WO2013152925A1 - Détermination de position d'un actionneur hydrostatique - Google Patents

Détermination de position d'un actionneur hydrostatique Download PDF

Info

Publication number
WO2013152925A1
WO2013152925A1 PCT/EP2013/055600 EP2013055600W WO2013152925A1 WO 2013152925 A1 WO2013152925 A1 WO 2013152925A1 EP 2013055600 W EP2013055600 W EP 2013055600W WO 2013152925 A1 WO2013152925 A1 WO 2013152925A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field sensor
signal
sensor
rotational position
Prior art date
Application number
PCT/EP2013/055600
Other languages
German (de)
English (en)
Inventor
Markus Dietrich
Steffen LINZ
Jürgen GERHART
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112013002025.4T priority Critical patent/DE112013002025B4/de
Priority to CN201380017168.7A priority patent/CN104204592B/zh
Publication of WO2013152925A1 publication Critical patent/WO2013152925A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3021Angle

Definitions

  • the invention relates to a hydrostatic actuator, in particular for actuating a
  • Friction clutch in a motor vehicle In particular, the invention relates to a technique for determining a position of the hydrostatic actuator.
  • a clutch is provided to selectively interrupt the powertrain.
  • the clutch is hydraulically actuated, wherein in the region of the clutch, a hydraulic slave cylinder is arranged, which is connected via a pressure line with a hydraulic master cylinder.
  • the master cylinder is displaceable by means of a gear spindle by an electric motor, so that the electric motor can be controlled to engage or disengage the clutch.
  • sensors which determine the position of a permanent magnet on the gear spindle based on the magnetic field of the permanent magnet and convert it into a signal indicative of the rotational angle of the spindle.
  • the quality of the sensor in terms of probability of failure and failure frequency can be expressed in classes such as those defined by the standard ISO CD 26262 "ASIL.” The higher the ASIL class of the sensor, the more expensive the manufacture and the more expensive the use of the sensor. The object of the invention is to improve the quality of a sensor signal beyond the classification of the assigned sensor.
  • a hydrostatic actuator comprises a gear spindle with two mutually rotatable elements.
  • the first element has a magnetic element and the second element has a first magnetic field sensor for determining an absolute angular position of the two elements and a second magnetic field sensor for providing a signal indicative of a predetermined rotational position of the two elements.
  • a method for determining a position of the actuator includes steps of determining a first signal of the first magnetic field sensor and a second signal of the second magnetic field sensor, determining a rotational position of the first relative to the second element based on the first signal, and plausibility checking the determined rotational position on the base of the second signal.
  • the plausibilized signal may have a quality that is above the classification of the first magnetic field sensor without the second magnetic field sensor having a higher classification than the first magnetic field sensor.
  • the stored rotational position comprises an interval which contains the predetermined rotational position to which the signal of the second magnetic field sensor points.
  • the interval contains the predetermined rotational position to which the signal of the second magnetic field sensor points.
  • a tolerance of the method against small deviations between the signals can be controlled.
  • it can also be determined whether the determined rotational position deviates from the stored rotational position by more than a predetermined amount.
  • An inventive control device is adapted to determine the rotational position of the first element with respect to the second element by means of the described method.
  • the control unit may be embodied integrated with the arrangement of magnetic field sensors and may also be optionally configured to carry out further control tasks, for example the control of an electric motor for driving the hydrostatic actuator.
  • a position sensor for providing signals for determining a position of the described hydrostatic actuator comprises a magnetically fixed to the first element magnetic element, a first magnetic field sensor, which is rotatably mounted with respect to the second element, for providing an indicative of the absolute angular position of the elements signal, and a second magnetic field sensor rotationally fixed with respect to the second element, for providing a signal indicative of a predetermined rotational position of the two elements.
  • the position sensor according to the invention requires compared with a known, absolute position sensor only a second magnetic field sensor, which does not have to have a high ASIL classification.
  • the existing magnetic element can be used for both magnetic field sensors, whereby costs can be saved.
  • the second magnetic field sensor provides a digital signal, in particular a rising or falling edge of a bivalent signal, when the two elements occupy the predetermined rotational position relative to one another.
  • a control unit which can be connected to the position sensor can be prompted precisely in time for scanning the signal of the first magnetic field sensor, whereby the correlation of the signals of the two magnetic field sensors can be improved.
  • Such a digital magnetic field sensor may also be available as a low cost integrated device.
  • It can be provided a plurality of circumferentially offset further second magnetic field sensors. Thereby, several signals can be provided per revolution of the first with respect to the second element, each of which indicates a different predetermined rotational position.
  • the plausibility check can thus be carried out with increased frequency, as a result of which an even higher quality of the position determination can be made possible.
  • the magnetic element may comprise a first magnet associated with the analog magnetic field sensor and a plurality of circumferentially offset second magnets corresponding to the second magnetic field. sensor are assigned.
  • the number of signals of the second magnetic field sensor per revolution of the first with respect to the second element can also be increased.
  • the second magnetic field sensor is less complex for this purpose.
  • the processing device may be configured to output an error signal if the signals provided by the magnetic field sensors do not correspond to one another.
  • a processing device that further evaluates the specific position may be actively informed of a problem in determining the actuator position. Error handling by the processing device can thereby be supported.
  • the rotational position determined by the position sensor in the event of a fault can be used under reserve.
  • Figure 1 is a hydraulic clutch actuation with a position sensor
  • Figure 2 is a magnetic element of the position sensor of Figure 1;
  • Figure 3 signals from sensors of the position sensor of Figure 1
  • FIG. 4 shows a flow chart of a method for determining the position of the hydrostatic actuator from FIG. 1; represents.
  • FIG. 1 shows a hydraulic clutch actuation 100 with a position sensor 105.
  • the clutch actuation 100 is configured to actuate a clutch 10, in particular an automated clutch in a drive train of a motor vehicle.
  • the clutch actuator 100 includes a master cylinder 1 15, which is connected via a designated also as a pressure line hydraulic line 120 with a slave cylinder 125.
  • a slave piston 130 is movable back and forth, which operates via an actuator 135 and usually with the interposition of a bearing 140 constructed as a double friction clutch clutch 1 10.
  • the master cylinder 1 15 is connected via a connection opening with a surge tank 145.
  • a master piston 150 is movable back and forth.
  • a piston rod 155 From the master piston 150 is a piston rod 155, which is translationally movable in the longitudinal direction together with the master piston 150.
  • the piston rod 155 of the master piston 150 is coupled via a threaded spindle 160, which is preferably designed as a magnet-Wälz- threaded spindle, with an electric motor actuator 165.
  • the threaded spindle 160 comprises a first element 170, which is designed here as a spindle, and a second element 175, which is designed here as a socket.
  • the position sensor 105 is configured to determine a rotational position of the first member 170 relative to the second member 175.
  • the position sensor 105 comprises a magnet element 180 rotationally fixed to the first element 170 and a first magnetic field sensor 185 and a second magnetic field sensor 190, which are mounted rotationally fixed relative to the second element 175.
  • the position sensor 105 comprises an evaluation circuit 200, which may be constructed in different ways.
  • the evaluation circuit 200 comprises only one processing device that performs all the tasks required to process the signals.
  • the evaluation circuit 200 shown comprises a first processing device 215 which is connected to the first magnetic field sensor 185, a second sampling device 210 which is connected to the second magnetic field sensor 190, a first processing device 215 and a second processing device 220 which are connected to the first sampling device 205 or to the first sampling device 205
  • the second scanning device 210 is connected.
  • the processing means 215, 220 process the signals provided by the samplers 205, 210 so as to be correlated with each other.
  • a third processing means 225 may be integrated with the elements 205 to 220 or, as shown in Figure 1, discretely constructed thereof.
  • a bus driver 230 is provided to facilitate the third processing.
  • processing device 225 by means of a data bus 235, which must not only be included cheaper by the evaluation circuit 200, tie.
  • the third processing device 225 has the task of the rotational position of the first
  • the position determined by the third processing device 225 can thereby have a reliability which lies above the reliabilities of the elements of the position sensor 105, in particular above the reliabilities of the magnetic field sensors 185 and 190.
  • FIG. 2 shows the magnetic element 180 of the position sensor 105 from FIG. 1.
  • the magnetic element 180 comprises only a single magnet 180.1, which is non-rotatably and preferably coaxially connected to the first element 170 of the threaded spindle 160.
  • the first magnetic field sensor 185 is preferably also mounted coaxially with the first element 170 in the region of the first magnet 180.1.
  • the first magnetic field sensor 185 provides a signal indicative of the direction of the magnetic field. From this signal, the rotational position of the first element 170 with respect to the second element 175 can be determined, wherein this determination can be performed integrated within the first magnetic field sensor 185.
  • the second magnetic field sensor 190 may also be an analog magnetic field sensor, which is preferably arranged coaxially or axially close to the first magnet 180.1.
  • the second magnetic field sensor 190 is arranged digitally and at a radial distance from the axis of rotation of the first element 170 of the threaded spindle 160.
  • the digital magnetic field sensor 190 provides a digital signal, with a rising or falling signal edge indicative of a predetermined rotational position of the elements 175 and 180.
  • the second magnetic field sensor 190 may in particular comprise an integrated Hall sensor with digital output. If the digital magnetic field sensor 190 is arranged in the region of the individual magnet 180.1, it usually provides a digital signal which comprises one rising and one falling edge per revolution of the first element 170. In different embodiments, only one or both edges can be evaluated.
  • a plurality of second magnetic field sensors 190 may be included are offset in the circumferential direction in the region of the magnet 180.1.
  • a coaxial ring may be provided by the second magnet 180.2, wherein the second magnetic field sensor 190 is arranged in the region of the second magnet 180.2.
  • the two measures can also be combined so that a plurality of second magnetic field sensors 190 are arranged in the region of the plurality of second magnets 180.2.
  • FIG. 3 shows signals of the magnetic field sensors 180 and 190 of the position sensor 105 from FIG. 1.
  • the second magnetic field sensor 190 is mounted in the region of the first magnet 180.1 and no second magnets 180.2 are provided.
  • a first curve 305 corresponds to the signal of the first magnetic field sensor 185 and a second curve 310 to the signal of the second magnetic field sensor 190. It becomes clear how the rising or falling edges of the digital signal in the second curve 310 correspond to predetermined rotational positions on the basis of the signal of the first signal 305 can be determined.
  • a horizontal shift may also occur on the basis of series variations or temperature effects.
  • the relationship between an edge of the second curve 310 and a rotational position is known, so that whenever the second curve 310 has a flank, on the basis of the first curve 305, the rotational position is determined and compared with the associated known rotational position. If the determined rotational position coincides sufficiently precisely with the predetermined rotational position, then the specific rotational position is plausible. Otherwise, an error in the area of the position sensor 105 must be assumed.
  • FIG. 4 shows a flowchart of a method 400 for determining the rotational position of the gear spindle 160 from FIG. 1.
  • a signal for determining the rotational position arrives. Such a signal is usually generated periodically. If the signal has arrived, then in a step 410 the signal provided by the first magnetic field sensor 185 is determined or sampled. On the basis of the determined signal, the rotational position of the first element 170 with respect to the second element 175 of the threaded spindle 160 is then determined in a step 415. This provision is performed by the first processing device 215 in the embodiment shown in FIG. Subsequently, the determined rotational position is transmitted in a step 420 to the third processing device 225, if this is provided.
  • step 425 the signal of the second magnetic field sensor 190 is scanned in a step 425. If it is an analog magnetic field sensor, processing according to steps 410 and 415 may follow. If it is a digital magnetic field sensor 190, then step 425 may include detecting a falling or rising edge of the provided signal, as described above with reference to FIG. In a following step 430, which corresponds to step 420, the second signal is also transmitted to the third processing device 225. The transmission of steps 420 and 430 may include providing the sampled signal with a measurement time and possibly a checksum in a data message.
  • a step 435 the messages transmitted in steps 420 and 430, respectively, arrive at the third processing means 225 and are received.
  • a digital second magnetic field sensor 190 in a step 440, one or more references to a rotational position of the first element 170 with respect to the second element 175 are obtained from a memory.
  • the instructions may be kept in the form of absolute rotational positions or in the form of intervals.
  • step 445 it is checked whether the rotation position determined in step 415 is plausible, that is, sufficiently close to the predetermined rotation position. If this is not the case, an error signal is output in a step 450. Otherwise, a plausible rotation position is available in a step 455.
  • This rotational position can be converted in a subsequent step 460 into a translational position of the first element 170 with respect to the second element 175. Both positions are characteristic of an opening degree of the clutch 1 10.
  • One of the two positions can be used in the following to control the electric motor actuator 165 so that a predetermined time course of the opening or closing of the clutch 1 10 results. LIST OF REFERENCE NUMBERS

