WO2013152588A1 - 一种全双工无线通信装置、方法及系统 - Google Patents

一种全双工无线通信装置、方法及系统 Download PDF

Info

Publication number
WO2013152588A1
WO2013152588A1 PCT/CN2012/084105 CN2012084105W WO2013152588A1 WO 2013152588 A1 WO2013152588 A1 WO 2013152588A1 CN 2012084105 W CN2012084105 W CN 2012084105W WO 2013152588 A1 WO2013152588 A1 WO 2013152588A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
digital
polarized antenna
sub
transmit
Prior art date
Application number
PCT/CN2012/084105
Other languages
English (en)
French (fr)
Inventor
李云岗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12874058.6A priority Critical patent/EP2838207A4/en
Publication of WO2013152588A1 publication Critical patent/WO2013152588A1/zh
Priority to US14/509,382 priority patent/US9520908B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention belongs to the field of wireless communication technologies, and in particular, to a full duplex wireless communication device, method and system.
  • the duplex mode is divided into time division multiplexing TDD, frequency division multiplexing FDD and half duplex H-FDD modes, that is, either in the frequency domain or in time. To send and receive, it is impossible to achieve both the same frequency and the same time.
  • the transmission intensity of the transmitted signal at the antenna port is much larger than that of the received other node from a distant node, resulting in receiver blocking, ADC analog-to-digital conversion.
  • Signal sampling bit width and dynamic range limitation, or the signal to noise ratio is too low to demodulate the correct signal, the system can not work properly. Therefore, under normal circumstances, full-duplex communication cannot work normally by using duplex mode such as FDD or TDD.
  • the purpose of the embodiments of the present invention is to provide a full-duplex wireless communication device, method, and system, which are intended to solve the problem of the number of antennas and the accuracy of placement positions when implementing full-duplex wireless communication by using the prior art. High, the interference signal elimination effect is limited, and the cost is high.
  • the embodiment of the present invention is implemented as a full-duplex wireless communication device, and the device includes a dual-polarized antenna, an analog domain cancellation module, and a digital domain cancellation module, wherein:
  • the first polarized antenna of the dual-polarized antenna is used to output a transmit signal, and the second polarized antenna is used to acquire a received signal, the received signal includes a useful signal and is polarized from the first root through an air interface a first emitter signal directly coupled to the antenna;
  • the analog domain cancellation module is configured to acquire a second transmit sub-signal coupled with a transmit signal output from the first polarized antenna, and adjust an amplitude and a phase parameter of the second transmit sub-signal to be converted into a a third transmit sub-signal, the first transmit sub-signal of the received signal obtained by the second polarized antenna is cancelled according to the third transmit sub-signal, and the received signal after the first transmit sub-signal is cancelled is first.
  • the digital domain cancellation module is configured to cancel the second digital signal in the first digital signal, and output a first digital signal after the second digital signal is eliminated.
  • Another object of the embodiments of the present invention is to provide a full duplex wireless communication method, the method comprising the following steps:
  • a first polarized antenna of the dual polarized antenna outputs a transmit signal, and a second of the dual polarized antennas acquires a received signal, the received signal including a useful signal and the first root from the air interface a first emitter signal directly coupled to the polarized antenna;
  • Decoding according to the third transmit sub-signal, a first transmit sub-signal of the received signal acquired by the second polarized antenna, and sampling the received signal after canceling the first transmit sub-signal as a first digital signal;
  • Another object of embodiments of the present invention is to provide a system including the above-described full duplex wireless communication device.
  • a dual-polarized antenna is used in the full-duplex wireless communication device, and the orthogonal isolation between the dual-polarized antennas can avoid the requirements for the position and number of the antennas in the prior art.
  • the dual-polarized antenna can reduce the interference intensity of the first transmitted sub-signal directly coupled by a polarized antenna, and achieve a certain amount of interference signal isolation, by further combining the analog domain cancellation module and the digital domain pair.
  • the elimination module can further reduce the interference signal, and solves the problem that the prior art has high requirements on the number of antennas, the positional accuracy of the placement, the interference signal elimination effect, and the high cost when implementing full-duplex wireless communication. Under the premise of ensuring full-duplex wireless communication, the interference signal is effectively eliminated, and the system cost is reduced.
  • FIG. 1 is a structural diagram of a full duplex wireless communication apparatus according to a first embodiment of the present invention
  • FIG. 2 is a specific structural diagram of a simulated domain cancellation module according to a first embodiment of the present invention
  • FIG. 3 is a specific structural diagram of a digital domain cancellation module according to a first embodiment of the present invention.
  • FIG. 4 is a structural diagram of a full duplex wireless communication apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart of an implementation of a full duplex wireless communication method according to a third embodiment of the present invention.
  • the isolation characteristic of the polarized antenna to the full-duplex wireless communication technology, combined with the digital and analog joint cancellation technology of the feedback channel, the interference signal coupled to the receiving channel of the transmission channel is effectively eliminated, and the implementation is realized.
  • the problem of the influence of the number of antennas and the positional accuracy of the prior art is eliminated, and the interference signal elimination effect is further enhanced, and the antenna use cost is reduced.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 shows the structure of a full-duplex wireless communication apparatus according to a first embodiment of the present invention, and for convenience of explanation, only parts related to the embodiment of the present invention are shown.
  • the full-duplex wireless communication device can be applied in a point-to-point wireless communication system, such as a microwave system, or in other full-duplex wireless communication systems, or can be extended to a communication system such as a cellular, the full-duplex wireless
  • the communication device includes a dual polarized antenna 11, an analog domain cancellation module 12, and a digital domain cancellation module 13, wherein:
  • the first polarized antenna 111 of the dual-polarized antenna 11 is for outputting a transmit signal
  • the second polarized antenna 112 is for acquiring a received signal
  • the received signal includes a useful signal and the first polarization from the air port
  • the first emitter signal directly coupled to the antenna 111.
  • the physical positions of the first polarized antenna 111 and the second polarized antenna 112 may be placed together to reduce the size and the like, and the two antennas are Orthogonal polarization, one can be a +45 degree polarized antenna, the other is a -45 degree polarized antenna, or one is vertical polarization, the other is horizontal polarization, or other orthogonal polarization forms .
  • the number of antennas can be extended to multiple antenna configurations, such as N transmit antennas and N receive antennas, and the transmit and receive antennas are orthogonally polarized, that is, can be extended to N transmit channels, N Receive channel with N dual-polarized antennas for MIMO (Multiple-Input) Full-duplex communication under Multiple-Output, Multiple Input Multiple Output.
  • MIMO Multiple-Input
  • N Receive channel with N dual-polarized antennas for MIMO (Multiple-Input) Full-duplex communication under Multiple-Output, Multiple Input Multiple Output.
  • an interference signal cancellation effect of about 30 dB can be achieved only on the antenna side.
  • the number of antennas, the accuracy of the placement position and the like are high, the coupling signal elimination effect is limited, and the cost is high.
  • the embodiment of the present invention overcomes the problem that the interference signal elimination effect is better.
  • the demanding position of the antenna is limited, and only two polarized antennas are used, which reduces the cost of the antenna and improves the practicality of full-duplex communication, such as high practicality in systems such as microwave communication. Promote value.
  • the analog domain cancellation module 12 is configured to acquire a second emission sub-signal coupled with a transmission signal output from the first polarization antenna 111, and adjust an amplitude and a phase parameter of the second emission sub-signal to be converted into a third emission. a sub-signal, the first transmit sub-signal of the received signal acquired by the second polarized antenna 112 is cancelled according to the third transmit sub-signal, and the received signal after the first transmit sub-signal is cancelled is the first digital signal, and The first digital signal is output to the digital domain cancellation module 13, while the second emission sub-signal is sampled as a second digital signal, and the second digital signal is output to the digital domain cancellation module 13.
  • the analog domain cancellation module 12 specifically includes:
