in the hot water storage tank 103 is equal to or higher than the system stop temperature at which the system needs to be stopped (see FIG. 16 in step S110) predicts the amount of power and the amount of hot water used by the fuel cell system during the predetermined period α.
 次に、排水量算出部135は、所定期間αにおいて燃料電池システムが供給する電力負荷および給湯使用の予測に基づいて、排水器12が排水する量を算出する(図16のステップS111)。 Next, the drainage amount calculation unit 135 calculates the amount of drainage by the drainer 12 based on the prediction of the power load and hot water supply used by the fuel cell system in the predetermined period α (step S111 in FIG. 16).
 次に、料金算出部132は、算出した排水量を用いて、所定期間αにおいて貯湯タンク103の排水を行うことで再起動した場合と、所定期間αにおいて排水を行わず停止状態を継続した場合において、それぞれの場合における水道料金、電気料金、ガス料金の総和を算出する(図16のステップS112)。 Next, when the charge calculation unit 132 is restarted by draining the hot water storage tank 103 in the predetermined period α using the calculated drainage amount, and when the drainage is not performed and the stop state is continued in the predetermined period α. Then, the sum of water charges, electricity charges, and gas charges in each case is calculated (step S112 in FIG. 16).
 その後、排水制御部133は、算出結果に基づき、貯湯タンク103の排水を行い再起動したほうが安いと判断した場合(図16のステップS113のYES)は、燃料電池ユニット10に発電の再開を要求する信号を送信し(図16のステップS114)、排水器12に排水を要求する信号を送信する(図16のステップS115)。 Thereafter, if the drainage control unit 133 determines that it is cheaper to drain and restart the hot water storage tank 103 based on the calculation result (YES in step S113 in FIG. 16), the drainage control unit 133 requests the fuel cell unit 10 to restart power generation. A signal for requesting drainage is transmitted to the drainage device 12 (step S115 in FIG. 16).
 そして、排水制御部133は、図16のステップS111で算出した排水量を分割した一定量の排水が完了すると(図16のステップS116のYES)、図16のステップS111で算出した排水量の排水が完了したか確認し(図16のステップS117)、図16のステップS111で算出した排水量の排水が完了していない場合(図16のステップS117のNO)には、排水の継続が必要か確認する(図11ステップS118)。このとき例えば現に給湯需要が有る場合には排水を継続する必要は無いと判断してもよい。 When the drainage control unit 133 completes a certain amount of drainage obtained by dividing the drainage amount calculated in step S111 of FIG. 16 (YES in step S116 of FIG. 16), the drainage of the drainage amount calculated in step S111 of FIG. 16 is completed. 16 (step S117 in FIG. 16), and if drainage of the drainage amount calculated in step S111 in FIG. 16 is not completed (NO in step S117 in FIG. 16), it is confirmed whether drainage needs to be continued ( FIG. 11 step S118). At this time, for example, when there is actually a hot water supply demand, it may be determined that there is no need to continue draining.
 排水制御部133は、排水の継続が必要な場合(図16のステップS118のYES)には、引き続き排水器12に排水を要求する信号を送信し(図16のステップS115)、排水を継続する。 When the drainage control unit 133 needs to continue draining (YES in step S118 in FIG. 16), the drainage control unit 133 continues to send a signal requesting drainage to the drainer 12 (step S115 in FIG. 16) and continues draining. .
 一方、排水制御部133は、図16のステップS111で算出した排水量の排水が完了したか確認し(図16のステップS117)、図16のステップS111で算出した排水量の排水が完了した場合(図16のステップS117のYES)、および排水の継続が必要か確認し(図16のステップS118)、排水の継続が必要でない場合(図16のステップS118のNO)には、排水器12に排水を要求する信号を停止し(図16のステップS119)、排水処理を終了する。 On the other hand, the drainage control unit 133 checks whether the drainage of the drainage amount calculated in step S111 of FIG. 16 is completed (step S117 of FIG. 16), and the drainage of the drainage amount calculated in step S111 of FIG. 16 (YES in step S117), and confirms whether or not continuation of drainage is necessary (step S118 in FIG. 16). If continuation of drainage is not necessary (NO in step S118 in FIG. 16), the drainage device 12 is drained. The requested signal is stopped (step S119 in FIG. 16), and the drainage process is terminated.