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Actionneur hydrostatique comprenant une broche de transmission présentant deux éléments tournant mutuellement. Sur le premier élément est monté un élément magnétique et, sur le second élément, sont montés un premier capteur de champ magnétique, pour la détermination d'une position angulaire absolue des deux éléments, et un second capteur de champ magnétique, pour la production d'un signal indiquant une position de rotation prédéterminée des deux éléments. Un procédé de détermination d'une position de l'actionneur comprend les étapes suivantes : détermination d'un premier signal du premier capteur de champ magnétique, et d'un second signal du second capteur de champ magnétique, détermination d'une position de rotation du premier par rapport au second élément, sur la base du premier signal, et contrôle de plausibilité de la position de rotation déterminée, sur la base du second signal. Un module de commande est prévu pour l'exécution du procédé. Un capteur de position comprend les deux capteurs de champ magnétique pour la production d'un premier signal qui indique la position absolue du premier par rapport au second élément, et d'un second signal qui indique une position de rotation prédéterminée des deux éléments.
PCT/EP2013/055600 2012-04-11 2013-03-19 Détermination de position d'un actionneur hydrostatique WO2013152925A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013002025.4T DE112013002025B4 (de) 2012-04-11 2013-03-19 Verfahren zum Bestimmen und Steuergerät zur Bestimmung einer Position eines hydrostatischen Aktors sowie Positionssensor
CN201380017168.7A CN104204592B (zh) 2012-04-11 2013-03-19 静液压的促动器的位置确定

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012205822 2012-04-11
DE102012205822.2 2012-04-11
DE102012214227 2012-08-10
DE102012214227.4 2012-08-10

Publications (1)

Publication Number Publication Date
WO2013152925A1 true WO2013152925A1 (fr) 2013-10-17

Family

ID=48040176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055600 WO2013152925A1 (fr) 2012-04-11 2013-03-19 Détermination de position d'un actionneur hydrostatique

Country Status (3)

Country Link
CN (1) CN104204592B (fr)
DE (2) DE112013002025B4 (fr)
WO (1) WO2013152925A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008694A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Nockenwellengeberrad für eine Brennkraftmaschine
KR20200019631A (ko) * 2017-06-29 2020-02-24 섀플러 테크놀로지스 아게 운트 코. 카게 Gmr-센서에 대한 자석의 위치를 조정하기 위한 방법 및 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200949A1 (de) * 2015-02-02 2016-08-04 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz eines hydrostatischen Kupplungsaktors, insbesondere für ein Fahrzeug
KR101776528B1 (ko) * 2016-10-10 2017-09-07 현대자동차주식회사 하이브리드 차량의 엔진 클러치 유압 리필 시 제어 방법
DE102017109403B4 (de) * 2017-05-03 2023-06-22 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
DE102018219777A1 (de) * 2018-11-19 2020-05-20 Zf Friedrichshafen Ag Permanentmagnetischer Geber für eine Sensorvorrichtung, Sensorvorrichtung und Bedienvorrichtung zur Bedienung eines Fahrzeugs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210372A1 (de) * 2002-03-08 2003-09-25 Siemens Ag Drehwinkelsensor mit hoher Winkelauflösung
DE102011014932A1 (de) * 2010-04-12 2011-10-13 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor und Anordnung eines Hydrostataktors in einem Kraftfahrzeug
DE102010031506A1 (de) * 2010-07-19 2012-01-19 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262526A (en) * 1978-07-21 1981-04-21 Nippondenso Co., Ltd. Rotational position detecting apparatus
US6064197A (en) * 1997-07-26 2000-05-16 U.S. Philips Corporation Angle sensor having lateral magnetic field sensor element and axial magnetic field direction measuring element for determining angular position
DE10252031A1 (de) * 2002-11-06 2004-05-27 Micronas Gmbh Vorrichtung und Verfahren zum Erfassen einer Winkelposition eines rotierenden Gegenstandes
JP2005043228A (ja) * 2003-07-22 2005-02-17 Asahi Kasei Electronics Co Ltd デジタル角度測定システム
DE102007024249A1 (de) * 2007-05-18 2008-12-11 CoActive Technologies, Inc., Greenwich Vorrichtung zum Erfassen eines Stellwinkels eines um eine Achse drehbaren Elementes
DE102008030201A1 (de) * 2007-07-25 2009-01-29 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb
US7891261B2 (en) * 2007-08-16 2011-02-22 GM Global Technology Operations LLC Clutch actuation system with locking mechanism and method of controlling engagement of a clutch
DE102008042795A1 (de) * 2008-10-13 2010-04-15 Robert Bosch Gmbh Vorrichtung zur Erfassung eines Drehwinkels eines drehbaren Teils

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210372A1 (de) * 2002-03-08 2003-09-25 Siemens Ag Drehwinkelsensor mit hoher Winkelauflösung
DE102011014932A1 (de) * 2010-04-12 2011-10-13 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor und Anordnung eines Hydrostataktors in einem Kraftfahrzeug
DE102010031506A1 (de) * 2010-07-19 2012-01-19 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014008694A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Nockenwellengeberrad für eine Brennkraftmaschine
KR20200019631A (ko) * 2017-06-29 2020-02-24 섀플러 테크놀로지스 아게 운트 코. 카게 Gmr-센서에 대한 자석의 위치를 조정하기 위한 방법 및 장치
KR102656404B1 (ko) 2017-06-29 2024-04-12 섀플러 테크놀로지스 아게 운트 코. 카게 Gmr-센서에 대한 자석의 위치를 조정하기 위한 방법 및 장치

Also Published As

Publication number Publication date
DE112013002025A5 (de) 2015-02-05
DE112013002025B4 (de) 2022-02-17
CN104204592B (zh) 2018-01-16
CN104204592A (zh) 2014-12-10
DE102013204752A1 (de) 2013-10-31

Similar Documents

Publication Publication Date Title
EP2923103B1 (fr) Procédé de détermination et/ou de commande de la position d'un moteur électrique
WO2013152925A1 (fr) Détermination de position d'un actionneur hydrostatique
DE102015217386A1 (de) Verfahren und System zum Betreiben eines Kraftfahrzeugs
WO1998054483A2 (fr) Procede et dispositif de commande d'un embrayage
DE112018003519T5 (de) Schaltbereichssteuerungsvorrichtung
DE102021108224B4 (de) Kontaktloser Absolutneigungspositionssensor für elektrisch einstellbare Säulen
DE112018003677T5 (de) Schaltbereichsteuervorrichtung
DE102016212175A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines elektrisch-kommutierbaren Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102013211041A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
EP3052359A1 (fr) Procédé et dispositif pour surveiller le fonctionnement d'un système d'aide à la conduite
DE102011116730A1 (de) Verfahren und System zur Bedatung eines Steuergeräts
DE102007059688A1 (de) Aktuatoreinrichtung und Verfahren zum Ansteuern der Aktuatoreinrichtung
DE102007062566A1 (de) Kraftfahrzeug
EP4007891B1 (fr) Procédé et dispositif pour localiser un véhicule dans une zone environnante
DE112018005032T5 (de) Schaltbereichssteuervorrichtung
EP3160785B1 (fr) Procédé pour faire fonctionner un dispositif d'entraînement d'un véhicule à moteur et dispositif d'entraînement correspondant
DE102014118566A1 (de) Verfahren zum Betreiben einer Sensoranordnung für ein Kraftfahrzeug mit Auswahl von Sensordaten, Sensoranordnung sowie Kraftfahrzeug
EP2388618A1 (fr) Procédé de détection de perturbations du fonctionnement de mesure d'un agencement de mesure à ultrasons d'un véhicule automobile et véhicule automobile
EP3475772B1 (fr) Dispositif pour utiliser des fonctions de véhicule basées sur des capteurs dans un véhicule à moteur et dispositif de calcul pour véhicule à moteur et véhicule à moteur
EP2917061B1 (fr) Pédale d'accélérateur active pour un véhicule et véhicule avec une telle pédale
DE102010060278B4 (de) Steuerungsvorrichtung und Aktuator für die Feststellbremse eines Fahrzeuges
EP3645980A1 (fr) Procédé et dispositif servant à ajuster une position d'un aimant en direction d'un capteur gmr
DE102013212177A1 (de) Verfahren und System zum Bestimmen von Zustandsgrößen eines Elektromotors zum Antrieb eines Fahrzeugs
DE102012023980B4 (de) Verfahren und Vorrichtung zur Verifizierung einer ersten Relativlage mittels einer zweiten Relativlage
EP2565580B1 (fr) Procédé de détermination d'une dimension d'un objet dans un environnement d'un véhicule ainsi que dispositif correspondant et véhicule avec un tel dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13713117

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130020254

Country of ref document: DE

Ref document number: 112013002025

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013002025

Country of ref document: DE

Effective date: 20150205

122 Ep: pct application non-entry in european phase

Ref document number: 13713117

Country of ref document: EP

Kind code of ref document: A1