WO2013154414A1 - Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo - Google Patents

Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo Download PDF

Info

Publication number
WO2013154414A1
WO2013154414A1 PCT/MX2013/000047 MX2013000047W WO2013154414A1 WO 2013154414 A1 WO2013154414 A1 WO 2013154414A1 MX 2013000047 W MX2013000047 W MX 2013000047W WO 2013154414 A1 WO2013154414 A1 WO 2013154414A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
cardboard
self
silicon oxide
dispersion
Prior art date
Application number
PCT/MX2013/000047
Other languages
English (en)
French (fr)
Inventor
Néstor LUNA MARROQUÍN
Orlando SEVERIANO PÉREZ
Joel GUTIÉRREZ ANTONIO
Rodrigo PÁMANES BRINGAS
Gregorio José DE HAENE ROSIQUE
Julio Gómez Cordón
Original Assignee
Sigma Alimentos, S. A. De C. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Alimentos, S. A. De C. V. filed Critical Sigma Alimentos, S. A. De C. V.
Priority to EP13775835.5A priority Critical patent/EP2837736B1/en
Priority to US14/394,090 priority patent/US9783930B2/en
Priority to ES13775835T priority patent/ES2743051T3/es
Priority to BR112014025470-2A priority patent/BR112014025470B1/pt
Priority to CA2870127A priority patent/CA2870127C/en
Publication of WO2013154414A1 publication Critical patent/WO2013154414A1/es
Priority to CR20140474A priority patent/CR20140474A/es

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/11Halides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/13Silicon-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/72Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/385Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape

Definitions

  • the present invention is related to coating materials; more specifically to a method for making a hydrophobic paper or cardboard with self-assembled silicon oxide nanoparticles with functional groups of silanes and fluorocarbon compounds bonded directly to the cellulose fibers of the paper or cardboard.
  • nanoparticles for this application represents a great economic advantage for these packages, since the interaction between the cellulose network and the coating nanoparticles can be increased thanks to the incorporation of various functional groups on the nanoparticles, resulting in the improvement of hydrophobic properties due to chemical interactions between them and the organic matrix.
  • inorganic particles as in the case of silicon oxide, have a surface that has a lower compatibility with organic compounds such as polymeric polyolefins or ionic type amides or amines, paper fibers or other biopolymers.
  • the surface of the nanoparticles react by different methods, for example, by self-assembling with products that contain groups that when reacting can be more compatible with the polymers and allow better hydrophobic properties.
  • by chemical modification functional groups are added to the surface of the nanoparticles to allow better incorporation or compatibility with organic products such as polymers or other matrices of materials such as paper.
  • a super-hydrophobic or ultra-hydrophobic coating composition which include a polymer that can be a homopolymer or compolymer of polyalkylene, polyacrylate, polymethyl acrylate, polyester, polyamide, polyurethane, polyvinylarylene, polyvinyl ester, polyvinylene / alkylene copolymer, polyalkylene oxide or combinations thereof with particles having an average size of 1 nm to 25 microns, such that it propitiates a water contact angle between about 120 ° and about 150 ° or more.
  • the particle is made of silica which has been previously treated with a silane.
  • Patent US7927458 called "Paper articles exhibiting water resistance and method for making same” refers to a process for preparing glued paper and cardboard which incorporates in the process a composition comprising one or more hydrophobic polymers wherein the hydrophobic polymers, the amount of such polymers and the proportion by weight of starch and such polymer in the composition are selected such that the paper and cardboard exhibits a Cobb value equal to or less than 25 g / m 2 and a glued paper or cardboard formed by the process.
  • Document US7229678 called "Barrier laminate structure for packaging beverages” describes a laminated packaging material, which comprises from a first outer layer of a low density polyethylene polymer, a cardboard substrate, a first layer of inner laminated nylon coating with a resin bonding layer, an extrusion blown layer comprising a first low density polyethylene polymer layer, a bonding layer, a first inner layer of EVOH, a second bonding layer, a second inner layer of EVOH, a third tie layer and a second inner layer of low density polyethylene of polymer, and a more internal layer in contact with low density polyethylene product.
  • Patent US6830657 called "Hydrophobic cationic dispersions stabilized by low molecular weight maleimide copolymers, for paper sizing” refers to a method for obtaining an aqueous dispersion of hydrophobic polymers dispersed in the form of particles with an average diameter less than 100 nm stabilized only with a macromolecular surfactant based on a low molecular weight styrene / maleic imide anhydride copolymer. It also refers to the use of said dispersion for the treatment of paper.
  • US4268069 entitled "Paper coated with a microcapsular coating composition containing a hydrophobic silica” describes a composition of a coating comprising, oil containing microcapsules dispersed in a continuous aqueous phase, which also contains finely divided silica phase particles and a binder for said microcapsules and said silica particles.
  • the silica particles have been treated with an organic material such as an organic silicon compound to give the particles a hydrophobic surface.
  • the coating composition has utility in the manufacture of paper coated with microcapsules. Such paper is characterized by a substantial reduction in staining when used in photocopying devices that use a pressure contact line to help transfer the dust image of a photoreceptor belt to the paper.
  • US20110008585 patent application entitled "Water-resistant corrugated paperboard and method of preparing the same” describes a method for preparing water-resistant corrugated cardboard composed of a corrugated medium treated with a hydrophobic agent on both sides and a liner-treated with a hydrophobic agent on at least one side of the surface.
  • the lining and the corrugated medium are adhered by an adhesive prepared with a starch carrier, raw starch, borax, a hydrophobic resin, an additive to improve penetration and water.
  • the starch carrier is composed of cooked and raw starch.
  • the liner and the corrugated medium are treated with the hydrophobic agent before being glued.
  • Hydrophobic resins include resorcinol-formaldehyde resins, urea-formaldehyde resins.
  • Patent application US20110081509A1 entitled “Degradable heat insulation container” describes a container that includes a container body made of paper, a waterproofing layer and a layer of foam.
  • the container body has an outer surface and an inner surface.
  • the waterproofing layer is coated on the inner surface.
  • the waterproofing layer is mainly composed of talcum powder, carbonate resin and calcium.
  • the foam layer is disposed on at least a part of the outer surface.
  • the foam layer consists of reinforcements and a thermo-expandable powder.
  • the binder is selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyacrylic acid resin and a mixture thereof.
  • the thermo-expandable powder is formed by a plurality of thermo-expandable microcapsules, each of which consists of a thermoplastic polymer shell and a low boiling solvent lined by the thermoplastic polymer shell.
  • Patent application US20110033663 entitled “Superhydrophobic and superhydrophilic materials, surfaces and methods” describes a method of general application that does not require more than one step which facilitates the preparation of superhydrophilic or super hydrophobic large area surfaces in a variety of substrates such as glass, metal, plastic, paper, wood, concrete and masonry.
  • the technique involves free radical polymerization of common acrylic or stretch monomers in the presence of porgenic solvents in a mold or on a free surface.
  • Patent application US20100233468 entitled “Biodegradable nano-composition for application of protective coatings onto natural materials” refers to a method for manufacturing a biodegradable composition containing cellulose nanoparticles to form a protective coating on natural materials.
  • One of its objects is to provide a composition to form a protective coating layer on a biodegradable natural material that imparts water resistance and grease resistance to the material. It is another object to provide a composition to form a protective layer in biodegradable natural materials It is based on the use of nano cellulose particles and protects these materials from swelling, deformation and mechanical damage during contact with water, other aqueous liquids, or greases.
  • Patent application US20100311889 entitled "Method for manufacturing a coating slip, using an acrylic thickener with a branched hydrophobic chain, and the slip obtained" consists of a method for manufacturing a coated paper sheet containing a mineral material, using , as an agent for thickening the sheet, a water soluble polymer comprising at least one ethylene-unsaturated anionic monomer and at least one ethylene-unsaturated oxyalkyl monomer ending in a hydrophobic alkyl, alkaryl, arylalkyl chain, aryl, saturated or unsaturated , branched with 14 to 21 carbon atoms and two branches each with at least six carbon atoms.
  • the polymer is added to the sheet either directly, or during an earlier stage when the mineral material is ground, dispersed, or concentrated in water, which may or may not be followed by a drying stage. In this way, the water retention of the slip is improved, which contributes to a better printability of the paper coated by the sheet.
  • US20080188154 with the name "Film laminate” describes a laminate that includes at least one layer of an environmentally degradable film, for example, a polylactide ("PLA”) made of an easily available annually renewable polymer, from resources such as corn.
  • a second layer may be a substrate made of, for example, paper, woven or non-woven fabric or metal sheets.
  • the environmentally degradable film and the substrate are adhered to each other by, for example, extruded polymers or adhesives such as water-based, hot melt, solvent or solvent-free adhesives.
  • the choice of adherent depends on the type of substrate to be laminated with the environmentally degradable film and the desired properties of the resulting laminated composite structure (ie, "laminate").
  • the first layer is coated with a liquid polymer, a nano-particle dispersion, a metal deposition or a silicone oxide deposition such that the gas permeability of the first layer is reduced.
  • a liquid polymer a nano-particle dispersion, a metal deposition or a silicone oxide deposition
  • Such laminated films find use, for example, in packaging, envelopes, labels and printing forms, commercial publications and in the digital printing industry.
  • Nanodispersed cellulose and in combination with other components such as binders, polyvinyl sheets, flocculants, nanoparticle systems (not mentioned), polymers, non-slip additives, an additive for pigment fixation, bleaches, defoamers or preservatives.
  • Patent application US20080113188 entitled "Hydrophobic organic-organic hybrid silane coatings” describes a hydrophobic coating that can be formed from a solution that includes, for example, organically modified silicates mixed with coupling agents.
  • a sol-gel solution can be formed (for example, at room temperature) which includes a plurality of alkoxy silane precursors containing at least one alkoxy silane glycidoxy precursor.
  • the sol-gel solution may be a mixed sol-gel solution formed including a first solution mixed with a second solution.
  • the first solution may include one or more alkoxy silane precursors
  • the second solution may include at least one alkoxy glycidoxy silane precursor.
  • a coupling agent can be added and reacted with the sol-gel solution (mixed) forming the coating solution, which can be applied on a substrate that needs to be protected against corrosion or from biological and chemical agents.
  • compositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
  • compositions and methods for treating and modifying surfaces and for improving the supply of active agents to the treated surfaces are described with it, where the Compositions comprise siloxane polymers functionalized with outstanding fractions comprising two or more anionic groups, at least one anionic group which may be a carboxy group.
  • the present composition forms a substantially hydrophobic functionalized siloxanoanionic polymer layer on the treated surface.
  • the patent application US20030012897 called "Liquid-resistant paperboard tube, and method and apparatus for making same” refers to a cardboard tube that becomes liquid resistant by the partial or total coating of the tube with particles of submicron size of material inorganic that are treated to be hydrophobic and / or oleophobic.
  • the particles can be applied directly to the cardboard, staying in the surface pores so that the particles adhere to the cardboard.
  • a thin layer of a sticky binder or adhesive can be applied first to the cardboard and then the particles can be applied such that they adhere to the binder.
  • the particles have a large surface area per gram; In one embodiment, for example, the silica particles that are employed have a surface area of about 90 ⁇ 130 m 2 / g. As a result, the particles create a surface on the cardboard that is highly liquid repellent.
  • Patent application US20030109617 entitled "Method for pretreatment of filler, modified filler with a hydrophobic polymer and use of the hydrophobic polymer” describes a modified filler used in the manufacture of paper or the like, the preparation of the filler material and its use.
  • the modified filler comprises a filler known as for example calcium carbonate, kaolin, talc, titanium dioxide, sodium silicate and aluminum trihydrate or mixtures thereof, and a hydrophobic polymer made of polymerizable monomers, which is added to the filler as a polymer dispersion or a polymer solution.
  • Patent application US20020069989 entitled “Bonding of paper using latex-dispersions of copolymers made of hydrophobic monomers / polymers of styrene / maleic anhydride type of low molecular mass” describes latex dispersions used in formulations of a paper binder. which make it possible to obtain acceptable COBB values, even with printing and writing papers or wrapping papers obtained from recycled pulps or mechanically destined pulps.
  • US20020032254 patent application entitled "Hydrophobic polymer dispersion and process for the preparation thereof” refers to a hydrophobic polymer dispersion and a solvent-free process for the preparation thereof.
  • the dispersion contains starch ester, together with dispersion additives known as such.
  • the polymer is first mixed with a plasticizer to obtain a mixture of plasticized polymer.
  • the mixture of plasticized polymers is then mixed with dispersion additives and water at an elevated temperature to form a dispersion.
  • the plasticization of the polymer and the dispersion of the mixture in water can be carried out in an extruder.
  • the dispersion obtained is homogenized in order to improve its stability.
  • the dispersion obtained by the invention can be used for coating paper or cardboard, as a base or a component of paint or in labeling adhesives, and is also suitable for the production of deposited films and as a binder in fiber-based materials of cellulose, as well as for medicinal coating preparations.
  • Patent application WO2011059398A1 called “Strong nanopaper” refers to a nano-paper comprising a clay and microfibrillated cellulose nanofibers in which the MFC nanofibers and the clay layers are oriented substantially parallel to the surface of the paper.
  • the invention further relates to a method for manufacturing the nano paper and the use thereof.
  • Patent application WO2009091406A1 with the title "Coated paperboard with enhanced compressibility” mentions a coated cardboard with a better understandability, which allows a smoothness improvement at a low surface pressure.
  • the understandable coating is based on nanofibers with a diameter of less than 1000 nm.
  • One of the claims is that the PakerPrint smootheness index increases 1.2 units when the surface pressure increases between 5 to 10 Kgf / cm 2 .
  • the procedure indicated in the TAPPI T555 Om-99 standard is applied.
  • Biopolymers natural polymer, chitosan, a bicompatible polymer, polycaprolactone, polyethylene oxide, and combinations thereof. 2).
  • Inorganic compounds silica, aluminosilicates, TiO, TiN, Nb Os, Ta 2 Os, TiN oxide, among others. 3).
  • Resins such as polyester, ether and cellulose ester, polyacrylic resin, polysulfide, copolymers, etc.
  • a binder that can be a polymer selected from the group of polyvinyl alcohol, polyvinylpyrrolidone and combinations thereof.
  • the nanofibers can be improved by adding oleophobic and hydrophobic additives that can be compounds with fluorocarbon groups.
  • Patent application WO2008023170A1 entitled “Tailored control of surface properties by chemical modification” describes a process for producing a polymer or an inorganic substrate that is capable of adhering to more than one material by functionalizing the surface by bonding the substrate with a carbon precursor.
  • Nanoparticles (C 60 fullerenes or nanotubes) present in an adherent system that It comprises a polymer that can be selected from polyolefins, polyesters, epoxy resins, polyacrylates, polyacrylics, polyamides, polytetrafluoroethylene, polyglycosides, polypeptides, polycarbonates, polyethers, polyketones, rubbers, polyurethanes polysulfones, polyvinyl, cellulose and block copolymers.
  • a polymer that can be selected from polyolefins, polyesters, epoxy resins, polyacrylates, polyacrylics, polyamides, polytetrafluoroethylene, polyglycosides, polypeptides, polycarbonates, polyethers, polyketones, rubbers, polyurethanes polysulfones, polyvinyl, cellulose and block copolymers.
  • Patent application WO2004035929A1 entitled "Method of producing a multilayer coated substrate having improved barrier properties” describes the production of a coated substrate consisting of the formation of a multilayer free flowing compound, with at least two layers with different barrier function and the contact mechanism of the compound to the substrate. Depending on the anti-road function, the number of layers will be required.
  • Laminar nanoparticles (not mentioned), which are immersed in a binder that can be styrene-butadiene latex, acrylic styrene, acrylonitrile latex, maleic anhydrous latex, polysaccharides, proteins, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl acetate, cellulose acetate derivatives, among others.
  • the claims for the coated substrate are: 1). Vapor transmission rate less than 40 g / (m 2 / day). 2). Cobb value 10 minutes less than 12 g / m 2 . 3). Value oxygen transmission of less than 150 cm 3 / (m 2/24) h / bar) (1 atm, 23 ° C, 90% relative humidity).
  • Patent application WO2003078734A1 entitled “Composition for surface treatment of paper” describes a surface treatment of paper and cardboard with inorganic nanoparticles and mixtures of organic pigments in the form of a plate, in aqueous solution that act as hydrophobic agent, antifoam, bleach, improvement The quality of printing on paper and also is low cost.
  • Silica nanoparticles and precipitated CaC0 3 or mixtures of both.
  • the nanoparticles are dispersed in latex (polymer) selected from the group: butadiene styrene, acrylate, styrene acrylate, polyvinyl acetate and mixtures thereof.
  • WO0076862A1 and ES2304963T3 named "Multilayer resin / paper laminate structure, containing at least one layer of polymer / nano-clay compound and packaging materials made therefrom” describes a laminated structure for packaging and other applications other than packaging comprising : a paper substrate and at least one layer of polymer / nano-clay compound comprising nano-clay particles with a thickness ranging from 0.7 to 9.0 nanometers applied to said paper substrate (4), wherein said layer of polymer / nano-clay compound It is composed of a mixture of a polymer resin with a barrier effect and a nano-clay, where said nano-clay is dispersed in the barrier polymer resin on a nanometric scale and the amount of nano-clay in the compound layer represents between 0.5 and 7.0% by weight of the compound layer.
  • the CN1449913A patent entitled “Nano particle water-proof corrugated paper board” describes a corrugated waterproof paper. It consists of several layers of lined kraft cardboard and corrugated papers as raw materials that are respectively placed between Kraft lining plates. Said kraft plates and raw materials are subjected to the process of immersion in oil and moisture resistance treatment, subsequently they are protected by a microparticulate adhesive containing calcium nanocarbonate.
  • Patent application CN101623853A entitled “Fu 11 resin waterproof sand paper” claims a waterproof resin sandpaper, comprising six layers of an abrasive layer, an adhesive layer, a base layer for the adhesive, a surface layer treated with sandpaper, an original layer of sandpaper, and a waterproof treatment layer from top to bottom, where the adhesive layer is a mixture of urea formaldehyde resin, red iron and ammonium chloride;
  • the base adhesive layer is a mixture of water soluble acrylic resin, ammonium resin, fluorine and red iron;
  • the sandpaper treated surface layer is a nanometric styrene-butadiene latex rubber cord, a modified starch solution, water and JFS penetrating agent;
  • the waterproof treatment layer is a mixture of nanometric styrene-butadiene latex, a modified starch solution, and JFS penetrating agent.
  • Document CN2871192Y entitled “The environmental protective decoration paper material” describes a type of paper material for decoration and environmental protection, which comprises corrugated cardboard in which a waterproof nano layer has been fixed.
  • the above corrugated cardboard is made of corrugated BE cards, and can have one or more BE cards.
  • the invention not only has the functions of resistance to water, or fire but also protection of the environment and a low price.
  • Nano particle water-resistant corrugated cardboard describes a water-resistant nano-particulate corrugated cardboard by adopting nano-grade calcium carbonate particle technology.
  • the invention includes a plurality of layers of leather and corrugated cardboard, arranged between the layers of leather.
  • the layers of leather and corrugated cardboard are joined by a bond of calcium carbonate nano particles.
  • the utility of the invention is oriented for food packaging and the transport of large goods.
  • JP2009173909A patent application called "Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose” the production of nanocellulose from 4-hydroxy tempo derivatives that provide hydrophobicity is mentioned.
  • the patent application JP2001163371A called "Packaging body having inorganic compound layer” mentions a method to improve the gas barrier properties for a pregnant body which consists in coating the body of the reservoir with a sol gel or with a nanocomposite for create a film on the surface of the container which improves the gas impermeability properties.
  • Patent EP1925732A1 entitled “Packaging material with a barrier coating” describes a packaging material for solid or liquid assets containing paper, cardboard, cardboard, fabrics, wool, wooden articles, natural cellulose, plastic or its compounds, the which comprises a moisture resistant and active layer of polymers with suspended microparticles and / or micro-clays.
  • An independent claim is a method of manufacturing (A) a linear polymeric coating, which takes place after the preparation of base material, or in the process of separation.
  • EP1736504A1 entitled “Barrier material and method of making the same” describes the barrier properties of a water-soluble gas impermeable material is improved if the material is mixed with calcium carbonate nanoparticles which are 10 to 10 in size. 250 nanometers
  • the barrier material is found in a substrate to provide a substrate with gas impermeability properties.
  • a layer of heat sealable material can be applied to the exposed surface of the barrier material.
  • a method for manufacturing the coated substrate is also described.
  • the substrate can be paper, cardboard or cardboard.
  • the Nanocoverage was investigated by a scanning electron field emission electron microscope (FEG-SEM), an atomic force microscope (AFM), an X-ray emitted photoelectron (XPS) spectroscope and a contact angle measurement with Water.
  • FEG-SEM scanning electron field emission electron microscope
  • AFM atomic force microscope
  • XPS X-ray emitted photoelectron
  • the highest contact angles with water on the nano-coated cardboard surface were more than 160 °.
  • the falling water droplets were able to bounce off the surface, which is illustrated with high-speed video system images.
  • the coating showed sticky nature, creating high adhesion to water droplets as soon as the movement of the drops stopped.
  • Nanocoverage with full substrate coverage occurred at line speeds of up to 150 m / min. Therefore, the LFS coating has to expand the potential at the industrial level as an economical and efficient method for large coating volumes at high speeds online.
  • a single microscale structured coating is formed to favor the improvement in gloss, printing properties (inkjet printing test and off-set printing test) , surface hydrophobicity (with a maximum water contact angle of 140 °) and water repellency (reduction of values - Cobb).
  • the interaction of the nanoparticle layers with the cellulose paper results in the improvement of the mechanical strength of the paper and is attributed to the hydrogen bonds between the nanoparticles and the cellulosic fibers.
  • nanoparticles dispersed in polymeric substrates
  • Cellulose nanofibers derived from 4 TEMPO hydroxy, biopolymer nanofibers, inorganic or resin nanofibers, are another type of nanomaterials used in the manufacture of paper and / or cardboard with hydrophobic properties. In some scientific articles the use of certain treatments was found, such as the application of silicon or titanium oxides by means of the "Liquid F ⁇ ame Spray” process.
  • Figure 1 shows a silane bond formation scheme on the surface of silicon oxide nanoparticles formed according to the invention.
  • Figure 2 shows a scheme of formation of a crust by polymerization of fluorocarbon compounds in the nanoparticles according to the invention.
  • Figures 3 ⁇ , 3B and 3C show a scheme of physicochemical fixation of silicon oxide nanoparticles with paper or cardboard fibers by dehydration of the free silane groups according to the invention.
  • Figure 4 shows by block diagram the steps of the application process of hydrophobic coatings on paper and cardboard based on self-assembled silicon oxide nanoparticles according to the present invention.
  • Figure 5 shows a photograph of the water contact angle of the paper or cardboard of the present invention.
  • Figure 6 shows a photomicrograph obtained by scanning electron microscopy of a paper or cardboard of the state of the art without coating, where the cellulose fiber matrix is illustrated.
  • Figure 7 shows a microfotog raffia obtained by scanning electron microscopy of a cellulose fiber of a paper of the state of the art without coating.
  • Figure 8 shows a microfotog raffia obtained by scanning electron microscopy of a paper or cardboard with a Michelman® type coating according to the state of the art, where it is illustrated that the cellulose fiber matrix is covered by a film type coating.
  • Figure 9 shows a microfotog raffia obtained by scanning electron microscopy of a cellulose fiber of a paper or cardboard with a Michelman® type coating according to the state of the art, where the film-like coating that extends to other fibers is observed of cellulose.
  • Figure 10 shows a reliable microfotype obtained by scanning electron microscopy of a paper or cardboard with a coating according to the invention, where it is illustrated that there is no film formation on the matrix, but that it is the cellulose fibers that They are covered.
  • Figure 11 shows a microfotog raffia obtained by scanning electron microscopy of a cellulose fiber of a paper or cardboard with a coating according to the invention, where the coating on the cellulose fiber is observed.
  • Figure 12 shows a microfotog raffia obtained by scanning electron microscopy of the cellulose fibers of the paper or cardboard coated with silicon oxide nanoparticles according to the present invention.
  • the Cobb value indicates the water absorption capacity in papers and cartons, as well as the amount of liquid that penetrates them; that is, it indicates the weight of water absorbed in a specified time per 1 m 2 of paper or cardboard under normal conditions.
  • hydrophobicity properties are conferred to paper and cardboard through the use of self-assembled and functionalized silicon oxide nanoparticle coatings with groups fluorocarbons and silane groups, in a hydro-alcoholic colloidal dispersion stirred by ultrasound.
  • the fluorocarbon groups used are, for example: 2,3,5,6-tetrafluoro-4-methoxystyrene, monomers of acrolamidafluorinated or 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilanes.
  • the groups of the silane type used are: 3-Mercaptopropyltrimethoxysilane (MPTMS), Glycidoxypropyltrimethoxysilane (GLYMO), Bis [3- (triethoxysilyl) propyl] tetrasulfide (TETRA-S), Bis-triethoxy-silyleneethane (BTSE), Dichlorodiphenylsnopynoxypropylene ethnoxypropylene ethnoxy , l, 2-Bis (chlorodimethylsilyl) ethane, N- [3- (trimethoxysilyl) propyl] aniline, Aminopropyltriethoxysilane (APTES), 3-
  • the hydrophobic characteristics of silicon oxide nanoparticle coatings on paper are maximized when the paper is immersed in the continuously stirred hydro-alcoholic suspension by some mechanical means, whether supported by ultrasound or not, and the resulting coating is dried and dried. curing at temperatures of about 80 ° C to about 170 ° C. Once the heat has been applied to evaporate the solvents contained in the dispersion and at the same time promote the anchoring or direct bonding of the particles on the paper fibers, it is possible to obtain Cobb values of approximately 8 g / m 2 to approximately 25 g / m 2 .
  • This invention stands out from the previous ones, because the coating application procedure does not affect the printing of paper or cardboard, further improving adhesion on the fins or areas that require sticking of the cardboard boxes obtained.
  • the process of application of the coating, according to the present invention, on paper and cardboard does not prevent the recycling of the packaging and facilitates its adaptation to the industrial box making machines.
  • the paper and cardboard products thus produced have high levels of moisture resistance and high water-coating contact angle.
  • a fundamental concept when considering the use of hybrid materials or composite materials to achieve a certain functionality in a material such as the hydrophobicity of cellulose and its derivatives is the compatibility between organic or polymeric materials and inorganic materials.
  • This compatibility is usually characterized by having a certain degree of antagonism, since many of the inorganic materials have a hydrophilic character, while the polymers have a hydrophobic character.
  • this property that can be antagonistic in the materials separately can have a synergistic effect in one direction or the other as required in hybrid or composite materials.
  • the adhesion between inorganic materials and the polymer matrix can be attributed to a series of mechanisms that can occur in the interface, such as isolated phenomena or by interaction between them.
  • the physical and chemical methods of modifying the interface promote different levels of adhesion between the inorganic material and the polymer matrix.
  • Physical treatments can change the structural and surface properties of inorganic aggregates by influencing mechanical bonds with the polymer matrix.
  • many strongly polarized aggregates are incompatible with hydrophobic polymers.
  • two materials are incompatible, one can act by introducing a third material called coupling agent, which has intermediate properties between the other two, and thus create a degree of compatibility.
  • Chemical compounds containing methanol groups form stable covalent bonds with cellulose fillers. Hydrogen bridge bonds between the aggregate and the matrix can also be formed in this reaction.
  • the surface energy of inorganic aggregates is closely related to hydrophilicity and the hydrophobicity of composite materials.
  • Silanes as coupling agents that can contribute to hydrophilic or hydrophobic properties of the interface.
  • Organosilanes are the main group of coupling agents for polymers with glass or silicon oxide aggregates. Silanes have been developed to couple different polymers to mineral aggregates in the manufacture of composite materials.
  • the organic functional group (R) in the coupling agent is the one that produces the reaction with the polymer. It acts as a copolymerization agent and / or for the formation of an interpenetration network. Alkalosilanes undergo hydrolysis, in the stage of bond formation in both acidic and basic media. These Silane reactions with the hydroxyl of the surface of the aggregates, can lead to the formation of polysiloxane structures.
  • Self-assembly can be defined as the spontaneous formation of complex structures from smaller pre-designed units.
  • Self-assembled monolayers are ordered molecular units that are formed by the spontaneous adsorption (chemisorption) of a surfactant on a substrate, the first containing a functional group with affinity to that substrate.
  • the TEOS that dissolves in an ethanol-water mixture and stabilizes at a pH of approximately 3.5 to approximately 3.75 has been used as a starting product. It is allowed to react at temperatures of about 25 ° C to about 40 ° C for a time of about 15 minutes to about 90 minutes, forming a transparent or white colloidal solution.
  • TEOS tends to hydrolyse generating nuclei of formula
  • silanes such as: 3-mercaptopropyltrimethoxysilane (MPTMS), glycidoxypropyltrimethoxysilane (GLYMO), bis [3- (trimethoxysilyl) propyl] tetrasulfide (TETRA-S), bis-triethoxy-silylene (BTSE), dichlorodiphenyls , 3- isocyanatopropyltrimethoxysilane, l, 2-bis (chlorodimethylsilyl) ethane, n- [3-]
  • the third phase of the synthesis process of functionalized silicon oxide nanoparticles consists in the creation of the nanoparticle cortex.
  • the bark of these nanoparticles is made up of chains of fluorocarbon molecules. These cortices are prepared by polymerization or condensation reactions on the surface of the nanoparticle cores. Depending on the type of functional group, different molecules are used for the formation of the fluorocarbon cortex.
  • these catalysts are of the acid type, such as carboxyl groups, compounds of Cu (I), basic medium such as ammonia or potassium carbonate.
  • a reaction scheme is shown in Figure 2. It is necessary to use a bis-silane, such as BAS, TETRA-S or BTSE and the fluorocarbon compound with silane groups. These reactions are done at pH 3.5 and allowed to react 30 minutes at 25 ° C. From these reactions in three stages, particles of sizes between 10 nm and 130 nm have been prepared.
  • Fluorocarbon groups such as 2,3,5,6-tetrafluoro-4-methoxystyrene, acrolamidafluorinated monomers or lH, lH, 2H, 2H-perfluorooctyltriethoxysilanes have been used.
  • Silane-type groups such as: 3-mercaptopropyltrimethoxysilane (MPTMS), glycidoxypropyltrimethoxysilane (GLYMO), bis [3- (triethoxysilyl) propyl] tetrasulfide (TETRA-S), bis-triethoxy-silylenetane (BTSE), dichlorodiphenylsilane, ethoxypropyl-ethyloxy-ethynoxy-ethyloxy-ethyloxyane 1,2-bis (chlorodimethylsilyl) ethane, n- [3- (trimethoxysilyl) propyl] aniline, aminopropyltriethoxysilane (APTES), 3- (mercaptomethyl) octyl) silanotriol, 2- (2-mercaptoethyl) pentyl) silanotriol, bis- ( triethoxysilyl) propyl] amine (BA
  • ultrasonic dispersion is carried out by an ultrasonic generator through one or more piezoelectric transducers that transform the electrical signal into mechanical vibration. This vibrational energy is transmitted to the liquid at a frequency of up to 200,000 oscillations per second. These pressure and vacuum oscillations create a large number of microbubbles, which implode at high speed contributing to the breakdown of nanoparticle clusters.
  • the dispersion of the self-assembled nanoparticles is carried out in a hydro-alcoholized medium, where the dispersion has a density of about 0.96 g / cm 3 to about 0.99 g / cm 3 and a pH of about 3 to about 4.5.
  • the alcohol used to prepare the dispersion can be ethanol, propanol, methanol and combinations thereof.
  • This heat treatment is key to obtain a superhydrophobic coating on the surface of the paper or cardboard.
  • step 100 in case of not having the self-assembled nanaoparticles, a synthesis by self-assembly of silicon oxide nanoparticles with functional groups of silanes and fluorocarbon compounds in a hydro medium is carried out -alcoholized agitated by ultrasound.
  • a dispersion is prepared by stirring by mechanical means of self-assembled silicon oxide nanoparticles with functional groups of silanes and flurorcarbon compounds in a hydro-alcoholized medium.
  • the dispersion of the nanoparticles can be supported by the application of ultrasound with a continuous or pulsed frequency of about 10 Hz to about 150 KHz.
  • the dispersion is applied to at least one surface of the paper or cardboard where the hydrophobicity property is required.
  • This application can be by immersion-extraction of paper or cardboard in the dispersion of nanoparticles, in order to react and link the Si-OH groups of the nanoparticles with the -OH groups of the cellulose fibers of the paper or cardboard.
  • This application in turn can be dosed and evenly distributed on the surface of the paper or cardboard by means of a scraper.
  • step 400 the paper or cardboard is dried and cured to directly bind the self-assembled silicon oxide nanoparticles with functional groups of silanes and flurcarbon compounds to the cellulose fibers of the paper or cardboard.
  • the drying and curing process is key to obtaining a superhydrophobic coating on the surface of the paper or cardboard; that is to say, it is the heat that collaborates directly in the fixation of the nanomaterials on the surface of the paper or cardboard generating not only this link with the fibers but also promotes the interactions between the nanoparticles so that a nanostructured coating is produced that allows a greater lotus effect, making the paper have a greater resistance to moisture.
  • the improvement in Cobb values depends directly on the their dehydration process and the cross-linking phenomenon of Si-OH groups and their interaction with cellulose fibers. This interaction, generates that a greater amount of these groups react and increase the union of the silicon oxide nanoparticles to the surface of each fiber, so that through the increase of the temperature and the curing time the optimization of the Cured cellulosic surface.
  • the fiber of the paper or cardboard loses a certain amount of chemically bound water, which after the curing process must be recovered to avoid a destabilization in the accommodation and fiber stiffness.
  • the curing conditions for preparing a paper or cardboard of the present invention with Cobb values close to 20 g / m 2 correspond to a temperature of 150 ° C and a time of 180 seconds using a time of immersion in the suspension of 10 seconds and coating amounts close to 3.5 g / m 2 .
  • the contact angle of water on the surface with self-assembled nanoparticles in the paper or cardboard of the present invention is from about 100 ° to about 140 ° as illustrated in Figure 5.
  • hydroalcoholic colloidal dispersion of nanoparticles with fluorocarbons with a density of 0.98 g / cm 3 and a pH of 3.6 was used. This suspension was stirred with ultrasound for 30 minutes. Once the stirring process was finished, the suspension was emptied into a tray and the paper began to be coated.
  • Table 1 shows the temperature conditions of the different critical parameters in the process.
  • the production speed was 80 m / min. In this test it was observed that when the dispersion is stopped stirring, the product in the tray is not homogeneous, so the stirring was started again, in this way it was observed that the effect diminished until it was homogeneous again.
  • Table 3 shows the temperature conditions of the different critical parameters in the process.
  • the production speed was 80 m / min.
  • Table 4 shows a comparison of the Cobb values obtained, the contact angles, the speed of the water and the amount of material used for each test.
  • the amount of material per square meter is less than 1 g / m 2 in tests in general, the best Cobb values are 15 in cardboard where contact angles greater than 128 ° and low liquid penetration were achieved. Contact angles far superior to those obtained with commercial Michelman® type coatings.
  • Figures 6 to 11 illustrate a photomicrograph obtained by scanning electron microscopy for both a paper or cardboard of the state of the art without coating (see Figure 6) and respective detail of cellulose fiber (see Figure 7), a paper or cardboard with a Michelman® type coating according to the state of the art (see Figure 8) and respective detail of cellulose fiber (see Figure 9), as well as a paper or cardboard with a coating according to the invention (see Figure 10 ) and respective detail of cellulose fiber (see Figure 11), so that the comparative effect between a film-like coating (see Figures 8 and 9) can be seen with the fiber coating effect of the present invention (see Figures 10 and 11).
  • Table 4 also shows the results obtained based on Cobb values, contact angle and water flow rate.
  • Table 4 it is possible to observe very low Cobb values in all tests (from 16.7 Qagua / rn 2 to 26.8 g ag ua / m 2 ) corresponding to water flow rates of 0.036 g / s to 0.005 g / s, which It shows a significant reduction in the passage of water in both paper and cardboard due to the coating.
  • the contact angle measurement was used and to measure the moisture absorption capacity of paper and cardboard, the IMPEE-PL020 and TAPPI standards were used, which allow quantifying Cobb values and penetration speed. of the water.
  • the nanostructured hydrophobic coating prepared and applied in accordance with the present invention does not affect the printing of paper or cardboard and improves adhesion on the fins or areas that require bonding of the boxes of cardboard obtained. This is due to the fact that silicon oxide nanoparticles are directly linked to cellulose fibers as shown in Figure 5, unlike other commercial products where a monolithic layer is formed that covers the surface of the paper or cardboard by modifying the printing and the glue of the cardboard when making the boxes. In addition, from tests at the industrial level, it was confirmed that well-dispersed silicon oxide nanoparticles nano-structured coatings reduce the amount of hydrophobic material required per unit of paper or cardboard surface, facilitating the recycling process of said packages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Wrappers (AREA)

Abstract

Un papel o cartón hidrofóbico que tiene nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos fluorocarbonados enlazadas directamente a las fibras de celulosa de al menos una de sus superficies, con un valor de Cobb de 8 a 25 g/m2 y ángulos de contacto de agua de 100 a 140 grados, útil como empaque par alimentos, El papel o cartón hidrofóbico puede ser imprimido, es reciclable y cuenta con mejora a la adhesión en áreas que requieran pegado del papel o cartón.

Description

PAPEL O CARTÓN HIDROFÓBICO CON NANOPARTÍCULAS AUTO- ENSAMBLADAS Y MÉTODO PARA ELABORARLO
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención está relacionada a recubrimiento de materiales; más específicamente a un método para elaborar un papel o cartón hidrofóbico con nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos fluorocarbonados enlazadas directamente a las fibras de celulosa del papel o cartón.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad, existe una gran cantidad de productos alimenticios que requieren ser empacados o embalados para su transportación haciendo uso de papel o cartón, sin embargo, debido a las medidas de conservación de los alimentos es necesario mantenerlos en cámaras de refrigeración dentro de sus empaques. Las condiciones de humedad y temperatura bajo refrigeración pueden generar un colapso de estos materiales de empaque causando merma de los productos almacenados, o una sobre especificación del cartón para lograr la resistencia requerida con el incremento en costos consecuente.
A fin de evitar el deterioro del material de empaque ya sea de papel o cartón por condiciones de alta humedad, se han estudiado diversas composiciones químicas para aplicar recubrimientos que impidan el paso de la humedad a través de las fibras del papel o cartón, alargando así su tiempo de vida útil, incrementando la protección del empaque de los alimentos y reduciendo los costos que puedan derivarse del fallo en la resistencia mecánica de los empaques. Algunos tipos de recubrimientos como resinas, polímeros, copolímeros, compuestos orgánicos e inorgánicos son comúnmente utilizados sobre papel y cartón; sin embargo, éstos no cuentan con valores altos de resistencia a la humedad.
El uso de nanopartículas para esta aplicación representa una gran ventaja económica para estos empaques, dado que la interacción entre la red de celulosa y las nanopartículas del recubrimiento se puede incrementar gracias a la incorporación de diversos grupos funcionales sobre las nanopartículas, resultando en la mejora de las propiedades hidrófobas debido a las interacciones químicas entre éstas y la matriz orgánica. Usualmente las partículas inorgánicas, como el caso del óxido de silicio, tienen una superficie que tiene una menor compatibilidad con los compuestos orgánicos ya sea poliméricos del tipo poliolefinas o iónicos del tipo amidas o aminas, fibras de papel u otros biopolímeros. Para poder lograr una mayor compatibilidad se busca que la superficie de las nanopartículas reaccionen por diferentes métodos, por ejemplo, mediante el auto-ensamble con productos que contengan grupos que al reaccionar puedan ser más compatibles con los polímeros y permitan mejores propiedades hidrofóbicas. En otras palabras, mediante la modificación química se añaden grupos funcionales a la superficie de las nanopartículas para permitir una mejor incorporación o compatibilidad con los productos orgánicos como los polímeros u otras matrices de materiales como el papel.
Este tipo de nanopartículas se proponen en la patente española ES2354545 Al, la cual sugiere el uso de nanomateriales funcionalizados en la producción de nanocompuestos, para obtener diferentes propiedades funcionales.
A continuación se presentan resúmenes y referencias de patentes otorgadas, de solicitudes de patente y de publicaciones científicas consideradas en el análisis del arte previo relacionado con recubrimientos hidrofóbicos para uso en papel y cartón.
En el documento US7943234 denominado "Nanotextured super or ultra hydrophobic coatings" se describe una composición de revestimiento super-hidrofóbica o ultra-hidrofóbica que incluyen un polímero que puede ser un homopolímero o compolímero de polialquileno, poliacrilato, polimetilacrilato, poliéster, poliamida, poliuretano, polivinilarileno, ester de polivinilo, copolímero de polivinilarileno/alquileno, polialquilenóxido o sus combinaciones con partículas que tienen un tamaño promedio de 1 nm a 25 micrones, tal que propicia un ángulo de contacto de agua entre aproximadamente 120 ° y unos 150 ° o más. En particular, la partícula es de sílice la cual ha sido tratada previamente con un silano.
La patente US7927458 denominada "Paper articles exhibiting water resistance and method for making same" se refiere a un procedimiento para preparar papel encolado y cartón que incorpora en el proceso una composición que comprende uno o más polímeros hidrófobos en donde los polímeros hidrófobos, la cantidad de tales polímeros y la proporción en peso de almidón y de tal polímero en la composición se seleccionan de tal manera que el papel y cartón de exhibe un valor de Cobb igual o menor que a 25 g/m2 y un papel encolado o cartón formado por el proceso.
El documento US7229678 denominado "Barrier lamínate structure for packaging beverages" describe un material de empacado laminado, el cual comprende desde una primera capa exterior de un de polímero polietileno de baja densidad, un sustrato de cartón, una primera capa de recubrimiento interior laminado de nylon con una capa unión de resina, una capa soplada por extrusión que comprende una primera capa polímero polietileno de baja densidad, una capa de unión, una primera capa interior de EVOH, una segunda capa de unión, una segunda capa interior de EVOH, una tercera capa de unión y una segunda capa interior de polietileno de baja densidad de polímero, y una capa más interna en contacto con producto de polietileno de baja densidad.
El documento US6949167 denominado "Tissue products having uniformly deposited hydrophobic additives and controlled wettability" describe productos que contienen un aditivo hidrofóbico, tal como un polisiloxano. Adicionalmente los productos de papel se tratan adicionalmente con un agente humectante.
La patente US6830657 denominada "Hydrophobic cationic dispersions stabilized by low molecular weight maleimide copolymers, for paper sizing" se refiere a un método para la obtención de una dispersión acuosa de polímeros hidrófobos dispersos en forma de partículas con un diámetro medio inferior a 100 nm estabilizados solamente con un surfactante macromolecular basado en un copolímero anhídrido imida estireno / maleico de bajo peso molecular. También se refiere al uso de dicha dispersión para el tratamiento de papel.
El documento US6187143 denominado "Process for the manufacture of hydrophobic paper or hydrophobic board, and a sizing composition" se refiere a un procedimiento para la fabricación de papel o cartón hidrófobo mediante encolamiento de resina de colofina, un complejos agente orgánico que se utiliza junto con el la resina de colofina. También se refiere a una composición de encolamiento. Después de la aplicación del aditivo hidrofóbico a una o más superficies de la hoja base. El agente humectante mejora las propiedades de humectabilidad de la lámina de base.
La patente US5624471 que se titula "Waterproof paper-backed coated abrasives" describe un papel abrasivo recubierto impermeable hecho en una máquina encoladora que comprende un aglutinante curable por radiación que es hidrófobo cuando se polimeriza.
En el documento US4268069 con título "Paper coated with a microcapsular coating composition containing a hydrophobic silica" se describe una composición de un recubrimiento que comprende, aceite que contiene microcápsulas dispersas en una fase acuosa continua, que también contiene partículas de fase sílice finamente divididas y un aglutinante para dichas microcápsulas y dichas partículas de sílice. Las partículas de sílice se han tratado con un material orgánico tal como un compuesto de silicio orgánico para dar a las partículas una superficie hidrófoba. La composición de revestimiento tiene utilidad en la fabricación de papel revestido con microcápsulas. Tal papel se caracteriza por una reducción sustancial de del mancado cuando se utiliza en aparatos de fotocopia que utiliza una línea de contacto de presión para ayudar a la transferencia de la imagen de polvo de un cinturón de fotorreceptores a el papel.
La solicitud de patente US20110008585 con título "Water-resistant corrugated paperboard and method of preparing the same" describe un método para preparar cartón corrugado resistente al agua compuesto de un medio corrugado tratado con un agente hidrófobo en ambos lados y un forro-¾ratado con un agente hidrófobo en al menos un lado de la superficie. El forro y el medio corrugado son adheridos mediante un adhesivo preparado con portador de almidón, almidón crudo, bórax, una resina hidrófoba, un aditivo para mejorar la penetración y agua. El portador de almidón está compuesto de almidón cocido y crudo. El forro y el medio corrugado son tratados con el agente hidrófobo antes de ser pegados. Las resinas hidrófobas incluyen resinas de resorcinol-formaldehído, resinas de urea- formaldehído.
La solicitud de patente US20110081509A1 con título "Degradable heat insulation container" describe un contenedor que incluye un cuerpo contenedor hecho de papel, una capa impermeabilizante y una capa de espuma. El cuerpo de recipiente tiene una superficie exterior y una superficie interior. La capa de impermeabilización está revestida en la superficie interna. La capa impermeabilizante se compone principalmente de polvo talco, resina carbonato de y calcio. La capa de espuma está dispuesta sobre al menos una parte de la superficie exterior. La capa de espuma se compone de refuerzos y un polvo termo-expandible. El aglutinante se selecciona de un grupo que consta de resina de acetato de polivinilo, resina de etileno acetato de vinilo, resina de ácido poliacrílico y una mezcla de los mismos. El polvo termo-expandible está formado por una pluralidad de microcápsulas termo-expansibles, cada uno de los cuales consta de una concha de polímero termoplástico y un disolvente de bajo punto de ebullición forrado por la cáscara de polímero termoplástico.
La solicitud de patente US20110033663 con título "Superhydrophobic and superhydrophilic materials, surfaces and methods" describe un método de aplicación general que no requiere más de un paso el cual facilita la preparación de superficies superhidrófilas o súper hidrófobicas de área grande en una variedad de sustratos tales como por ejemplo, vidrio, metal, plástico, papel, madera, hormigón y de manipostería. La técnica implica la polimerización por radicales libres de acrílico común o monómeros estíremeos en presencia de disolventes porqgenicos en un molde o sobre una superficie libre.
La solicitud de patente US20100233468 que se titula "Biodegradable nano- composition for application of protective coatings onto natural materials" se refiere a un método para fabricar una composición biodegradable que contiene nanopartículas de celulosa para formar un recubrimiento protector sobre los materiales naturales. Uno de sus objetos es proporcionar una composición para formar una capa de recubrimiento protector sobre un material natural biodegradable que imparte al material resistencia al agua y resistencia a las grasas. Es otro objeto proporcionar una composición para formar una capa protectora en materiales naturales biodegradables que se basa en el uso de partículas de celulosa nano y que protege a estos materiales de hinchazón, deformaciones y daños mecánicos durante el contacto con agua, otros líquidos acuosos, o grasos.
La solicitud de patente US20100311889 con título "Method for manufacturing a coating slip, using an acrylic thickener with a branched hydrophobic chain, and the slip obtained" consiste en un método para la fabricación de una hoja de papel recubierta que contiene un material mineral, utilizando, como un agente para engrosar la hoja, un polímero soluble en agua que comprende al menos un monómero aniónico etileno- insaturado y al menos un monómero oxialquilo etileno-insaturado que termina en un alquilo hidrofóbico, alcarilo, cadena arilalquilo, arilo, saturado o insaturado, ramificado con 14 a 21 átomos de carbono y dos ramas cada uno con al menos seis átomos de carbono. El polímero se añade a la hoja ya sea directamente, o durante una etapa anterior cuando se muele, dispersa, o concentra el material mineral en agua, que puede o no ser seguido por una etapa de secado. De esta manera, la retención de agua de la barbotina se mejora, lo que contribuye a una mejor imprimibilidad del papel revestido por la hoja.
El documento US20080188154 con nombre "Film lamínate" describe un laminado que incluye al menos una capa de una película ambientalmente degradable, por ejemplo, una polilactida ("PLA") hecha de un polímero anualmente renovable fácilmente disponible, de recursos como el maíz. Una segunda capa puede ser un sustrato hecho de, por ejemplo, papel, tela tejida o no-tejida u hojas metálicas. La película ambientalmente degradable y el sustrato se adhieren entre sí mediante, por ejemplo, poliméricos extruidos o adhesivos tales como adhesivos a base de agua, de fusión en caliente, con solvente o sin solvente. La elección de adherente depende del tipo de sustrato a ser laminado con la película ambientalmente degradable y las propiedades deseadas de la estructura compuesta laminada resultante (es decir, "laminado"). La primera capa se recubre con un polímero líquido, una dispersión de nano-partículas, una deposición metálica o una deposición de óxido de silicona tal que la permeabilidad a los gases de la primera capa se reduce. Dicha película laminados encuentran uso, por ejemplo, en los envases, sobres, etiquetas y la impresión de formas, publicaciones comerciales y en la industria de impresión digital.
En la solicitud de patente US20080265222A1 denominada "Cellulose- Containing Filling Material for Paper, Tissue, or Cardboard Products, Method for the Production Thereof, Paper, Tissue, or Carboard Product Containing Such a Filling Material, or Dry Mixture Used Therefor" se explica la modificación superficial de fibras de celulosa con aplicación de nanopartículas para producir papel y cartón de empaque. Con ventaja en producción y reciclado del producto. Además con diferentes ventajas, actuando como repelente de humedad, blancura y brillo al papel y cartón, biosida, antiestático, y retardante a la flama. Celulosa nanodispersada y en combinación con otros componentes como aglutinantes, laminas de polivinilo, floculantes, sistemas de nanopartículas (no mencionadas), polímeros, aditivos antideslizantes, un aditivo para la fijación del pigmento, blanqueadores, antiespumantes o conservadores.
El la solicitud de patente US20080113188 con título "Hydrophobic organic- inorganic hybrid silane coatings" se describe un recubrimiento hidrofóbico que puede ser formado a partir de una solución que incluye, por ejemplo, silicatos modificados orgánicamente mezclados con agentes de acoplamiento. Específicamente, un solución sol-gel puede ser formada (por ejemplo, a temperatura ambiente) la cual incluye una pluralidad de precursores alcoxi silano que contienen al menos un precursor alcoxi silano glicidoxi. La solución sol-gel puede ser una solución sol-gel mezclada formada incluyendo una primera solución mezclada con una segunda solución. La primera solución puede incluir uno o más precursores alcoxi silano, y la segunda solución puede incluir al menos un precursor de alcoxi glicidoxi silano. Un agente de acoplamiento puede ser añadido y reaccionado con la solución sol-gel (mezclada) formando la solución de recubrimiento, que puede ser aplicada sobre un sustrato que necesita ser protegido contra la corrosión o de agentes biológicos y o químicos.
En la solicitud de patente US20080041542 con título "Cellulose composites comprising hydrophobic particles and their use in paper products" se proponen películas poliméricas compuestas preparadas por la deposición con solventes de una suspensión de puntos cuánticos (QDs) en una solución celulosa de triacetato (CTA). Las películas fueron robustas y poseían las propiedades ópticas propias de los puntos cuánticos. Las imágenes obtenidas por Microscopía Electrónica de Transmisión (TEM), de las películas revelaron que los puntos cuánticos se dispersaron bien dentro de la matriz de la película CTA. La hidrólisis alcalina selectiva de películas QD / CTA en NaOH 0.1 N durante 24 horas resultó en la conversión de la superficie de CTA a celulosa regenerada. Las propiedades ópticas de las películas se probaron tanto antes como después de la reacción de hidrólisis utilizando espectroscopia de fluorescencia, y se encontraron en general inalteradas. Las superficies de celulosa de las películas alcalinas tratadas permite la incorporación superficial de las películas en las hojas de papel.
En el solicitud de patente US20030211050 denominada "Compositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith" se describen composiciones y métodos para tratar y modificar superficies y para mejorar el suministro de agentes activos a las superficies tratadas con la misma, en donde las composiciones comprenden polímeros de siloxano funcionalizados con fracciones sobresalientes que comprenden dos o más grupos aniónicos, por lo menos un grupo aniónico el cual puede ser una grupo carboxi . Cuando se aplica a una superficie adecuada, la presente composición forma una capa del polímero de siloxanoaniónico funcionalizado sustancialmente hidrófoba en la superficie tratada.
El la solicitud de patente US20030012897 denomnada "Liquid-resistant paperboard tube, and method and apparatus for making same" se refiere a un tubo de cartón que se vuelve resistente a líquidos por la parcial o total recubrimiento del tubo con partículas de tamaño submicrónico de material inorgánico que se tratan para ser hidrofóbico y/o oleófobo. Las partículas pueden ser aplicadas directamente al cartón, alojándose en los poros superficiales de manera que las partículas se adhieren al cartón . Alternativamente, una capa delgada de un aglutinante pegajoso o adhesivo puede aplicarse primero al cartón y luego las partículas se pueden aplicar de tal manera que se adhieren al aglutinante. Convenientemente, las partículas tienen una gran área superficial por gramo; en una modalidad, por ejemplo, las partículas de sílice que son empleados tienen una área superficial de alrededor de 90^130 m2/g. Como resultado, las partículas crean una superficie sobre el cartón que es altamente repelente a los líquidos.
En la solicitud de patente US20030109617 que se titula "Method for pretreatment of filler, modified filler with a hydrophobic polymer and use of the hydrophobic polymer" se describe una carga modificada utilizada en la fabricación de papel o similares, la preparación del material de carga y su uso. La carga modificada comprende una carga conocida como por ejemplo carbonato de calcio, caolín, talco, dióxido de titanio, silicato de sodio y trihidrato de aluminio o sus mezclas, y un polímero hidrófobo hecho de monómeros polimerizables, que se añade a la carga como una dispersión de polímero o una solución de polímero.
En la solicitud de patente US20020069989 que se titula "Bonding of paper using latex-dispersions of copolymers made of hydrophobic monomers/polymers of styrene/maleic anhydride type of low molecular mass" se describen dispersiones de látex usados en formulaciones de un ligante para papel las cuales hacen posible obtener valores COBB aceptables, incluso con papeles de impresión y escritura o papeles de envoltura obtenidos a partir de pulpas del reciclado o pulpas destintadas mecánicamente.
La solicitud de patente US20020032254 con título "Hydrophobic polymer dispersión and process for the preparation thereof" se refiere a una dispersión de polímero hidrofóbico y un proceso sin disolventes para la preparación de los mismos. De acuerdo con la invención, la dispersión contiene éster de almidón, junto con aditivos de dispersión conocidos como tales. De acuerdo con el proceso, el polímero se mezcla primero con un plastificante para obtener una mezcla de polímero plastificado. La mezcla de polímeros plastificados se mezcla entonces con aditivos de dispersión y agua a una temperatura elevada para formar una dispersión. La plastificación del polímero y la dispersión de la mezcla en agua se pueden realizar en un extrusor. La dispersión obtenida se homogeneíza con el fin de mejorar su estabilidad. La dispersión obtenida por la invención se puede utilizar para el recubrimiento de papel o cartón, como una base o un componente de pintura o en adhesivos de etiquetado, y también es adecuado para la producción de películas depositadas y como una aglutinante en materiales basados en fibras de celulosa, como así como para preparaciones de revestimiento medicinales.
La solicitud de patente WO2011059398A1 denominada "Strong nanopaper" se refiere a nanopapel que comprende una arcilla y nanofibras de celulosa microfibrilada en los que las nanofibras MFC y las capas de arcilla están orientados sustancialmente paralela a la superficie del papel. La invención se refiere además a un método para fabricar el nanopapel y el uso del mismo.
La solicitud de patente WO2009091406A1 con título "Coated paperboard with enhanced compressibility" menciona un cartón recubierto con una mejor comprensibilidad, que permite una mejora de la suavidad a una presión superficial baja. El recubrimiento comprensible es a base de nanofibras con un diámetro menor a 1000 nm. Una de las reivindicaciones es que el índice de PakerPrint smootheness aumenta 1.2 unidades cuando la presión superficial aumenta entre 5 a 10 Kgf/cm2. Se aplica el procedimiento señalado en la norma TAPPI T555 Om-99. Nanofibras que pueden ser 1). Biopolímeros: polímero natural, quitosano, un polímero bicompatible, policapro- lactona, óxido de polietileno, y combinaciones de los mismos. 2). Compuestos inorgánicos: silica, aluminosilicatos, TiO, TiN, Nb Os, Ta2Os, oxido TiN, entre otros. 3). Resinas: tales como poliéster, éter y ester celulosa, resina poliacrílica, polisulfuro, copolímeros, etc. Estas nanofibras se encuentran en combinación con un aglutinante que puede ser un polímero seleccionado del grupo de alcohol polivinílico, polivinilpirrolidona y sus combinaciones. Las nanofibras se pueden mejorar adicionando aditivos oleofóbicos e hidrofóbicos que pueden ser compuestos con grupos fluorocarbonados.
La solicitud de patente WO2008023170A1 con título "Tailored control of surface properties by chemical modification" describe un proceso para producir un polímero o un sustrato inorgánico que es capaz de adherirse a más de un material mediante la funcionalización de la superficie uniendo al sustrato mediante un carbono precursor. Nanopartículas (fullerenos C60 o nanotubos) presentes en un sistema adherente que comprende un polímero que puede seleccionarse de poiiolefinas, poliesteres, resinas epoxi, poliacrilatos, poliacrílicos, poliamidas, politetrafluoro-etileno, poliglicósidos, polipéptidos, policarbonatos, poliéteres, policetonas, cauchos, poliuretanos polisulfonas, polivinilos, celulosa y copolímeros de bloque.
La solicitud de patente WO2004035929A1 que se titula "Method of producing a multilayer coated substrate having improved barrier properties" describe la producción de un sustrato recubierto que consiste en la formación de un compuesto de múltiples capas de flujo libre, con al menos dos capas con distinta función de barrera y el mecanismo de contacto del compuesto al sustrato. Dependiendo de la función antibarrera será requerido el número de capas. Nanopartículas laminares (no mencionadas), las cuales están inmersas en un aglutinante que puede ser látex de estireno- butadieno, estireno acrílico, látex acrilonitrilo, látex anhídrido maléico, polisacáridos, proteínas, polivinilpirrolidona, alcohol de polivinilo, acetato de polivinilo, celulosa y sus derivados, entre otros. Las reivindicaciones para el sustrato recubierto son: 1). índice de transmisión de vapor menor que 40 g/(m2/día). 2). Valor de Cobb 10 minutos menor que 12 g/m2. 3). Valor de transmisión de oxigeno menor que 150 cm3/(m2/24) h/bar) (1 atm, 23° C, 90% humedad relativa).
La solicitud de patente WO2003078734A1 con título "Composition for surface treatment of paper" describe un tratamiento superficial de papel y cartón con nanopartículas inorgánicas y mezclas de pigmentos orgánicos en forma de placa, en solución acuosa que actúan como agente hidrofóbico, antiespumante, blanqueador, mejora la calidad de impresión en papel y además es de bajo costo. Nanopartículas de sílice y CaC03 precipitado, o mezclas de ambas. Las nanopartículas están dispersas en látex (polímero) seleccionado del grupo: butadieno- estireno, acriláto, acrilato de estireno, acetato de polivinilo y sus mezclas.
Los documentos WO0076862A1 y ES2304963T3 con nombre "Estructura laminada multicapa de resina/papel, que contiene al menos una capa de compuesto de polimero/nanoarcilla y materiales de embalaje hechos de los mismos" describe una estructura laminada para envasar y otras aplicaciones distintas del envasado comprendiendo: un sustrato de papel y al menos una capa de compuesto de polimero/nanoarcilla que comprende partículas de nanoarcilla con un espesor que varía de 0.7 a 9.0 nanómetros aplicado a dicho sustrato de papel (4), donde dicha capa de compuesto de polimero/nanoarcilla está compuesta de una mezcla de una resina de polímero con efecto barrera y una nanoarcilla, donde dicha nanoarcilla es dispersada en la resina de polímero de barrera en una escala nanométrica y la cantidad de nanoarcilla en la capa de compuesto representa entre el 0.5 al 7.0% en peso de la capa de compuesto. La patente CN1449913A con título "Nano particle water-proof corrugated paper board" describe un papel corrugado a prueba de agua. Está formado por varias capas de cartón kraft forrado y papeles corrugados como materias primas que son, respectivamente, colocados entre placas de revestimiento de Kraft. Dichas placas de kraft y las materias primas son sometidas al proceso de inmersión en aceite y tratamiento de resistencia a la humedad, posteriormente son protegidas por un adhesivo microparticulado que contiene nano- carbonato de calcio.
El la solicitud de patente CN101623853A con título " Fu 11 resin waterproof sand paper" reivindica un papel lija de resina impermeable, que comprende seis capas de una capa abrasiva, una capa de adhesivo, una capa base para el adhesivo, una capa superficial tratada de papel lija, una capa original de papel lija, y una capa de tratamiento impermeable de arriba a abajo, en donde la capa adhesiva es una mezcla de resina de urea formaldehído, hierro rojo y cloruro de amonio; la capa de adhesivo base es una mezcla de resina acrílica soluble en agua, resina de amonio, flúor y de hierro rojo; la capa superficial tratada de papel lija es una mésela de hule de látex de estireno-butadieno nanométricos, una solución de almidón modificado, agua y agente penetrante JFS; la capa de tratamiento impermeable es una mezcla de de látex de estireno-butadieno nanométricos, una solución de almidón modificado, y agente penetrante JFS.
El documento CN2871192Y con título "The environmental protective decoration paper material" describe un tipo de material de papel para la decoración y protección de la medio ambiente, el cual comprende cartón ondulado en la cual se ha fijado una nano capa a prueba de agua. El anterior cartón ondulado está hecho de cartulinas onduladas BE, y puede tener una o varias cartulinas BE. La invención no solo tiene las funciones de resistencia al agua, o al fuego sino también protección al medio ambiente y un bajo precio.
En la patinete CN2557325Y con título "Nano particle water- resistant corrugated cardboard" describe un cartón corrugado nano-particulado resistente al agua mediante la adopción de tecnología de partículas de carbonato de calcio grado nano. La invención incluye un pluralidad de capas de cuero y cartón corrugado, dispuestas ente las capas de cuero. Las capas de cuero y el cartón corrugado se unen por un enlace de nano partículas de carbonato de calcio. La utilidad de la invención esta orientada para el envase de alimentos y el transporte de mercancías grandes.
En la solicitud de patente DE102004014483A1 con título "Coating composition, useful for antimicrobially coating and providing antimicrobial properties to substrates (e.g. papers, textiles), comprises porous inorganic coating contained in a homogenous distribution and a cationic polysaccharide" se describe un recubrimiento polimérico antimicrobiano cuya matriz incorpora óxidos inorgánicos mejorando las propiedades mecánicas y antimicrobianas. Dicho recubrimiento puede ser aplicado en sustratos de papel o textiles y comprende una capa porosa inorgánica en una distribución homogénea y un polisacárido catiónico. Nanosol Si02, el cual se distribuye en forma homogénea en un polisacárido catiónico.
En la solicitud de patente JP2009173909A denominada "Process for production of cellulose nanofiber, and catalyst for oxidation of cellulose" se menciona la producción de nanocelulosa a partir de derivados de 4 hidroxi tempo que proporcionan hidrofobicidad.
El la solicitud de patente JP2001163371A denominada "Packaging body having inorganic compound layer" menciona un método para mejorar las propiedades de barrera a los gases para un cuerpo de embazado el cual consiste en recubrir el cuerpo del embace con un sol gel o con un nanocomposito para crear una película sobre en la superficie del contenedor la cual mejora las propiedades de impermeabilidad a los gases.
La patente EP1925732A1 con título "Packaging material with a barrier coating" describe un material de empaque para activos sólidos o líquidos que contienen papel, cartón, cartulina, telas, lanas, artículos de madera, celulosa natural, de plástico o de sus compuestos, la cual comprende un capa resistente a la humedad y activa de polímeros con microparticulas suspendidas y/o microarcillas. Una reivindicación independiente es un método de fabricación de (A) un recubrimiento polimérico lineal, que tiene lugar después de la preparación de material de base, o en proceso de separación.
La patente EP1736504A1 con título "Barrier material and method of making the same" describe las propiedades de barrera de un material impermeable a los gases soluble en agua se mejora si el material se mezcla con nanopartículas de carbonato calcio las cuales tienen un tamaño de 10 a 250 nanómetros. El material de barrera se encuentra en un sustrato para proporcionar un sustrato con propiedades de impermeabilidad a los gases. Una capa de material sellable por calor puede ser aplicado a la superficie expuesta del material de barrera. También se describe un método para fabricar el sustrato recubierto. El sustrato puede ser de papel, cartón o cartulina.
En el artículo denominado "Development of superhydrophobic coating on paperboard surface using the Liquid Fíame Spray". Surface & Coatings technology 205 (2010) 436-445, se describe un método para la generación de recubrimientos a nanoescala en un proceso continuo de roll-to-roll a presión normal. El recubrimiento nano-estructurado y transparente, basado en nanopartículas de dióxido de titanio, fue depositado con éxito en línea en condiciones atmosféricas, sobre cartón recubierto de pigmento usando un método de proyección térmica llamado Liquid Fíame Spray (LFS). El proceso de recubrimiento LFS se describe y las influencias de los parámetros del proceso sobre la calidad del recubrimiento se discuten. La Nanocobertura fue investigada por un microscopio electrónico de emisión de electronos de campo de barrido (FEG- SEM), un microscopio de fuerza atómica (AFM), un espectroscopio de fotoelectrones emitidos por rayos X (XPS) y una medición de ángulo de contacto con el agua. Los ángulos de contacto con el agua más altos en la superficie de cartón nano-recubierto fueron de más de 160°. Las gotas de agua cayendo fueron capaces de rebotar en la superficie, que se ilustra con imágenes de alta velocidad del sistema de vídeo. A pesar de la alta hidrofobicidad, el revestimiento mostró naturaleza pegajosa, creando alta adhesión a las gotas de agua tan pronto como el movimiento de las gotas se detuvo. La Nanocobertura con cobertura completa del substrato se produjo a velocidades de línea de hasta 150 m/min. Por lo tanto, el recubrimiento de la LFS ha de ampliar el potencial a nivel industrial como un método económico y eficiente para los volúmenes grandes de recubrimiento a altas velocidades en línea.
El artículo "Adjustable wettability of paperboard by liquid fíame spray nanoparticle deposition". Applied Surface Science 257(2011)1911-1917., descibe el uso del proceso Liquid Fíame Spray (LFS) para depositar nanopartículas TiOx y SiOx sobre cartón para controlar las propiedades de humectación de la superficie. En el proceso LFS es posible crear superficies superhidrófobas o superhidrófilas. Los cambios en la humedad están relacionados con las propiedades estructurales de la superficie, que se caracterizaron mediante microscopía electrónica de barrido (SEM) y un microscopio de fuerza atómica (AFM). Las propiedades de la superficie se pueden atribuir como una correlación entre las propiedades de humedad del cartón y la textura superficial creada por las nanopartículas. Las superficies se pueden producir en línea en un proceso de un paso de roll-to-roll sin necesidad de modificaciones adicionales. Por otra parte, las superficies funcionales con hidrofilicidad o hidrofobicidad ajustables pueden ser fabricadas mediante la simple elección adecuada de los precursores líquidos.
El artículo "Modifications of paper and paperboard surfaces with a nanostructured polymer coating". Progress in Organic Cpatings 69(2010)442-454., describe nanopartículas orgánicas sintetizadas por imidización de copolímeros de estireno/ anhídrido maléico, son depositadas como primera capa sobre sustratos de papel y cartón de una dispersión acuosa estable con un contenido máximo de sólidos de 35% en peso. La morfología, características físico-químicas y propiedades de superficie de los recubrimientos se discuten en este documento, utilizando microscopía electrónica de barrido, microscopía de fuerza atómica, mediciones de ángulo de contacto y la espectroscopia Raman. Debido a la alta temperatura de transición vitrea de las nanopartículas poliméricas, un único revestimiento estructurado a micro- nanoescala se forma para favorecer la mejora en el brillo, propiedades de impresión (prueba de chorro de tinta de impresión y prueba de impresión off-set), hidrofóbicidad de superficie (con un ángulo máximo de contacto de agua de 140°) y la repelencia al agua (reducción de valores- Cobb). La interacción de las capas de nanopartículas con el papel de celulosa, resulta en la mejora de la resistencia mecánica del papel y se atribuye a los enlaces de hidrógeno entre las nanopartículas y las fibras celulósicas.
Como se puede observar los productos que más se han utilizado, en general, son las nanopartículas (dispersas en sustratos poliméricos), tales como el carbonato de calcio, el óxido de silicio, el óxido de titanio, los nanotubos de carbono, fullerenos, entre otros.
Las nanofibras de celulosa derivada de 4 hidroxi TEMPO, nanofibras de biopolímeros, nanofibras inorgánicas o de resinas, son otro tipo de nanomateriales utilizados en la fabricación de papel y/o cartón con propiedades hidrófobas. En algunos artículos científicos se encontró el uso de ciertos tratamientos como la aplicación de óxidos de silicio o de titanio mediante el proceso "Liquid Fíame Spray".
De lo anterior y de pruebas experimentales realizadas por los autores de la presente invención se concluye que aún existen oportunidades de innovación en el desarrollo de recubrimientos a base de nanopartículas que permitan mejores propiedades del papel y del cartón. Por ejemplo, es deseable que los recubrimientos después de su aplicación no afecten la impresión del papel o cartón y que mejoren además la adhesión en las aletas o áreas que requieran pegado de las cajas de cartón obtenidas. Por otra parte, es deseable que la aplicación de los recubrimientos sobre el papel y el cartón no impidan el reciclaje de los correspondientes empaques. De experiencias previas con otros productos por parte de los autores de la presente solicitud de patente también se ha podido comprobar que el uso de óxidos metálicos como el óxido de silicio sin funcionalizar correctamente requieren de un mayor anclaje y además es posible que se desprendan con el tiempo ocasionando que se reduzca su desempeño durante el manejo de los empaques.
Para mejorar el desempeño de los recubrimientos hidrofóbicos sobre papel y cartón, se propone en la presente invención el uso de nanopartículas de óxido de silicio auto-ensambladas con compuestos a base de silanos y de compuestos fluorocarbonados y alternativamente el uso sinérgico del ultrasonido para mejorar la dispersabilidad de dichas nanopartículas de óxido de silicio durante su aplicación sobre las fibras de al menos una superficie del papel o cartón. SUMARIO DE LA INVENCIÓN
En vista de lo anteriormente descrito y con el propósito de dar solución a las limitantes encontradas, es objeto de la invención ofrecer un papel o cartón hidrofóbico con nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos fluorocarbonados enlazadas directamente a fibras de celulosa de al menos una de sus superficies.
Asimismo es objeto de la presente invención, ofrecer un método para elaborar un papel o cartón hidrofóbico mediante los pasos de preparar una dispersión de nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados en un medio hidro-alcoholizado; aplicar la dispersión en al menos una superficie del papel o cartón; y secar y curar el papel o cartón para enlazar directamente las nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados a las fibras de celulosa del papel o cartón.
DESCRIPCIÓN BREVE DE LAS FIGURAS
Otras características de la presente invención serán evidentes a partir de la siguiente descripción detallada considerada en conexión con los dibujos adjuntos. Debe entenderse, sin embargo, que los dibujos están elaborados solamente como una ilustración y no como una definición limitativa de la invención, en los cuales:
Figura 1 muestra un esquema de formación de enlaces de silanos en la superficie de nanopartículas de óxido de silicio formadas de acuerdo a la invención.
Figura 2 muestra un esquema de formación de una corteza por polimerización de compuestos fluorocarbonados en las nanopartículas de acuerdo a la invención.
Figuras 3Á, 3B y 3C muestran un esquema de fijación fisicoquímica de las nanopartículas de óxido de silicio con las fibras del papel o cartón por des-hidratación de los grupos silanoles libres de acuerdo a la invención.
Figura 4 muestra mediante un diagrama de bloques las etapas del proceso de aplicación de recubrimientos hidrofóbicos sobre papel y cartón a base de nanopartículas de óxido de silicio auto-ensambladas de acuerdo a la presente invención.
Figura 5 muestra una fotografía del ángulo de contacto de agua del papel o cartón de la presente invención.
Figura 6 muestra una microfotografía obtenida por microscopía electrónica de barrido de un papel o cartón del estado de la técnica sin recubrimiento, en donde se ilustra la matriz de fibra de celulosa. Figura 7 muestra una microfotog rafia obtenida por microscopía electrónica de barrido de una fibra de celulosa de un papel del estado de la técnica sin recubrimiento.
Figura 8 muestra una microfotog rafia obtenida por microscopía electrónica de barrido de un papel o cartón con un recubrimiento tipo Michelman® de acuerdo al estado de la técnica, en donde se ilustra que la matriz de fibras de celulosa queda cubierta por un recubrimiento tipo película.
Figura 9 muestra una microfotog rafia obtenida por microscopía electrónica de barrido de una fibra de celulosa de un papel o cartón con un recubrimiento tipo Michelman® de acuerdo al estado de la técnica, en donde se observa el recubrimiento tipo película que se extiende a otras fibras de celulosa.
Figura 10 muestra una microfotog ra fía obtenida por microscopía electrónica de barrido de un papel o cartón con un recubrimiento de acuerdo a la invención, en donde se ilustra que no hay formación de película sobre la matriz, sino que son las fibras de celulosa las que quedan recubiertas.
Figura 11 muestra una microfotog rafia obtenida por microscopía electrónica de barrido de una fibra de celulosa de un papel o cartón con un recubrimiento de acuerdo al a la invención, en donde se observa el recubrimiento sobre la fibra de celulosa.
Figura 12 muestra una microfotog rafia obtenida por microscopía electrónica de barrido de las fibras de celulosa del papel o cartón recubiertas de nanopartículas de óxido de silicio de acuerdo a la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los detalles característicos de la invención se describen en los párrafos siguientes, los cuales son con el propósito de definir al invento pero sin limitar el alcance de éste.
Es objetivo de la presente invención reducir la cantidad de agua que puede absorber el papel o el cartón, una vez que sus fibras de al menos una de sus superficies han sido recubiertos con nanopartículas de óxido de silicio auto- ensambladas, así como proponer un nuevo método para elaborar dicho papel o cartón que permita alcanzar valores de Cobb entre 8 y 25 g/m2. El valor de Cobb indica la capacidad de absorción de agua en papeles y cartones, así como la cantidad de líquido que penetra en los mismos; es decir, indica el peso de agua absorbida en un tiempo especificado por 1 m2 de papel o cartón bajo condiciones normales.
De acuerdo con la presente invención, se confieren propiedades de hidrofobicidad al papel y al cartón a través del empleo de recubrimientos de nanopartículas de óxido de silicio auto-ensambladas y funcionalizadas con grupos fluorocarbonados y grupos del tipo silanos, en una dispersión coloidal hidro-alcohólica agitada por ultrasonido.
Los grupos fluorocarbonados usados son por ejemplo: 2,3,5,6-tetrafluoro-4- metoxiestireno, Monomeros de acrolamidafluorados o 1H,1H,2H,2H- perfluorooctiltrietoxisilanos.
Los grupos del tipo silano usados son: 3-Mercaptopropiltrimetoxisilano (MPTMS), Glicidoxipropiltrimethoxisilano (GLYMO), Bis[3-(triethoxisilil) propil] tetrasulfuro (TETRA-S), Bis-triethoxi-sililetano (BTSE), Diclorodiphenilsilano, 3- isocianatopropoltrimetoxisilano, l,2-Bis(clorodimetilsilil)etano, N-[3- (trimetoxisilil)propil]anilina, Aminopropiltrietoxisilano (APTES), 3-
(Mercaptometil)octyl)silanotriol, 2-(2-Mercaptoetil)pentil)silanotriol, o Bis- (triethoxisilil) propil] amina (BAS).
Las características hidrofóbicas de los recubrimientos de nanopartículas de óxido de silicio sobre papel son maximizadas cuando el papel es inmerso en la suspensión hidro-alcoholica continuamente agitada por algún medio mecánico, bien sea con apoyo de ultrasonido o no, y el recubrimiento resultante es secado y curado a temperaturas de aproximadamente 80 °C a aproximadamente 170 °C. Una vez aplicado el calor para evaporar los solventes que contiene la dispersión y al mismo tiempo promover el anclaje o enlace directo de las partículas sobre las fibras del papel es posible obtener valores de Cobb de aproximadamente 8 g/m2 a aproximadamente 25 g/m2.
Esta invención se destaca de las anteriores, debido a que el procedimiento de aplicación del recubrimiento no afecta la impresión del papel o cartón, mejorando además la adhesión en las aletas o áreas que requieran pegado de las cajas de cartón obtenidas. Por otra parte, el proceso de aplicación del recubrimiento, de acuerdo a la presente invención, sobre el papel y el cartón no impide el reciclaje de los empaques y facilita su adaptación a las máquinas industriales de elaboración de cajas. Los productos de papel y cartón así elaborados presentan altos niveles de resistencia a la humedad y elevado ángulo de contacto agua-recubrimiento.
Un concepto fundamental al momento de considerar el empleo de materiales híbridos o materiales compuestos para lograr una determinada funcionalidad en un material como la hidrofobicidad de la celulosa y sus derivados es la compatibilidad existente entre los materiales orgánicos o poliméricos y los materiales inorgánicos. Esta compatibilidad normalmente se caracteriza por tener un cierto grado de antagonismo, ya que muchos de los materiales inorgánicos tienen un carácter hidrofílico, mientras que los polímeros tienen carácter hidrofóbico. Sin embargo, esta propiedad que puede ser antagónica en los materiales por separado puede tener un efecto sinérgico en un sentido o en el otro según se requiera en los materiales híbridos o compuestos.
Esta situación hace que una parte importante del proceso de preparación de materiales compuestos se centre en como mejorar esta compatibilidad por la vía de modificar el carácter hidrofílico de los materiales inorgánicos para lograr la mejor unión del material inorgánico-matriz orgánica en las zonas interfaciales de ambos materiales ya que si queremos provechar el efecto de barrera de los materiales inorgánicos, estos deben estar fuertemente unidas a la matriz.
La adhesión entre los materiales inorgánicos y la matriz polimérica puede ser atribuida a una serie de mecanismos que se pueden dar en la interface, como fenómenos aislados o por interacción entre ellos. Los métodos físicos y químicos de modificación de la interface, promueven diferentes niveles de adhesión entre el material inorgánico y la matriz polimérica. Los tratamientos físicos pueden cambiar las propiedades estructurales y superficiales de los agregados inorgánicos influyendo en los enlaces mecánicos con la matriz polimérica. Sin embargo, muchos agregados fuertemente polarizados son incompatibles con polímeros hidrófobos. Cuando dos materiales son incompatibles, se puede actuar introduciendo un tercer material llamado agente de acoplamiento, el cual tiene propiedades intermedias entre los otros dos, y de esta forma crear un grado de compatibilidad.
Los compuestos químicos que contienen grupos metanol (-CH20H) forman enlaces covalentes estables con las cargas de celulosa. Enlaces tipo puente de hidrógeno entre el agregado y la matriz, pueden también ser formados en esta reacción.
La energía superficial de los agregados inorgánicos está estrechamente relacionada con la hidrofilicidad y con la hidrofobicidad de los materiales compuestos. Los silanos como agentes de acoplamiento que pueden contribuir a propiedades hidrofílicas o hidrofóbicas de la interfaz. Los organosilanos son el principal grupo de agentes de acoplamiento para polímeros con agregados de vidrio o de óxido de silicio. Los silanos han sido desarrollados para acoplar diferentes polímeros a los agregados minerales en la fabricación de materiales compuestos.
Los agentes de acoplamiento a base de silanos, pueden ser representados por la siguiente formula : R - (CH2)n - Si(OR') donde n funcional = 0-3, OR' es el grupo alcoxi hidrolizable, y R es el grupo orgánico.
El grupo funcional orgánico (R) en el agente de acoplamiento es el que produce la reacción con el polímero. Actúa como agente de copolimerización y/o para la formación de una red de interpenetración. Los alcalosilanos sufren hidrólisis, en la etapa de formación de enlaces tanto en medio ácido como en medio básico. Estas reacciones de silanos con los hidroxilos de la superficie de los agregados, pueden dar lugar a la formación de estructuras de polisiloxanos.
En la presente invención, se plantea el empleo de las técnicas de auto- ensamblaje para la funcionalización de las nanopartículas de óxido de silicio previo a su dispersión en una matriz polimérica.
El auto-ensamblaje puede ser definido como la formación espontanea de estructuras complejas a partir de unidades prediseñadas de menor tamaño. Las monocapas auto-ensambladas son unidades moleculares ordenadas que se forman por la adsorción espontanea (quimisorción) de un surfactante sobre un substrato, conteniendo el primero un grupo funcional con afinidad a ese substrato.
La secuencia de reacciones de auto-ensamblaje que se realiza, de acuerdo con esta invención, con el propósito de preparar un material híbrido para impartirle a un papel o aun cartón un carácter hidrófobo o de resistencia a la absorción de agua se describe a continuación.
Para la preparación de nanopartículas de Si02 con la intención de generar dispersiones en una disolución hidro-alcohólica se ha empleado como producto de partida el TEOS que se disuelve en una mezcla etanol-agua y se estabiliza a pH de aproximadamente 3.5 a aproximadamente 3.75 y se deja reaccionar a temperaturas de aproximadamente 25 °C a aproximadamente 40 °C durante un tiempo de aproximadamente 15 minutos a aproximadamente 90 minutos, formando una disolución coloidal transparentes o de color blanco.
Figure imgf000020_0001
Posteriormente, el TEOS tiende a hidrolizarse generando núcleos de fórmula
(Si02)x
Si(OR)4 + H20 H0-S¡(0R)3 + R0H
HO-S¡(OR)3 + H0Si(OR}3 (ORfeSi-O-SiíORk
(0R)3Sh0-St(0R)3 + H20 H0-Sj(0R)z-0-Si(0R)3
Figure imgf000021_0001
Se han empleado otros silanos tales como: 3-mercaptopropiltrimetoxisilano (MPTMS), glicidoxipropiltrimethoxisilano (GLYMO), bis[3-(tr¡ethoxisil¡l) propil] tetrasulfuro (TETRA-S), bis-triethoxi-sililetano (BTSE), diclorodiphenilsilano, 3- isocianatopropoltrimetoxisilano, l,2-bis(clorodimetilsilil)etano, n-[3-
(trimetoxisilil)propil]anilina, aminopropiltrietoxisilano (APTES), 3-
(mercaptometil)octyl)s¡lanotriol, 2-(2-mercaptoetil)pentil)s¡lanotriol, bis-(triethoxisilil) propil] amina (BAS), y sus combinaciones, con el objetivo de sustituir los grupos hidroxilo y generar en la superficie de las nanopartículas de óxido de silicio grupos funcionales capaces de dar lugar a reacciones de auto-ensamblaje sobre las superficies de los núcleos de nanopartículas de óxido de silicio generados. En la Figura 1 se muestra como estos silanos pueden formar enlaces en la superficie de las nanopartículas de óxido de silicio formadas.
La tercera fase del proceso de síntesis de las nanopartículas de óxido de silicio funcionalizadas consiste en la creación de la corteza de las nanopartículas. La corteza de estas nanopartículas, está constituida de cadenas de moléculas fluorocarbonadas. Estas cortezas se preparan mediante reacciones de polimerización o de condensación sobre la superficie de los núcleos de las nanopartículas. Dependiendo del tipo de grupo funcional, se emplean diferentes moléculas para la formación de la corteza fluorocarbonada.
En alguna de estas polimerizaciones es necesaria la intervención de pequeñas cantidades de catalizadores, estos catalizadores son de tipo ácido, como los grupos carboxilo, compuestos de Cu(I), medio básico como amoníaco o carbonato potásico. Un esquema de reacción se muestra en la Figura 2. Es necesario un utilizar un bis-silano, tal como BAS, TETRA-S o BTSE y el compuesto fluorocarbonado con grupos silano. Estas reacciones se hacen a pH 3.5 y se dejan reaccionar 30 minutos a 25 °C. A partir de estas reacciones en tres etapas, se han preparado partículas de tamaños entre 10 nm y 130 nm. Se han usado grupos fluorocarbonados tales como 2,3,5,6-tetrafluoro-4-metoxiestireno, monómeros de acrolamidafluorados o lH,lH,2H,2H-perfluorooctiltrietoxisilanos. Los grupos del tipo silano como: 3-mercaptopropiltrimetoxisilano (MPTMS), glicidoxipropiltrimethoxisilano (GLYMO), bis[3-(triethoxisilil) propil] tetrasulfuro (TETRA-S), bis-triethoxi-sililetano (BTSE), diclorodiphenilsilano, 3-isocianatopropoltrimetoxisilano, 1,2- bis(clorodimetilsilil)etano, n-[3-(trimetoxisilil)propil]anilina, aminopropiltrietoxisilano (APTES), 3-(mercaptometil)octyl)silanotriol, 2-(2-mercaptoetil)pentil)silanotriol, bis- (triethoxisilil) propil] amina (BAS), y sus combinaciones.
A fin de evitar la aglomeración y la precipitación de las nanopartículas coloidales. En esta invención, se propone de manera alternativa el uso de ultrasonidos y el efecto sinérgico de la cavitación generada por los ultrasonidos y el auto- ensamblaje que evita que las nanopartículas una vez dispersadas se vuelvan a aglomerar. Debido a las repulsiones que se ejercen entre partículas, en un medio de dispersión adecuado y debido a la funcionalización superficial de las mismas, es posible lograr una buena dispersión de las mismas incluso a concentraciones superiores al 25 %.
En general, la dispersión ultrasónica se lleva a cabo mediante un generador de ultrasonidos a través de uno o más transductores piezoeléctricos que transforman la señal eléctrica en una vibración mecánica. Esta energía vibraciúnal se transmite al líquido a una frecuencia de hasta 200000 oscilaciones por segundo. Estas oscilaciones de presión y vacío crean una gran cantidad de microburbujas, que implosionan a gran velocidad contribuyendo a la disgregación de los clústeres de nanopartículas.
El empleo de forma combinada de ultrasonidos y/o pulsos de ultrasonidos en frecuencias comprendidas de aproximadamente 10 KHz a aproximadamente 150 KHz a temperaturas de aproximadamente 10 °C a aproximadamente 250 °C en disolventes acuosos u orgánicos produce la disgregación de los clústeres de nanopartículas. Por otro lado, la adición de moléculas, con capacidad de funcionalizar la superficie de las nanopartículas mediante auto-ensamblaje, en el baño de ultrasonido permite obtener nanopolvos con alto grado de disgregación de las partículas, debido principalmente a los grupos funcionales de las mismas que evitan que estas se agreguen debido las interacciones electrostáticas existentes entre las nanopartículas. Por otro lado las nanopartículas auto-ensambladas y funcionalizadas permiten una mayor dispersión y evitan la aparición de clusters de nanopartículas o agregados. La dispersión de las nanopartículas auto-ensambladas se realiza en un medio hidro-alcohilizado, en donde la dispersión tiene una densidad de aproximadamente 0.96 g/cm3 a aproximadamente 0.99 g/cm3 y un pH de aproximadamente 3 a aproximadamente 4.5.
El alcohol utilizado para preparar la dispersión puede ser etanol, propanol, metanol y sus combinaciones.
La deposición de las disoluciones coloidales de nanopartículas de óxido de silicio sobre al menos una superficie del papel o cartón da lugar a nanopartículas depositadas sin que queden fijadas por algún tipo de interacción química o físico- química sobre el mismo, salvo una oclusión física en los huecos que tiene el papel o cartón. Para la fijación fisicoquímica de las nanopartículas de óxido de silicio con las fibras del papel o cartón de al menos una de sus superficies externas es necesario la des-hidratación de los grupos silanoles libres dando lugar a una red tridimensional como se muestra en la Figura 3A.
Posteriormente durante el proceso de inmersión-extracción del papel los silanoles migran y se depositan sobre el papel o cartón como se muestra en las Figuras 3B y 3C. De acuerdo a pruebas experimentales llevadas a cabo por los inventores y a pesar de la funcionalización de las nanopartículas de óxido de silicio, en el recipiente que contiene la suspensión de las nanopartículas de óxido de silicio es necesario mantener la buena dispersión de las mismas y evitar que estas se aglomeren. En general, se acepta que las mezclas de polímeros orgánicos con partículas inorgánicas o metálicas dan lugar a una separación de fases con aglomeración de las nanopartículas que posteriormente se traduce en propiedades pobres. Mas aún, cuando las partículas tienen diámetros por debajo de los 50 nanómetros, realmente es muy difícil obtener una mezcla homogénea si la cantidad del agregado supera el 5 % en peso o los polímeros que se utilizan tienen una viscosidad elevada en estado fundido. Por este motivo son necesarios nuevos métodos como el ultrasonido que permitan alcanzar estos requisitos en términos de dispersión.
Finalmente mediante un tratamiento térmico, se logra la polimerización del recubrimiento.
Este tratamiento térmico es clave para obtener un recubrimiento superhidrófobo sobre la superficie del papel o cartón.
De manera resumida pero no limitativa el método para elaborar el papel o cartón hidrofóbico de la presente invención, se esquematiza mediante el diagrama de bloques de la Figura 4 en la cual se indican con número las diferentes etapas del método y que a continuación se describen : En el paso 100, de manera alternativa, en caso de no contar con las nanaopartículas auto-ensambladas, se lleva a cabo una síntesis por auto-ensamblaje de nanopartículas de óxido de silicio con grupos funcionales de silanos y de compuestos fluorocarbonados en un medio hidro-alcoholizado agitado por ultrasonido.
Una vez que se cuenta con las nanopartículas ya autoensamladas, en el paso
200, se prepara una dispersión por agitación por medios mecánicos de nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados en un medio hidro-alcoholizado. La dispersión de las nanopartículas puede ser apoyada mediante la aplicación de ultrasonido con una frecuencia continua o pulsada de aproximadamente 10 Hz a aproximadamente 150 KHz.
Una vez preparada al dispersión se procede, en el paso 300, a aplicar la dispersión en al menos una superficie del papel o cartón en donde se requiera la propiedad de hidrofóbicidad. Esta aplicación puede ser mediante inmersión-extracción del papel o cartón en la dispersión de nanopartículas, con el propósito de reaccionar y enlazar los grupos Si-OH de las nanopartículas con los grupos -OH de las fibras de celulosa del papel o cartón. Esta aplicación a su vez puede ser dosificada y distribuida de manera uniformemente sobre la superficie del papel o cartón por medio de una rasqueta.
Finalmente, en el paso 400, se procede a secar y a curar al papel o cartón para enlazar directamente las nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados a las fibras de celulosa del papel o cartón.
Es importante indicar que aunque un experto en la materia pudiera encontrar que de manera independiente cada una de las etapas pertenecen al estado previo de la técnica, el efecto sinérgico del conjunto de las cinco etapas que comprende el método de aplicación de las nanopartículas funcionalizadas y dispersadas de acuerdo con la presente invención produce efectos no reportados en el estado de la técnico y que si alguna de las etapas indicadas no se lleva a cabo no es posible obtener ni las propiedades de hidrofóbicidad ni las mejoras de los recubrimientos reportados en la presente invención.
Como se ha observado experimentalmente, un factor muy importante que incide de forma directa sobre la reacciones de curado del cartón es el tiempo y la temperatura de tratamiento térmico, los que presenta una relación muy estrecha con el nivel de entrecruzamiento de los componentes activos del recubrimiento y consecuentemente con los valores de Cobb.
De acuerdo a lo anterior, se observó que a mayor tiempo de curado y mayor temperatura es posible obtener recubrimientos con menores valores de Cobb. Como se discutió previamente, el proceso de secado y curado es clave para obtener un recubrimiento superhidrofobo sobre la superficie del papel o cartón; es decir, es el calor el que colabora directamente en la fijación de los nanomateriales sobre la superficie del papel o cartón generando no sólo este enlace con las fibras sino que también promueve las interacciones entre las nanopartículas de forma que se produce un recubrimiento nanoestructurado que permite un mayor efecto loto, haciendo que el papel presente una mayor resistencia a la humedad.
Debido a que el proceso de entrecruzado entre las fibras del papel o cartón y las nanopartículas aplicadas se basa en la deshidratación de los grupos funcionales Si- OH del flurocarbono y los -OH de la celulosa, la mejora en los valores de Cobb depende directamente del proceso de deshidratación de éstas y al fenómeno de entrecruzamiento de los grupos Si-OH y su interacción con las fibras de celulosa. Esta interacción, genera que una mayor cantidad de estos grupos reaccione e incremente la unión de las nanopartículas de óxido de silicio a la superficie de cada fibra, por lo que por medio del incremento de la temperatura y el tiempo de curado se logra la optimización del curado de la superficie celulósica. Durante estos procesos térmicos que ocurren a una temperatura de aproximadamente 80 °C a aproximadamente 170 °C la fibra del papel o cartón pierde cierta cantidad de agua químicamente ligada, la cual después del proceso de curado debe ser recuperada para evitar una desestabilización en el acomodo y rigidez de las fibras.
Así, se determinó que las condiciones de curado para preparar una papel o cartón de la presente invención con valores de Cobb cercanos a 20 g/m2 corresponden a una temperatura de 150 °C y un tiempo de 180 segundos haciendo uso de un tiempo de inmersión en la suspensión de 10 segundos y cantidades de recubrimiento cercanas a 3.5 g/m2.
Al igual que para la temperatura de curado, un exceso de tiempo de tratamiento térmico ocasiona una reducción de los valores de resistencia a la humedad, lo cual se pudo comprobar en pruebas realizadas a 170 °C durante 240 segundos.
El ángulo de contacto de agua en al superficie con nanopartículas auto- ensambladas en el papel o cartón de la presente invención es de aproximadamente 100 ° a aproximadamente 140 ° tal como se ilustra en la Figura 5.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
La invención ahora será descrita con respecto a los ejemplos siguientes, los cuales son únicamente con el propósito de representar la manera de llevar a cabo la implementación de los principios del invento. Los ejemplos siguientes no intentan ser una representación exhaustiva de la invención, ni intentan limitar el alcance de ésta.
Para preparar los recubrimientos hidrofóbicos de las nanopartículas de óxido de silicio auto-ensambladas y funcionalizadas, de acuerdo a la presente invención, se utilizó una dispersión coloidal hidroalcohólica de nanopartículas con fluorocarbonos con una densidad de 0.98 g/cm3 y un pH de 3.6. Esta suspensión fue agitada con ultrasonido por 30 minutos. Una vez terminado el proceso de agitación se vació la suspensión en una charola y se empezó a recubrir el papel.
Se prepararon 2 tipos de cartón, uno con una resistencia a la compresión de 220.63 kPa (32 Ib/in2) y otro con una resistencia de 303.37 kPa (44 Ib/in2). Ambos de acuerdo al método normalizado ECT. La composición de los cartones para cada caso fue la siguiente: Resistencia de 32 ECT( Liner L33A, Midium M110U, Liner LT170) y Resistencia de 44 ECT ( Liner L42A, Midium M150U, Liner LT170t). PRUEBA 1. PAPEL DE 44 ECT
En Tabla 1 se indican las condiciones de temperatura de los diferentes parámetros críticos en el proceso
Figure imgf000026_0002
Tabla 1
La velocidad de producción fue de 80 m/min. En esta prueba se observo que cuando se deja de agitar la dispersión, el producto en la charola no es homogéneo, por lo que se dio inicio nuevamente a la agitación, de esa manera se logró observar que el efecto disminuyó hasta quedar homogéneo nuevamente.
Figure imgf000026_0001
Cilindro 170
Papel parte fría 91
Rodillo corrugador 134
Papel después del cilindro 116
Tabla 2
La velocidad de producción fue de 60 m/min. PRUEBA 3. PAPEL DE 32 ECT
En Tabla 3 se indican las condiciones de temperatura de los diferentes parámetros críticos en el proceso.
Figure imgf000027_0001
Tabla 3
La velocidad de producción fue de 80 m/min.
Con las hojas de láminas de papel recubiertas se fabricaron cajas, éstas fueron manipuladas de tal manera que se obtuvo el recubrimiento por la cara interior y la cara exterior.
En Tabla 4 se puede apreciar un comparativo de los valores de Cobb obtenidos, los ángulos de contacto, la velocidad de paso del agua y la cantidad de material utilizado para cada prueba.
Figure imgf000027_0002
2 111.9 128.9 0.004 0.040 15 25.0 0.81
3 121.0 128.8 0.047 0.005 25 25.2 0.630
Tabla 4
La cantidad de material por metro cuadrado es de menos de 1 g/m2 en las pruebas en general, los mejores valores de Cobb son de 15 en cartón en donde se lograron obtener ángulos de contacto mayores a 128° y poca penetración de líquido. Ángulos de contacto muy superiores a los obtenidos con recubrimientos comerciales tipo Michelman®.
Es importante indicar que recubrimientos disponibles comercialmente como el Michelman ®, la cantidad de material requerido para alcanzar valores de Cobb entre 25 y 30 está entre 4 g/m2 a 16 g/m2.
En las Figuras 6 a 11 se ilustran una microfotografía obtenida por microscopía electrónica de barrido tanto para un papel o cartón del estado de la técnica sin recubrimiento (ver Figura 6) y respectivo detalle de fibra de celulosa (ver Figura 7), un papel o cartón con un recubrimiento tipo Michelman® de acuerdo al estado de la técnica (ver Figura 8) y respectivo detalle de fibra de celulosa (ver Figura 9), así como un papel o cartón con un recubrimiento de acuerdo a la invención (ver Figura 10) y respectivo detalle de fibra de celulosa (ver Figura 11), de tal manera que se puede ver el efecto comparativo entre un recubrimiento tipo película (ver Figuras 8 y 9) con el efecto de recubrimiento en fibras de la presente invención (ver Figuras 10 y 11).
En la tabla 4 se muestran también los resultados obtenidos en función de los valores de Cobb, del ángulo de contacto y de la velocidad de paso de agua. En esta tabla es posible observar valores de Cobb muy bajos en todas las pruebas (de 16.7 Qagua/rn2 a 26.8 gagua/m2) correspondientes a velocidades de paso del agua de 0.036 g/s a 0.005 g/s, lo cual muestra una reducción importante en el paso del agua tanto en el papel como en el cartón debido al recubrimiento. A partir de pruebas experimentales adicionales, se pudo comprobar que con el procedimiento de la presente invención es posible controlar los valores de Cobb en un intervalo de 8 gagua/m2 a 25 gagua/m2- También se pueden observar ángulos de contacto elevados para todos los casos (de 118.1 ° a 128.9 °), lo cual confirma la buena hidrofobicidad de los recubrimientos aplicados tanto al papel como al cartón. En superficies muy hidrófobas el ángulo de contacto es mayor a 100 °, en estos casos el agua reposa sobre la superficie pero no la moja ni tampoco se extiende sobre ellas dando lugar al denominado efecto Loto. En la presente invención, el efecto loto es promovido por las nanopartículas de óxido de silicio auto-ensambladas que recubren las fibras de celulosa dando lugar a una topografía nanorugosa sobre la superficie de las mismas como lo muestra la Figura 12.
Para evaluar el grado de hidrofobicidad se usó la medida del ángulo de contacto y para medir la capacidad de absorción de humedad del papel y del cartón se usaron las normas IMPEE-PL020 y TAPPI las cuales permiten cuantificar los valores de Cobb y la velocidad de penetración del agua.
Al llevar a cabo las pruebas a nivel industrial se pudo constatar que el recubrimiento hidrofóbico nanoestructurado preparado y aplicado de acuerdo con la presente invención no afecta la impresión del papel o cartón y mejora la adhesión en las aletas o áreas que requieran pegado de las cajas de cartón obtenidas. Esto, debido a que las nanopartículas de óxido de silicio quedan enlazadas directamente sobre las fibras de celulosa como lo muestra la figura 5 a diferencia de otros productos comerciales en donde se forma una capa monolítica que cubre la superficie del papel o cartón modificando la impresión y el pegado del cartón al hacer las cajas. Además a partir de pruebas a nivel industrial, se pudo confirmar que los recubrimientos nanoestructurados de nanopartículas de óxido de silicio bien dispersas reducen la cantidad de material hidrofóbico que se requiere por unidad de superficie del papel o cartón facilitando el proceso de reciclaje de dichos empaques.
Aunque la invención se ha descrito con respecto a una realización preferida, los especialistas en la técnica entenderán que pueden realizarse diversos cambios y que pueden sustituirse equivalentes por sus elementos sin alejarse del alcance de la invención. Además, pueden realizarse muchas modificaciones para adaptar una situación o material en particular a los contenidos de la invención, sin alejarse del alcance fundamental de la misma. Por lo tanto, se pretende que la invención no se limite a la realización en particular descrita como el mejor modo contemplado para llevar a cabo esta invención, sino que la invención incluirá todas las realizaciones que estén dentro del alcance de las reivindicaciones adjuntas.

Claims

REIVINDICACIONES
1. Un papel o cartón hidrofóbico caracterizado porque comprende nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos fluorocarbonados enlazadas directamente a fibras de celulosa de al menos una de sus superficies.
2. El papel o cartón de conformidad con la reivindicación 1, caracterizado porque tiene un valor de Cobbs de 8 g/m2 a 25 g/m2.
3. El papel o cartón de conformidad con la reivindicación 1, caracterizado porque los grupos funcionales de silanos son seleccionados de un grupo que consiste de 3- mercaptopropiltrimetoxisilano (MPTMS), glicidoxipropiltrimethoxisilano (GLYMO), Bis[3-(triethoxisilil) propil] tetrasulfuro (TETRA-S), bis-triethoxi-sililetano (BTSE), diclorodiphenilsilano, 3-isocianatopropoltrimetoxisilano, 1,2- bis(clorodimetilsilil)etano, N-[3-(trimetoxisilil)propil]anilina, aminopropiltrietoxisilano (APTES), 3-(mercaptometil)octyl)silanotriol, 2-(2- mercaptoetil)pentil)silanotriol, bis-(triethoxisilil) propil] amina (BAS), y sus combinaciones.
4. El papel o cartón de conformidad con la reivindicación 1, caracterizado porque los compuestos fluorocarbonados son seleccionados de un grupo que consiste de 2,3,5,6-tetrafluoro-4-metoxiestireno, monómeros de acrolamidafluorados o lH,lH,2H,2H-perfluorooctiltrietoxisilanos, y sus combinaciones.
5. El papel o cartón de conformidad con la reivindicación 1, caracterizado porque tiene un ángulo de contacto al agua de 100 ° a 140 °.
6. El papal o cartón de conformidad con la reivindicación 1, caracterizado porque la cantidad de recubrimiento de nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos fluorocarbonados por metro cuadrado de papel o cartón es menor de 3.5 g/m2.
7. Un método para elaborar un papel o cartón hidrofóbico caracterizado porque comprende los pasos de: preparar una dispersión de nanopartículas de óxido de silicio auto- ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados en un medio hidro-alcoholizado;
aplicar dicha dispersión en al menos una superficie del papel o cartón; y secar y curar dicho papel o cartón para enlazar directamente dichas nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados a las fibras de celulosa del papel o cartón.
8. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicha dispersión tiene una densidad de 0.96 g/cm3 a 0.99 g/cm3.
9. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicha dispersión un pH de 3 a 4.5.
10. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicho alcohol es seleccionado de un grupo que consiste de etanol, propanol, metanol y sus combinaciones.
11. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque en el paso de dispersar nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados en un medio hidro-alcoholizado, dichas nanopartículas son dispersas por agitación mecánica con apoyo de ultrasonido.
12. El método para elaborar papel o cartón de conformidad con la reivindicación 11, caracterizado porque dicho ultrasonido se realiza a una frecuencia continua o pulsada.
13. El método para elaborar papel o cartón de conformidad con la reivindicación 11, caracterizado porque dicho ultrasonido se realiza a una frecuencia de 10 KHz a 150 KHz.
14. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque los grupos funcionales de silanos son seleccionados de un grupo que consiste de 3-mercaptopropiltrimetoxisilano (MPTMS), glicidoxipropiltrimethoxisilano (GLYMO), bis[3-(triethoxisilil) propil] tetrasulfuro (TETRA-S), bis-triethoxi-sililetano (BTSE), diclorodiphenilsilano, 3- isocianatopropoltrimetoxisilano, l,2-bis(clorodimetilsilil)etano, N-[3-
(trimetoxisil¡l)propil]an¡lina, aminopropiltrietoxisilano (APTES), 3-
(mercaptometil)octyl)silanotriol, 2-(2-mercaptoetil)pentil)silanotriol, bis- (triethoxisilil) propil] amina (BAS), y sus combinaciones.
15. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque los compuestos fluorocarbonados son seleccionados de un grupo que consiste de 2,3,5,6-tetrafluoro-4-metoxiestireno, monómeros de acrolamidafluorados o lH,lH,2H,2H-perfluorooctiltrietoxisilanos, y sus combinaciones.
16. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicho paso de aplicar dicha dispersión en al menos una superficie del papel o cartón consiste en inmersión-extracción del papel o cartón en dicha dispersión.
17. El método para elaborar papel o cartón de conformidad con la reivindicación 16, caracterizado porque además incluye el paso de dosificar y distribuir uniformemente dicha dispersión sobre la superficie del papel o cartón por medio de una rasqueta.
18. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicho paso de aplicar dicha dispersión en al menos una superficie del papel o cartón consiste en aplicar una cantidad menor de 3.5 g/m2 por metro cuadrado de papel.
19. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque el paso de secar y curar dicho papel o cartón para enlazar directamente nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados a las fibras del papel o cartón, se realiza a una temperatura de 80 °C a 170 °C.
20. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque dicho papel o cartón tiene un valor de Cobbs de 8 g/m2 a
25 g/m2.
21. El método para elaborar papel o cartón de conformidad con la reivindicación 7, caracterizado porque^ además antes del paso de dispersar nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados en un medio hidro-alcoholizado, se incluye el paso de sintetizar dichas nanopartículas de óxido de silicio auto-ensambladas con grupos funcionales de silanos y compuestos flurorcarbonados.
22. El método para elaborar papel o cartón de conformidad con la reivindicación 21, caracterizado porque el auto-ensamblaje de las nanopartículas de óxido de silicio con grupos funcionales se realiza a temperaturas de 10 °C a 250 °C.
PCT/MX2013/000047 2012-04-13 2013-04-12 Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo WO2013154414A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13775835.5A EP2837736B1 (en) 2012-04-13 2013-04-12 Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof
US14/394,090 US9783930B2 (en) 2012-04-13 2013-04-12 Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof
ES13775835T ES2743051T3 (es) 2012-04-13 2013-04-12 Papel o cartón hidrófobo con nanopartículas auto-ensambladas y método para elaborarlo
BR112014025470-2A BR112014025470B1 (pt) 2012-04-13 2013-04-12 Papel ou papelão hidrofóbico incluindo fibras de celulose e nanopartículas de óxido de silício automontadas, e seu método de produção
CA2870127A CA2870127C (en) 2012-04-13 2013-04-12 Hydrophobic paper or cardboard with self-assembled nanoparticles and the method for producing thereof
CR20140474A CR20140474A (es) 2012-04-13 2014-10-14 Papel o carton hidrofobico con nanparticulas auto-emsambladas y metodo para elaborarlo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2012004387A MX366743B (es) 2012-04-13 2012-04-13 Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo.
MXMX/A/2012/004387 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154414A1 true WO2013154414A1 (es) 2013-10-17

Family

ID=49327901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000047 WO2013154414A1 (es) 2012-04-13 2013-04-12 Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo

Country Status (9)

Country Link
US (1) US9783930B2 (es)
EP (1) EP2837736B1 (es)
BR (1) BR112014025470B1 (es)
CA (1) CA2870127C (es)
CR (1) CR20140474A (es)
ES (1) ES2743051T3 (es)
MX (1) MX366743B (es)
PT (1) PT2837736T (es)
WO (1) WO2013154414A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150231821A1 (en) * 2012-09-25 2015-08-20 Stora Enso Oyj Method for the manufacturing of a polymer product with super- or highly hydrophobic characteristics, a product obtainable from said method and use thereof
US9783930B2 (en) * 2012-04-13 2017-10-10 Sigmaq Alimentos, S.A. De C.V. Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof
CN110452307A (zh) * 2019-07-24 2019-11-15 衢州学院 一种改性纳米纤维素及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392752B2 (en) * 2013-05-22 2019-08-27 Dow Global Technologies Llc Paper composition and process for making the same
CA2914146A1 (en) 2013-06-03 2014-12-11 Oji Holdings Corporation Method for producing sheet containing fine fibers
US9512338B2 (en) * 2014-04-29 2016-12-06 Greif Packaging Llc Method for manufacturing an adhesive compound for use in the production of corrugated paperboard
KR101588630B1 (ko) * 2014-10-17 2016-01-27 (주)대한솔루션 열 차단 기능을 가진 자동차용 헤드라이닝 및 그 제조방법
FI20146134A7 (fi) * 2014-12-22 2016-06-23 Kemira Oyj Menetelmä lomittaisen polymeeriverkkomateriaalin valmistamiseksi, valmistettu tuote ja tuotteen käyttö
US10875284B2 (en) 2015-09-10 2020-12-29 University Of Maine System Board Of Trustees Composite products of paper and cellulose nanofibrils and process of making
CN111501400B (zh) 2016-04-05 2022-06-03 菲博林科技有限公司 纸和纸板产品
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
WO2019023474A1 (en) 2017-07-27 2019-01-31 Brett Goldberg 3D DISPOSABLE SERVICE UTENSILS FORMED BY FOLDING 2D FOLDABLE MATERIALS AND BOXES INCORPORATING SAID UTENSILS
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
TWI640653B (zh) * 2018-01-18 2018-11-11 國立高雄大學 含奈米二氧化鈦顆粒螯合苯胺的金屬防腐蝕溶液及其製備方法
JP7004978B2 (ja) * 2018-03-05 2022-01-21 独立行政法人国立高等専門学校機構 セルロースナノファイバー複合材及びその製造法
SE544449C2 (en) 2019-12-23 2022-05-31 Stora Enso Oyj Method for manufacture of a patterned liquid repellent nanocellulosic film
CN111519476B (zh) * 2020-05-18 2023-03-24 杭州西红柿环保科技有限公司 一种全降解防酒精纸浆模塑产品及其制备方法
CN112359638A (zh) * 2020-11-12 2021-02-12 齐鲁工业大学 一种高疏水抑菌淀粉施胶纸及其制备方法
WO2022140237A1 (en) * 2020-12-22 2022-06-30 Northeastern University Recyclable, self-cleaning cellulose-fiber composites
IT202100003311A1 (it) * 2021-02-15 2022-08-15 Qwarzo Italia S R L Trattamento di impermeabilizzazione della carta e carta impermeabile così ottenuta
CN113308945A (zh) * 2021-06-17 2021-08-27 佛山南海力豪包装有限公司 表面涂覆纳米氧化硅涂层的高阻隔纸张及其制作工艺
CN114086418A (zh) * 2021-11-30 2022-02-25 国网黑龙江省电力有限公司电力科学研究院 基于表面修饰的纳米颗粒分散及改性的绝缘纸板制备方法及其应用
BE1030726B1 (nl) * 2022-07-25 2024-02-19 Grandeco Wallfashion Group Belgium Nv Flexibele wandbekleding met virusdodende coating en werkwijze voor het vervaardigen daarvan
DE102023002776A1 (de) 2023-07-05 2025-01-09 Friedrich-Schiller-Universität Jena, Körperschaft des öffentlichen Rechts Hydrophobe Beschichtung für Materialoberflächen

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268069A (en) 1979-12-31 1981-05-19 The Mead Corporation Paper coated with a microcapsular coating composition containing a hydrophobic silica
US5624471A (en) 1996-07-22 1997-04-29 Norton Company Waterproof paper-backed coated abrasives
WO2000076862A1 (en) 1999-06-14 2000-12-21 International Paper Company Multi-layer resin/paper laminate structure containing at least a polymer/nanoclay composite layer and packaging materials made thereof
US6187143B1 (en) 1998-09-04 2001-02-13 Kemira Chemicals Oy Process for the manufacture of hydrophobic paper or hydrophobic board, and a sizing composition
JP2001163371A (ja) 1999-12-06 2001-06-19 Haruhiko Watanabe 無機化合物層を有する包装体
US20020032254A1 (en) 1996-06-25 2002-03-14 Oy Polymer Corex Kuopio Ltd. Hydrophobic polymer dispersion and process for the preparation thereof
US20020069989A1 (en) 1996-05-31 2002-06-13 Bruno Feret Bonding of paper using latex-dispersions of copolymers made of hydrophobic monomers/polymers of styrene/maleic anhydride type of low molecular mass
US20030012897A1 (en) 2001-07-12 2003-01-16 Sonoco Development, Inc. Liquid-resistant paperboard tube, and method and apparatus for making same
US20030109617A1 (en) 2000-04-18 2003-06-12 Mari Niinikoski Method for pretreatment of filler, modified filler with a hydrophobic polymer and use of the hydrophobic polymer
CN2557325Y (zh) 2002-04-05 2003-06-25 浙江上峰包装集团有限公司 纳米微粒防水瓦楞纸板
WO2003078734A1 (en) 2002-03-19 2003-09-25 Raisio Chemicals Ltd Composition for surface treatment of paper
CN1449913A (zh) 2002-04-05 2003-10-22 俞建虎 纳米微粒防水瓦楞纸板
US20030211050A1 (en) 2002-05-09 2003-11-13 The Procter & Gamble Company Compositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
WO2004035929A1 (en) 2002-10-15 2004-04-29 Dow Global Technologies Inc. Method of producing a multilayer coated substrate having improved barrier properties
US6830657B1 (en) 1999-06-21 2004-12-14 Atofina Hydrophobic cationic dispersions stabilized by low molecular weight maleimide copolymers, for paper sizing
US6949167B2 (en) 2002-12-19 2005-09-27 Kimberly-Clark Worldwide, Inc. Tissue products having uniformly deposited hydrophobic additives and controlled wettability
DE102004014483A1 (de) 2004-03-24 2005-10-13 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. Antimikrobielle Beschichtungszusammensetzung und Verfahren zu deren Herstellung
EP1736504A1 (en) 2005-06-21 2006-12-27 Weyerhaeuser Company Barrier material and method of making the same
CN2871192Y (zh) 2006-01-04 2007-02-21 佘文龙 环保装潢纸材
US7229678B2 (en) 2002-05-02 2007-06-12 Evergreen Packaging Inc. Barrier laminate structure for packaging beverages
US20080041542A1 (en) 2006-08-18 2008-02-21 Mcgill University Cellulose composites comprising hydrophobic particles and their use in paper products
WO2008023170A1 (en) 2006-08-23 2008-02-28 Isis Innovation Limited Tailored control of surface properties by chemical modification
US20080113188A1 (en) 2006-11-09 2008-05-15 Shah Pratik B Hydrophobic organic-inorganic hybrid silane coatings
EP1925732A1 (de) 2006-09-29 2008-05-28 Mondi Packaging AG Verpackungsmaterial mit Barriereschicht
US20080188154A1 (en) 2007-02-06 2008-08-07 Jen-Coat, Inc. Film laminate
US20080265222A1 (en) 2004-11-03 2008-10-30 Alex Ozersky Cellulose-Containing Filling Material for Paper, Tissue, or Cardboard Products, Method for the Production Thereof, Paper, Tissue, or Carboard Product Containing Such a Filling Material, or Dry Mixture Used Therefor
WO2009091406A1 (en) 2008-01-18 2009-07-23 Meadwestvaco Corporation Coated paperboard with enhanced compressibility
JP2009173909A (ja) 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法及びセルロースの酸化触媒
US20090252884A1 (en) * 2008-01-16 2009-10-08 Bayer Materialscience Ag Silica-containing uv-crosslinkable hardcoat coatings comprising urethane acrylates
US20090304996A1 (en) * 2006-12-15 2009-12-10 Asahi Glass Company, Limited Article having water-repellent surface
WO2010000476A1 (en) * 2008-07-02 2010-01-07 Padana Ag Porous material comprising nanoparticles
CN101623853A (zh) 2009-07-31 2010-01-13 湖北玉立砂带集团股份有限公司 全树脂耐水砂纸
US20100233468A1 (en) 2009-03-13 2010-09-16 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
US20100311889A1 (en) 2007-12-17 2010-12-09 Patrick Arthur Charles Gane Method for manufacturing a coating slip, using an acrylic thickener with a branched hydrophobic chain, and the slip obtained
US20110008585A1 (en) 2009-07-13 2011-01-13 Schuelke Robert G Water-resistant corrugated paperboard and method of preparing the same
US20110033663A1 (en) 2008-05-09 2011-02-10 The Regents Of The University Of California Superhydrophobic and superhydrophilic materials, surfaces and methods
ES2354545A1 (es) 2009-04-24 2011-03-16 Avanzare Innovacion Tecnologica, S.L. Modificación superficial de nanomateriales mediante técnicas sonoquímicas y de auto-ensamblaje para la formación de nanocomposites plásticos.
US20110081509A1 (en) 2009-10-06 2011-04-07 Ching-Wen Chang Degradable heat insulation container
US7927458B2 (en) 2001-04-11 2011-04-19 International Paper Company Paper articles exhibiting water resistance and method for making same
US7943234B2 (en) 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
WO2011059398A1 (en) 2009-11-16 2011-05-19 Kth Holding Ab Strong nanopaper

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268179B2 (en) * 1997-02-03 2007-09-11 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US7196043B2 (en) * 2002-10-23 2007-03-27 S. C. Johnson & Son, Inc. Process and composition for producing self-cleaning surfaces from aqueous systems
EP1855877A4 (en) * 2005-03-09 2009-12-23 Astenjohnson Inc FABRICS FOR MANUFACTURING PAPER HAVING CONTAMINANT-RESISTANT NANOPARTICULAR COATING AND IN SITU APPLICATION METHOD
GB2427868A (en) * 2005-07-04 2007-01-10 Samuel Michael Baker Cellulosic products having oleophobic and hydrophobic properties
EP1762352A1 (en) * 2005-09-12 2007-03-14 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method for incorporating a functional additive within a porous material
WO2007102960A2 (en) * 2006-01-30 2007-09-13 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
US8258206B2 (en) * 2006-01-30 2012-09-04 Ashland Licensing And Intellectual Property, Llc Hydrophobic coating compositions for drag reduction
WO2007117672A2 (en) * 2006-04-07 2007-10-18 Qd Vision, Inc. Methods of depositing nanomaterial & methods of making a device
US20090148653A1 (en) * 2007-12-07 2009-06-11 E.I. Du Pont De Nemours And Company Fluoropolymer emulsions
US8287692B2 (en) * 2007-12-28 2012-10-16 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers
US20100003488A1 (en) * 2008-07-02 2010-01-07 Hans-Joachim Danzer Wood sheet comprising nanoparticles
US20100215894A1 (en) * 2009-02-02 2010-08-26 INVISTA North America S.ar.I Compositions of surface modified nanoparticles
PL2338940T3 (pl) * 2009-12-23 2017-04-28 Silicalia S.L. Kompozycja do powlekania
WO2012087092A1 (es) * 2010-12-21 2012-06-28 Sigma Alimentos, S. A. De C. V. Composición polimérica incorporando nanopartículas huecas, método para elaborar la misma, y un envase producido con la composición
MX366743B (es) * 2012-04-13 2019-07-04 Sigma Alimentos Sa De Cv Papel o cartón hidrofóbico con nanopartículas auto-ensambladas y método para elaborarlo.

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268069A (en) 1979-12-31 1981-05-19 The Mead Corporation Paper coated with a microcapsular coating composition containing a hydrophobic silica
US20020069989A1 (en) 1996-05-31 2002-06-13 Bruno Feret Bonding of paper using latex-dispersions of copolymers made of hydrophobic monomers/polymers of styrene/maleic anhydride type of low molecular mass
US20020032254A1 (en) 1996-06-25 2002-03-14 Oy Polymer Corex Kuopio Ltd. Hydrophobic polymer dispersion and process for the preparation thereof
US5624471A (en) 1996-07-22 1997-04-29 Norton Company Waterproof paper-backed coated abrasives
US6187143B1 (en) 1998-09-04 2001-02-13 Kemira Chemicals Oy Process for the manufacture of hydrophobic paper or hydrophobic board, and a sizing composition
WO2000076862A1 (en) 1999-06-14 2000-12-21 International Paper Company Multi-layer resin/paper laminate structure containing at least a polymer/nanoclay composite layer and packaging materials made thereof
ES2304963T3 (es) 1999-06-14 2008-11-01 Evergreen Packaging International B.V. Estructura laminada multicapa de resina/papel, que contiene al menos una capa de compuesto de polimero/nanoarcilla y materiales de embalaje hechos de los mismos.
US6830657B1 (en) 1999-06-21 2004-12-14 Atofina Hydrophobic cationic dispersions stabilized by low molecular weight maleimide copolymers, for paper sizing
JP2001163371A (ja) 1999-12-06 2001-06-19 Haruhiko Watanabe 無機化合物層を有する包装体
US20030109617A1 (en) 2000-04-18 2003-06-12 Mari Niinikoski Method for pretreatment of filler, modified filler with a hydrophobic polymer and use of the hydrophobic polymer
US7927458B2 (en) 2001-04-11 2011-04-19 International Paper Company Paper articles exhibiting water resistance and method for making same
US20030012897A1 (en) 2001-07-12 2003-01-16 Sonoco Development, Inc. Liquid-resistant paperboard tube, and method and apparatus for making same
WO2003078734A1 (en) 2002-03-19 2003-09-25 Raisio Chemicals Ltd Composition for surface treatment of paper
CN1449913A (zh) 2002-04-05 2003-10-22 俞建虎 纳米微粒防水瓦楞纸板
CN2557325Y (zh) 2002-04-05 2003-06-25 浙江上峰包装集团有限公司 纳米微粒防水瓦楞纸板
US7229678B2 (en) 2002-05-02 2007-06-12 Evergreen Packaging Inc. Barrier laminate structure for packaging beverages
US20030211050A1 (en) 2002-05-09 2003-11-13 The Procter & Gamble Company Compositions comprising anionic functionalized polyorganosiloxanes for hydrophobically modifying surfaces and enhancing delivery of active agents to surfaces treated therewith
WO2004035929A1 (en) 2002-10-15 2004-04-29 Dow Global Technologies Inc. Method of producing a multilayer coated substrate having improved barrier properties
US6949167B2 (en) 2002-12-19 2005-09-27 Kimberly-Clark Worldwide, Inc. Tissue products having uniformly deposited hydrophobic additives and controlled wettability
DE102004014483A1 (de) 2004-03-24 2005-10-13 Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. Antimikrobielle Beschichtungszusammensetzung und Verfahren zu deren Herstellung
US20080265222A1 (en) 2004-11-03 2008-10-30 Alex Ozersky Cellulose-Containing Filling Material for Paper, Tissue, or Cardboard Products, Method for the Production Thereof, Paper, Tissue, or Carboard Product Containing Such a Filling Material, or Dry Mixture Used Therefor
EP1736504A1 (en) 2005-06-21 2006-12-27 Weyerhaeuser Company Barrier material and method of making the same
CN2871192Y (zh) 2006-01-04 2007-02-21 佘文龙 环保装潢纸材
US20080041542A1 (en) 2006-08-18 2008-02-21 Mcgill University Cellulose composites comprising hydrophobic particles and their use in paper products
WO2008023170A1 (en) 2006-08-23 2008-02-28 Isis Innovation Limited Tailored control of surface properties by chemical modification
EP1925732A1 (de) 2006-09-29 2008-05-28 Mondi Packaging AG Verpackungsmaterial mit Barriereschicht
US20080113188A1 (en) 2006-11-09 2008-05-15 Shah Pratik B Hydrophobic organic-inorganic hybrid silane coatings
US20090304996A1 (en) * 2006-12-15 2009-12-10 Asahi Glass Company, Limited Article having water-repellent surface
US20080188154A1 (en) 2007-02-06 2008-08-07 Jen-Coat, Inc. Film laminate
US7943234B2 (en) 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
US20100311889A1 (en) 2007-12-17 2010-12-09 Patrick Arthur Charles Gane Method for manufacturing a coating slip, using an acrylic thickener with a branched hydrophobic chain, and the slip obtained
JP2009173909A (ja) 2007-12-28 2009-08-06 Nippon Paper Industries Co Ltd セルロースナノファイバーの製造方法及びセルロースの酸化触媒
US20090252884A1 (en) * 2008-01-16 2009-10-08 Bayer Materialscience Ag Silica-containing uv-crosslinkable hardcoat coatings comprising urethane acrylates
WO2009091406A1 (en) 2008-01-18 2009-07-23 Meadwestvaco Corporation Coated paperboard with enhanced compressibility
US20110033663A1 (en) 2008-05-09 2011-02-10 The Regents Of The University Of California Superhydrophobic and superhydrophilic materials, surfaces and methods
WO2010000476A1 (en) * 2008-07-02 2010-01-07 Padana Ag Porous material comprising nanoparticles
US20100233468A1 (en) 2009-03-13 2010-09-16 Nanotech Industries, Inc. Biodegradable nano-composition for application of protective coatings onto natural materials
ES2354545A1 (es) 2009-04-24 2011-03-16 Avanzare Innovacion Tecnologica, S.L. Modificación superficial de nanomateriales mediante técnicas sonoquímicas y de auto-ensamblaje para la formación de nanocomposites plásticos.
US20110008585A1 (en) 2009-07-13 2011-01-13 Schuelke Robert G Water-resistant corrugated paperboard and method of preparing the same
CN101623853A (zh) 2009-07-31 2010-01-13 湖北玉立砂带集团股份有限公司 全树脂耐水砂纸
US20110081509A1 (en) 2009-10-06 2011-04-07 Ching-Wen Chang Degradable heat insulation container
WO2011059398A1 (en) 2009-11-16 2011-05-19 Kth Holding Ab Strong nanopaper

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition", APPLIED SURFACE SCIENCE, vol. 257, 2011, pages 1911 - 1917
"Development of superhydrophobic coating on paperboard surface using the Liquid Flame Spray", SURFACE & COATINGS TECHNOLOGY, vol. 205, 2010, pages 436 - 445
"Modifications of paper and paperboard surfaces with a nanostructured polymer coating", PROGRESS IN ORGANIC COATINGS, vol. 69, 2010, pages 442 - 454
PILOTEK ET AL.: "Wettability of Microstructured Hydrophobic Sol-Gel Coatings", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 26, 2003, pages 789 - 792, XP055172876 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783930B2 (en) * 2012-04-13 2017-10-10 Sigmaq Alimentos, S.A. De C.V. Hydrophobic paper or cardboard with self-assembled nanoparticles and method for the production thereof
US20150231821A1 (en) * 2012-09-25 2015-08-20 Stora Enso Oyj Method for the manufacturing of a polymer product with super- or highly hydrophobic characteristics, a product obtainable from said method and use thereof
US10421230B2 (en) * 2012-09-25 2019-09-24 Stora Enso Oyj Method for the manufacturing of a polymer product with super- or highly hydrophobic characteristics, a product obtainable from said method and use thereof
CN110452307A (zh) * 2019-07-24 2019-11-15 衢州学院 一种改性纳米纤维素及其制备方法
CN110452307B (zh) * 2019-07-24 2021-05-11 衢州学院 一种改性纳米纤维素及其制备方法

Also Published As

Publication number Publication date
US9783930B2 (en) 2017-10-10
ES2743051T3 (es) 2020-02-18
EP2837736B1 (en) 2019-05-22
PT2837736T (pt) 2019-09-05
CR20140474A (es) 2014-11-05
MX366743B (es) 2019-07-04
MX2012004387A (es) 2014-04-08
US20150330025A1 (en) 2015-11-19
BR112014025470A2 (pt) 2017-06-20
EP2837736A4 (en) 2015-12-09
EP2837736A1 (en) 2015-02-18
CA2870127A1 (en) 2013-10-17
BR112014025470B1 (pt) 2021-06-29
CA2870127C (en) 2018-01-16

Similar Documents

Publication Publication Date Title
ES2743051T3 (es) Papel o cartón hidrófobo con nanopartículas auto-ensambladas y método para elaborarlo
ES2703174T3 (es) Procedimiento de producción de un material de embalaje recubierto y material de embalaje con al menos una capa de barrera para compuestos hidrófobos
Rovera et al. Nano-inspired oxygen barrier coatings for food packaging applications: An overview
ES2782502T3 (es) Métodos para producir un material de embalaje recubierto y un material de embalaje con al menos una capa de bloqueo para compuestos hidrófobos
CN107709665A (zh) 用于聚合物乳液顶涂层的疏水性涂布纸基材及其制备方法
Cavallaro et al. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection
JP3931665B2 (ja) ガスバリアー性積層体
Gaikwad et al. Overview on in polymer-nano clay composite paper coating for packaging application
US20170233947A1 (en) Additives for papermaking
Samyn et al. Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates
JP3760853B2 (ja) ガスバリアー性積層体
ES2306249T3 (es) Composicion para producir una capa barrera sobre un material de envasado laminado.
Cairns et al. Use of spherical silica particles to improve the barrier performance of coated paper
JP2000314096A (ja) 防湿積層体
JP2000220095A (ja) 防湿紙
KR20240158416A (ko) Cnf 및 나노 입자를 포함하는 종이 코팅용 조성물 및 이를 이용한 코팅지
Vartiainen et al. Bio-Hybrid Nanocomposite Roll-to-Roll Coatings for Fiber-Based Materials and Plastics
Feng Enhanced barrier performance of cellulosic wood fiber/filler network
Nypelö Surface-modified nanoparticles for ultrathin coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2870127

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14394090

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: CR2014-000474

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 2013775835

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025470

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014025470

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141013