 この方法は、排水量算出部135が算出した排水する量の予測がずれ、予測以上に燃料電池ユニット10が電力を供給する電力負荷が低下し、発電を再開する必要がなくなった場合や、予測以上の貯湯タンク103からの給湯使用により排水を継続する必要がなくなった場合に、排水を中断することで予測のずれによる排水の無駄を低減することができるため、システム利用者の経済的負担の低減に有用である。なお、本発明の実施の形態10における図16のフロー図では、貯湯タンク103の湯の排水を、一定量毎に分割して排水したが、例えば一定時間毎に分割して排水してもかまわない。 In this method, when the amount of drainage calculated by the drainage amount calculation unit 135 is deviated, the power load supplied by the fuel cell unit 10 is lower than expected, and it is no longer necessary to restart power generation. When it is no longer necessary to continue drainage by using hot water from the hot water storage tank 103, wastewater drainage due to mispredictions can be reduced by interrupting drainage, thus reducing the economic burden on system users Useful for. In the flow chart of FIG. 16 according to the tenth embodiment of the present invention, the hot water drainage of the hot water storage tank 103 is divided and drained at regular intervals, but may be drained at regular intervals, for example. Absent.
 また、上記実施の形態9の処理動作および本実施の形態10において、制御器13は、燃料電池システムが供給する電力負荷および給湯使用の予測に基づいて、燃料電池ユニット10で発電した電力を売却して得られる金額、或いは燃料電池ユニット10が発電した電力を燃料電池システムの利用者が使用することで得られる補助金、或いは貯湯タンク103に蓄えられた熱量の排水に伴う損失金額、或いは蓄電によって得られる電気料金の削減額を算出し、前述した算出結果と使用する水道料金、電気料金、ガス料金の総和を基に排水を行い再起動するか制御してもよい。 In the processing operation of the ninth embodiment and the tenth embodiment, the controller 13 sells the power generated by the fuel cell unit 10 based on the power load supplied by the fuel cell system and the prediction of hot water supply use. Or subsidies obtained by the user of the fuel cell system using the electric power generated by the fuel cell unit 10, or the amount of loss associated with the drainage of the amount of heat stored in the hot water storage tank 103, or storage It is also possible to calculate a reduction amount of the electricity charge obtained by the above and control whether to restart by performing drainage based on the above-mentioned calculation result and the sum of the water charge, electricity charge and gas charge to be used.
 (実施の形態11)
 尚、上記各実施の形態においては、貯湯タンク103に蓄えられた湯を排水する排水器12により貯湯タンクの熱を排熱する構成であったが、このような構成に限定されるものではない。図17は、本発明の実施の形態11における燃料電池システムのブロック図である。図17に示すように、燃料電池システムの貯湯タンク103には放熱器(ラジエータ)111が配置されている。具体的には、貯湯タンク103に、貯湯タンク103の上部から下部に至る流路が設けられ、当該流路に図示されないポンプと放熱器111が設けられている。放熱する際には、制御器13の制御により、貯湯タンク103の上部から下部に貯湯水を流すようにポンプが作動する。すると、貯湯水が貯湯タンク103の上部から取り出されて放熱器111において放熱して温度が低下し、この温度が低下した貯湯水が貯湯タンク103の下部に戻される。このように構成された本実施の形態11によれば、ラジエータにより貯湯タンク103の熱を放熱するので、排水器により湯を排水する場合のように水道料金が発生することはない。これによりシステム利用者の経済的負担をより低減することができる。
(Embodiment 11)
In addition, in each said embodiment, although it was the structure which drains the heat of a hot water storage tank with the drainage device 12 which drains the hot water stored in the hot water storage tank 103, it is not limited to such a structure. . FIG. 17 is a block diagram of the fuel cell system according to Embodiment 11 of the present invention. As shown in FIG. 17, a radiator (radiator) 111 is arranged in the hot water storage tank 103 of the fuel cell system. Specifically, the hot water storage tank 103 is provided with a flow path from the upper part to the lower part of the hot water storage tank 103, and a pump and a radiator 111 (not shown) are provided in the flow path. When the heat is radiated, the controller is controlled by the controller 13 so that the hot water is supplied from the upper part to the lower part of the hot water storage tank 103. Then, the hot water is taken out from the upper part of the hot water storage tank 103 and radiates heat in the radiator 111 to decrease the temperature, and the hot water whose temperature has decreased is returned to the lower part of the hot water storage tank 103. According to the eleventh embodiment configured as described above, since the heat of the hot water storage tank 103 is radiated by the radiator, there is no charge for water supply as in the case where the hot water is drained by the drain. Thereby, the economic burden on the system user can be further reduced.