  • a second transmit sub-signal acquisition unit 121 configured to acquire, by using a preset coupling circuit, a second transmit sub-signal coupled by a transmit signal output from the first polarized antenna 111;
  • the first analog-to-digital conversion unit 122 is configured to perform analog-to-digital conversion of the second emission sub-signal into a second digital signal, and output the second digital signal to the digital domain cancellation module 13;
  • the third transmit sub-signal acquisition unit 123 is configured to adjust the amplitude and phase parameters of the second transmit sub-signal to be converted into the third transmit sub-signal according to the amplitude and phase parameters sent from the digital domain cancellation module 13;
  • a first interference signal canceling unit 124 configured to cancel, by using the third transmit sub-signal, a first one of the received signals acquired by the second polarized antenna 112;
  • the second analog-to-digital conversion unit 125 is configured to perform analog-to-digital conversion of the received signal after canceling the first transmit sub-signal into a first digital signal, and output the first digital signal to the digital domain cancellation module 13.
  • the antenna signal of the first polarized antenna 111 is transmitted, and the output signal is recorded as Yout(t).
  • the second transmit sub-signal acquisition unit 121 can be coupled back through the transmit signal of the first polarized antenna 111, and the intensity or the amplitude of the coupled signal can be adjusted.
  • the coupled signal is the second transmit sub-signal Yfb. (t).
  • the second emission sub-signal Yfb(t) is divided into two outputs, one for performing inversion, gain, delay adjustment, and the like in the analog domain, and the other second second sub-signal Yfb(t) is passed through the first
  • the analog-to-digital conversion unit 122 converts to a second digital signal, denoted as Yfb(n), and outputs the Yfb(n) to the digital domain cancellation module in the full-duplex wireless communication device.
  • the input signal of the interference cancellation controller preset in the digital domain cancellation module 13 can be used.
  • the interference cancellation controller simultaneously outputs the amplitude g(t) and the phase parameter t0 to the third emission sub-signal acquiring unit 123, and the third emission sub-signal acquiring unit 123 adjusts the second emission according to the amplitude and phase parameters.
  • the reverse adjustment can be adjusted by using the phase parameter, or the reverse adjustment unit can be separately set.
  • the received signal includes the useful signal Xin(t1) and the air channel from the first The first emitter signal Ycoup(t1) directly coupled by a polarized antenna.
  • the first interference signal cancellation unit 124 such that the interference signal in the received signal is cancelled by the third emission sub-signal, that is, the third emission sub-signal Yic(t2), Ycoup(t1), and the useful signal can be used.
  • Xin(t1) realizes the second-order interference signal elimination after the first-stage antenna polarization isolation interference signal through the synthesizer, and finally the interference signal of the transmission signal coupled to the reception channel is further effectively reduced, and the useful signal Xin (t1) can be demodulated normally.
  • the second analog-to-digital conversion unit 125 performs analog-to-digital conversion of the received signal after canceling the first transmitted sub-signal into a first digital signal, and outputs the first digital signal to the digital domain pair.
  • the digital domain cancellation module 13 is configured to cancel the second digital signal in the first digital signal and output a first digital signal after the second digital signal is cancelled.
  • the digital domain cancellation module 13 includes:
  • the second interference signal canceling unit 131 is configured to cancel the second digital signal in the first digital signal by using a preset interference cancellation controller
  • the output unit 132 is configured to output a first digital signal after the second digital signal is cancelled, and send amplitude and phase parameters to the analog domain cancellation module 12.
  • the second interference signal canceling unit 131 receives the Yfb(n) and X(n) sent by the first analog-to-digital conversion unit 122 and the second analog-to-digital conversion unit 125 of the analog domain cancellation module 12.
  • Unit, baseband processing unit performs subsequent signal demodulation and the like, and the transmitted signal passes through the BBU (Base band).
  • Unit, baseband processing unit performs signal modulation and coding processing, etc., and passes CFR (Crest Factor Ratio) and DUC (Digital Up) of digital intermediate frequency.
  • Converter, digital upconversion), DPD (Digtial Pre-Distortional, digital pre-distortion, digital-to-analog converter DAC, mixer, etc. are processed through the transmit channel and transmitted through the transmit polarized antenna.
  • the output unit 132 can be used to feed back the amplitude and phase parameters to the third transmit sub-signal acquisition unit 123 of the analog domain cancellation module 12 to adjust the amplitude and phase of the second transmit sub-signal according to the obtained amplitude and phase parameters.
  • the parameter is converted to a third emission sub-signal.
  • the digital domain cancellation module 13 is equivalent to the third stage elimination of the interference signal cancellation, that is, on the basis of the elimination of the second-level analog domain interference signal, the joint elimination design between the digital domain and the digital domain is added, and the interference cancellation is once again improved. effect.
  • the full-duplex wireless communication device adopts a dual-polarized antenna, one for transmitting signals and one for receiving signals, and the transmitting antenna and the receiving antenna are orthogonally polarized, which may be +45 degrees.
  • -45 degree polarization which may be horizontal polarization and vertical polarization, or other orthogonal polarization modes, by orthogonally isolating between the dual-polarized antennas to couple the transmission signal to the reception channel.
  • the interference signal is reduced, and further, through analog and digital cancellation, the interference signal that couples the transmitted signal to the receiving channel is effectively reduced, so that the useful signal is normally demodulated.
  • the dual-duplex antenna realizes the full-duplex wireless communication device that simultaneously transmits and receives the same frequency point, which can improve the spectrum use efficiency, reduce the cost, and effectively improve the practicability of the full-duplex communication, and has the microwave system and the like. Practical and promotional value.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 shows the structure of a full-duplex wireless communication apparatus according to a second embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown. As an embodiment of the present invention, the embodiment of the present invention shown in FIG. 4 is a structure further realized on the basis of the above-described first embodiment.
  • the third transmit sub-signal acquisition unit 123, the first interfering signal canceling unit 124, the second analog-to-digital converter 125, the second interfering signal canceling unit 131, and the output unit 132 are respectively coupled to the first polarization in the first embodiment.
  • the unit 125, the second interference signal canceling unit 131, and the output unit 132 are in one-to-one correspondence, and details are not described herein again.
  • connection relationship in the embodiment of the present invention is that the input end of the second transmit sub-signal acquisition unit 121 is wirelessly coupled to the output end of the power amplifier 120, and the output end of the second transmit sub-signal acquisition unit 121 is simultaneously connected to the first mixer 126.
  • the input end is connected to the first input end of the third transmit signal acquisition unit 123, and the output end of the first mixer 126 is connected to the input end of the first analog-to-digital converter 122.
  • the output of the first analog-to-digital converter 122 The first input end of the digital predistortion unit 137 and the first input end of the second interference signal cancelling unit 131 are connected at the same time, and the second input end of the third transmit signal acquisition unit 123 is connected to the input end of the output unit 132. Connected, and the output end of the third transmit signal acquisition unit 123 is connected to the first input end of the first interference signal cancellation unit 124, and the second input end of the first interference signal cancellation unit 124 is connected to the second polarized antenna 112.
  • the output of the first interference signal canceling unit 124 is connected to the input end of the low noise amplifier 127, and the output end of the low noise amplifier 127 is connected to the input end of the second mixer 128, and the second mix
  • the output end of the second digital-to-analog converter 125 is connected to the input end of the second digital-to-analog converter 125.
  • the output end of the second digital-to-analog converter 125 is connected to the second input end of the second interference signal canceling unit 131.
  • the second interference signal canceling unit 131 The third input end is connected to the first output end of the baseband processing unit 134, and the first output end of the second interfering signal canceling unit 131 is connected to the input end of the output unit 132, and the second interfering signal canceling unit 131
  • the output terminal is connected to the input end of the digital down conversion unit 133, and the third output end of the second interference signal cancellation unit 131 is also connected to the second input end of the baseband processing unit 134.
  • the output end of the digital down conversion unit 133 is The first input of the baseband processing unit 134 is coupled, and the output 134 of the baseband processing unit 134 is coupled to the input of the peak-to-average cancellation unit 135, which is equal to the output of the cancellation unit 135 and the digital up-conversion unit 136.
  • the input end is connected, the output end of the digital up-converting unit 136 is connected to the second input end of the digital pre-distortion unit 137, and the output of the digital pre-distortion unit 137 is input to the digital-to-analog converter 1210.
  • the digital-to-analog converter 1210 is connected to the input end of the third mixer 129, and the output end of the third mixer 129 is connected to the input end of the power amplifier 120.
  • the output end of the power amplifier 120 and the first polarized antenna are connected. 111 connected.
  • the antenna port of the first polarized antenna 111 is transmitted, and the output transmission signal is recorded as Yout(t).
  • the second transmit sub-signal acquisition unit 121 can couple part of the first polarized antenna.
  • the output signal of the 111 output is returned, and the coupled signal is recorded as the second emission sub-signal Yfb(t).
  • Yfb(t) is divided into two outputs, and the Yfb(t) signal is sampled and moded by the first mixer 126 for mixing the RF signal and the intermediate frequency signal, and the first digital-to-analog converter 122.
  • the received signal performs interference signal cancellation, wherein the received signal includes a useful signal Xin(t1) and a first transmit sub-signal Ycoup(t1) directly coupled from the first polarized antenna through an air interface, and
  • the second interference signal cancellation unit 131 mainly cancels the second digital signal in the first digital signal according to the received Yfb(n) and X(n), and acquires the interference cancellation signal.
  • the digital signal X'(n) X(n) after the second digital signal Yfb(n), the X'(n) is passed through the digital down conversion unit 133, the baseband processing unit 134, the peak-to-average ratio elimination unit 135, the digital up-conversion unit 136, the digital pre-distortion unit 137, and the analog domain cancellation module 12
  • the third mixer 129, the power amplifier 120, and the like are processed, the transmission signal is output via the first polarized antenna 111.
  • the output unit 132 may also send the amplitude and phase parameters generated by the second interference signal canceling unit 131 to the third transmit signal acquiring unit 123.
  • the full-duplex wireless communication device realizes the same frequency through a transmitting channel, a receiving channel, and a dual-polarized antenna, plus an analog domain cancellation module and a digital domain cancellation module.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 5 is a flowchart showing an implementation process of a full duplex wireless communication method according to a third embodiment of the present invention, which is described in detail as follows:
  • a first polarized antenna in the dual-polarized antenna outputs a transmit signal
  • a second polarized antenna in the dual-polarized antenna acquires a received signal, where the received signal includes a useful signal and A first emitter signal directly coupled to a polarized antenna.
  • the dual-polarized antenna can generally be a +45 degree and -45 degree polarized antenna, a horizontally polarized and vertically polarized antenna, or other orthogonally polarized antenna, but the orthogonally polarized antenna The position between the two can be achieved without precise calculation, and the antenna is efficient and practical.
  • the number of antennas can be extended to multiple antenna configurations, such as N transmit antennas and N receive antennas, and the transmit and receive antennas are orthogonally polarized, that is, can be extended to N transmit channels, N Receive channels with N dual-polarized antennas for MIMO (Multiple-Input) Full-duplex communication under Multiple-Output, Multiple Input Multiple Output.
  • MIMO Multiple-Input
  • the embodiment of the present invention can achieve interference cancellation of about 30 dB by using a dual-polarized antenna to the full-duplex communication device, and finally using the isolation between the polarized antennas.
  • the requirements for the number of antennas, the accuracy of the placement position, and the like are high, the coupling signal elimination effect is limited, and the cost is high.
  • the embodiment of the present invention does not need to ensure the interference signal cancellation effect is better.
  • Accurately calculating the placement position of the dual-polarized antenna overcomes the demanding limitation of the antenna placement position. Since only two polarized antennas are used, the antenna use cost is reduced, and the practicality of full-duplex communication is improved. For example, in systems such as microwave communication, it has high practical and promotional value.
  • step S502 a second transmit sub-signal coupled by the transmit signal output from the first polarized antenna is acquired, and amplitude and phase parameters of the second transmit sub-signal are adjusted to be converted into a third transmit sub-signal.
  • the step S502 specifically includes:
  • the amplitude and phase parameters of the second emission sub-signal are adjusted to be converted to a third emission sub-signal based on the generated amplitude and phase parameters.
  • the transmitting signal is transmitted at the antenna port of the first polarized antenna for outputting the transmitting signal, and the output transmitting signal is recorded as Yout(t), if in front of the antenna port A coupling circuit is preset, and a part of the transmission signal outputted by the first polarization antenna can be coupled back.
  • the intensity or the amplitude of the coupling signal can be adjusted, and the coupling signal is recorded as the second emission sub-signal Yfb(t).
  • the second emission sub-signal Yfb(t) is divided into two outputs, one for performing inversion, gain, delay adjustment and the like in the analog domain, and the other second second sub-signal Yfb(t) is used for After sampling and mode conversion, converting to a second digital signal, denoted as Yfb(n), outputting the Yfb(n) to the digital domain in the full-duplex wireless communication device, specifically as a pre-determination in the digital domain Set the interference cancellation controller's input signal.
  • the interference cancellation controller simultaneously feeds the generated amplitude g(t) and the phase parameter t0 into the analog domain, and according to the amplitude and phase parameters, adjusts the amplitude and phase parameters of the second emission sub-signal to be converted into the third emission.
  • Sub-signal Yic(t2) -g(t)*Yfb(t-t0)
  • the “-” flag reverse-adjusts the second-emission sub-signal which can be adjusted using phase parameters.
  • the reverse adjustment unit can be set separately.
  • step S503 the interference signal in the received signal acquired by the second polarized antenna is cancelled according to the third transmit sub-signal, and the received signal after the first transmit sub-signal is cancelled is sampled as the first digital signal.
  • the received signal includes the useful signal Xin(t1) and The first emitter signal Ycoup(t1) directly coupled from the first polarized antenna through the air interface.
  • the interference signal in the received signal is cancelled by the third emission sub-signal, that is, the third emission sub-signal Yic(t2), Ycoup(t1) and the useful signal Xin(t1) can be passed through the synthesizer to realize the succession.
  • the first stage antenna is polarized to isolate the second stage interference signal after the interference signal is eliminated, and finally the interference signal of the transmission signal coupled to the receiving channel is further effectively reduced, and the useful signal Xin(t1) can be normally demodulated.
  • step S504 the second emission sub-signal is sampled as a second digital signal, the second digital signal in the first digital signal is cancelled, and the first digital signal after the second digital signal is cancelled is output.
  • the step of removing the second digital signal in the first digital signal and outputting the first digital signal after the second digital signal is eliminated in the step S504 includes:
  • the first digital signal after the second digital signal is cancelled and the generated amplitude and phase parameters are output.
  • the preset interference cancellation controller may further output phase and amplitude parameters to the analog domain to adjust the amplitude and phase parameters of the second emission sub-signal in the analog domain to convert to the third emission sub-signal according to the amplitude and phase parameters. Therefore, the interference signal cancellation process of the digital domain is performed after the interference domain cancellation process of the analog domain, and the interaction between the two is increased, and the cancellation effect of the interference signal can be further improved.
  • the full-duplex wireless communication method introduces a dual-polarized antenna into a full-duplex communication system, and can achieve interference suppression isolation of about 30 dB, and combines the interference signal cancellation process of the analog domain and the digital domain, and Further enhance the elimination effect, with high use and promotion value.
  • the embodiment of the invention provides a full-duplex wireless communication device including a dual-polarized antenna, an analog domain cancellation module and a digital domain cancellation module.
  • the dual-polarized antenna to full-duplex communication
  • the present invention can be avoided.
  • the cancellation module and the digital domain cancellation module perform two-stage elimination on the interference signal, that is, the signal coupled to the receiving channel of the transmission channel is effectively eliminated, and the problem of simultaneous frequency transmission and simultaneous transmission and reception is also solved, and full-duplex normal communication is realized.

Abstract

本发明适用于无线通信技术领域,提供了一种全双工无线通信装置、方法及系统,通过双极化天线中的第一根极化天线输出发射信号,第二根极化天线获取包括有用信号及从该第一根极化天线直接耦合过来的第一发射子信号的接收信号;该模拟域对消模块获取从该发射信号耦合过来的第二发射子信号,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号,根据该第三发射子信号消除该第一发射子信号,采样消除第一发射子信号后的接收信号为第一数字信号,同时采样该第二发射子信号为第二数字信号,并输出该第一数字信号及该第二数字信号至该数字域对消模块;该数字域对消模块消除该第一数字信号中的该第二数字信号,使得干扰信号得到有效降低。

Description

一种全双工无线通信装置、方法及系统 技术领域
本发明属于无线通信技术领域,尤其涉及一种全双工无线通信装置、方法及系统。
背景技术
频谱是宝贵的资源,无线通信系统一直都在致力于引入更多的复杂技术来提升频谱的使用效率,包括TDMA,CDMA,OFDM,新型的编解码,后续的多天线MIMO系统的引入以及多小区的联合处理等技术,都在挖掘频谱的使用效率。现有无线通信系统在频谱的使用上,将双工方式分为时分复用TDD,频分复用FDD以及半双工的H-FDD等模式,也即或者在频域分开,或者时间上分开来进行收发,无法实现在同一个频点或者同一个时间既收又发即全双工模式。另外,由于无线信号在空口传输的路径损耗,在同一个节点,发射信号在天线口的发射强度远大于接收到的来自远处另外节点的信号,导致出现接收机阻塞,ADC模数转换后的信号采样位宽以及动态范围限制,或者信噪比过低无法解调出正确的信号,系统无法正常工作的问题。因此,常规情况下,使用FDD,TDD等双工模式,全双工通信无法正常工作。
而在现有实现全双工通信(同一个频点、同时收发)的技术中,通常采用2根发射天线与1根接收天线方式,通过调整2根发射天线与1根接收天线之间的距离,在接收端口形成零点消除,实现对发射通道耦合到接收通道的30dB左右干扰信号消除的效果,进一步通过在模拟域利用干扰消除器件以及在数字域进行干扰信号的消除,可以实现对发射通道信号耦合回来的30~35dB的干扰信号消除,然而却存在对天线的个数、摆放位置精度等要求高,干扰信号消除效果有限,成本高等问题。
技术问题
本发明实施例的目的在于提供一种全双工无线通信装置、方法及系统,旨在解决由于利用现有技术实现全双工无线通信时,存在对天线的个数、摆放位置精度等要求高,干扰信号消除效果有限,成本高的问题。
技术解决方案
本发明实施例是这样实现的,一种全双工无线通信装置,所述装置包括双极化天线、模拟域对消模块以及数字域对消模块,其中:
所述双极化天线中的第一根极化天线用于输出发射信号,第二根极化天线用于获取接收信号,所述接收信号包括有用信号以及通过空口从所述第一根极化天线直接耦合过来的第一发射子信号;
所述模拟域对消模块,用于获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号,调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号,根据所述第三发射子信号消除所述第二根极化天线获取的接收信号中的第一发射子信号,采样消除所述第一发射子信号后的接收信号为第一数字信号,并将所述第一数字信号输出至所述数字域对消模块,同时采样所述第二发射子信号为第二数字信号,并输出所述第二数字信号至所述数字域对消模块;以及
所述数字域对消模块,用于消除所述第一数字信号中的所述第二数字信号,并输出消除所述第二数字信号后的第一数字信号。
本发明实施例的另一目的在于提供一种全双工无线通信方法,所述方法包括下述步骤:
双极化天线中的第一根极化天线输出发射信号,所述双极化天线中的第二根极化天线获取接收信号,所述接收信号包括有用信号以及通过空口从所述第一根极化天线直接耦合过来的第一发射子信号;
获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号,并调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号;
根据所述第三发射子信号消除所述第二根极化天线获取的接收信号中的第一发射子信号,采样消除所述第一发射子信号后的接收信号为第一数字信号;
采样所述第二发射子信号为第二数字信号,消除所述第一数字信号中的所述第二数字信号,并输出消除所述第二数字信号后的第一数字信号。
本发明实施例的另一目的在于提供一种包括上述全双工无线通信装置的系统。
有益效果
本发明实施例在全双工无线通信装置中采用双极化天线,通过该双极化天线之间的正交隔离,能够避免现有技术中存在的对天线摆放位置、个数等要求较高的情况,且该双极化天线能够降低一根极化天线直接耦合过来的第一发射子信号的干扰强度,实现一定量的干扰信号隔离,通过进一步结合模拟域对消模块及数字域对消模块,还能够进一步降低干扰信号,解决了现有技术在实现全双工无线通信时,存在对天线的个数、摆放位置精度等要求高,干扰信号消除效果有限,成本高的问题,使得在保证全双工无线通信的前提下,有效消除干扰信号,降低系统成本等。
附图说明
图1是本发明第一实施例提供的全双工无线通信装置的结构图;
图2是本发明第一实施例提供的模拟域对消模块的具体结构图;
图3是本发明第一实施例提供的数字域对消模块的具体结构图;
图4是本发明第二实施例提供的全双工无线通信装置的结构图;
图5是本发明第三实施例提供的全双工无线通信方法的实现流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例通过将极化天线的隔离特性引用到全双工无线通信技术中,结合反馈通道的数字与模拟的联合对消技术,将发送通道耦合到接收通道的干扰信号有效消除,在实现同频、同时收发的全双工通信的基础上,摆脱了现有技术中受到天线个数、摆放位置精度的影响的问题,进一步增强了干扰信号消除效果,降低了天线使用成本。
以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一:
图1示出了本发明第一实施例提供的全双工无线通信装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分。
该全双工无线通信装置可以应用在点对点的无线通信系统中,比如微波等系统,或者应用于其他全双工无线通信系统中,也可以扩展应用到蜂窝等通信系统中,该全双工无线通信装置包括双极化天线11、模拟域对消模块12以及数字域对消模块13,其中:
该双极化天线11中的第一根极化天线111用于输出发射信号,第二根极化天线112用于获取接收信号,该接收信号包括有用信号以及通过空口从该第一根极化天线111直接耦合过来的第一发射子信号。
在本发明实施例中,该双极化天线中,第一根极化天线111和第二根极化天线112的物理位置可以摆放在一起,以缩小体积尺寸等,两根天线之间为正交极化,可以一根为+45度极化天线,另一根为-45度极化天线,或者一根为垂直极化,另一根为水平极化,或者其他正交极化形式。天线根数可以扩展到多根天线配置,比如N根发射天线,N根接收天线,且该发射和接收天线之间均采用正交极化隔离,也即可以扩展到N个发射通道,N个接收通道,采用N幅双极化天线,能够实现MIMO(Multiple-Input Multiple-Output,多输入多输出)下的全双工通信。本发明实施例通过引用双极化天线到该全双工通信装置中,仅在天线侧即可实现30dB左右的干扰信号消除效果。相对于现有技术中存在的对天线的个数、摆放位置精度等要求高,耦合信号消除效果有限,成本高等问题,本发明实施例在保证干扰信号消除效果较佳的前提下,克服了对天线摆放位置要求苛刻的限制,且仅用到2根极化天线,降低了天线使用成本,提升了全双工通信的实用性,比如在微波通信等系统中就具有较高的实用和推广价值。
该模拟域对消模块12用于获取从该第一根极化天线111输出的发射信号耦合过来的第二发射子信号,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号,根据该第三发射子信号消除该第二根极化天线112获取的接收信号中的第一发射子信号,采样消除该第一发射子信号后的接收信号为第一数字信号,并将该第一数字信号输出至该数字域对消模块13,同时采样该第二发射子信号为第二数字信号,并输出该第二数字信号至该数字域对消模块13。
如图2所示,该模拟域对消模块12具体包括:
第二发射子信号获取单元121,用于通过预置耦合电路获取从该第一根极化天线111输出的发射信号耦合过来的第二发射子信号;
第一模数转换单元122,用于将该第二发射子信号进行模数转换为第二数字信号,并输出该第二数字信号至该数字域对消模块13;
第三发射子信号获取单元123,用于根据来自该数字域对消模块13发送的幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号;
第一干扰信号消除单元124,用于利用该第三发射子信号消除该第二根极化天线112获取的接收信号中的第一发射子信号;以及
第二模数转换单元125,用于将消除该第一发射子信号后的接收信号进行模数转换为第一数字信号,并输出该第一数字信号至该数字域对消模块13。
在本发明实施例中,在全双工无线通信过程,发射信号经发射通道处理后,假设在第一根极化天线111的天线口发射出去,输出的发射信号记为Yout(t),则第二发射子信号获取单元121可以通过耦合电路耦合部分该第一根极化天线111输出的发射信号回来,该耦合信号的强度或称幅度可以调节,记该耦合信号为第二发射子信号Yfb(t)。此时,该第二发射子信号Yfb(t)分为两路输出,一路用于在模拟域中进行翻转、增益、延迟调整等处理,另一路第二发射子信号Yfb(t)通过第一模数转换单元122在进行采样及模式转换后,转换为第二数字信号,记为Yfb(n),将该Yfb(n)输出至该全双工无线通信装置中的该数字域对消模块13中,具体可以作为该数字域对消模块13中预先设置的干扰消除控制器的输入信号。另外,该干扰消除控制器同时输出幅度g(t)和相位参数t0至第三发射子信号获取单元123,该第三发射子信号获取单元123根据该幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号Yic(t2)=-g(t)*Yfb(t-t0),注意该“-”标识对该第二发射子信号进行了反向调整,该反向调整可以利用相位参数调整,也可以单独设置反向调整单元。
在获取该第三发射子信号Yic(t2)之后,需要对第二根极化天线112获取的接收信号进行干扰信号消除,其中,该接收信号包括有用信号Xin(t1)以及通过空口从该第一根极化天线直接耦合过来的第一发射子信号Ycoup(t1)。具体地,由于在接收通道的天线口,会接收到包括有用信号Xin(t1)以及发射天线通过空口直接耦合过来的信号Ycoup(t1),而Ycoup(t1)与发射天线发射信号Yout(t)强相关,差别仅在于幅度Aant,距离的传播相位延迟t0以及天线极化隔离的信号衰减,则Ycoup(t1)=Aant*Yout(t+t0)。从而利用该第一干扰信号消除单元124,使得通过该第三发射子信号消除该接收信号中的干扰信号,也即可以将该第三发射子信号Yic(t2)、Ycoup(t1)以及有用信号Xin(t1)通过合成器,实现了继第一级天线极化隔离干扰信号之后的第二级干扰信号消除,最终使得发射信号耦合到接收通道的干扰信号得到进一步有效地降低,以及有用信号Xin(t1)可以正常解调。
在本发明实施例中,利用第二模数转换单元125将该消除该第一发射子信号后的接收信号进行模数转换为第一数字信号,并输出该第一数字信号至该数字域对消模块13,该第一数字信号可以记为X(n)= Xin(n)+Ycoup(n)+ Yic(n)。
该数字域对消模块13用于消除该第一数字信号中的该第二数字信号,并输出消除该第二数字信号后的第一数字信号。
如图3所示,该数字域对消模块13包括:
第二干扰信号消除单元131,用于通过预置干扰消除控制器,消除该第一数字信号中的该第二数字信号;以及
输出单元132,用于输出消除该第二数字信号后的第一数字信号,并发送幅度和相位参数至该模拟域对消模块12。
在本发明实施例中,第二干扰信号消除单元131接收来自该模拟域对消模块12的第一模数转换单元122以及第二模数转换单元125发送的Yfb(n)以及X(n),利用预置干扰消除控制器,实现了在数字信号领域中,消除该第一数字信号中的该第二数字信号,获取该消除干扰信号为第二数字信号后的数字信号X’(n)=X(n)- Yfb(n),再将该X’(n)经过DDC(Digital Down Converter,数字下变频),变换到基带信号后,传送到BBU(Base band Unit,基带处理单元)进行后续的信号解调等处理,发射信号经过BBU(Base band Unit,基带处理单元)进行信号调制编码等处理后,通过数字中频的CFR(Crest Factor Ratio,峰均比消除单元)、DUC(Digital Up Converter,数字上变频)、DPD(Digtial Pre-Distortional,数字预失真)、数模转换器DAC、混频器等处理后,通过发射通道,经由发射极化天线输出。同时还可以利用输出单元132反馈幅度和相位参数至该模拟域对消模块12的第三发射子信号获取单元123,以根据得到的幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号。该数字域对消模块13相当于进行干扰信号消除的第三级消除,也即在第二级模拟域干扰信号消除的基础上,增加与数字域之间的联合消除设计,再一次提升干扰消除效果。
在本发明实施例中,该全双工无线通信装置通过采用一幅双极化天线,一个用于发射信号,一个用于接收信号,发射天线与接收天线正交极化,可以为+45度和-45度极化,可以为水平极化和垂直极化,或者也可以为其他正交极化方式,通过该双极化天线之间的正交隔离实现使发射信号耦合到接收通道形成的干扰信号降低,进一步通过模拟和数字对消,将发射信号耦合到接收通道的干扰信号有效降低,使得有用信号得到正常解调。且通过一幅双极化天线,实现同一频点同时收发的该全双工无线通信装置,能够提升频谱的使用效率,降低成本,有效提升全双工通信的实用性,在微波等系统中具有实用和推广价值。
实施例二:
图4示出了本发明第二实施例提供的全双工无线通信装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分。作为本发明一实施例,图4所示的本发明实施例为在上述实施例一的基础上进一步实现的结构。
在本发明实施例中,图4中预设双极化天线中的第一根极化天线111与第二根极化天线112、第二发射子信号获取单元121、第一模数转换器122、第三发射子信号获取单元123、第一干扰信号消除单元124、第二模数转换器125、第二干扰信号消除单元131、输出单元132分别与上述实施例一中的第一根极化天线111、第二根极化天线112、第二发射子信号获取单元121、第一模数转换单元122、第三发射子信号获取单元123、第一干扰信号消除单元124、第二模数转换单元125、第二干扰信号消除单元131、输出单元132一一对应,在此不再赘述。
本发明实施例中连接关系为:第二发射子信号获取单元121的输入端与功放120的输出端无线耦合连接,该第二发射子信号获取单元121的输出端同时连接第一混频器126的输入端与第三发射信号获取单元123的第一输入端,该第一混频器126的输出端与第一模数转换器122的输入端连接,该第一模数转换器122的输出端连接同时连接数字预失真单元137的第一输入端以及第二干扰信号消除单元131的第一输入端,而该第三发射信号获取单元123的第二输入端与输出单元132的输入端相连接,且第三发射信号获取单元123的输出端与第一干扰信号消除单元124的第一输入端连接,该第一干扰信号消除单元124的第二输入端与第二根极化天线112连接,该第一干扰信号消除单元124的输出端连接低噪声放大器127的输入端,该低噪声放大器127的输出端连接第二混频器128的输入端,而第二混频器128的输出端连接第二数模转换器125的输入端,该第二数模转换器125的输出端连接第二干扰信号消除单元131的第二输入端,该第二干扰信号消除单元131的第三输入端与基带处理单元134的第一输出端连接,且该第二干扰信号消除单元131的第一输出端与输出单元132的输入端连接,该第二干扰信号消除单元131的第二输出端与数字下变频单元133的输入端连接,该第二干扰信号消除单元131的第三输出端也与基带处理单元134的第二输入端连接,该数字下变频单元133的输出端与基带处理单元134的第一输入端连接,而该基带处理单元134的输出端134与峰均比消除单元135的输入端相连,该峰均比消除单元135的输出端与数字上变频单元136的输入端相连,该数字上变频单元136的输出端与数字预失真单元137的第二输入端相连,数字预失真单元137的输出端与数模转换器1210输入端相连,该数模转换器1210与第三混频器129的输入端相连,该第三混频器129的输出端与功放120输入端相连,该功放120的输出端与第一根极化天线111相连。
在模拟域对消模块12中,在全双工无线通信过程,发射信号经发射通道处理后,假设在第一根极化天线111的天线口发射出去,输出的发射信号记为Yout(t),则在功放120,也即功率放大器120后,在该第一根极化天线111的天线口之前设计耦合电路,则通过第二发射子信号获取单元121可以耦合部分该第一根极化天线111输出的发射信号回来,记该耦合信号为第二发射子信号Yfb(t)。此时,Yfb(t)分为两路输出,一路该Yfb(t)信号经过用于将射频信号与中频信号进行混合的第一混频器126、第一数模转换器122进行采样及模式转换后,转换为第二数字信号,记为Yfb(n),将该Yfb(n)分别输出至数字预失真单元137以及第二干扰信号消除单元131;另一路该Yfb(t)信号输出至第三发射子信号获取单元123,之后该第三发射子信号获取单元123根据来自该数字域对消模块13输出单元输出的幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号Yic(t2)=-g(t)*Yfb(t-t0),从而利用第一干扰信号消除单元124将该Yic(t2)对该第二根极化天线112获取的接收信号进行干扰信号消除,其中,该接收信号包括有用信号Xin(t1)以及通过空口从该第一根极化天线直接耦合过来的第一发射子信号Ycoup(t1),而Ycoup(t1)与发射天线发射信号Yout(t)强相关,差别仅在于幅度Aant,距离的传播相位延迟t0以及天线极化隔离的信号衰减,则Ycoup(t1)=Aant*Yout(t+t0)。接着利用低噪声放大器127、第二混频器128、第二模数转换单元125将该消除该第一发射子信号后的接收信号进行模数转换为第一数字信号,并输出该第一数字信号至该第二干扰信号消除单元131,该第一数字信号可以记为X(n)= Xin(n)+Ycoup(n)+Yic(n)。
在数字域对消模块13中,第二干扰信号消除单元131主要根据接收到的Yfb(n)以及X(n),消除该第一数字信号中的该第二数字信号,获取该消除干扰信号为第二数字信号后的数字信号X’(n)=X(n)- Yfb(n),再将该X’(n)经过数字下变频单元133、基带处理单元134、峰均比消除单元135、数字上变频单元136、数字预失真单元137、模拟域对消模块12中的数模转换器1210、第三混频器129、功率放大器120等处理后,经由第一根极化天线111输出发射信号。另外,该输出单元132还可以将第二干扰信号消除单元131生成的幅度和相位参数发送至该第三发射信号获取单元123中。
在本发明实施例中,该全双工无线通信装置实现了通过一发射通道、一接收通道、一幅双极化天线,加上模拟域对消模块及数字域对消模块,实现了同一频点,同时收发的全双工无线通信系统。
实施例三:
图5示出了本发明第三实施例提供的全双工无线通信方法的实现流程,详述如下:
在步骤S501中,双极化天线中的第一根极化天线输出发射信号,该双极化天线中的第二根极化天线获取接收信号,该接收信号包括有用信号以及通过空口从该第一根极化天线直接耦合过来的第一发射子信号。
在具体实施过程中,该双极化天线通常可以为+45度和-45度极化天线,水平极化和垂直极化天线,或者其他正交极化方式天线,但是该正交极化天线之间的摆放位置不需要精确计算就可以实现对消,天线使用效率及实用价值高。另外天线根数可以扩展到多根天线配置,比如N根发射天线,N根接收天线,且该发射和接收天线之间均采用正交极化隔离,也即可以扩展到N个发射通道,N个接收通道,采用N幅双极化天线,能够实现MIMO(Multiple-Input Multiple-Output,多输入多输出)下的全双工通信。本发明实施例通过引用双极化天线到该全双工通信装置中,最终利用极化天线之间的隔离度可以实现30dB左右的干扰信号消除。相对于现有技术中存在的对天线的个数、摆放位置精度等要求高,耦合信号消除效果有限,成本高等问题,本发明实施例在保证干扰信号消除效果较佳的前提下,不需要精确计算该双极化天线的摆放位置,克服了对天线摆放位置要求苛刻的限制,由于仅用到2根极化天线,天线使用成本降低,且提升了全双工通信的实用性,比如在微波通信等系统中就具有较高的实用和推广价值。
在步骤S502中,获取从该第一根极化天线输出的发射信号耦合过来的第二发射子信号,并调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号。
该步骤S502具体包括:
通过预置耦合电路获取从该第一根极化天线输出的发射信号耦合过来的第二发射子信号;
根据生成的幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号。
在具体实施过程中,发射信号经发射通道处理后,在用于输出发射信号的第一根极化天线的天线口发射出去,输出的发射信号记为Yout(t),若在该天线口前预先设置一耦合电路,则可以耦合部分该第一根极化天线输出的发射信号回来,该耦合信号的强度或称幅度可以调节,记该耦合信号为第二发射子信号Yfb(t)。此时,该第二发射子信号Yfb(t)分为两路输出,一路用于在模拟域中进行翻转、增益、延迟调整等处理,另一路第二发射子信号Yfb(t)用于在进行采样及模式转换后,转换为第二数字信号,记为Yfb(n),将该Yfb(n)输出至该全双工无线通信装置中的数字域中,具体可以作为该数字域中预先设置的干扰消除控制器的输入信号。另外,该干扰消除控制器同时反馈生成的幅度g(t)和相位参数t0至模拟域中,根据该幅度和相位参数,调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号Yic(t2)=-g(t)*Yfb(t-t0),注意该“-”标识对该第二发射子信号进行了反向调整,该反向调整可以利用相位参数调整,也可以单独设置反向调整单元。
在步骤S503中,根据该第三发射子信号消除该第二根极化天线获取的接收信号中的干扰信号,采样消除该第一发射子信号后的接收信号为第一数字信号。
在具体实施过程中,在获取该第三发射子信号Yic(t2)之后,需要对第二根极化天线获取的接收信号进行干扰信号消除,其中,该接收信号包括有用信号Xin(t1)以及通过空口从该第一根极化天线直接耦合过来的第一发射子信号Ycoup(t1)。具体地,由于在接收通道的天线口,会接收到包括有用信号Xin(t1)以及发射天线通过空口直接耦合过来的信号Ycoup(t1),而Ycoup(t1)与发射天线发射信号Yout(t)强相关,差别仅在于幅度Aant,距离的传播相位t0以及天线极化隔离的信号衰减,则Ycoup(t1)=Aant*Yout(t+t0)。从而通过该第三发射子信号消除该接收信号中的干扰信号,也即可以将该第三发射子信号Yic(t2)、Ycoup(t1)以及有用信号Xin(t1)通过合成器,实现了继第一级天线极化隔离干扰信号之后的第二级干扰信号消除,最终使得发射信号耦合到接收通道的干扰信号得到进一步有效地降低,以及有用信号Xin(t1)可以正常解调等。
进一步地,将该消除该第一发射子信号后的接收信号进行模数转换为第一数字信号,该第一数字信号可以记为X(n)= Xin(n)+Ycoup(n)+ Yic(n),输出该第一数字信号至该数字域对消模块。
在步骤S504中,采样该第二发射子信号为第二数字信号,消除该第一数字信号中的该第二数字信号,并输出消除该第二数字信号后的第一数字信号。
该步骤S504中消除该第一数字信号中的该第二数字信号,并输出消除该第二数字信号后的第一数字信号的步骤具体包括:
通过预置干扰消除控制器,消除该第一数字信号中与该采样后的该第二数字信号;
输出该消除该第二数字信号后的第一数字信号以及生成的幅度和相位参数。
在具体实施过程中,接收该第二数字信号Yfb(n)以及该第一数字信号X(n),利用预置干扰消除控制器,实现了在数字信号领域中,消除该第一数字信号中的干扰信号,该干扰信号即为该第二数字信号,获取该消除干扰信号后的数字信号X’(n)=X(n)- Yfb(n),将该X’(n)用于接收信号的解调等处理后,通过发射通道,经由发射极化天线输出。同时该预置干扰消除控制器还可以输出相位和幅度参数至模拟域,以根据幅度和相位参数,实现在模拟域调整该第二发射子信号的幅度和相位参数以转换为第三发射子信号,从而,该数字域的干扰信号消除过程基于模拟域的干扰信号消除过程之后进行,且增加了两者之间的交互影响,可以进一步提升干扰信号的消除效果。
在本发明实施例中,该全双工无线通信方法引入双极化天线到全双工通信系统中,可以实现30dB左右的干扰抑制隔离,且结合模拟域和数字域的干扰信号消除过程,又进一步增强消除效果,具有较高的使用和推广价值。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
本发明实施例提供了一种包括双极化天线、模拟域对消模块以及数字域对消模块的全双工无线通信装置,通过引用该双极化天线至全双工通信中,能够避免现有技术存在的对天线的个数、摆放位置精度等要求高的限制,且能够通过该双极化天线之间的正交隔离度,降低干扰信号强度以及天线使用成本,通过结合模拟域对消模块以及数字域对消模块对干扰信号进行两级消除,即将发送通道耦合到接收通道的信号有效消除,也解决了同频、同时收发的问题,实现了全双工正常通信。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种全双工无线通信装置,其特征在于,所述装置包括双极化天线、模拟域对消模块以及数字域对消模块,其中:
    所述双极化天线中的第一根极化天线用于输出发射信号,第二根极化天线用于获取接收信号,所述接收信号包括有用信号以及通过空口从所述第一根极化天线直接耦合过来的第一发射子信号;
    所述模拟域对消模块,用于获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号,调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号,根据所述第三发射子信号消除所述第二根极化天线获取的接收信号中的第一发射子信号,采样消除所述第一发射子信号后的接收信号为第一数字信号,并将所述第一数字信号输出至所述数字域对消模块,同时采样所述第二发射子信号为第二数字信号,并输出所述第二数字信号至所述数字域对消模块;以及
    所述数字域对消模块,用于消除所述第一数字信号中的所述第二数字信号,并输出消除所述第二数字信号后的第一数字信号。
  2. 如权利要求1所述的装置,其特征在于,所述双极化天线之间为正交极化形式,包括一根极化天线为呈+45度的极化天线,另一根极化天线为呈-45度极化天线,或者一根极化天线为垂直极化天线,另一根极化天线为水平极化天线的正交极化形式。
  3. 如权利要求1所述的装置,其特征在于,所述双极化天线为多幅双极化天线,包括多根发射天线以及对应根数的接收天线,所述发射天线和所述接收天线之间采用正交极化隔离。
  4. 如权利要求1所述的装置,其特征在于,所述模拟域对消模块具体包括:
    第二发射子信号获取单元,用于通过预置耦合电路获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号;
    第一模数转换单元,用于将所述第二发射子信号进行模数转换为第二数字信号,并输出所述第二数字信号至所述数字域对消模块;第三发射子信号获取单元,用于根据来自所述数字域对消模块发送的幅度和相位参数,调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号;
    第一干扰信号消除单元,用于利用所述第三发射子信号消除所述第二根极化天线获取的接收信号中的第一发射子信号;以及
    第二模数转换单元,用于将消除所述第一发射子信号后的接收信号进行模数转换为第一数字信号,并输出所述第一数字信号至所述数字域对消模块。
  5. 如权利要求1所述的装置,其特征在于,所述数字域对消模块具体包括:
    第二干扰信号消除单元,用于通过预置干扰消除控制器,消除所述第一数字信号中的所述第二数字信号;以及
    输出单元,用于输出消除所述第二数字信号后的第一数字信号,并发送幅度和相位参数至所述模拟域对消模块。
  6. 一种全双工无线通信方法,其特征在于,所述方法包括下述步骤:
    双极化天线中的第一根极化天线输出发射信号,所述双极化天线中的第二根极化天线获取接收信号,所述接收信号包括有用信号以及通过空口从所述第一根极化天线直接耦合过来的第一发射子信号;
    获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号,并调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号;
    根据所述第三发射子信号消除所述第二根极化天线获取的接收信号中的第一发射子信号,采样消除所述第一发射子信号后的接收信号为第一数字信号;
    采样所述第二发射子信号为第二数字信号,消除所述第一数字信号中的所述第二数字信号,并输出消除所述第二数字信号后的第一数字信号。
  7. 如权利要求6所述的方法,其特征在于,所述双极化天线之间为正交极化形式,包括一根极化天线为呈+45度的极化天线,另一根极化天线为呈-45度极化天线,或者一根极化天线为垂直极化天线,另一根极化天线为水平极化天线的正交极化形式。
  8. 如权利要求6所述的方法,其特征在于,所述双极化天线为多幅双极化天线,包括多根发射天线以及对应根数的接收天线,所述发射天线和所述接收天线之间采用正交极化隔离。
  9. 如权利要求6所述的方法,其特征在于,所述获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号,并调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号的步骤具体包括:
    通过预置耦合电路获取从所述第一根极化天线输出的发射信号耦合过来的第二发射子信号;
    根据生成的幅度和相位参数,调整所述第二发射子信号的幅度和相位参数以转换为第三发射子信号。
  10. 一种全双工无线通信系统,其特征在于,所述系统包括权利要求1至5任一项所述的全双工无线通信装置。
PCT/CN2012/084105 2012-04-09 2012-11-05 一种全双工无线通信装置、方法及系统 WO2013152588A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12874058.6A EP2838207A4 (en) 2012-04-09 2012-11-05 WIRELESS FULL DUPLEX COMMUNICATION DEVICE, METHOD AND SYSTEM
US14/509,382 US9520908B2 (en) 2012-04-09 2014-10-08 Full-duplex radio communication device, method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210101953.8A CN103368718B (zh) 2012-04-09 2012-04-09 一种全双工无线通信装置、方法及系统
CN201210101953.8 2012-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/509,382 Continuation US9520908B2 (en) 2012-04-09 2014-10-08 Full-duplex radio communication device, method and system

Publications (1)

Publication Number Publication Date
WO2013152588A1 true WO2013152588A1 (zh) 2013-10-17

Family

ID=49327044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084105 WO2013152588A1 (zh) 2012-04-09 2012-11-05 一种全双工无线通信装置、方法及系统

Country Status (4)

Country Link
US (1) US9520908B2 (zh)
EP (1) EP2838207A4 (zh)
CN (1) CN103368718B (zh)
WO (1) WO2013152588A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052529B (zh) * 2013-03-14 2018-07-17 上海诺基亚贝尔股份有限公司 一种天线阵列以及一种用于全双工通信的通信方法
CN104168052B (zh) * 2014-09-01 2015-11-18 北京邮电大学 基于极化信息处理的自干扰消除方法
CN105763494B (zh) * 2014-12-18 2019-02-15 北京科技大学 一种自适应无线全双工模拟自干扰消除方法及系统
CN107223314B (zh) * 2015-02-12 2019-07-19 华为技术有限公司 具有自适应接收功率降低的全双工无线电
US20170063427A1 (en) * 2015-08-27 2017-03-02 Qualcomm Incorporated Analog interference cancelation for shared antennas
US10389429B2 (en) * 2017-02-11 2019-08-20 Massachusetts Institute Of Technology Full-duplex, bi-directional, analog relay
CN106936468B (zh) * 2017-03-02 2020-03-03 北京小米移动软件有限公司 信号处理方法及装置
CN107634792A (zh) * 2017-09-04 2018-01-26 上海华为技术有限公司 一种接入回传共站干扰抑制的方法、设备及网络设备
CN108347759B (zh) * 2018-02-07 2020-06-30 维沃移动通信有限公司 一种柔性屏的防干扰方法及移动终端
US11108165B2 (en) 2018-08-17 2021-08-31 The Regents Of The University Of Michigan Radio frequency front end for full duplex wireless communications
CN115833870B (zh) * 2023-02-16 2023-06-30 荣耀终端有限公司 信号抗干扰方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372902A (en) * 2000-12-20 2002-09-04 Univ Heriot Watt Integrated cancellation antenna for full-duplex microwave transceivers
CN101291152A (zh) * 2007-04-18 2008-10-22 瑞昱半导体股份有限公司 用于通讯系统的接收机的干扰消除装置及其方法
US20100195543A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Apparatus and method for interference cancellation in mobile full duplex relay
KR20100137837A (ko) * 2009-06-23 2010-12-31 세원텔레텍 주식회사 이동통신 중계 시스템용 자기 귀환신호 제거장치
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机
CN102144361A (zh) * 2008-09-11 2011-08-03 日本电气株式会社 移动通信系统、基站和干扰消除方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141539A (en) * 1999-01-27 2000-10-31 Radio Frequency Systems Inc. Isolation improvement circuit for a dual-polarization antenna
US6539204B1 (en) * 2000-09-29 2003-03-25 Mobilian Corporation Analog active cancellation of a wireless coupled transmit signal
EP1623507A1 (en) * 2003-05-01 2006-02-08 Koninklijke Philips Electronics N.V. Full duplex multimode transceiver
JP4242397B2 (ja) * 2006-05-29 2009-03-25 国立大学法人東京工業大学 無線通信装置及び無線通信方法
CN101267065A (zh) * 2007-03-13 2008-09-17 大唐移动通信设备有限公司 单极化定向天线/阵列定向天线及其时分双工通信系统
ES2395216T3 (es) * 2008-11-14 2013-02-11 Telefonaktiebolaget L M Ericsson (Publ) Método y disposición en un sistema de comunicación
KR101249794B1 (ko) * 2009-12-07 2013-04-05 한국전자통신연구원 무선주파수인식 리더 및 그것의 송신 누설 신호 억압 방법
IL206008A0 (en) * 2010-05-27 2011-02-28 Amir Meir Zilbershtain Transmit receive interference cancellation
US8879433B2 (en) * 2010-12-13 2014-11-04 Nec Laboratories America, Inc. Method for a canceling self interference signal using active noise cancellation in the air for full duplex simultaneous (in time) and overlapping (in space) wireless transmission and reception on the same frequency band

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372902A (en) * 2000-12-20 2002-09-04 Univ Heriot Watt Integrated cancellation antenna for full-duplex microwave transceivers
CN101291152A (zh) * 2007-04-18 2008-10-22 瑞昱半导体股份有限公司 用于通讯系统的接收机的干扰消除装置及其方法
CN102144361A (zh) * 2008-09-11 2011-08-03 日本电气株式会社 移动通信系统、基站和干扰消除方法
US20100195543A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Apparatus and method for interference cancellation in mobile full duplex relay
KR20100137837A (ko) * 2009-06-23 2010-12-31 세원텔레텍 주식회사 이동통신 중계 시스템용 자기 귀환신호 제거장치
CN102111177A (zh) * 2010-12-24 2011-06-29 重庆大学 一种双天线全双工软件无线电收发机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2838207A4 *

Also Published As

Publication number Publication date
EP2838207A1 (en) 2015-02-18
CN103368718A (zh) 2013-10-23
CN103368718B (zh) 2016-09-14
EP2838207A4 (en) 2015-02-18
US9520908B2 (en) 2016-12-13
US20150023225A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013152588A1 (zh) 一种全双工无线通信装置、方法及系统
WO2017020604A1 (zh) 一种收发共用天线的同时同频全双工终端及其通信方法
US8537723B2 (en) LTE-Advanced (4G) front end radio architecture
WO2013016905A1 (zh) 一种fdd-lte室内覆盖系统
WO2022218030A1 (zh) 一种远端装置及5g分布式系统
EP3843285A1 (en) Distributed antenna system architectures
CN102457458B (zh) 一种基站数字预失真的实现方法和装置
WO2022160949A1 (zh) 室内分布系统和信号传输方法
WO2017008542A1 (zh) 同时同频全双工终端和系统
US10615754B2 (en) Methods and apparatuses for digital pre-distortion
WO2010038227A2 (en) Wireless base station design
CN112994744B (zh) 一种增强通信能力的双模通信方法及装置
WO2016108650A1 (ko) 디지털 맵핑 데이터 전송 방법
CN111566940B (zh) 一种信号处理电路、射频信号发射机和通信设备
CN103327508A (zh) 基于电力线传输无线信号和以太网信号的接入系统
CN103095351A (zh) 基于单载波全双工的多输入多输出系统
CN115276679A (zh) 移频系统、移频方法
WO2014110899A1 (zh) 射频信号收发和处理的方法、设备及基站系统
WO2017039095A1 (ko) 디지털 데이터 압축 및 복원 장치
WO2013007213A1 (zh) 多输入多输出信号的传输系统、装置及方法
US20140362959A1 (en) Single cable including multiple interconnections between two radio units for cross polarization interference cancellation
WO2022142636A1 (zh) 直放站
WO2021129662A1 (zh) Das合路系统
CN111565054B (zh) 一种变频通信传输方法和系统
CN212231430U (zh) 中频信号处理装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012874058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE