WO2013157036A1 - 狭窄ノズル及びこれを用いたtig溶接用トーチ - Google Patents
狭窄ノズル及びこれを用いたtig溶接用トーチ Download PDFInfo
- Publication number
- WO2013157036A1 WO2013157036A1 PCT/JP2012/002659 JP2012002659W WO2013157036A1 WO 2013157036 A1 WO2013157036 A1 WO 2013157036A1 JP 2012002659 W JP2012002659 W JP 2012002659W WO 2013157036 A1 WO2013157036 A1 WO 2013157036A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- nozzle
- speed
- arc
- tip
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/164—Arc welding or cutting making use of shielding gas making use of a moving fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/24—Features related to electrodes
- B23K9/28—Supporting devices for electrodes
- B23K9/29—Supporting devices adapted for making use of shielding means
- B23K9/291—Supporting devices adapted for making use of shielding means the shielding means being a gas
- B23K9/296—Supporting devices adapted for making use of shielding means the shielding means being a gas using non-consumable electrodes
Definitions
- the present invention mainly relates to a narrowing nozzle attached to a TIG welding torch used in TIG welding in which end portions of metal thin plates such as a stainless steel plate and an electromagnetic steel plate are butt-welded to each other, and a TIG welding torch using the same.
- a narrowing nozzle is provided around the tip of the tungsten electrode rod, and a linear high-speed rectifying gas or a swirling high-speed rectifying gas is caused to flow around the arc from the constricting nozzle, whereby the flow of the plasma air flow , And strengthen the electromagnetic force and magnetic field acting on the arc to increase the arc energy density, arc directivity and rigidity, respectively, and
- argon gas, helium gas, etc argon gas, helium gas, etc.
- an arc (arc plasma) is generated between a tungsten electrode rod and a base material which is an object to be welded by flowing a shielding gas such as argon gas around the tungsten electrode rod, and the heat of the arc is generated.
- the base material is melted at the same time, and is widely used as an important joining technique in manufacturing sites using metal materials.
- the TIG welding method has the following problems (1) to (5) as compared with other welding methods (for example, plasma welding method, laser welding method, and electron beam welding method).
- the TIG welding method is inferior in welding ability and welding strength as compared with other welding methods such as a plasma welding method.
- the tungsten electrode rod and the argon gas used as the shielding gas are relatively expensive, and the cost increases.
- the shielding gas is easily affected by wind during welding, and the shielding effect is poor.
- the second part of the weld (the heat-affected zone that occurs in the base metal due to welding heat, which is the part where the base metal structure has changed due to rapid heating / cooling due to welding heat) is burnt darkly. And an oxide film is generated on the bead surface.
- the arc length is not shortened when welding is performed with a small current, the arc becomes unstable.
- an undercut (dent) is generated in the second weld portion.
- TIG welding torch used in the TIG welding method for example, a TIG welding torch (Patent Document 1) using a cylindrical shield nozzle for releasing a shielding gas such as argon gas, the shield nozzle and the like
- a TIG welding torch (Patent Document 2) using a constricting nozzle for increasing the energy density of an arc is known.
- FIG. 18 shows an example of a conventional TIG welding torch using a shield nozzle.
- the TIG welding torch has an electrode collet 22 for holding and fixing a tungsten electrode rod 21 in the torch body 20 and is inserted.
- the torch body 20 has a structure in which a ceramic shield nozzle 23 for releasing a shield gas G such as argon gas is attached to the tip of the torch body 20, and the shield gas G that has flowed in through the torch body 20 is torched.
- a shield gas G such as argon gas
- the gas lens 24 composed of a filter or the like provided at the tip of the body 20 is laminarized, and this laminarized shield gas G is flowed from the shield nozzle 23 toward the base material to be welded, and the atmosphere of the shield gas G An arc (arc plasma) is generated between the tungsten electrode rod 21 and the base material, and the base material is heated by the heat of the arc. It is obtained so as to melt.
- arc arc plasma
- FIG. 19 shows an example of a conventional TIG welding torch using a shield nozzle 23 and a constricting nozzle 25.
- the TIG welding torch holds a tungsten electrode rod 21 in a torch body (not shown).
- a fixed electrode collet (not shown) is inserted, and a ceramic shield nozzle 23 for flowing a shield gas G such as argon gas is attached to the tip of the torch body.
- a shield nozzle 23 is attached to the tip of the shield nozzle 23 from the shield nozzle 23.
- a constricted nozzle 25 having a small diameter is attached, and a shielding gas is formed around the arc (arc plasma) generated between the tungsten electrode rod 21 and the base material from the constricted nozzle 25.
- G is concentrated and the energy density of the arc is increased by the thermal pinch effect of the shielding gas G Those were Unishi.
- the TIG welding torch using the shield nozzle 23 since the TIG welding torch using the shield nozzle 23 only diffuses and releases the shield gas G from the tip of the shield nozzle 23 having a relatively large inner diameter, the concentration of the shield gas G around the arc decreases, and the energy A high-density arc was not obtained, and the arc was unstable. For this reason, there is a problem that the welding speed must be slow and the directivity of the arc is poor.
- the TIG welding torch using the shield nozzle 23 and the constriction nozzle 25 causes the shield gas G to flow intensively from the constriction nozzle 25 to the periphery of the arc, so that the TIG welding with the arc energy density using only the shield nozzle 23 is performed. Because the welding speed can be increased and the directivity of the arc can be improved because it is increased compared with the torch for the use, but the discharge range of the shielding gas G is narrowed and the shielding effect is deteriorated, and the quality of welding is reduced. There was a problem. Moreover, when the tungsten electrode rod 21 is replaced, it is difficult to set the tungsten electrode rod 21 to the original position (the center position of the constriction nozzle 25), and there is a problem that the reproducibility and workability are poor.
- the present invention has been made in view of such problems, and its purpose is to accelerate the flow of the plasma air flow by flowing a linear high-speed rectifying gas or a swirling high-speed rectifying gas around the arc,
- the electromagnetic force and magnetic field acting on the arc are strengthened to increase the arc energy density, arc directivity and rigidity, respectively, so that high-speed welding can be performed, and the welded portion with a shielding gas such as argon gas or helium gas can be used.
- the shield effect can be improved and high-quality welding can be performed.
- the tungsten electrode rod can be easily and accurately attached to the original position, thereby improving reproducibility and workability.
- An object of the present invention is to provide a narrowing nozzle and an IG welding torch using the same.
- the invention of claim 1 of the present invention laminates the shield gas flowing in through the inside of the torch body by a gas lens disposed at the tip of the torch body.
- Laminarized shield gas is discharged from the cylindrical shield nozzle disposed at the tip of the torch body toward the base material, which is to be welded, and placed at the center of the shield nozzle in the atmosphere of the shield gas
- a narrowing nozzle attached to a TIG welding torch in which an arc is generated between the tungsten electrode rod and the base material and the base material is melted by the heat of the arc.
- the narrowing nozzle is a tungsten electrode rod.
- a laminar flow comprising a plurality of gas rectifying grooves for rectifying the shield gas flowing in the high-speed gas passage, and flowing a part of the shield gas released from the torch body through the high-speed gas passage to be released from the shield nozzle
- the high-speed rectification gas is faster than the shield gas, and the high-speed rectification gas is configured to flow around the arc from the tip opening of the nozzle body.
- the plurality of positioning protrusions and the plurality of gas rectifying grooves are respectively formed linearly along the longitudinal direction of the nozzle body, This is characterized in that a straight high-speed rectified gas is allowed to flow around the arc from the tip opening.
- the plurality of positioning protrusions and the plurality of gas rectifying grooves are respectively formed in a spiral shape, from the tip opening of the nozzle body to the periphery of the arc. It is characterized by the configuration in which the swirling high-speed rectified gas flows.
- the positioning protrusion and the gas rectifying groove are formed at positions away from the tip of the nozzle body, and the positioning is performed.
- the inner diameter of the high-speed gas passage located on the downstream side of the projecting ridge and the gas rectifying groove was formed larger than the inner diameter of the high-speed gas passage located on the upstream side of the positioning ridge and the gas rectifying groove, and passed through the gas rectifying groove. It is characterized in that the flow of the high-speed rectifying gas is stabilized in the downstream portion of the high-speed gas passage.
- the plurality of gas rectifying grooves are formed so that the high-speed rectified gas is discharged from the tip opening of the nozzle body. It is characterized in that the nozzle body is evenly arranged on the inner peripheral surface so that it can flow evenly around.
- the plurality of gas rectifying grooves are arranged so that the high-speed rectified gas is opposed to the periphery of the arc from the tip opening of the nozzle body. It is characterized by being arranged on the inner peripheral surface of the nozzle body so that it can flow in a large amount.
- the shield gas flowing in through the inside of the torch body is stratified by a gas lens disposed at the tip of the torch body, and the stratified shield gas is Tungsten electrode rod and base material, which are discharged from the cylindrical shield nozzle disposed at the tip of the torch body toward the base material W which is an object to be welded and disposed at the center position of the shield nozzle in the atmosphere of the shield gas
- the constricting nozzle is a tungsten electrode around the tip of the tungsten electrode rod
- a cylindrical nozzle body that is arranged concentrically with the rod and forms an annular high-speed gas passage between the outer peripheral surface of the tip of the tungsten electrode rod, and inserted into the inside of the tip of the nozzle body
- the cylindrical electrode formed with a plurality of spiral gas rectifying grooves that hold the tungsten electrode rod on the inner peripheral surface at
- the spiral fitting is inserted at a position away from the tip of the nozzle body, and the inner diameter of the high-speed gas passage located downstream of the spiral fitting is set. It was formed larger than the inner diameter of the high-speed gas passage located upstream of the spiral metal fitting, and the flow of the swirling high-speed rectification gas that passed through the spiral gas rectification groove was stabilized at the downstream portion of the high-speed gas passage.
- a plurality of spiral gas rectifying grooves are uniformly formed on the outer peripheral surface of the spiral fitting, and swiveled from the tip opening of the nozzle body. It is characterized in that the high-speed rectified gas is made to flow evenly around the arc.
- a tenth aspect of the present invention includes a cylindrical torch body, an electrode collet that is screwed into and inserted into the torch body so as to be movable up and down and rotatable, and a tungsten electrode bar is detachably held, and an upper end of the electrode collet
- a collet handle that is attached to the body and rotates the electrode collet forward and backward relative to the torch body, and detachably attached to the lower end of the torch body.
- the cylindrical shield nozzle that discharges and the periphery of the tip of the tungsten electrode rod are arranged according to claims 1 to 9. It is characterized in that consisted Re of the constriction nozzle.