 (変形例)
 実施の形態11の変形例として、上述の放熱器111に代えて、図17の熱回収配管110の始端部Cからその下流部Dに至る流路を別途設け、更に当該流路に放熱器を設けることで、放熱時には制御器13の制御によりこの放熱器を動作させるようにしてもよい。
(Modification)
As a modification of the eleventh embodiment, instead of the radiator 111 described above, a flow path from the start end C of the heat recovery pipe 110 of FIG. 17 to the downstream portion D is separately provided, and a radiator is further provided in the flow path. By providing, this heat radiator may be operated under the control of the controller 13 during heat radiation.
 尚、上記各実施の形態(変形例を含む)において、所定期間αとは、燃料電池システムが停止してから再び発電状態となるまでの時間に設定され、例えば2時間に設定されたが、これに限定されるものではなく、燃料電池システムの設置地域における運転計画に基づいて決定されてもよい。 In each of the above-described embodiments (including modifications), the predetermined period α is set to a time from when the fuel cell system is stopped until the power generation state is restored, for example, 2 hours. However, the present invention is not limited to this, and may be determined based on an operation plan in the installation area of the fuel cell system.
 以上のように、本発明にかかる燃料電池システムは、燃料電池システムを発電するために貯湯タンクの湯を排水する場合、貯湯タンクから湯を排水する際の、使用する水道料金、電気料金、ガス料金の総和が、貯湯タンクから湯を排水せずに燃料電池システムを停止させる際の、使用する水道料金、電気料金、ガス料金の総和より安くなる場合にのみ、排水を行うことで、燃料電池システムが貯湯タンクの湯を排水する場合においても、経済性への影響を考慮することができるため、燃料電池システムの様な発電装置と貯湯タンクを備える電力供給システムの用途にも適用することができる。 As described above, when the fuel cell system according to the present invention drains hot water from a hot water storage tank to generate power from the fuel cell system, the water charge, electricity charge, gas used when the hot water is drained from the hot water storage tank. By draining the fuel cell only when the sum of the charges is lower than the sum of the water, electricity, and gas charges used when stopping the fuel cell system without draining hot water from the hot water storage tank, Even when the system drains hot water from the hot water storage tank, the impact on the economy can be taken into account, so it can be applied to the use of a power supply system including a power generation device such as a fuel cell system and a hot water storage tank. it can.
