WO2013156139A1 - Refroidisseur de gaz de processus comportant des clapets de refroidisseur de gaz de processus commandés par leviers - Google Patents
Refroidisseur de gaz de processus comportant des clapets de refroidisseur de gaz de processus commandés par leviers Download PDFInfo
- Publication number
- WO2013156139A1 WO2013156139A1 PCT/EP2013/001114 EP2013001114W WO2013156139A1 WO 2013156139 A1 WO2013156139 A1 WO 2013156139A1 EP 2013001114 W EP2013001114 W EP 2013001114W WO 2013156139 A1 WO2013156139 A1 WO 2013156139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process gas
- gas cooler
- flap
- lever
- flaps
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0075—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/06—Derivation channels, e.g. bypass
Definitions
- the present invention relates to lever-controlled process gas cooler flaps, with which the flowing through a process gas cooler total amount of a process gas can be variably divided into at least two streams that are cooled to different degrees before they are mixed together again before exiting the process gas cooler.
- the process gas cooler flaps are attached to shafts whose positions are controlled by means of levers, connecting rods and a guided through the pressure jacket of the process gas cooler to the outside drive body.
- Process gas cooler are used in the production of hydrogen, ammonia, alkenes or methanol after the reforming to cool the process gas. These reforming processes take place either exclusively in a tube-gap furnace in which hydrocarbon is catalytically reformed with steam under pressure, or further reforming reactors are connected downstream of this cracking furnace. The product of these processes is a synthesis gas, here it is called process gas. Depending on the manufacturing process, the outlet temperatures of the process gas are between 520 ° C and 1000 ° C. Before the process gas is sent to the further process chain, it must first be cooled down. This usually happens by means of a process gas cooler.
- the commonality of the process gas cooler of the various manufacturing processes are heat transfer devices and at least one bypass device.
- a part of the hot process gas entering the process gas cooler is subjected to indirect heat exchange with a cooling medium, mostly water, through heat transfer means, thereby cooling the process gas, and the other part of the hot process gas flows through a bypass device and becomes less or not cooled.
- Heat transfer and bypass device usually consist of at least one tube.
- the process gas cooler has a pressure jacket, within which the process gas cooler can be divided into three areas: inlet area, heat transfer area and outlet area.
- hot process gas enters the process gas cooler at a temperature of at least 520 ° C.
- the inlet region within the pressure jacket has a heat-insulating layer.
- the process gas is partially cooled.
- the cooled process gas is then mixed with the less or not cooled emerging from the bypass tube process gas in the outlet.
- the mixed process gas still has a temperature of about 300 ° C to 400 ° C at the outlet.
- the distribution ratio of the process gas supplied to the heat transfer and the bypass devices is usually controlled. In the prior art control valves, regulating flaps or control plugs are used for this purpose.
- the process gas flowing through the heat transfer tubes and the bypass tubes is mixed in the outlet region and subsequently discharged from the process gas cooler.
- the document DE 10 2005 057 674 A1 describes a waste heat boiler, which includes a plurality of heat transfer tubes and a centrally arranged bypass tube within a cylindrical shell, wherein only the gas passage velocity and quantity in the bypass tube arranged by a at the outlet of the bypass tube and by means of Regulating device axially adjustable plug is regulated.
- a tube bundle heat exchanger is disclosed in DE 39 13 422 C3, wherein the tube bundle heat exchanger also includes a plurality of heat transfer tubes and a centrally arranged bypass tube, and on the gas outlet side control chambers are provided, wherein cooled by heat transfer tubes with the gas through the bypass tube not or little cooled gas is mixed, wherein the gas passage speeds and amounts are controlled on the gas outlet side by arranged on a externally operable control member three flaps.
- the middle control valve, the gas passage speed and - regulates amount in the bypass tube has a cooling device. All control valves are arranged on a common shaft. Since control element, control valves and the control chambers are in contact with process gases or cooling media of different temperatures and also generally consist of different materials, the thermal expansions of these components are not the same. As a result of these different dimensions, it can lead to strong contacts between components that must be able to move relative to each other to the function of the control device. Strong contacts cause large frictional forces, which prevent or completely prevent the necessary movements of the components. This malfunction is favored by large rigidly connected components which are in moving contact with several other components, each with a different temperature.
- the invention is therefore based on the problem to provide a process gas cooler with controllable process gas cooler flaps available, so they do not jam despite thermal expansion.
- the object is achieved by a process gas cooler (1) with lever-controlled process gas cooler flaps (7), which comprises
- process gas (2) is cooled as it flows through the heat transfer tubes (5) and is less or not cooled when flowing through the at least one bypass tube (6),
- a partition wall (14) is arranged and the partition wall (14) has connecting openings (12), and
- Each connecting opening (12) has a process gas cooler flap (7)
- flap shafts (9) are provided, and the process gas cooler flaps (7) are attached to the flap shafts (9), and
- the flap shafts (9) are connected by means of lever (10) and connecting rod (11) to the drive body (3) in such a way that the gas passage speed and quantity of the process gas can be controlled externally by means of the process gas cooler flap (7) with the aid of the drive body (13) are.
- the process cooler flaps (7) regulate the passage of the flowing process gas (2), in which at least one of the connection openings (12) allows the passage of the process gas flowing through the at least one bypass tube (6) to the outlet region (4), and the associated one Process gas cooler flap (7) controls the passage of the process gas flowing through the at least one bypass pipe (6) to the outlet region (4).
- the process gas (2) flowing through the heat transfer tubes (5) in which at least one further of the connection openings (12) allows passage of the process gas flowing through the heat transfer tubes (5), and the associated process gas cooler flap (7) passes of the process gas flowing through the heat transfer tubes (5).
- the process gas cooler flaps (7) are attached to flap shafts (9), and controllable by the rotational movement of the flap shafts (9).
- a drive body (13) is provided, a part of the drive body (13) is mounted within the pressure jacket in the outlet area (4), and a part of the drive body (13) is after guided outside, so that one can control the drive body (13) from outside the pressure jacket.
- the flap shafts (9) with the drive body (13) are connected such that both the gas passage velocity and the gas passage amount of the process gas (2) the connection opening (12), are controlled by the process gas cooler flap (7) from the outside by means of the drive body (13).
- the drive body (3) by a drive shaft, a push rod or a suitable body are formed, so that this drive body (13) controls the flap shafts (9) from the outside.
- this drive body (13) whose rotation is transmitted by lever (10) and connecting rods (11) on the flap shafts (9).
- the flap shafts (9) can also be controlled from the outside by being angularly movably connected to the lever (10) and the flap shafts (9).
- each process gas cooler flap (7) is provided for each process gas cooler flap (7).
- each process gas cooler flap (7) can be adjusted individually with respect to the gas passage speed and quantity of the process gas (2).
- connection openings (12) with process gas cooler flaps (7) are formed for the passage of the process gas flowing through the heat transfer tubes (5), and these process gas cooler flaps (7) are attached to a common flap shaft (9).
- connection openings (12) with process gas cooler flaps (7) are formed, and these process gas cooler flaps (7) are also attached to a common flap shaft (9). Since the process gas (2), which flows through the heat transfer tubes (5) or bypass tubes (6), each has approximately the same temperature, which is applied to those process gas cooler flaps (7) common flap shaft (9) applied thermally evenly.
- the flap shafts (9) are connected by means of the lever (10) and the connecting rods (11) directly or by other means to the drive body (13). This can be done for example by an on the partition (14) mounted intermediate shaft.
- the drive body (13) drives by means of the lever (10) and the connecting rods (11) located within the pressure shell intermediate shaft from which transmit the rotational movement by means of the lever (10) and the connecting rods (11) on the flap shafts (9) becomes.
- unfavorable component temperatures can also be set during operation for corrosion.
- These areas can also have a lining (18) which prevents direct contact with the process gas (2).
- a lining (18) may consist of concrete.
- the process gas cooler flaps (7) are arranged on the flap shafts (9) such that in operation always at least one of the process gas cooler flaps (7) is not fully open
- the levers (10) of the process gas cooler flaps (7) have the same lengths.
- An advantageous embodiment possibility here is that the levers (10) have different lengths.
- the process gas cooler flap (7) regulating the passage of the flowing process gas (2) into the bypass tube (6) is provided with a cooling device (16) which ensures uniform cooling of the process gas cooler flap (7) by the outside through a line (15). supplied cooling medium ensured.
- a temperature monitoring device is provided in the outlet area (4) or in the discharge line.
- a drive For actuating the drive body (13), a drive is provided, wherein the drive can be driven pneumatically or by a motor.
- FIG. 1 shows a process gas cooler (1) with lever-controlled process gas cooler flaps (7).
- Fig. 2 illustrates an embodiment of the lever-controlled process gas cooler flaps (7).
- FIG 3 illustrates another embodiment of the lever-controlled process gas cooler flaps (7).
- Fig. 4 shows a process gas cooler flap (7) with cooling device (16).
- Fig. 5 illustrates a process gas cooler flap (7) whose areas are provided with for a corrosive attack by the process gas unfavorable temperature with a direct contact avoiding lining (18).
- Fig. 1 shows a process gas cooler (1) for use in the production of hydrogen, ammonia, alkenes or methanol.
- the hot process gas (2) is cooled down accordingly by the process gas cooler (1).
- the process gas (2) flows into the inlet region (3) of the process gas cooler (1) with at least 520 ° C., whereby part of the process gas (2) flows through the heat transfer tubes (5) and the remainder flows through the bypass tubes (6).
- the process gas (2) which is cooled by the heat transfer tubes (5) and is not or only slightly cooled by the bypass tubes (6), flows through the process gas cooler flaps (7) into the outlet region (4).
- FIG. 2 illustrates an illustration according to the invention of the lever-controlled process gas cooler flaps (7).
- a partition wall (14) between the heat transfer area and the outlet area (4) with connection openings (12) allow the process gas (2), which is not cooled or cooled slightly, to flow into the outlet area (4) via the controlled process gas cooler flaps (7).
- Each process gas cooler flap (7) has a flap shaft (9), and the flap shaft (9) is fixedly connected to a lever (10).
- the levers (10) are movably connected to one another via connecting rods (11).
- flap shafts (9) are movably coupled to the drive shaft (13) in such a way that the rotational movement of the drive shaft (13) is transmitted to the flap shafts (9) and the process gas cooler flaps (7) can thereby be regulated.
- FIG. 3 shows a further possible embodiment in comparison to FIG. 2.
- each process gas cooler flap (7) has a direct connection via the flap shaft (9) to the drive shaft (13).
- FIG. 4 shows a process gas cooler flap (7) provided with a cooling device (16).
- the cooling medium (17) exemplifies water vapor from the outside via an apparatus such a line (15) introduced into the cooling device (16), so that the process gas cooler flap (7), which regulates the gas outlet amount or speed of the non or little cooled process gas (2) is cooled accordingly.
- FIG. 5 shows a process gas cooler flap (7) provided with a lining (18).
- the cover (18) surrounds a part of the flap shaft (9) and a part of the lever (10).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
L'invention concerne un refroidisseur de gaz de processus (1) comportant des clapets de refroidisseur de gaz de processus (7) commandés par leviers et présentant : • une enveloppe sous pression et • dans l'enveloppe sous pression, une zone d'admission (3) pour les gaz de processus (2) ainsi qu'une zone d'évacuation (4) pour les gaz de processus (2) et une pluralité de tubes de transfert de chaleur (5) ainsi qu'au moins un tube de dérivation (6) agencé de manière centrée et parallèle aux tubes de transfert de chaleur (5), • les gaz de processus (2) étant refroidis lorsqu'ils traversent les tubes de transfert de chaleur (5) et moins ou pas du tout refroidis lorsqu'ils traversent le au moins un tube de dérivation (6), • une cloison (14) étant agencée entre les tubes de transfert de chaleur (5, 6) et la zone d'évacuation (4) et ladite cloison (14) présentant des ouvertures de liaison (12) et • chaque ouverture de liaison (12) présentant un clapet de refroidisseur de gaz de processus (7), • les clapets de refroidisseur de gaz de processus (7) régulant le passage du gaz de processus (2) qui s'écoule, • des arbres de clapet (9) étant prévus, les clapets de refroidisseur de gaz de processus (7) étant montés sur les arbres de clapet (9), et • un corps d'entraînement (13) guidé vers l'extérieur étant prévu et • des leviers (10) et des tiges de liaison (11) étant prévus dans la zone d'évacuation (4) et • les arbres de clapet (9) étant reliés au corps d'entraînement (13) au moyen des leviers (10) et de la tige de liaison (11) de telle sorte que la vitesse de passage des gaz de processus et la quantité de gaz de processus qui passe peuvent être commandées via ce clapet de refroidisseur de gaz de processus (7) depuis l'extérieur à l'aide du corps d'entraînement (13).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012007721.1 | 2012-04-19 | ||
DE102012007721.1A DE102012007721B4 (de) | 2012-04-19 | 2012-04-19 | Prozessgaskühler mit hebelgesteuerten Prozessgaskühlerklappen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013156139A1 true WO2013156139A1 (fr) | 2013-10-24 |
Family
ID=48570042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/001114 WO2013156139A1 (fr) | 2012-04-19 | 2013-04-16 | Refroidisseur de gaz de processus comportant des clapets de refroidisseur de gaz de processus commandés par leviers |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102012007721B4 (fr) |
WO (1) | WO2013156139A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017078567A (ja) * | 2015-10-20 | 2017-04-27 | ボルジヒ ゲーエムベーハー | 熱交換器 |
EP4048437B1 (fr) | 2019-10-25 | 2023-06-28 | Casale Sa | Procédé et réacteur d'oxydation catalytique d'ammoniac |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3407001A1 (fr) | 2017-05-26 | 2018-11-28 | ALFA LAVAL OLMI S.p.A. | Équipement à faisceau tubulaire muni d'une dérivation |
EP4368933A1 (fr) | 2022-11-10 | 2024-05-15 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Dispositif de régulation pour réguler la température d'un gaz de processus et échangeur de chaleur doté d'un dispositif de régulation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133591A (en) * | 1954-05-20 | 1964-05-19 | Orpha B Brandon | Method and apparatus for forming and/or augmenting an energy wave |
US4149503A (en) * | 1976-10-01 | 1979-04-17 | Nippon Soken, Inc. | Exhaust gas recirculation system for an internal combustion engine |
DE2927161B1 (de) * | 1979-07-05 | 1981-04-23 | Joachim 5000 Köln Pohl | Verfahren und Vorrichtung zur Wassererhitzung durch Waermerueckgewinnung aus den Abgasen eines Heizungskessels |
US4319630A (en) * | 1978-12-07 | 1982-03-16 | United Aircraft Products, Inc. | Tubular heat exchanger |
DE3913422C2 (fr) | 1989-04-24 | 1991-05-08 | L. & C. Steinmueller Gmbh, 5270 Gummersbach, De | |
US20050133202A1 (en) * | 2001-11-09 | 2005-06-23 | Aalborg Industries A/S | Heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger |
DE102005057674A1 (de) | 2005-12-01 | 2007-06-06 | Alstom Technology Ltd. | Abhitzekessel |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1885267A (en) | 1929-10-28 | 1932-11-01 | Kalfus Victor | Fluid heating device |
DE3044864C2 (de) | 1980-11-28 | 1983-04-28 | Kleinewefers Energie- und Umwelttechnik GmbH, 4150 Krefeld | Anlage zum Vorwärmens eines Prozeßgases |
DK171423B1 (da) | 1993-03-26 | 1996-10-21 | Topsoe Haldor As | Spildevarmekedel |
CN102713485B (zh) | 2010-01-21 | 2016-05-11 | 国际壳牌研究有限公司 | 换热器以及操作换热器的方法 |
-
2012
- 2012-04-19 DE DE102012007721.1A patent/DE102012007721B4/de active Active
-
2013
- 2013-04-16 WO PCT/EP2013/001114 patent/WO2013156139A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133591A (en) * | 1954-05-20 | 1964-05-19 | Orpha B Brandon | Method and apparatus for forming and/or augmenting an energy wave |
US4149503A (en) * | 1976-10-01 | 1979-04-17 | Nippon Soken, Inc. | Exhaust gas recirculation system for an internal combustion engine |
US4319630A (en) * | 1978-12-07 | 1982-03-16 | United Aircraft Products, Inc. | Tubular heat exchanger |
DE2927161B1 (de) * | 1979-07-05 | 1981-04-23 | Joachim 5000 Köln Pohl | Verfahren und Vorrichtung zur Wassererhitzung durch Waermerueckgewinnung aus den Abgasen eines Heizungskessels |
DE3913422C2 (fr) | 1989-04-24 | 1991-05-08 | L. & C. Steinmueller Gmbh, 5270 Gummersbach, De | |
US20050133202A1 (en) * | 2001-11-09 | 2005-06-23 | Aalborg Industries A/S | Heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger |
DE102005057674A1 (de) | 2005-12-01 | 2007-06-06 | Alstom Technology Ltd. | Abhitzekessel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017078567A (ja) * | 2015-10-20 | 2017-04-27 | ボルジヒ ゲーエムベーハー | 熱交換器 |
EP3159646B1 (fr) | 2015-10-20 | 2019-03-06 | Borsig GmbH | Échangeur de chaleur |
EP3159646B2 (fr) † | 2015-10-20 | 2021-12-29 | Borsig GmbH | Échangeur de chaleur |
EP4048437B1 (fr) | 2019-10-25 | 2023-06-28 | Casale Sa | Procédé et réacteur d'oxydation catalytique d'ammoniac |
Also Published As
Publication number | Publication date |
---|---|
DE102012007721B4 (de) | 2022-02-24 |
DE102012007721A1 (de) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1793189B1 (fr) | Chaudière de récupération | |
EP2326905B1 (fr) | Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance | |
EP0864830B1 (fr) | Echangeur de chaleur à faisceau de tubes en U | |
DE102012107908B4 (de) | Abgaswärmetauscher | |
EP3159646B2 (fr) | Échangeur de chaleur | |
EP2547960B1 (fr) | Installation d'épuration thermique de gaz d'évacuation | |
DE102012007721B4 (de) | Prozessgaskühler mit hebelgesteuerten Prozessgaskühlerklappen | |
EP2312252B1 (fr) | Caisson de refroidissement et procédé de refroidissement de gaz de synthèse | |
EP0772010B1 (fr) | Réchauffeur d'air à brûleur | |
DE2149536A1 (de) | Verfahren zum Erhitzen einer Waermeuebertragungsfluessigkeit | |
EP1724544A1 (fr) | Procédé d'échanger de chaleur et échangeur de chaleur | |
WO2017021524A1 (fr) | Élément d'écoulement muni d'une conduite capillaire intégrée pour le transfert de fluides | |
DE3333735C2 (fr) | ||
DE2338147A1 (de) | Rotierender schachtofen mit gekuehltem brennerrohr | |
DE102015203001B3 (de) | Wärmetauscheranordnung sowie Abgassystem für eine Brennkraftmaschine eines Kraftfahrzeugs | |
WO2018086759A1 (fr) | Procédé de changement de température d'un fluide au moyen d'un échangeur de chaleur tubulaire et échangeur de chaleur tubulaire | |
DE102012206704B4 (de) | Abreinigung von mit mindestens einem Prozessfluid durchströmten Kanälen | |
DE102016223696A1 (de) | Wärmetauscher, insbesondere Abgaswärmetauscher, für ein Kraftfahrzeug | |
DE2054608B2 (de) | Brenneranordnung in Wärmöfen, insbesondere Tiefofen | |
DE102009048592A1 (de) | Abhitzekessel und Verfahren zur Abkühlung von Synthesegas | |
DE202015101120U1 (de) | Wärmetauscheranordnung sowie Abgassystem für eine Brennkraftmaschine eines Kraftfahrzeugs | |
DE102022207885B3 (de) | Elastokalorische Maschine | |
DE102019133478B4 (de) | Energiewandelvorrichtung für den Einsatz in einem Fahrzeug | |
EP4368933A1 (fr) | Dispositif de régulation pour réguler la température d'un gaz de processus et échangeur de chaleur doté d'un dispositif de régulation | |
EP2878887B1 (fr) | Procédé de fonctionnement d'une installation d'oxydation de gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13726413 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13726413 Country of ref document: EP Kind code of ref document: A1 |