- the invention of claim 11 of the present invention is characterized in that, in the invention of claim 10, the constricting nozzle is detachably attached to the center position of the front end surface of the gas lens.
- the constricting nozzle according to claim 1 of the present invention is a cylinder which is arranged concentrically with the tungsten electrode rod around the tip portion of the tungsten electrode rod and forms an annular high-speed gas passage between the outer peripheral surface of the tip portion of the tungsten electrode rod.
- Shaped nozzle body Shaped nozzle body, a plurality of positioning ridges formed on the inner peripheral surface of the nozzle body at predetermined intervals in the circumferential direction, and holding the tungsten electrode rod at the center position of the nozzle body, and a plurality of positioning A plurality of gas rectifying grooves formed between the projections for rectifying the shield gas flowing in the high-speed gas passage, and a part of the shield gas discharged from the torch body flows through the high-speed gas passage to the shield nozzle Because the high-speed rectifying gas is faster than the laminarized shielding gas released from the nozzle, and the high-speed rectifying gas flows from the tip opening of the nozzle body around the arc, It is possible to obtain the UNA excellent effect.
- the narrowing nozzle of claim 1 of the present invention uses a part of the shielding gas as a high-speed rectifying gas faster than the laminarized shielding gas discharged from the shielding nozzle, and this high-speed rectifying gas is used around the arc. Therefore, the speed of the plasma airflow flowing from the tungsten electrode rod side to the base metal side to be welded is twice to three times the conventional speed (about 100 m / sec) ( About 200 to 300 m / sec), the electromagnetic force and the magnetic field acting on the arc are strengthened, and the arc energy density, the arc directivity and the rigidity are respectively increased, and a stable arc is obtained.
- the constricting nozzle according to claim 1 of the present invention can increase the welding speed 5 to 20 times faster than the conventional welding speed (1000 mm / min to 7000 mm / min) and can perform high-speed welding.
- the bead width is uniform on both the front and back surfaces, and the bead waveform is equally spaced, so that high-quality and stable welding can be performed.
- the constricting nozzle according to claim 1 of the present invention allows the shield gas to flow with a high-speed rectifying gas and allows high-speed welding, so that the shield gas is not affected by wind during welding, and heat Rapid heating / cooling of the affected area suppresses crystal coarsening and improves the bending ductility of the weld metal.
- the constricting nozzle according to claim 1 of the present invention can prevent re-adhesion / mixing of metal vapor (impurities) generated from the molten pool to the molten metal by a high-speed plasma stream, and can perform high-quality welding.
- the constricted nozzle according to claim 1 of the present invention squeezes the shielding gas from the nozzle body and discharges it as a high-speed rectified gas, the amount of shielding gas used is small, and the cost can be reduced.
- the constricting nozzle according to claim 1 of the present invention since the shielding gas flows at high speed around the tungsten electrode rod, the temperature rise of the tungsten electrode rod is suppressed, and the constricted nozzle is discharged from the tip of the constricting nozzle. Since it is possible to prevent the evaporated metal generated from the molten pool from adhering to the tip of the tungsten electrode rod by the high-speed rectifying gas, the life of the tungsten electrode rod can be extended.
- the narrowing nozzle according to claim 1 of the present invention has a plurality of positioning protrusions that protrude from the inner peripheral surface of the nozzle body to hold the tungsten electrode bar at the center position of the nozzle body, At the time of replacement, the tungsten electrode rod can be accurately and reliably set to the original position (center position of the narrowing nozzle), the reproducibility of the attachment position of the tungsten electrode rod can be improved, and the workability is also improved.
- the narrowing nozzle includes a plurality of positioning protrusions and a plurality of gas rectifying grooves that are each linearly formed along the longitudinal direction of the nozzle body, from the tip opening of the nozzle body to the periphery of the arc. Since the linear high-speed rectified gas is flowed, the above-described effects (1) to (6) can be achieved.
- the narrowing nozzle according to claim 3 of the present invention has a configuration in which a plurality of positioning protrusions and a plurality of gas rectifying grooves are respectively formed in a spiral shape, and a swirling high-speed rectified gas is caused to flow around the arc from the tip opening of the nozzle body. Therefore, the arc is tighter by the swirling high-speed rectifying gas, and the effects (1) to (6) described above can be obtained reliably and satisfactorily. Further, the constricting nozzle according to claim 3 of the present invention further enhances the shielding effect of the molten metal because the swirling high-speed rectifying gas colliding with the surface of the base material quickly encloses the metal vapor generated from the molten pool and releases it to the outside. At the same time, it is possible to prevent re-adhesion / re-mixing of the metal vapor into the molten metal and to form a high-quality deposited metal.
- the narrowing nozzle according to claim 4 of the present invention is such that the positioning protrusion and the gas rectifying groove are formed at a position away from the tip of the nozzle body, and the high-speed gas passage located on the downstream side of the positioning protrusion and the gas rectifying groove. Is formed larger than the inner diameter of the high-speed gas passage located upstream of the positioning ridge and the gas rectifying groove, the flow of the high-speed rectified gas that has passed through the gas rectifying groove is the downstream portion of the high-speed gas passage. In order to prevent turbulence. As a result, high-quality and stable welding can be performed reliably and satisfactorily.
- the narrowed nozzle according to claim 5 of the present invention is configured such that a plurality of gas rectifying grooves are evenly arranged on the inner peripheral surface of the nozzle body so that the high-speed rectified gas can flow evenly around the arc from the opening at the tip of the nozzle body. Therefore, the plasma airflow flowing from the tungsten electrode rod side to the base metal side will flow evenly, and a circular arc with a high roundness can be formed, and the arc during welding is stable. Will do.
- the narrowed nozzle according to claim 6 of the present invention has a configuration in which a plurality of gas rectifying grooves are arranged on the inner peripheral surface of the nozzle body so that a large amount of high-speed rectified gas can flow from the opening at the tip of the nozzle body to the opposite positions around the arc. Therefore, it is possible to form an arc having an elliptical cross section and a high energy density. As described above, when an arc having an elliptical cross-sectional shape is formed, the preheating effect is increased, the penetration is increased, and a back wave is easily generated.
- the narrowing nozzle according to claim 7 of the present invention is a cylinder that is arranged concentrically with the tungsten electrode rod around the tip portion of the tungsten electrode rod and forms an annular high-speed gas passage between the outer peripheral surface of the tip portion of the tungsten electrode rod.
- the nozzle body is inserted into the tip of the nozzle body, and the tungsten electrode rod is held at the center of the nozzle body on the inner peripheral surface, and the shield gas flowing in the high-speed gas passage is rectified on the outer peripheral surface.
- the spiral fitting is inserted at a position away from the tip of the nozzle body, and the inner diameter of the high-speed gas passage located on the downstream side of the spiral fitting is located on the upstream side of the spiral fitting. It is formed larger than the inner diameter of the high-speed gas passage, and the flow of the swirling high-speed rectification gas that has passed through the spiral gas rectification groove is stabilized at the downstream portion of the high-speed gas passage, preventing the occurrence of turbulence. As a result, high-quality and stable welding can be performed reliably and satisfactorily.
- the narrowed nozzle according to claim 9 of the present invention is formed such that a plurality of spiral gas rectifying grooves are uniformly formed on the outer peripheral surface of the spiral metal fitting, and the swirling high-speed rectified gas is caused to flow evenly around the arc from the tip opening of the nozzle body. Therefore, the swirling high-speed rectifying gas is stable, and arc contraction can be performed more reliably and satisfactorily.
- the TIG welding torch according to the tenth aspect of the present invention includes the above-described narrowing nozzle, the above-described effects can be obtained. Moreover, this TIG welding torch is designed to double seal with a high-speed rectifying gas that flows from the constriction nozzle around the arc and a laminarized shielding gas that flows from the shielding nozzle to the outside of the TIG welding torch. As a result, the ingress of air into the molten pool can be surely blocked, the surface bead has less oxide film, glossy welding can be performed on the bead surface, and the life of the tungsten electrode rod is extended.
- the constriction nozzle is detachably attached to the center position of the front end surface of the gas lens, so that the constriction nozzle burns out or the tungsten electrode rod has a different diameter. Even when the electrode is replaced with a tungsten electrode rod, the constricting nozzle can be easily replaced, which is extremely convenient.
- FIG. 4 is a cross-sectional view taken along a line II in FIG. 3. It is an expansion longitudinal cross-sectional view of a constriction nozzle. It is the II-II sectional view taken on the line of FIG. It is explanatory drawing which shows the force which acts on an arc.
- a stainless steel plate was butt welded under the same welding conditions using a conventional TIG welding torch using a constricting nozzle and a TIG welding torch using a constricting nozzle of the present invention, and the welded part was subjected to an Ericksen test.
- (A) is an expansion perspective view of the welding part of the stainless steel plate welded using the conventional narrowing nozzle
- (B) is an expansion perspective view of the welding part of the stainless steel plate welded using the narrowing nozzle of this invention. It is an expanded longitudinal cross-sectional view of the principal part of the torch for TIG welding using the constriction nozzle which concerns on 2nd Embodiment of this invention.
- FIG. 10 is a sectional view taken along line III-III in FIG. 9.
- FIG. 13 is an enlarged longitudinal sectional view of a main part of the TIG welding torch shown in FIG. 12.
- FIG. 14 and 15 show a spiral metal fitting used in the constricting nozzle, wherein (A) is an enlarged perspective view of the helical metal fitting, (B) is an enlarged front view of the helical metal fitting, and (C) is an enlarged plan view of the helical metal fitting. .
- the modification of a spiral metal fitting is shown, (A) is an expansion perspective view of a spiral metal fitting, (B) is an enlarged front view of a spiral metal fitting, and (C) is an enlarged plan view of a spiral metal fitting.
- First Embodiment 1 to 6 show a constricting nozzle according to a first embodiment of the present invention and a TIG welding torch using the same, and the TIG welding torch is mainly an end portion of a thin metal plate such as a stainless steel plate or an electromagnetic steel plate.
- a cylindrical torch body 1 Used when butt-welding each other, a cylindrical torch body 1 through which a shielding gas G such as argon gas or helium gas passes, and screwed into the torch body 1 so as to be vertically movable and rotatable from above
- a shielding gas G such as argon gas or helium gas passes
- An electrode collet 3 that is inserted and holds the tungsten electrode rod 2 in a detachable manner
- a collet handle 4 that is attached to the upper end of the electrode collet 3 and moves the electrode collet 3 up and down relative to the torch body 1 by rotating forward and backward.
- a gas which is detachably attached to the lower end portion of the torch body 1 and which diffuses the shield gas G flowing in through the inside of the torch body 1 into a laminar flow.
- a shield gas G which is detachably attached to the lens 5 and the gas lens 5 or the torch body 1 so as to surround the tip of the tungsten electrode rod 2 and is stratified by the gas lens 5, is discharged around the arc a. It is composed of a cylindrical shield nozzle 6 and a constricted nozzle 7 which is disposed around the tip of the tungsten electrode rod 2 and allows a straight high-speed rectified gas G3 to flow around the arc a.
- a screw scale indicating the lifting amount of the electrode collet 3 and 9 is formed on the outer peripheral surface of the lower end portion of the collet handle 4.
- a screw scale 10 indicating the amount of rotation of the collet handle 4 is provided on the torch body 1, a pressure adjusting screw for applying an appropriate rotation resistance to the electrode collet 3 to hold the electrode collet 3 in an adjustment position, and 11 a torch body.
- 1 is an electrode / main gas pipe fitting fixed to 1
- 12 is an O-ring for sealing between the torch body 1 and the collet handle 4
- 13 is for gas sealing interposed between the torch body 1 and the gas lens 5.
- the rubber ring 14 is a plastic adjustment ring interposed between the torch body 1 and the shield nozzle 6.
- the torch body 1 includes a rectangular tube portion formed of a metal material such as an aluminum alloy and a cylindrical portion continuously provided at the upper end of the rectangular tube portion, and a peripheral wall of the rectangular tube portion.
- the electrode / main gas pipe connection fitting 11 and the pressure adjusting screw 10 are inserted and fixed.
- a female screw 1a into which an electrode collet 3 holding the tungsten electrode rod 2 is screwed up and down is formed on the inner peripheral surface of the upper end opening of the torch body 1.
- a female screw 1b is formed on which a gas lens 5 for laminating the shield gas G is detachably screwed.
- the electrode / main gas pipe connection fitting 11 is connected to a main gas supply pipe and a power cable, which are not shown.
- the electrode collet 3 is formed in a long and narrow cylindrical shape having a halved chuck portion at the tip, and the upper and lower female screws 1a on the upper end portion side of the torch body 1 are vertically
- a copper collet body 3 ′ having a male screw 3 a that is movably screwed, and is detachably screwed to the outer peripheral surface of the chuck portion of the collet body 3 ′, and is inserted into the collet body 3 ′ by tightening the chuck portion. It is comprised from the copper cylindrical fixing tool 3 '' which fixes the tungsten electrode rod 2 made.
- the electrode collet 3 is screwed into the torch body 1 from above, and moves up and down in the torch body 1 by rotating the collet handle 4 fixed to the upper end of the collet body 3 '. Yes.
- the gas lens 5 is composed of a cylindrical holder 5 'made of a copper material that is detachably attached to the lower end of the torch body 1, and a metal filter 5 "attached to the holder 5'.
- the holder 5 ′ is formed in a cylindrical body in which a gas passage 5 a is formed at the center, and the lower end portion of the torch body 1 is formed on the outer peripheral surface of the upper end portion.
- a male screw 5b that is detachably screwed to the female screw 1b on the side is formed, and a cylindrical screw having a male screw 5c that is detachably screwed to the outer peripheral surface is formed at the lower end portion.
- the space between the holding cylinder part 5d and the support cylinder part 5f of the holder 5 ' is an annular gas chamber 5g, and a plurality of gas flow holes 5h formed in the vicinity of the base end part of the support cylinder part 5f. And communicated with the inside of the torch body 1 through the gas passage 5a of the holder 5 '.
- the filter 5 ′′ is formed by laminating a plurality of annularly punched wire meshes, and its inner peripheral edge is the support cylinder 5f of the holder 5 ′ and its outer peripheral is the holder 5 ′. It is attached to the holder 5 'by being fitted into the holding cylinder portion 5d.
- the filter 5 ′′ is a combination of three 600 mesh stainless steel wire meshes and two 300 mesh stainless steel wire meshes.
- the shield nozzle 6 is formed in a cylindrical shape whose tip is narrowed by a ceramic material, and a holding cylindrical portion 5d of the gas lens 5 is formed on a part of the inner peripheral surface thereof.
- a female screw 6a that is detachably screwed to the male screw 5c is formed.
- the shield nozzle 6 is attached to the outer peripheral surface of the gas lens 5 by screwing the female screw 6a into the male screw 5c of the holding cylinder portion 5d of the gas lens 5, and passes through the filter 5 ′′ of the gas lens 5.
- a laminar shield gas G is discharged around the tip of the tungsten electrode rod 2.
- the narrowing nozzle 7 is disposed around the tip of the tungsten electrode rod 2 and forms an annular high-speed gas passage 7d between the tip of the tungsten electrode rod 2.
- a part of the shield gas G flowing from the torch body 1 into the gas passage 5a of the holder 5 'of the gas lens 5 flows into the high-speed gas passage 7d and flows from the shield nozzle 6 around the constriction nozzle 7
- the high-speed rectifying gas G3 is faster than the shield gas G, and the high-speed rectifying gas G3 flows around the arc a.
- the narrowing nozzle 7 is formed in a cylindrical body from a copper material (beryllium copper) having excellent electrical conductivity and strength.
- a copper material beryllium copper
- the periphery of the tip of the tungsten electrode rod 2 is formed.
- a plurality of positioning protrusions 7b along the longitudinal direction of the nozzle body 7a which are formed to protrude in the circumferential direction at predetermined intervals and hold the tungsten electrode rod 2 at the center position of the nozzle body 7a, and a plurality of positioning protrusions It consists of a plurality of gas rectifying grooves 7c formed between the strips 7b and extending parallel to the longitudinal direction of the nozzle body 7a to rectify the shield gas G flowing in the high-speed gas passage 7d.
- the nozzle body 7a has a distal end (lower end) outer peripheral surface tapered, and a base end (upper end) outer peripheral surface has a support tube for the holder 5 'of the gas lens 5.
- a male screw 7e that is detachably screwed to the portion 5f is formed.
- the nozzle body 7a is attached to the center position of the front end surface of the gas lens 5 by screwing the male screw 7e into the support cylinder portion 5f.
- the nozzle main body 7a is arranged concentrically with the tungsten electrode rod 2 and the shield nozzle 6 around the tip portion of the tungsten electrode rod 2, and is an annular high-speed gas passage between the tip electrode outer peripheral surface. 7d is formed.
- the positioning protrusions 7b and the gas rectifying grooves 7c are arranged at equal angles in the circumferential direction on the inner peripheral surface of the nozzle body 7a, respectively, and the high-speed rectified gas G3 is discharged from the tip opening of the nozzle body 7a to the arc a. It can be made to flow evenly around.
- the positioning ridge 7b and the gas rectifying groove 7c are formed at a position away from the tip of the nozzle body 7a, and the high-speed gas passage 7d located on the downstream side of the positioning ridge 7b and the gas rectifying groove 7c.
- the inner diameter is formed larger than the inner diameter of the high-speed gas passage 7d located on the upstream side of the positioning protrusion 7b and the gas rectifying groove 7c.
- the diameter of the tungsten electrode rod 2 to be used is set to 1.6 mm.
- the total length of the narrowing nozzle 7 is 18 mm, the outer diameter of the largest diameter portion is 6 mm, the inner diameter of the base end side of the nozzle body 7a is 2.7 mm, and the nozzle body 7a.
- the inner diameter of the tip end side is 3.0 mm
- the length of the positioning protrusion 7 b and the gas rectifying groove 7 c is about 2 mm
- the width of the gas rectifying groove 7 c is 0.5 mm
- the depth of the gas rectifying groove 7 c is The formation positions of the positioning protrusions 7b and the gas rectifying grooves 7c are set to 0.75 mm so as to be 3 mm from the tip of the nozzle body 7a.
- six positioning protrusions 7b and gas rectifying grooves 7c are formed on the inner peripheral surface of the nozzle body 7a every 60 °, respectively.
- the surface shape is formed in a substantially trapezoidal shape in which the top surface of the positioning protrusion 7b is arcuate, and the cross-sectional shape of the gas rectifying groove 7c is formed in a U shape.
- the distance between the two positioning protrusions 7b facing each other is set to 1.7 mm, which is 0.1 mm larger than the outer diameter of the tungsten electrode rod 2, and the tungsten electrode rod 2 can be slidably held. It is like that.
- the electrode collet 3 holding and fixing the tungsten electrode rod 2 is inserted into the torch body 1, and the tungsten electrode rod 2 is in a state of slightly protruding from the tip of the constriction nozzle 7.
- the protruding length of the bar 2 is set.
- the base material W which is the set workpiece, is positioned below the tungsten electrode rod 2 of the TIG welding torch, or the holding device (not shown) for holding the TIG welding torch is adjusted to adjust the tungsten.
- the collet handle 4 is rotated to adjust the distance between the tip of the tungsten electrode rod 2 and the base material W to a set value.
- the welding conditions such as the welding current, the length of the arc a, the welding speed, the supply amount of the shielding gas G, and the tip shape of the tungsten electrode rod 2 are optimum conditions depending on the material of the base material W, the plate thickness, etc. Is set to
- a power source (not shown) is supplied while flowing a shielding gas G such as argon gas from the shielding nozzle 6 and the narrowing nozzle 7 of the TIG welding torch toward the base material W. Is applied to apply a voltage between the tungsten electrode bar 2 and the base material W to generate an arc a between the tip of the tungsten electrode bar 2 and the base material W in the atmosphere of the shield gas G.
- the welding has a positive polarity (rod minus) in which direct current is used as a power source and welding is performed by connecting the tungsten electrode rod 2 to the negative electrode of the direct current welding machine.
- the shield gas G supplied into the torch body 1 flows down in the gas passage 5a of the holder 5 'of the gas lens 5, and a part thereof flows into the annular gas chamber 5g from the plurality of gas flow holes 5h. The remainder flows from the gas passage 5a into the high-speed gas passage 7d of the constriction nozzle 7.
- the shield gas G that has flowed into the annular gas chamber 5g passes through the filter 5 ′′, is homogeneously diffused, becomes a laminar gas G1, and is discharged from the shield nozzle 6 around the arc a.
- the shield gas G that has flowed into the high-speed gas passage 7d is increased in speed to become the high-speed gas G2, and is rectified by passing through the plurality of gas rectification grooves 7c to become the high-speed rectification gas G3.
- the internal pressure of the arc a is The tungsten electrode rod 2 is higher than the base material W.
- a plasma airflow P is generated.
- This plasma air flow P has a great influence on the penetration formation of the base material W, and also affects the directivity and rigidity of the arc a (the property that the arc a retains its shape), and its velocity is As the speed increases, the directivity and rigidity of the arc a can be increased.
- the generated arc a is narrowed down by a thermal pinch effect by the high-speed rectifying gas G3 discharged from the constricting nozzle 7, and becomes a stable arc a having a high energy density.
- the TIG welding torch When the stable arc a is generated, the TIG welding torch is moved and moved along the welding portion of the base material W at a predetermined speed. Then, the welded portion of the base material W is melted and joined by the heat of the arc a generated between the tip of the tungsten electrode rod 2 and the base material W.
- the magnetic field acting on the arc a and the electromagnetic force in the central axis direction are strengthened, and the energy density of the arc a, the directivity and the rigidity of the arc a can be increased, and a stable arc a can be obtained.
- the welding speed can be increased to 5 to 20 times faster than the conventional welding speed (1000 mm / min to 7000 mm / min), and high-speed welding can be performed.
- the bead width is uniform on both sides and the bead corrugation is formed at equal intervals, so that high-quality and stable welding can be performed.
- the TIG welding torch allows the shield gas G to flow from the constriction nozzle 7 as a high-speed rectifying gas G3 and enables high-speed welding, so that the shield gas G is not affected by wind during welding, and heat Rapid heating / cooling of the affected area suppresses crystal coarsening and improves the bending ductility of the weld metal. Further, this TIG welding torch can prevent re-adhesion / mixing of metal vapor (impurities) generated by the molten pool into the molten metal by the high-speed plasma stream P, and can perform high-quality welding.
- the positioning protrusion 7b and the gas rectifying groove 7c are arranged at equal angles in the circumferential direction of the inner peripheral surface of the nozzle body 7a, respectively, and the high-speed rectifying gas G3 is provided from the tip of the nozzle body 7a. Since the plasma air flow P flowing from the tungsten electrode rod 2 toward the base material W flows uniformly, the arc shape having a high roundness is a circular arc. a can be formed, and the arc a during welding is stabilized.
- Table 1 below shows a conventional TIG welding torch (shown in FIG. 18) using only the shield nozzle 23 described at the beginning, and a conventional TIG welding torch using the shield nozzle 23 and the narrowing nozzle 25 (FIG. 19). And the effect of the TIG welding torch using the narrowing nozzle 7 of the present invention.
- the TIG welding torch using the constricting nozzle 7 of the present invention has a conventional shield nozzle 23 or the like in the directivity of arc a, welding speed, shielding effect, welding quality, etc. Compared with the TIG welding torch using the constricting nozzle 25, it is possible to exhibit excellent effects in all aspects.
- the TIG welding torch using the constricting nozzle 7 alternately forms a strong portion and a weak portion of the plasma air flow P every 90 ° in the circumferential direction of the arc a. Therefore, it is possible to form an arc a having an elliptical cross section and a high energy density.
- the preheating effect is improved, the penetration is increased, and a back wave is easily generated.
- good welding can be performed even if the current is increased.
- the number, the cross-sectional shape, the size, the positional relationship and the like of the positioning protrusions 7b and the gas rectifying grooves 7c of the constricting nozzle 7 are not limited to those in the above embodiments, but around the arc a.
- the number, the cross-sectional shape, the size, the positional relationship, and the like can be appropriately changed.
- the narrowing nozzle according to the third embodiment of the present invention has a plurality of positioning protrusions and a plurality of gas rectifying grooves on the inner peripheral surface of the nozzle body at the same angle in the circumferential direction at the same angle. It is formed in a spiral shape in the direction, and the swirl high-speed rectified gas is made to flow around the arc a from the tip opening of the nozzle body.
- the constricting nozzle according to the third embodiment is configured to flow the swirling high-speed rectified gas from the tip opening of the nozzle body around the arc a, the arc a is further contracted by the swirling high-speed rectifying gas.
- the same effect as the constricting nozzle 7 according to the embodiment can be obtained reliably and satisfactorily.
- the constricting nozzle according to the third embodiment has the effect of shielding the molten metal because the swirling high-speed rectifying gas that collides with the surface of the base material quickly wraps the metal vapor generated from the molten pool and releases it to the outside. Further, it is possible to prevent the metal vapor from reattaching / remixing into the molten metal and to form a high quality weld metal.
- [Fourth Embodiment] 12 to 16 show a constricting nozzle according to a fourth embodiment of the present invention and a TIG welding torch using the same, and the TIG welding torch mainly includes end portions of a thin metal plate such as a stainless steel plate or an electromagnetic steel plate.
- a cylindrical torch body 1 Used when butt-welding each other, a cylindrical torch body 1 through which a shielding gas G such as argon gas or helium gas passes, and screwed into the torch body 1 so as to be vertically movable and rotatable from above
- a shielding gas G such as argon gas or helium gas passes
- An electrode collet 3 that is inserted and holds the tungsten electrode rod 2 in a detachable manner, and a collet handle 4 that is attached to the upper end of the electrode collet 3 and moves the electrode collet 3 up and down relative to the torch body 1 by rotating forward and backward.
- 10 is provided on the torch body 1, a pressure adjusting screw that gives the electrode collet 3 an appropriate rotational resistance to hold the electrode collet 3 in the adjustment position, and 11 is fixed to the torch body 1.
- the connected electrode / main gas pipe fitting 12 is an O-ring for sealing between the torch body 1 and the collet handle 4, and 13 is a rubber ring for gas sealing interposed between the torch body 1 and the gas lens 5.
- 14 is a plastic adjustment ring interposed between the torch body 1 and the shield nozzle 6.
- the same members / parts as those of the TIG welding torch shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the constricting nozzle according to the fourth embodiment of the present invention is arranged around the tip of the tungsten electrode rod 2 and is an annular high-speed gas between the tip of the tungsten electrode rod 2.
- a passage 7d is formed, and a part of the shield gas G flowing from the torch body 1 into the gas passage 5a of the holder 5 'of the gas lens 5 flows into the high-speed gas passage 7d and is discharged from the shield nozzle 6.
- the swirl high-speed rectified gas G3 ' is faster than the laminar shield gas G, and the swirl high-speed rectified gas G3' is caused to flow around the arc a from the tip opening of the nozzle body 7a.
- the constriction nozzle 7 is disposed concentrically with the tungsten electrode rod 2 around the tip of the tungsten electrode rod 2 as shown in FIGS.
- a cylindrical nozzle body 7a that forms an annular high-speed gas passage 7d, and is inserted into the inner end of the tip of the nozzle body 7a to hold the tungsten electrode rod 2 at the center position of the nozzle body 7a and It comprises a cylindrical spiral metal fitting 15 having a plurality of spiral gas rectifying grooves 15a formed on the surface for rectifying and turning the shield gas G flowing in the high-speed gas passage 7d.
- the nozzle body 7a has a tip (lower end) outer peripheral surface formed of a copper material (beryllium copper) excellent in electrical conductivity and strength, and has a tapered cylindrical shape.
- a male screw 7e is formed that is detachably screwed to the support cylinder portion 5f of the holder 5 'of the gas lens 5.
- the nozzle body 7a is attached to the center position of the front end surface of the gas lens 5 by screwing the male screw 7e into the support cylinder portion 5f.
- the nozzle main body 7a is arranged concentrically with the tungsten electrode rod 2 and the shield nozzle 6 around the tip portion of the tungsten electrode rod 2, and is an annular high-speed gas passage between the tip electrode outer peripheral surface. 7d is formed.
- the inner diameter of the distal end portion (lower end portion) of the nozzle body 7a is formed to be larger than the inner diameter of the proximal end portion (upper end portion), so that the spiral metal fitting 15 is inserted inside the distal end portion of the nozzle body 7a. It has become.
- the spiral metal fitting 15 is formed in a cylindrical shape from a copper material (beryllium copper) excellent in electrical conductivity and strength, and holds the tungsten electrode rod 2 at the center position of the nozzle body 7a on its inner peripheral surface. It is like that.
- a plurality of spiral gas rectifying grooves 15a are formed on the outer peripheral surface of the spiral metal fitting 15 in the same direction and in the circumferential direction, and the swirling high-speed rectified gas G3 'is evenly distributed around the arc a. It is designed to flow.
- a copper material beryllium copper
- the spiral metal fitting 15 is attached to the inside of the tip of the nozzle body 7a by being press-fitted into the inside of the tip of the nozzle body 7a, and is inserted at a position away from the tip of the nozzle body 7a.
- the shield gas G that has flowed into the high-speed gas passage 7d passes through the spiral gas rectifying groove 15a and is rectified to become the swirling high-speed rectified gas G3 ', which is stabilized at the downstream portion of the high-speed gas passage 7d. After that, it is discharged from the tip opening of the nozzle body 7a.
- the diameter of the tungsten electrode rod 2 to be used is set to 1.6 mm.
- the total length of the nozzle body is 18 mm
- the outer diameter of the largest diameter portion is 6 mm
- the inner diameter of the base end side of the nozzle body 7a is 2.7 mm
- the nozzle body The inner diameter of the tip end side of 7a is set to 3.0 mm
- the depth of the hole on the tip end side of the nozzle body 7a is set to 8 mm.
- the overall length of the spiral fitting 15 is set to 5 mm
- the inner diameter of the spiral fitting 15 is set to 1.6 mm.
- the spiral fitting 15 is inserted at a position 3 mm inward from the tip of the nozzle body 7a. .
- the inner peripheral surface of the gas rectifying groove 15a is formed as an arc surface having a radius of 0.8 mm.
- the TIG welding torch using the stenosis nozzle 7 according to the fourth embodiment described above has a faster turning speed than the laminarized shield gas G in which a part of the shield gas G is discharged from the shield nozzle 6 by the stenosis nozzle 7. Since the rectifying gas G3 ′ is used and the swirling high-speed rectifying gas G3 ′ is caused to flow around the arc a, the same effects as the TIG welding torch (shown in FIGS. 1 to 3) according to the first embodiment are used. Can be played.
- the arc a is further contracted by the turning high-speed rectifying gas G3 ′, and is similar to the TIG welding torch according to the first embodiment.
- the effects of the above can be obtained reliably and satisfactorily.
- the TIG welding torch using the constricting nozzle 7 has a molten metal shield because the swirl high-speed rectifying gas G3 'colliding with the surface of the base material quickly wraps the metal vapor generated from the molten pool and releases it to the outside. In addition to enhancing the effect, it is possible to prevent re-adhesion / re-mixing of the metal vapor into the molten metal and to form a high-quality deposited metal.
- FIG. 17 shows a modification of the spiral metal fitting 15 used in the constriction nozzle 7 according to the fourth embodiment.
- the spiral metal fitting 15 has a spiral gas rectifying groove 15a in the same direction on its outer peripheral surface every 60 °. The six were formed.
- the spiral metal fitting 15 has six spiral gas rectifying grooves 15a and the inner peripheral surface of the gas rectifying groove 15a is formed as an arc surface having a radius of 0.6 mm. Are formed to the same dimensions.
- the number, the cross-sectional shape, the size, the pitch, the twist angle, etc. of the spiral gas rectifying grooves 15a of the spiral fitting 15 used for the constriction nozzle 7 are not limited to those shown in FIGS. Of course, if the swirl high-speed rectified gas G3 'can be flowed around the arc a, the number, the cross-sectional shape, the size, the pitch, the twist angle, and the like can be appropriately changed.
- 1 is a torch body
- 2 is a tungsten electrode rod
- 3 is an electrode collet
- 4 is a collet handle
- 5 is a gas lens
- 6 is a shield nozzle
- 7 is a constricting nozzle
- 7a is a nozzle body
- 7b is a positioning protrusion
- 7c is Gas rectifying groove
- 7d is a high-speed gas passage
- 15 is a spiral fitting
- 15a is a helical gas rectifying groove
- a is an arc
- G is a shielding gas
- G1 is a laminar flow gas
- G2 is a high-speed gas
- G3 is a high-speed rectifying gas
- G3 ' is a swirl high-speed rectifying gas
- W is a base material.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Abstract
Description
(1)TIG溶接法は、プラズマ溶接法等の他の溶接法に比べて溶接能力や溶接強度が劣る。
(2)TIG溶接法は、タングステン電極棒やシールドガスとして使用するアルゴンガスが比較的高価であり、経費が嵩む。
(3)TIG溶接法は、溶接時にシールドガスが風の影響を受け易く、シールド効果が悪い。尚、シールド効果が悪いと、溶接2番部(溶接熱により母材部に生ずる熱影響部のことをいい、溶接熱によって急熱・急冷されて母材の組織が変化した部分)に黒っぽい焼けやビード表面に酸化膜が発生する。
(4)TIG溶接法は、小電流で溶接を行う際にアーク長を短くしないと、アークが不安定になる。
(5)TIG溶接法は、溶接速度を速くすると、溶接2番部にアンダーカット(へこみ)が発生する。
しかも、タングステン電極棒21を交換したときに、タングステン電極棒21を元の位置(狭窄ノズル25の中心位置)にセットし難く、再現性及び作業性に劣るという問題があった。
(1)即ち、本発明の請求項1の狭窄ノズルは、シールドガスの一部をシールドノズルから放出される層流化したシールドガスよりも速い高速整流ガスとし、この高速整流ガスをアークの周囲に流す構成としているため、タングステン電極棒側から被溶接物である母材側へ向って流れるプラズマ気流の速さが従来の速さ(約100m/sec)の2倍~3倍の速さ(約200~300m/sec)に達し、アークに作用する電磁力及び磁界が強化され、アークのエネルギー密度、アークの指向性及び硬直性がそれぞれ高められて安定したアークが得られる。
その結果、本発明の請求項1の狭窄ノズルは、溶接速度を従来の溶接速度に比較して5倍~20倍速い溶接速度(1000mm/min~7000mm/min)とすることができて高速溶接を行えるうえ、ビード幅が裏表とも均一で且つビードの波形の間隔が等間隔に形成されて高品質の安定した溶接を行える。
(2)本発明の請求項1の狭窄ノズルは、シールドガスを高速整流ガスにして流すと共に、高速溶接が可能となるため、溶接時にシールドガスが風の影響を受けることがなく、また、熱影響部の急熱・急冷によって結晶の粗大化を抑止し、溶接金属の曲げ延性も向上する。
(3)本発明の請求項1の狭窄ノズルは、高速のプラズマ気流により溶融プールより発生する金属蒸気(不純物)の溶融金属への再付着・混入を防止でき、高品質な溶接を行える。
(4)本発明の請求項1の狭窄ノズルは、ノズル本体によりシールドガスを絞って高速整流ガスとして放出しているため、シールドガスの使用量が少なくて済み、コストの低減を図れる。
(5)本発明の請求項1の狭窄ノズルは、タングステン電極棒の周囲にシールドガスを高速で流しているため、タングステン電極棒の温度上昇が抑えられ、また、狭窄ノズルの先端から放出される高速整流ガスにより溶融プール内から発生する蒸発金属等がタングステン電極棒の先端部に付着するのを防止できるため、タングステン電極棒の長寿命化を図れる。
(6)本発明の請求項1の狭窄ノズルは、ノズル本体の内周面にタングステン電極棒をノズル本体の中心位置に保持する複数の位置決め用突条を突出形成しているため、タングステン電極棒の交換時にタングステン電極棒を元の位置(狭窄ノズルの中心位置)に正確且つ確実にセットすることができ、タングステン電極棒の取り付け位置の再現性を向上できて作業性も良くなる。
また、本発明の請求項3の狭窄ノズルは、母材表面に衝突した旋回高速整流ガスが、溶融プールより発生した金属蒸気をすばやく包み込んで外部へ放出するため、溶融金属のシールド効果をより高めると共に、溶融金属内への金属蒸気の再付着・再混入を防ぎ、高品質な溶着金属を形成することができる。
その結果、高品質の安定した溶接を確実且つ良好に行える。
このように、横断面形状が楕円形状のアークを形成した場合、予熱効果が上がって溶け込みが大きくなると共に、裏波も出易くなる。
しかも、このTIG溶接用トーチは、狭窄ノズルからアークの周囲に流す高速整流ガスとその外側にシールドノズルから流す層流化したシールドガスとにより二重にシールするようになっているため、シールド効果が高められて溶融池への空気の進入を確実に遮断することができ、表面ビードの酸化皮膜が少なく、ビード表面に光沢のある溶接を行えると共に、タングステン電極棒の寿命が長くなる。
図1~図6は本発明の第1実施形態に係る狭窄ノズル及びこれを用いたTIG溶接用トーチを示し、当該TIG溶接用トーチは、主にステンレス鋼板や電磁鋼板等の金属薄板の端部同士を突合せ溶接する際に用いるものであり、内部にアルゴンガスやヘリウムガス等のシールドガスGを通す筒状のトーチボディ1と、トーチボディ1内へ上方側から上下動自在且つ回転自在にねじ込み挿着され、タングステン電極棒2を着脱自在に保持する電極コレット3と、電極コレット3の上端部に取り付けられ、電極コレット3を正逆回転させてトーチボディ1に対して上下動させるコレットハンドル4と、トーチボディ1の下端部に着脱自在に取り付けられ、トーチボディ1の内部を通して流入して来たシールドガスGを均質拡散させて層流化するガスレンズ5と、ガスレンズ5又はトーチボディ1にタングステン電極棒2の先端部を囲繞する状態で着脱自在に取り付けられ、ガスレンズ5により層流化されたシールドガスGをアークaの周囲に放出する筒状のシールドノズル6と、タングステン電極棒2の先端部周囲に配設され、アークaの周囲に直線状の高速整流ガスG3を流す狭窄ノズル7とから構成されている。
また、トーチボディ1の上端部開口の内周面には、タングステン電極棒2を保持する電極コレット3が上下動自在に螺挿される雌ネジ1aが形成され、トーチボディ1の下端部開口の内周面には、シールドガスGを層流化するガスレンズ5が着脱自在に螺着される雌ネジ1bが形成されている。
尚、電極・メインガス管接続金具11には、図示していないが、メインガス供給管及びパワーケーブルがそれぞれ接続されている。
この電極コレット3は、トーチボディ1内へ上方側から螺挿されており、コレット本体3′の上端部に固定したコレットハンドル4を回転させることによりトーチボディ1内で上下動するようになっている。
更に、ホルダー5′の保持筒部5dと支持筒部5fとの間の空間は、環状のガス室5gとなっており、支持筒部5fの基端部近傍に形成した複数のガス流通孔5h及びホルダー5′のガス通路5aを介してトーチボディ1内に連通されている。
このフィルター5″には、600メッシュのステンレス鋼製の金網3枚と300メッシュのステンレス鋼製の金網2枚を組み合せたものが使用されている。
このシールドノズル6は、その雌ネジ6aをガスレンズ5の保持筒部5dの雄ネジ5cにねじ込むことによりガスレンズ5の外周面に取り付けられており、ガスレンズ5のフィルター5″を通過して層流化されたシールドガスGをタングステン電極棒2の先端部周囲に放出するようになっている。
このノズル本体7aは、その雄ネジ7eを支持筒部5fにねじ込むことによりガスレンズ5の先端面中央位置に取り付けられる。このとき、ノズル本体7aは、タングステン電極棒2の先端部周囲にタングステン電極棒2及びシールドノズル6と同心状に配置されてタングステン電極棒2の先端部外周面との間に環状の高速ガス通路7dを形成する。
その結果、高速ガス通路7d内に流入したシールドガスGは、ガス整流溝7cを通過して整流化されて高速整流ガスG3となり、高速ガス通路7dの下流側部分で安定化してからノズル本体7aの先端開口から放出されることになる。
また、この実施形態に於いては、狭窄ノズル7の全長は18mmに、直径の最も大きい部分の外径は6mmに、ノズル本体7aの基端部側の内径は2.7mmに、ノズル本体7aの先端部側の内径は3.0mmに、位置決め用突条7b及びガス整流溝7cの長さは約2mmに、ガス整流溝7cの幅は0.5mmに、ガス整流溝7cの深さは0.75mmに、位置決め用突条7b及びガス整流溝7cの形成位置はノズル本体7aの先端から3mmの位置になるようにそれぞれ設定されている。
更に、位置決め用突条7b及びガス整流溝7cは、図4及び図6に示す如く、それぞれノズル本体7aの内周面に60°ごとに六つ形成されており、位置決め用突条7bの横断面形状は、位置決め用突条7bの頂面が円弧状になったほぼ台形状に形成され、また、ガス整流溝7cの横断面形状は、U字状に形成されている。
そして、対向する二つの位置決め用突条7b間の差し渡し距離は、タングステン電極棒2の外径よりも0.1mm大きい1.7mmに設定されており、タングステン電極棒2を摺動自在に保持できるようになっている。
先ず、タングステン電極棒2を保持固定した電極コレット3をトーチボディ1内に挿着し、タングステン電極棒2の円錐状の先端が狭窄ノズル7の先端から僅かに突出した状態になるようにタングステン電極棒2の突出長さを設定する。
この実施形態では、前記溶接は、電源に直流を使用し、タングステン電極棒2を直流溶接機の負極に接続して溶接を行う正極性(棒マイナス)となっている。
また、高速ガス通路7dに流入したシールドガスGは、その速度を増して高速ガスG2となると共に、複数のガス整流溝7cを通過することにより整流され、高速整流ガスG3となってノズル本体7aの先端開口からアークaの周囲に直線状に放出される。
その結果、シールドガスGの一部がアークa内に引き込まれ、プラズマ気流Pと呼ばれる高速のガス流が発生する。このプラズマ気流Pは、母材Wの溶け込み形成に大きく影響し、また、アークaの指向性及び硬直性(アークaがその形状を保持する性質)にも影響を与えるものであり、その速度が速くなればなる程、アークaの指向性及び硬直性を高めることができる。
また、発生したアークaは、狭窄ノズル7から放出される高速整流ガスG3によるサーマルピンチ効果により絞られてエネルギー密度の高い安定したアークaとなる。
その結果、前記TIG溶接用トーチを使用すれば、溶接速度を従来の溶接速度に比較して5倍~20倍速い溶接速度(1000mm/min~7000mm/min)とすることができて高速溶接を行えるうえ、ビード幅が裏表とも均一で且つビードの波形の間隔が等間隔で形成されて高品質の安定した溶接を行える。
更に、このTIG溶接用トーチは、高速のプラズマ気流Pにより溶融プールにより発生する金属蒸気(不純物)の溶融金属への再付着・混入を防止でき、高品質な溶接を行える。
そのうえ、このTIG溶接用トーチは、アークaの周囲に流す高速整流ガスG3とその外側に流す層流化したシールドガスGとにより二重にシールするようになっているため、シールド効果が高められて溶融池への空気の進入を確実に遮断することができ、表面ビードの酸化皮膜が少なく、ビード表面に光沢のある溶接を行えると共に、タングステン電極棒2の寿命が長くなる。
加えて、このTIG溶接用トーチは、狭窄ノズル7によりシールドガスGを絞って高速整流ガスG3として放出しているため、シールドガスGの使用量が少なくて済み、コストの低減を図れる。
また、このTIG溶接用トーチは、位置決め用突条7b及びガス整流溝7cをそれぞれノズル本体7aの内周面の円周方向へ等角度ごとに配置し、ノズル本体7aの先端から高速整流ガスG3をアークaの周囲に均等に流す構成としているため、タングステン電極棒2から母材W側へ向って流れるプラズマ気流Pが均等に流れることになり、真円度の高い横断面形状が円形のアークaを形成することができ、溶接中のアークaが安定することになる。
表1からも明らかなように、本発明の狭窄ノズル7を用いたTIG溶接用トーチは、アークaの指向性、溶接速度、シールド効果、溶接品質等に於いて何れも従来のシールドノズル23や狭窄ノズル25を用いたTIG溶接用トーチに比較して全ての面で優れた効果を発揮することができる。
図8の写真から明らかなように、従来の狭窄ノズル25を用いたTIG溶接用トーチに於いては、溶接部に亀裂が生じているが、本発明の狭窄ノズル7を用いたTIG溶接用トーチに於いては、亀裂が生じておらず、従来のものよりも強度的に優れた突合せ溶接を行えることが判る。
図9及び図10は本発明の第2実施形態に係る狭窄ノズル7を用いたTIG溶接用トーチの要部を示し、当該狭窄ノズル7は、各ガス整流溝7cを、ノズル本体7aの先端開口から高速整流ガスG3をアークaの周囲の相対する位置に多く流せるようにノズル本体7aの内周面に配置したものである。
このように、横断面形状が楕円状のアークaを形成した場合、予熱効果が上がって溶け込みが大きくなると共に、裏波も出易くなる。然も、電流を上げても良好な溶接を行える。
本発明の第3実施形態に係る狭窄ノズルは、図示していないが、ノズル本体の内周面に複数の位置決め用突条及び複数のガス整流溝を円周方向へ等角度ごとに且つそれぞれ同じ方向へ螺旋状に形成したものであり、ノズル本体の先端開口からアークaの周囲に旋回高速整流ガスを流す構成としたものである。
また、この第3実施形態に係狭窄ノズルは、母材表面に衝突した旋回状の高速整流ガスが、溶融プールより発生した金属蒸気をすばやく包み込んで外部へ放出するため、溶融金属のシールド効果をより高めると共に、溶融金属内への金属蒸気の再付着・再混入を防ぎ、高品質な溶着金属を形成することができる。
図12~図16は本発明の第4実施形態に係る狭窄ノズル及びこれを用いたTIG溶接用トーチを示し、当該TIG溶接用トーチは、主にステンレス鋼板や電磁鋼板等の金属薄板の端部同士を突合せ溶接する際に用いるものであり、内部にアルゴンガスやヘリウムガス等のシールドガスGを通す筒状のトーチボディ1と、トーチボディ1内へ上方側から上下動自在且つ回転自在にねじ込み挿着され、タングステン電極棒2を着脱自在に保持する電極コレット3と、電極コレット3の上端部に取り付けられ、電極コレット3を正逆回転させてトーチボディ1に対して上下動させるコレットハンドル4と、トーチボディ1の下端部に着脱自在に取り付けられ、トーチボディ1の内部を通して流入して来たシールドガスGを均質拡散させて層流化するガスレンズ5と、ガスレンズ5又はトーチボディ1にタングステン電極棒2の先端部を囲繞する状態で着脱自在に取り付けられ、ガスレンズ5により層流化されたシールドガスGをアークaの周囲に放出する筒状のシールドノズル6と、タングステン電極棒2の先端部周囲に配設され、アークaの周囲に旋回高速整流ガスG3′を流す狭窄ノズル7とから構成されている。
また、図1~図3に示すTIG溶接用トーチと同じ部材・部位には同一の参照番号を付し、その詳細な説明を省略する。
このノズル本体7aは、その雄ネジ7eを支持筒部5fにねじ込むことによりガスレンズ5の先端面中央位置に取り付けられる。このとき、ノズル本体7aは、タングステン電極棒2の先端部周囲にタングステン電極棒2及びシールドノズル6と同心状に配置されてタングステン電極棒2の先端部外周面との間に環状の高速ガス通路7dを形成する。
また、螺旋金具15の外周面には、複数の螺旋状のガス整流溝15aが同じ方向で且つ円周方向に均等に形成されており、旋回高速整流ガスG3′をアークaの周囲に均等に流せるようになっている。
この第4実施形態に於いては、ガス整流溝15aは、図16に示す如く、螺旋金具15の外周面に90°ごとに四つ形成されており、ガス整流溝15aの横断面形状は、略半円状に形成されている。
更に、螺旋金具15は、ノズル本体7aの先端部内方へ圧入することによって、ノズル本体7aの先端部内方に取り付けられており、ノズル本体7aの先端から離れた位置に挿着されている。
その結果、高速ガス通路7d内に流入したシールドガスGは、螺旋状のガス整流溝15aを通過して整流化されて旋回高速整流ガスG3′となり、高速ガス通路7dの下流側部分で安定化してからノズル本体7aの先端開口から放出されることになる。
また、この第4実施形態に於いては、ノズル本体の全長は18mmに、直径の最も大きい部分の外径は6mmに、ノズル本体7aの基端部側の内径は2.7mmに、ノズル本体7aの先端部側の内径は3.0mmに、ノズル本体7aの先端部側の穴の深さは8mmにそれぞれ設定されている。
更に、螺旋金具15の全長は5mmに、螺旋金具15の内径は1.6mmにそれぞれ設定されており、螺旋金具15はノズル本体7aの先端から内方へ3mm入った位置に挿着されている。また、ガス整流溝15aの内周面は半径が0.8mmの円弧面に形成されている。
また、前記狭窄ノズル7を用いたTIG溶接用トーチは、母材表面に衝突した旋回高速整流ガスG3′が、溶融プールより発生した金属蒸気をすばやく包み込んで外部へ放出すめため、溶融金属のシールド効果をより高めると共に、溶融金属内への金属蒸気の再付着・再混入を防ぎ、高品質な溶着金属を形成することができる。
この螺旋金具15は、螺旋状のガス整流溝15aを六つ形成し、ガス整流溝15aの内周面を半径が0.6mmの円弧面に形成したこと以外は、図16に示す螺旋金具15と同じ寸法に形成されている。
Claims (11)
- トーチボディ(1)の先端部に配設したガスレンズ(5)によりトーチボディ(1)の内部を通って流入して来たシールドガス(G)を層流化すると共に、層流化したシールドガス(G)をトーチボディ(1)の先端部に配設した筒状のシールドノズル(6)から被溶接物である母材Wへ向って放出し、シールドガス(G)の雰囲気中でシールドノズル(6)の中心位置に配設したタングステン電極棒(2)と母材(W)との間にアーク(a)を発生させ、そのアーク(a)の熱で母材(W)を溶融するようにしたTIG溶接用トーチに取り付けられる狭窄ノズル(7)に於いて、前記狭窄ノズル(7)は、タングステン電極棒(2)の先端部周囲にタングステン電極棒(2)と同心状に配置され、タングステン電極棒(2)の先端部外周面との間に環状の高速ガス通路(7d)を形成する筒状のノズル本体(7a)と、ノズル本体(7a)の内周面に円周方向へ所定の間隔をおいて突出形成され、タングステン電極棒(2)をノズル本体(7a)の中心位置に保持する複数の位置決め用突条(7b)と、複数の位置決め用突条(7b)間に形成され、高速ガス通路(7d)内を流れるシールドガス(G)を整流化する複数のガス整流溝(7c)とから成り、トーチボディ(1)から放出されるシールドガス(G)の一部を前記高速ガス通路(7d)に流してシールドノズル(6)から放出される層流化したシールドガス(G)よりも速い高速整流ガス(G3)とし、当該高速整流ガス(G3)をノズル本体(7a)の先端開口からアーク(a)の周囲に流す構成としたことを特徴とする狭窄ノズル。
- 複数の位置決め用突条(7b)及び複数のガス整流溝(7c)を、それぞれノズル本体(7a)の長手方向に沿って直線状に形成し、ノズル本体(7a)の先端開口からアーク(a)の周囲に直線状の高速整流ガス(G3)を流す構成としたことを特徴とする請求項1に記載の狭窄ノズル。
- 複数の位置決め用突条(7b)及び複数のガス整流溝(7c)を、それぞれ螺旋状に形成し、ノズル本体(7a)の先端開口からアーク(a)の周囲に旋回高速整流ガス(G3′)を流す構成としたことを特徴とする請求項1に記載の狭窄ノズル。
- 位置決め用突条(7b)及びガス整流溝(7c)をノズル本体(7a)の先端から離れた位置に形成すると共に、位置決め用突条(7b)及びガス整流溝(7c)の下流側に位置する高速ガス通路(7d)の内径を位置決め用突条(7b)及びガス整流溝(7c)の上流側に位置する高速ガス通路(7d)の内径よりも大きく形成し、ガス整流溝(7c)を通過した高速整流ガス(G3)の流れを高速ガス通路(7d)の下流側部分で安定化するようにしたことを特徴とする請求項1、請求項2又は請求項3に記載の狭窄ノズル。
- 複数のガス整流溝(7c)を、ノズル本体(7a)の先端開口から高速整流ガス(G3)をアーク(a)の周囲に均等に流せるようにノズル本体(7a)の内周面に均等に配置したことを特徴とする請求項1、請求項2、請求項3又は請求項4に記載の狭窄ノズル。
- 複数のガス整流溝(7c)を、ノズル本体(7a)の先端開口から高速整流ガス(G3)をアーク(a)の周囲の相対する位置に多く流せるようにノズル本体(7a)の内周面に配置したことを特徴とする請求項1、請求項2又は請求項4に記載の狭窄ノズル。
- トーチボディ(1)の先端部に配設したガスレンズ(5)によりトーチボディ(1)の内部を通って流入して来たシールドガス(G)を層流化すると共に、層流化したシールドガス(G)をトーチボディ(1)の先端部に配設した筒状のシールドノズル(6)から被溶接物である母材Wへ向って放出し、シールドガス(G)の雰囲気中でシールドノズル(6)の中心位置に配設したタングステン電極棒(2)と母材(W)との間にアーク(a)を発生させ、そのアーク(a)の熱で母材(W)を溶融するようにしたTIG溶接用トーチに取り付けられる狭窄ノズル(7)に於いて、前記狭窄ノズル(7)は、タングステン電極棒(2)の先端部周囲にタングステン電極棒(2)と同心状に配置され、タングステン電極棒(2)の先端部外周面との間に環状の高速ガス通路(7d)を形成する筒状のノズル本体(7a)と、ノズル本体(7a)の先端部内方に挿着され、内周面でタングステン電極棒(2)をノズル本体(7a)の中心位置に保持すると共に、外周面に高速ガス通路(7d)内を流れるシールドガス(G)を整流化して旋回させる複数の螺旋状のガス整流溝(15a)を形成した筒状の螺旋金具(15)とから成り、トーチボディ(1)から放出されるシールドガス(G)の一部を前記高速ガス通路(7d)に流して螺旋金具(15)によりシールドノズル(6)から放出される層流化したシールドガス(G)よりも速い旋回高速整流ガス(G3′)とし、当該旋回高速整流ガス(G3′)をノズル本体(7a)の先端開口からアーク(a)の周囲に流す構成としたことを特徴とする狭窄ノズル。
- 螺旋金具(15)をノズル本体(7a)の先端から離れた位置に挿着すると共に、螺旋金具(1)の下流側に位置する高速ガス通路(7d)の内径を螺旋金具(15)の上流側に位置する高速ガス通路(7d)の内径よりも大きく形成し、螺旋状のガス整流溝(15a)を通過した旋回高速整流ガス(G3′)の流れを高速ガス通路(7d)の下流側部分で安定化するようにしたことを特徴とする請求項7に記載の狭窄ノズル。
- 螺旋金具(15)の外周面に複数の螺旋状のガス整流溝(15a)を均等に形成し、ノズル本体(7a)の先端開口から旋回高速整流ガス(G3′)をアーク(a)の周囲に均等に流すようにしたことを特徴とする請求項7又は請求項8に記載の狭窄ノズル。
- 筒状のトーチボディ(1)と、トーチボディ(1)内へ上下動自在且つ回転自在にねじ込み挿着され、タングステン電極棒2を着脱自在に保持する電極コレット(3)と、電極コレット(3)の上端部に取り付けられ、電極コレット(3)を正逆回転させてトーチボディ(1)に対して上下動させるコレットハンドル(4)と、トーチボディ(1)の下端部に着脱自在に取り付けられ、トーチボディ(1)の内部を通して流入して来たシールドガス(G)を均質拡散させて層流化するガスレンズ5と、ガスレンズ(5)又はトーチボディ(1)にタングステン電極棒(2)の先端部を囲繞する状態で着脱自在に取り付けられ、ガスレンズ5により層流化されたシールドガス(G)をアーク(a)の周囲に放出する筒状のシールドノズル(6)と、タングステン電極棒(2)の先端部周囲に配設された請求項1~請求項9に記載の何れかの狭窄ノズル(7)とから構成したことを特徴とするTIG溶接用トーチ。
- 狭窄ノズル(7)をガスレンズ(5)の先端面中央位置に着脱自在に取り付ける構成としたことを特徴とする請求項10に記載のTIG溶接用トーチ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280072462.3A CN104254425B (zh) | 2012-04-18 | 2012-04-18 | 狭窄喷嘴以及使用狭窄喷嘴的tig焊接用炬 |
KR1020147027627A KR101546739B1 (ko) | 2012-04-18 | 2012-04-18 | 협착 노즐 및 이것을 사용한 tig 용접용 토치 |
JP2014510958A JP5602974B2 (ja) | 2012-04-18 | 2012-04-18 | 狭窄ノズル及びこれを用いたtig溶接用トーチ |
PCT/JP2012/002659 WO2013157036A1 (ja) | 2012-04-18 | 2012-04-18 | 狭窄ノズル及びこれを用いたtig溶接用トーチ |
US13/731,927 US9597745B2 (en) | 2012-04-18 | 2012-12-31 | Constricting nozzle and TIG welding torch using this nozzle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/002659 WO2013157036A1 (ja) | 2012-04-18 | 2012-04-18 | 狭窄ノズル及びこれを用いたtig溶接用トーチ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/731,927 Continuation-In-Part US9597745B2 (en) | 2012-04-18 | 2012-12-31 | Constricting nozzle and TIG welding torch using this nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157036A1 true WO2013157036A1 (ja) | 2013-10-24 |
Family
ID=49379150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002659 WO2013157036A1 (ja) | 2012-04-18 | 2012-04-18 | 狭窄ノズル及びこれを用いたtig溶接用トーチ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9597745B2 (ja) |
JP (1) | JP5602974B2 (ja) |
KR (1) | KR101546739B1 (ja) |
CN (1) | CN104254425B (ja) |
WO (1) | WO2013157036A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015073749A1 (en) * | 2013-11-13 | 2015-05-21 | Victor Equipment Company | Collar assembly for securing consumables of an arc welding apparatus |
DE112016000177B4 (de) | 2015-04-16 | 2018-07-19 | Akihisa Murata | WIG-Schweissbrenner mit Verengungsdüse |
US10610948B2 (en) | 2014-09-22 | 2020-04-07 | Victor Equipment Company | Two-piece nozzle assembly for an arc welding apparatus |
WO2020137949A1 (ja) * | 2018-12-25 | 2020-07-02 | 株式会社ムラタ溶研 | スポット溶接用の狭窄ノズル付きtig溶接トーチ及びこれに用いられる電極用ノズル |
JP7376859B1 (ja) * | 2023-04-21 | 2023-11-09 | 太郎 神野 | トーチノズル |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013086136A (ja) * | 2011-10-19 | 2013-05-13 | Taiyo Nippon Sanso Corp | フェライト系ステンレス鋼板のtig溶接方法 |
US20140263192A1 (en) * | 2013-03-14 | 2014-09-18 | Lincoln Global, Inc. | Shielding cup for orbital welding |
US9770775B2 (en) | 2013-11-11 | 2017-09-26 | Lincoln Global, Inc. | Orbital welding torch systems and methods with lead/lag angle stop |
US9731385B2 (en) | 2013-11-12 | 2017-08-15 | Lincoln Global, Inc. | Orbital welder with wire height adjustment assembly |
US20150375332A1 (en) * | 2014-06-30 | 2015-12-31 | Newfrey Llc | Non-contact laminar flow drawn arc stud welding nozzle and method |
CN107249811A (zh) * | 2015-02-19 | 2017-10-13 | 三菱日立电力系统株式会社 | 焊接装置、焊接方法、及涡轮叶片 |
KR101778769B1 (ko) | 2015-04-07 | 2017-09-14 | 두산중공업 주식회사 | 노즐 일체형 토치헤드 및 이를 포함하는 용접장치 |
US10208263B2 (en) * | 2015-08-27 | 2019-02-19 | Cogent Energy Systems, Inc. | Modular hybrid plasma gasifier for use in converting combustible material to synthesis gas |
DE102015121252A1 (de) * | 2015-12-07 | 2017-06-08 | Plasmatreat Gmbh | Vorrichtung zur Erzeugung eines atmosphärischen Plasmastrahls und Verfahren zur Behandlung der Oberfläche eines Werkstücks |
CN105555006B (zh) * | 2016-02-16 | 2018-03-13 | 衢州迪升工业设计有限公司 | 利用熔丝引弧的电极 |
RU2635986C2 (ru) * | 2016-04-22 | 2017-11-17 | Ирина Владимировна Иванова | Газовое сопло для сварочной горелки |
DE102016108939A1 (de) * | 2016-05-13 | 2017-11-16 | Newfrey Llc | Schutzgasmundstück, Fügevorrichtung und Fügeverfahren |
CN106304599B (zh) * | 2016-09-29 | 2022-09-13 | 成都真火科技有限公司 | 一种用于大功率层流电弧等离子体束发生器的密封结构 |
KR101885786B1 (ko) * | 2016-10-26 | 2018-08-06 | (주)아진웰텍 | 가우징 토치 |
CN106624305A (zh) * | 2017-01-09 | 2017-05-10 | 宁波驰迈激光科技有限公司 | 一种粉末等离子堆焊内孔枪 |
US11364562B2 (en) | 2017-03-20 | 2022-06-21 | Taehan Yang | Welding torch |
CN107225313A (zh) * | 2017-06-09 | 2017-10-03 | 南通科赛尔机械有限公司 | 钛材氩弧焊气保装置 |
CN109382572A (zh) * | 2017-08-10 | 2019-02-26 | 武汉华材表面科技有限公司 | 一种等离子炬的轴向进气通道 |
DE102017216440A1 (de) * | 2017-09-15 | 2019-03-21 | Kjellberg Stiftung | WIG-Brenner zum Schweißen, Löten oder Beschichten |
DE102017121722B4 (de) * | 2017-09-19 | 2024-02-22 | Alexander Binzel Schweisstechnik Gmbh & Co. Kg | Brennerkörper zum thermischen Fügen, Brenner mit Brennerkörper und Fügevorrichtung |
KR101999251B1 (ko) | 2017-12-14 | 2019-09-27 | 주식회사 지스 | 불활성 분위기 조성을 위한 티그 용접장치 |
KR102009199B1 (ko) * | 2017-12-27 | 2019-08-09 | (주)아진웰텍 | 가우징 토치 및 이를 이용한 가우징 건 |
US11268693B2 (en) | 2018-02-06 | 2022-03-08 | Illinois Tool Works Inc. | Nozzle assemblies having multiple attachment methods |
US10926238B2 (en) | 2018-05-03 | 2021-02-23 | Cogent Energy Systems, Inc. | Electrode assembly for use in a plasma gasifier that converts combustible material to synthesis gas |
CN109693015B (zh) * | 2018-12-28 | 2019-12-03 | 西南交通大学 | 一种基于无线传能的磁场调控电弧烧蚀的方法及装置 |
DE102019100581A1 (de) * | 2019-01-11 | 2020-07-16 | Alexander Binzel Schweisstechnik Gmbh & Co. Kg | Gasdüse zum Ausströmen eines Schutzgasstromes und Brennerhals mit einer Gasdüse |
US11974384B2 (en) | 2020-05-28 | 2024-04-30 | The Esab Group Inc. | Consumables for cutting torches |
CN116921817B (zh) * | 2023-09-15 | 2023-12-15 | 中建安装集团有限公司 | 自动tig焊电弧聚集度在线监测及智能预警方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5866085U (ja) * | 1981-10-22 | 1983-05-04 | 三菱重工業株式会社 | Tig溶接ト−チ |
JPH0768382A (ja) * | 1993-09-02 | 1995-03-14 | Ishikawajima Harima Heavy Ind Co Ltd | 溶接トーチ |
JPH07227673A (ja) * | 1994-02-17 | 1995-08-29 | Nippon Steel Corp | 高能率tig溶接法 |
JPH11138264A (ja) * | 1997-11-11 | 1999-05-25 | Sumitomo Metal Ind Ltd | 高能率tig溶接方法およびtig溶接装置 |
JP2007144427A (ja) * | 2005-11-24 | 2007-06-14 | Akihisa Murata | アーク狭窄シールドノズル |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB816632A (en) * | 1955-09-01 | 1959-07-15 | Saturn Ind Gases Ltd | Arc welding torch |
JPS56157351A (en) | 1980-05-10 | 1981-12-04 | Nisshin Steel Co Ltd | Manufacture of acryl resin group film thermofusing colored vinyl chloride resin coated metallic plate having excellent wetproof property |
CN1004967B (zh) * | 1985-09-06 | 1989-08-09 | 机械部哈尔滨焊接研究所 | 旋流式双层气体保护焊方法及焊炬 |
US4788401A (en) * | 1987-08-17 | 1988-11-29 | C-K Systematics, Inc. Div. Of Conley & Kleppen, Int'l. | Inert gas welding torch |
US5591356A (en) * | 1992-11-27 | 1997-01-07 | Kabushiki Kaisha Komatsu Seisakusho | Plasma torch having cylindrical velocity reduction space between electrode end and nozzle orifice |
JP3163559B2 (ja) | 1997-10-27 | 2001-05-08 | 昭市 村田 | ガスタングステンアーク溶接用トーチ |
US6525288B2 (en) * | 2001-03-20 | 2003-02-25 | Richard B. Rehrig | Gas lens assembly for a gas shielded arc welding torch |
CN2897524Y (zh) * | 2006-03-29 | 2007-05-09 | 中国海洋石油总公司 | 一种高压旋流双层气体保护焊枪 |
-
2012
- 2012-04-18 KR KR1020147027627A patent/KR101546739B1/ko active IP Right Grant
- 2012-04-18 CN CN201280072462.3A patent/CN104254425B/zh active Active
- 2012-04-18 WO PCT/JP2012/002659 patent/WO2013157036A1/ja active Application Filing
- 2012-04-18 JP JP2014510958A patent/JP5602974B2/ja active Active
- 2012-12-31 US US13/731,927 patent/US9597745B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5866085U (ja) * | 1981-10-22 | 1983-05-04 | 三菱重工業株式会社 | Tig溶接ト−チ |
JPH0768382A (ja) * | 1993-09-02 | 1995-03-14 | Ishikawajima Harima Heavy Ind Co Ltd | 溶接トーチ |
JPH07227673A (ja) * | 1994-02-17 | 1995-08-29 | Nippon Steel Corp | 高能率tig溶接法 |
JPH11138264A (ja) * | 1997-11-11 | 1999-05-25 | Sumitomo Metal Ind Ltd | 高能率tig溶接方法およびtig溶接装置 |
JP2007144427A (ja) * | 2005-11-24 | 2007-06-14 | Akihisa Murata | アーク狭窄シールドノズル |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10537959B2 (en) | 2013-11-13 | 2020-01-21 | Victor Equipment Company | Nozzle insert for an arc welding apparatus |
US10981242B2 (en) | 2013-11-13 | 2021-04-20 | Victor Equipment Company | Collar assembly for securing consumables of an arc welding apparatus |
US10556291B2 (en) | 2013-11-13 | 2020-02-11 | Victor Equipment Company | High performance contact tip and nozzle assembly for an arc welding apparatus |
WO2015073749A1 (en) * | 2013-11-13 | 2015-05-21 | Victor Equipment Company | Collar assembly for securing consumables of an arc welding apparatus |
US9895763B2 (en) | 2013-11-13 | 2018-02-20 | Victor Equipment Company | Nozzle insert for an arc welding apparatus |
US11701733B2 (en) | 2013-11-13 | 2023-07-18 | Victor Equipment Company | High performance contact tip and nozzle assembly for an arc welding apparatus |
US10052708B2 (en) | 2013-11-13 | 2018-08-21 | Victor Equipment Company | Collar assembly for securing consumables of an arc welding apparatus |
US10322465B2 (en) | 2013-11-13 | 2019-06-18 | Victor Equipment Company | Positioning system and method for arc welding consumables |
US9868174B2 (en) | 2013-11-13 | 2018-01-16 | Victor Equipment Company | Slip-fit nozzle assembly for an arc welding apparatus |
US9878394B2 (en) | 2013-11-13 | 2018-01-30 | Victor Equipment Company | Positioning system and method for arc welding consumables |
US9889519B2 (en) | 2013-11-13 | 2018-02-13 | Victor Equipment Company | High performance contact tip and nozzle assembly for an arc welding apparatus |
US10610948B2 (en) | 2014-09-22 | 2020-04-07 | Victor Equipment Company | Two-piece nozzle assembly for an arc welding apparatus |
DE112016000177B4 (de) | 2015-04-16 | 2018-07-19 | Akihisa Murata | WIG-Schweissbrenner mit Verengungsdüse |
WO2020137949A1 (ja) * | 2018-12-25 | 2020-07-02 | 株式会社ムラタ溶研 | スポット溶接用の狭窄ノズル付きtig溶接トーチ及びこれに用いられる電極用ノズル |
JPWO2020137949A1 (ja) * | 2018-12-25 | 2021-02-18 | 株式会社ムラタ溶研 | スポット溶接用の狭窄ノズル付きtig溶接トーチ及びこれに用いられる電極用ノズル |
US12097579B2 (en) | 2018-12-25 | 2024-09-24 | Murata Welding Laboratories, Incorporated | TIG welding torch equipped with narrow nozzle for spot welding, and electrode nozzle used in same |
WO2024219493A1 (ja) * | 2023-04-21 | 2024-10-24 | 太郎 神野 | トーチノズル及びトーチノズルセット |
JP7376859B1 (ja) * | 2023-04-21 | 2023-11-09 | 太郎 神野 | トーチノズル |
Also Published As
Publication number | Publication date |
---|---|
CN104254425A (zh) | 2014-12-31 |
JP5602974B2 (ja) | 2014-10-08 |
KR101546739B1 (ko) | 2015-08-24 |
US20130277337A1 (en) | 2013-10-24 |
KR20140132754A (ko) | 2014-11-18 |
JPWO2013157036A1 (ja) | 2015-12-21 |
CN104254425B (zh) | 2017-03-22 |
US9597745B2 (en) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602974B2 (ja) | 狭窄ノズル及びこれを用いたtig溶接用トーチ | |
JP5467693B2 (ja) | 狭窄ノズル及びこれを用いたtig溶接用トーチ | |
JP2007000933A (ja) | 液体ブリッジを介した金属移行を用いるtig溶接又はろう付け溶接 | |
US20070246446A1 (en) | Continous Butt Welding Method Using Plasma and Laser, and Method for Fabricating Metal Tube Using the Same | |
RU2440221C1 (ru) | Способ лазерно-дуговой сварки плавящимся электродом алюминия и алюминиевых сплавов | |
CN104907696A (zh) | 一种考虑焊接电流值的激光-电弧复合焊接方法 | |
JPH039897Y2 (ja) | ||
KR102443992B1 (ko) | 스폿 용접용의 협착 노즐이 있는 tig 용접 토치 및 이것에 사용되는 전극용 노즐 | |
JP5901111B2 (ja) | 溶接ガス及びプラズマ溶接方法 | |
US4572942A (en) | Gas-metal-arc welding process | |
JPH031110B2 (ja) | ||
JP4327153B2 (ja) | アーク狭窄シールドノズル | |
KR101092774B1 (ko) | 협 개선 수동 가스 텅스텐 아크 용접용 토치 | |
CN111761179A (zh) | 一种多通道气流压缩tig-mig复合焊枪 | |
Kah et al. | Process possibility of welding thin aluminium alloys | |
JP6501438B1 (ja) | 狭窄ノズルを備えるtig溶接用トーチ | |
JPS597545B2 (ja) | 鋼の消耗電極式ア−ク溶接方法 | |
WO2018036535A1 (zh) | 一种焊枪 | |
JP2010104996A (ja) | プラズマ電極及びプラズマミグ溶接トーチ | |
JPH04284974A (ja) | 高速ガスシールドアーク溶接方法 | |
JP2005052859A (ja) | 溶接ガスノズル | |
CN218503631U (zh) | 一种防钎剂乱流的药芯钎料环 | |
CN210731321U (zh) | 不锈钢管对接自动叠加脉冲单道焊的焊接系统 | |
JP5483553B2 (ja) | レーザ・アーク複合溶接法 | |
JP2014108458A (ja) | プラズマgma溶接トーチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12874735 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014510958 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147027627 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12874735 Country of ref document: EP Kind code of ref document: A1 |