 10 燃料電池ユニット
 11 貯湯ユニット
 12 排水器(排熱部)
 13 制御器
 100 燃料電池セル
 101 熱交換器
 103 貯湯タンク
 104 温度検出器(蓄熱量検出部)
 110 熱回収配管
 111 放熱器(排熱部)
 131 需要予測部
 132 料金算出部
 133 排水制御部
 134 記憶部
 135 排水量算出部
10 Fuel Cell Unit 11 Hot Water Storage Unit 12 Drainage Unit (Exhaust Heat Unit)
13 Controller 100 Fuel cell 101 Heat exchanger 103 Hot water storage tank 104 Temperature detector (heat storage amount detection unit)
110 Heat recovery piping 111 Radiator (heat exhaust part)
131 Demand prediction unit 132 Charge calculation unit 133 Drainage control unit 134 Storage unit 135 Drainage amount calculation unit

Claims (10)

  1.  燃料ガスが供給されて発熱を伴う発電を行い、電力および熱を供給する燃料電池ユニットと、
     前記燃料電池ユニットから供給された熱を湯として蓄える貯湯タンクを備えた貯湯ユニットと、
     前記貯湯タンクに蓄えられた熱を排熱する排熱部と、
     前記貯湯タンクの蓄熱量を検出する蓄熱量検出部と、
     前記貯湯タンクの蓄熱量が上限値に到達すると前記燃料電池ユニットの発電を停止する制御部と、を備え、
     前記制御部は、前記蓄熱量検出部が第1所定蓄熱量以上であることを検出した場合に、前記燃料電池ユニットが供給する電力量および前記貯湯タンクの熱の使用量の予測に基づいて、システム利用者の水道、電気、及びガスの使用料金を算出し、算出した使用料金に基づいて、前記排熱部による排熱を行うか否かを制御する、燃料電池システム。
    A fuel cell unit that is supplied with fuel gas to generate heat and generates electric power and heat;
    A hot water storage unit comprising a hot water storage tank for storing the heat supplied from the fuel cell unit as hot water;
    An exhaust heat section for exhausting heat stored in the hot water storage tank;
    A heat storage amount detection unit for detecting a heat storage amount of the hot water storage tank;
    A controller that stops power generation of the fuel cell unit when the amount of heat stored in the hot water storage tank reaches an upper limit, and
    When the control unit detects that the heat storage amount detection unit is greater than or equal to a first predetermined heat storage amount, based on the prediction of the amount of power supplied by the fuel cell unit and the amount of heat used in the hot water storage tank, A fuel cell system that calculates usage charges for water, electricity, and gas of a system user, and controls whether or not to exhaust heat by the exhaust heat unit based on the calculated usage charges.
  2.  前記蓄熱量検出部は、前記貯湯タンクの湯の温度を検出するものであって、
     前記制御部は、
     前記蓄熱量検出部が第1所定温度以上であることを検出した場合に、所定期間において前記燃料電池ユニットが供給する電力量および給湯使用量を予測する予測部と、
     前記所定期間における予測に基づいて、前記所定期間において前記排熱部による排熱を行った場合の、水道、電気、及びガスの使用料金の総和を算出するとともに、前記所定期間において前記排熱を行わなかった場合の水道、電気、及びガスの使用料金の総和を算出する使用料金算出部と、
     前記排熱を行った場合の使用料金と前記排熱を行わなかった場合の使用料金とを比較し、前記排熱を行った場合の使用料金が前記排熱を行わなかった場合の使用料金より安くなる場合には、排熱を行う排熱制御部とを備える請求項1に記載の燃料電池システム。
    The heat storage amount detection unit detects the temperature of hot water in the hot water storage tank,
    The controller is
    A predicting unit that predicts the amount of power and hot water usage used by the fuel cell unit in a predetermined period when the heat storage amount detection unit detects that the temperature is equal to or higher than a first predetermined temperature;
    Based on the prediction in the predetermined period, the sum of usage charges of water, electricity, and gas when the exhaust heat is exhausted by the exhaust heat unit in the predetermined period is calculated, and the exhaust heat is calculated in the predetermined period. A usage fee calculation unit that calculates the sum of usage fees for water, electricity, and gas when not performed,
    The usage fee when the exhaust heat is performed is compared with the usage fee when the exhaust heat is not performed, and the usage fee when the exhaust heat is performed is more than the usage fee when the exhaust heat is not performed. The fuel cell system according to claim 1, further comprising an exhaust heat control unit that performs exhaust heat when the cost is reduced.
  3.  前記制御部は、前記蓄熱量検出部の検出する温度が前記第1所定温度よりも低い第2所定温度以下になるように、排熱を制御する、請求項2に記載の燃料電池システム。 3. The fuel cell system according to claim 2, wherein the control unit controls the exhaust heat so that the temperature detected by the heat storage amount detection unit is equal to or lower than a second predetermined temperature lower than the first predetermined temperature.
  4.  前記制御部は、前記燃料電池ユニットが前記所定期間において供給する電力量及び給湯使用量の予測に基づいて前記排熱部が排熱する量を算出し、当該算出した排熱量を排熱するように制御する、請求項2に記載の燃料電池システム。 The control unit calculates the amount of heat exhausted by the exhaust heat unit based on the prediction of the amount of electric power and the amount of hot water used that the fuel cell unit supplies in the predetermined period, and exhausts the calculated amount of exhaust heat. The fuel cell system according to claim 2, wherein the fuel cell system is controlled.
  5.  前記制御部は、
    前記算出した排熱量を分割して排熱するよう制御する請求項4に記載の燃料電池システム。
    The controller is
    The fuel cell system according to claim 4, wherein the calculated exhaust heat amount is divided and exhausted.
  6.  前記制御部は、
     排熱を行った際の、水道、電気、及びガスの使用料金の総和から前記燃料電池ユニットで発電した電力を売却して得られる金額を差し引いた値が、排熱を行わなかった際より安くなる場合には、排熱を行う請求項2記載の燃料電池システム。
    The controller is
    The value obtained by subtracting the amount obtained by selling the power generated by the fuel cell unit from the sum of the usage fees for water, electricity, and gas when exhaust heat is used is cheaper than when exhaust heat is not used If so, the fuel cell system according to claim 2, wherein exhaust heat is exhausted.
  7.  前記制御部は、
     排熱を行った際の、水道、電気、及びガスの使用料金の総和から前記燃料電池ユニットが発電した電力を使用することで得られる補助金を差し引いた金額が、排熱を行わなかった際より安くなる場合には、排熱を行う請求項2記載の燃料電池システム。
    The controller is
    When the amount obtained by subtracting subsidies obtained by using the power generated by the fuel cell unit from the sum of the usage fees for water, electricity, and gas when exhaust heat is used does not exhaust heat The fuel cell system according to claim 2, wherein exhaust heat is discharged when the price is lower.
  8.  前記制御部は、
    排熱を行った際の、水道、電気、及びガスの使用料金の総和に排熱に伴い無駄になる前記貯湯タンクの熱量の損失金額を足した金額が、排熱を行わなかった際より安くなる場合には、排熱を行う請求項2記載の燃料電池システム。
    The controller is
    The total amount of water, electricity, and gas usage charges when exhaust heat is used plus the amount of heat loss of the hot water storage tank that is wasted due to exhaust heat is cheaper than when exhaust heat is not used If so, the fuel cell system according to claim 2, wherein exhaust heat is exhausted.
  9.  前記燃料電池ユニットの発電電力を蓄える蓄電ユニットを更に備え、
     前記制御部は、さらに、
    排熱を行った際の、水道、電気、及びガスの使用料金の総和から前記蓄電ユニットへの蓄電によって得られる電気の使用料金の削減額を差し引いた金額が、排熱を行わなかった際より安くなる場合には、排熱を行う請求項2記載の燃料電池システム。
    A power storage unit for storing the power generated by the fuel cell unit;
    The control unit further includes:
    The amount obtained by subtracting the amount of electricity usage charges obtained by storing electricity in the electricity storage unit from the sum of usage charges for water, electricity, and gas when exhaust heat is used is greater than when exhaust heat is not used. The fuel cell system according to claim 2, wherein when it becomes cheap, exhaust heat is performed.
  10.  前記制御部は、
    前記燃料電池ユニットの停止中に、発電を再開するよう制御するとともに、前記排熱部にて排熱するよう制御する請求項1~9のいずれかに記載の燃料電池システム。
     
    The controller is
    The fuel cell system according to any one of claims 1 to 9, wherein control is performed so as to resume power generation while the fuel cell unit is stopped, and control is performed so that heat is exhausted by the exhaust heat unit.
PCT/JP2013/002580 2012-04-16 2013-04-16 Fuel cell system WO2013157253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092738A JP2015122139A (en) 2012-04-16 2012-04-16 Fuel cell system
JP2012-092738 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157253A1 true WO2013157253A1 (en) 2013-10-24

Family

ID=49383224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002580 WO2013157253A1 (en) 2012-04-16 2013-04-16 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2015122139A (en)
WO (1) WO2013157253A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578962A (en) * 2019-08-14 2019-12-17 长沙理工大学 Cooperative control method and control device for heat supply system of coupling electric gas conversion equipment
JP7526067B2 (en) 2020-09-29 2024-07-31 京セラ株式会社 Fuel Cell Systems

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609769B2 (en) * 2015-06-17 2019-11-27 豊丸産業株式会社 Game machine
CN108627209B (en) * 2017-03-20 2020-04-07 北京华电滢欣科技有限公司 Water consumption metering method, water consumption meter and water consumption billing system
CN113161587B (en) * 2021-04-28 2022-12-13 绍兴学森能源科技有限公司 Self-breathing fuel cell temperature control method based on multiple internal models

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163013A (en) * 2001-11-27 2003-06-06 Nippon Telegr & Teleph Corp <Ntt> Means for controlling fuel cell system
JP2004039351A (en) * 2002-07-01 2004-02-05 Sekisui Chem Co Ltd Distributed electric power generation system
JP2008145073A (en) * 2006-12-12 2008-06-26 Osaka Gas Co Ltd Aggregation type cogeneration system
JP2009048536A (en) * 2007-08-22 2009-03-05 Ebara Corp Method of collecting fuel cost of fuel cell, method of charging for maintenance cost of fuel cell, and fuel use charge collection system of fuel cell
JP2010049979A (en) * 2008-08-22 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Power generation management system and power generation control method
JP2011049020A (en) * 2009-08-27 2011-03-10 Kyocera Corp Fuel cell cogeneration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163013A (en) * 2001-11-27 2003-06-06 Nippon Telegr & Teleph Corp <Ntt> Means for controlling fuel cell system
JP2004039351A (en) * 2002-07-01 2004-02-05 Sekisui Chem Co Ltd Distributed electric power generation system
JP2008145073A (en) * 2006-12-12 2008-06-26 Osaka Gas Co Ltd Aggregation type cogeneration system
JP2009048536A (en) * 2007-08-22 2009-03-05 Ebara Corp Method of collecting fuel cost of fuel cell, method of charging for maintenance cost of fuel cell, and fuel use charge collection system of fuel cell
JP2010049979A (en) * 2008-08-22 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Power generation management system and power generation control method
JP2011049020A (en) * 2009-08-27 2011-03-10 Kyocera Corp Fuel cell cogeneration system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578962A (en) * 2019-08-14 2019-12-17 长沙理工大学 Cooperative control method and control device for heat supply system of coupling electric gas conversion equipment
CN110578962B (en) * 2019-08-14 2021-05-07 长沙理工大学 Cooperative control method and control device for heat supply system of coupling electric gas conversion equipment
JP7526067B2 (en) 2020-09-29 2024-07-31 京セラ株式会社 Fuel Cell Systems

Also Published As

Publication number Publication date
JP2015122139A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5838825B2 (en) Hot water storage hot water supply system
WO2013157253A1 (en) Fuel cell system
JP2006286450A (en) Fuel cell system, its control method, and its control device
JP6044326B2 (en) Hot water storage water heater and solar system
JP2009284586A (en) Power system and its control method
JP4660422B2 (en) Energy supply system
JP4879287B2 (en) Hot water storage hot water supply system
JP4966066B2 (en) Cogeneration system
JP4810786B2 (en) Fuel cell cogeneration system
JP2014122749A (en) Hot water storage type water heater system
JP5081100B2 (en) Power generation management system and power generation management method
JP6167438B2 (en) Power supply system
JP2011179716A (en) Hybrid system
JP6495089B2 (en) Power management apparatus and power conversion apparatus
JP5225444B2 (en) Hot water storage hot water supply system
JP2009133559A (en) Operation control device of storage water heater
JP2009300061A (en) Operation plan preparing device, operation plan preparing method, and program for cogeneration system
JP7108220B2 (en) Storage hot water heater
JP2005223964A (en) Operation control system for cogeneration system
JP4912837B2 (en) Cogeneration system
JP2007107873A (en) Cogeneration system
JP2011174626A (en) Fuel cell system
JP6432099B2 (en) Power supply system
JP2021072257A (en) Fuel cell system
JP5352555B2 (en) Water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP