WO2013016905A1 - 一种fdd-lte室内覆盖系统 - Google Patents

一种fdd-lte室内覆盖系统 Download PDF

Info

Publication number
WO2013016905A1
WO2013016905A1 PCT/CN2011/081931 CN2011081931W WO2013016905A1 WO 2013016905 A1 WO2013016905 A1 WO 2013016905A1 CN 2011081931 W CN2011081931 W CN 2011081931W WO 2013016905 A1 WO2013016905 A1 WO 2013016905A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency conversion
antenna
signal
downlink
uplink
Prior art date
Application number
PCT/CN2011/081931
Other languages
English (en)
French (fr)
Inventor
赵自平
Original Assignee
深圳市云海通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市云海通讯股份有限公司 filed Critical 深圳市云海通讯股份有限公司
Publication of WO2013016905A1 publication Critical patent/WO2013016905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention belongs to the field of communication technologies, and in particular, to an FDD-LTE indoor coverage system.
  • the purpose of the embodiments of the present invention is to provide an FDD-LTE indoor coverage system, which aims to solve the problem that the original line must be modified when constructing the FDD-LTE indoor coverage system.
  • An FDD-LTE indoor coverage system includes a room division system, and the system further includes an active access host and an active antenna respectively connected to both ends of the room subsystem, An active access host and the active antenna are used to transmit two uplink/downlink signals in parallel,
  • the active access host When transmitting the downlink signal, the active access host converts a downlink signal to the active antenna through the room division system, and the active antenna restores the downlink signal to perform frequency conversion; During the uplink signal, the active antenna converts an uplink signal to the active access host through the room division system, and the active access host restores the uplink signal to the base station.
  • Another object of the embodiments of the present invention is to provide a method for downlink signal transmission using the FDD-LTE indoor coverage system as described above, the method comprising the following steps:
  • the second downlink signal is restored to frequency conversion, and is transmitted from the second antenna, and the first downlink signal is transmitted from the first antenna.
  • Another object of the embodiments of the present invention is to provide a method for downlink signal transmission using the FDD-LTE indoor coverage system as described above, the method comprising the following steps:
  • the first antenna receives the first uplink signal, and the second antenna receives the second uplink signal;
  • the second uplink signal is restored to frequency conversion, and is sent out from the second transceiver port, and the first uplink signal is sent out from the first transceiver port.
  • the embodiment of the present invention is based on an FDD-LTE network, by adding an active access host to an existing indoor coverage system, and replacing the original indoor coverage antenna with an active antenna, thereby eliminating the need for an existing indoor coverage system.
  • the FDD-LTE MIMO technology is implemented simply and conveniently, and the advantages of FDD-LTE technology are fully utilized.
  • FIG. 1 is a structural diagram of an indoor coverage system suitable for SISO technology provided by the prior art
  • FIG. 2 is a structural diagram of an FDD-LTE indoor coverage system according to a first embodiment of the present invention
  • FIG. 3 is a structural diagram of an FDD-LTE indoor coverage system according to a second embodiment of the present invention.
  • FIG. 4 is a flowchart of a downlink signal transmission method of an FDD-LTE indoor coverage system according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart of an uplink signal transmission method of an FDD-LTE indoor coverage system according to a fourth embodiment of the present invention.
  • FIG. 1 shows the structure of an existing indoor coverage system that is only applicable to the SISO technology.
  • the prior art uses a single-route design, consisting of an indoor signal distribution system (room division system) 11 and a single indoor coverage antenna.
  • 12 constitutes the prior art indoor coverage system, from the source side FDD-LTE remote radio frequency module (remote RF The downlink signal of the unit, RRU) and the uplink signal from the indoor coverage antenna can only be transmitted through a single line.
  • the embodiment of the present invention is based on the FDD-LTE network, by adding an active access host in the existing indoor coverage system as shown in FIG. 1 and replacing the original indoor coverage antenna with an active antenna, thereby eliminating the need for
  • the FDD-LTE MIMO technology is simply and conveniently implemented with any changes in the wiring of the existing indoor coverage system, giving full play to the advantages of FDD-LTE technology.
  • FIG. 2 shows the structure of an FDD-LTE indoor coverage system according to a first embodiment of the present invention. For the convenience of description, only parts related to the present embodiment are shown.
  • the FDD-LTE indoor coverage system has a first transmission line and a second transmission line, and can simultaneously transmit two uplink/downlink signals, wherein the first transmission line is an original indoor coverage system signal transmission.
  • the path that is, the transmission path of the "source terminal ⁇ -> room division system ⁇ -> indoor coverage antenna", and in the second transmission line, the indoor coverage system of this embodiment adds corresponding frequency conversion processing to the module,
  • the transmitted signal is physically isolated from the signal transmitted in the first transmission line, and simultaneous input and simultaneous output of the two signals are realized.
  • the indoor coverage system further includes:
  • An active access host 22 connected to one end of the room subsystem 21;
  • the active antenna 23 is connected to the other end of the room division system 21 for replacing the original indoor coverage antenna, and the active antenna 23 is mounted in the same size as the conventional antenna to achieve system compatibility.
  • both the active access host 22 and the active antenna 23 include a first transmission line and a second transmission line.
  • the active access host 22 and the active antenna 23 are used for transmitting two uplink/downlink signals in parallel.
  • the active access host 22 frequency-converts one of the downlink signals, and sends it to the 23 through the room subsystem 21.
  • the source antenna, the active antenna 23 restores the downlink signal and then transmits the signal; when transmitting the uplink signal, the active antenna 23 converts one of the uplink signals into the active access host 22 through the room dividing system 21,
  • the source access host 22 restores the uplink signal to the base station.
  • the active access host 22 includes a first transceiver port 221, a second transceiver port 222, a frequency conversion module 223, and a first combining/dividing filter 224, wherein:
  • the first transceiver port 221 and the second transceiver port 222 are independent of each other for respectively receiving the FDD-LTE from the source end in parallel Two downlink signals of RRU port 1 and port 2, and FDD-LTE RRU ports for transmitting the two uplink signals from the local end to the confident source end.
  • the first frequency conversion module 223 is connected between the second transceiver port 222 and the first combining/dividing filter 224, which converts the downlink signal in the second transmission line and restores the uplink signal in the second transmission line. So that in the active access host 22, two parallel uplink/downlink signals can be physically isolated.
  • the first transceiver port 221 is directly connected to the first combining/dividing filter 224, and the first combining/dividing filter 224 is configured to combine the two downlink signals transmitted in parallel into the room dividing system. 21, which is further configured to generate two uplink signals by splitting and filtering the uplink signal from the room division system 21, and transmit the signals to the first frequency conversion module 223 and the first transceiver port 221, respectively.
  • the active antenna 23 includes a first antenna 231, a second antenna 232, a second frequency conversion module 233, and a second combining/dividing filter 234:
  • the first antenna 231 and the second antenna 232 are independent of each other for respectively transmitting two downlink signals for transmission and for respectively receiving two signals for uplink transmission.
  • the second frequency conversion module 233 is connected between the second antenna 232 and the second combining/dividing filter 234, and restores the downlink signal in the second transmission line that has undergone the frequency conversion of the first frequency conversion module 223, and
  • the uplink signals in the two transmission lines are frequency-converted such that in the active antenna 23, two parallel uplink/downlink signals can be physically isolated.
  • the first antenna 231 is directly connected to the second combining/dividing filter 234, and the second combining/dividing filter 234 is configured to combine the two uplink signals transmitted in parallel into the room dividing system 21 by combining and filtering.
  • the downlink signal from the room division system 21 is further subjected to shunt filtering to generate two downlink signals, which are respectively transmitted to the first antenna 231 and the second frequency conversion module 233.
  • FIG. 3 shows an internal structure of an FDD-LTE indoor coverage system according to a second embodiment of the present invention. For convenience of explanation, only parts related to the present embodiment are shown.
  • This embodiment refines the frequency conversion module in the active access host and the active antenna according to the first embodiment of the present invention.
  • the active access host 31 when performing downlink signal transmission, in the active access host 31, the following is included:
  • the first frequency conversion circuit 311 is composed of a first amplifier 3111 and a first mixer circuit 3112 for frequency-converting the downlink signal to achieve physical isolation of two downlink signals in parallel with the first transmission line.
  • the active antenna 32 the following is included:
  • the second frequency conversion circuit 321 is composed of a second mixing circuit 3211 and a second amplifier 3212 for recovering the frequency conversion of the downlink signal subjected to the first frequency conversion circuit 311 and transmitting it from the second antenna 322.
  • the active antenna 32 When the uplink signal transmission is being performed, in the active antenna 32, the following is included:
  • the third frequency conversion circuit 323 is connected to the second antenna 322 and is composed of a first low noise amplifier 3231, a third mixing circuit 3232 and a third amplifier 3233 for frequency conversion of the uplink signal received by the second antenna 322. To achieve physical isolation of two parallel uplink signals in the first transmission line.
  • a local oscillator signal generator is also designed in the active access host 31, and after generating the local oscillator signal, it is sent to the active antenna 32 for active access.
  • the mixing circuit in the host 31 and the active antenna 32 is used together to avoid the frequency difference easily caused by designing a local oscillator generator in the active access host and the active antenna in the conventional scheme, and can be greatly simplified.
  • the circuit of the active antenna 32 is also designed in the active access host 31, and after generating the local oscillator signal, it is sent to the active antenna 32 for active access.
  • the active access host 31 includes:
  • the fourth frequency conversion circuit 312 is composed of a fourth mixing circuit 3121 and a fourth amplifier 3122, and is configured to restore the uplink signal in the second transmission line that has undergone the frequency conversion of the third frequency conversion circuit 323 to the second transmission and reception. Port 313 is sent.
  • the active access host 31 further includes a first high speed switch 314 and a second high speed switch 315 connected to the two ends of the first frequency conversion circuit 311 and the fourth frequency conversion circuit 312, respectively.
  • the active antenna 32 further includes The third high speed switch 324 and the fourth high speed switch 325 are respectively connected to the two ends of the second frequency conversion circuit 321 and the third frequency conversion circuit 322, and the four high speed switches are simultaneously connected to the active access host 31 according to the control of the synchronization subsystem. The uplink/downlink in the active antenna 32 is switched.
  • FIG. 4 is a flowchart showing an implementation process of downlink signal transmission by using an FDD-LTE indoor coverage system according to a third embodiment of the present invention, which is described in detail as follows:
  • step S401 the first downlink signal and the second downlink signal from the source end are simultaneously received.
  • step S402 the second downlink signal is frequency-converted, and combined with the first downlink signal, and then sent to the room division system.
  • step S403 the second downlink signal is restored to frequency conversion, and is transmitted from the second antenna, and the first downlink signal is transmitted from the first antenna.
  • FIG. 5 is a flowchart showing an implementation process of uplink signal transmission by using an FDD-LTE indoor coverage system according to a fourth embodiment of the present invention, which is described in detail as follows:
  • step S501 the first antenna receives the first uplink signal while the second antenna receives the second uplink signal.
  • step S502 the second uplink signal is frequency-converted, combined with the first uplink signal, and sent to the room division system.
  • step S503 the second uplink signal is restored to frequency conversion, and is sent out from the second transceiver port, and the first uplink signal is sent out from the first transceiver port.
  • the embodiment of the present invention is based on an FDD-LTE network, by adding an active access host to an existing indoor coverage system, and replacing the original indoor coverage antenna with an active antenna, thereby eliminating the need for an existing indoor coverage system.
  • the FDD-LTE MIMO technology is implemented simply and conveniently, and the advantages of FDD-LTE technology are fully utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种FDD-LTE室内覆盖系统,适于通信技术领域,该系统包括室分系统,分别连接于室分系统两端的有源接入主机和有源天线,用于并行传输两路上行/下行信号,当传输下行信号时,有源接入主机将一路下行信号变频,通过室分系统发送至有源天线,有源天线将该下行信号恢复变频后进行发射;当传输上行信号时,有源线将一路上行信号变频,通过室分系统发送至有源接入主机,有源接入主机将该上行信号恢复变频后发送至基站。本方案可在不需要将现有室内覆盖系统的布线作任何变动的情况下实现FDD-LTE的MIMO技术。

Description

一种FDD-LTE室内覆盖系统 技术领域
本发明属于通信技术领域,尤其涉及一种FDD-LTE室内覆盖系统。
背景技术
目前,无论是2G通信还是3G通信,其室内覆盖系统都只是单路布线设计,即单入单出(single-input and single-output,SISO),然而,随着4G通信的崛起,其慢慢占据了越来越大的市场份额,网络普及率也越来越高,在对4G网络进行网络优化的过程中,最关键的一点是要实现4G通信的多入多出(multiple-input and multiple-output,MIMO)技术,即必须在室内覆盖系统中达到两路室内信号覆盖。
若依照传统设计方法,或者摒弃已有的SISO室内覆盖系统,重新布置两套全新的线路,或者在现有的一套线路的基础上新增一套线路,都会出现改造成本高的问题,同时还容易对现有的物业带来影响,改造难度大。
技术问题
本发明实施例的目的在于提供一种FDD-LTE室内覆盖系统,旨在解决当前构建FDD-LTE室内覆盖系统时必须对原有线路进行改造的问题。
技术解决方案
本发明实施例是这样实现的,一种FDD-LTE室内覆盖系统,包括室分系统,所述系统还包括分别连接于所述室分系统两端的有源接入主机和有源天线,所述有源接入主机和所述有源天线用于并行传输两路上行/下行信号,
当传输下行信号时,所述有源接入主机将一路下行信号变频,通过所述室分系统发送至所述有源天线,所述有源天线将该下行信号恢复变频后进行发射;当传输上行信号时,所述有源天线将一路上行信号变频,通过所述室分系统发送至所述有源接入主机,所述有源接入主机将该上行信号恢复变频后发送至基站。
本发明实施例的另一目的在于提供一种采用如上所述的FDD-LTE室内覆盖系统进行下行信号传输的方法,所述方法包括下述步骤:
同时接收来自信源端的第一下行信号和第二下行信号;
将第二下行信号变频,并与第一下行信号合路后发送至室分系统;
将第二下行信号恢复变频,从第二天线中发射出去,同时将第一下行信号从第一天线中发射出去。
本发明实施例的另一目的在于提供一种采用如上所述的FDD-LTE室内覆盖系统进行下行信号传输的方法,所述方法包括下述步骤:
第一天线接收第一上行信号,同时第二天线接收第二上行信号;
将第二上行信号变频,并与第一上行信号合路后发送至室分系统;
将第二上行信号恢复变频,从第二收发端口发送出去,同时将第一上行信号从第一收发端口发送出去。
有益效果
本发明实施例基于FDD-LTE网络,通过在现有室内覆盖系统中增加有源接入主机,并将原有的室内覆盖天线替换为有源天线,从而在不需要将现有室内覆盖系统的布线作任何变动的情况下,简单、便捷地实现FDD-LTE的MIMO技术,充分发挥了FDD-LTE技术的优势。
附图说明
图1是现有技术提供的适用于SISO技术的室内覆盖系统的结构图;
图2是本发明第一实施例提供的FDD-LTE室内覆盖系统的结构图;
图3是本发明第二实施例提供的FDD-LTE室内覆盖系统的结构图;
图4是本发明第三实施例提供的FDD-LTE室内覆盖系统下行信号传输方法流程图;
图5是本发明第四实施例提供的FDD-LTE室内覆盖系统上行信号传输方法流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了仅适用于SISO技术的现有室内覆盖系统的结构,可以看出,现有技术采用了单路布线设计,由室内信号分布系统(室分系统)11和单个的室内覆盖天线12构成了现有技术的室内覆盖系统,来自信源端FDD-LTE远端射频模块(remote RF unit,RRU)的下行信号及来自室内覆盖天线的上行信号均只能通过单线路进行传输。而本发明实施例基于FDD-LTE网络,通过在如图1所示的现有室内覆盖系统中增加有源接入主机,并将原有的室内覆盖天线替换为有源天线,从而在不需要将现有室内覆盖系统的布线作任何变动的情况下,简单、便捷地实现FDD-LTE的MIMO技术,充分发挥了FDD-LTE技术的优势。
图2示出本发明第一实施例提供的FDD-LTE室内覆盖系统的结构,为了便于说明,仅示出了与本实施例相关的部分。
如图2所示,该FDD-LTE室内覆盖系统具备第一传输线路和第二传输线路,能够同时传输两路上行/下行的信号,其中,第一传输线路为原有的室内覆盖系统信号传输路径,即“信源端<—>室分系统<—>室内覆盖天线”的传输路径,而在第二传输线路中,本实施例的室内覆盖系统通过在模块中增加相应的变频处理,将其传输的信号与第一传输线路中传输的信号进行物理隔离,实现了两路信号的同时输入和同时输出。
具体地,除了包括原有的室分系统21外,该室内覆盖系统还包括了:
与室分系统21的一端连接的有源接入主机22;
与室分系统21的另一端连接的,用于替换原有的室内覆盖天线的有源天线23,且有源天线23的安装尺寸与传统天线相同,以实现系统的兼容。
在本实施例中,有源接入主机22和有源天线23中均包括了第一传输线路和第二传输线路。有源接入主机22和有源天线23用于并行传输两路上行/下行信号,当传输下行信号时,有源接入主机22将其中一路下行信号变频,通过室分系统21发送至23有源天线,有源天线23将该下行信号恢复变频后进行发射;当传输上行信号时,有源天线23将其中一路上行信号变频,通过室分系统21发送至有源接入主机22,有源接入主机22将该上行信号恢复变频后发送至基站。
具体地:
有源接入主机22,其包括了第一收发端口221、第二收发端口222、变频模块223和第一合路/分路滤波器224,其中:
第一收发端口221和第二收发端口222相互独立,用于分别并行接收来自信源端FDD-LTE RRU端口1和端口2的两路下行信号,以及用于将来自本地的两路上行信号并行发送自信源端相应的FDD-LTE RRU端口。
第一变频模块223连接在第二收发端口222与第一合路/分路滤波器224之间,其将第二传输线路中的下行信号变频,以及将第二传输线路中的上行信号恢复变频,以使得在有源接入主机22中,并行的两路上行/下行信号能够实现物理隔离。
第一收发端口221则直接与第一合路/分路滤波器224连接,第一合路/分路滤波器224用于将并行传输的两路下行信号经过合路滤波后传送至室分系统21,还用于将来自室分系统21的上行信号经过分路滤波后生成两路上行信号,分别传送至第一变频模块223和第一收发端口221。
有源天线23,其包括了第一天线231、第二天线232、第二变频模块233和第二合路/分路滤波器234:
第一天线231和第二天线232相互独立,用于分别将发射传输的两路下行信号,以及用于分别接收需要进行上行传输的两路信号。
第二变频模块233连接在第二天线232与第二合路/分路滤波器234之间,其将经过了第一变频模块223变频的第二传输线路中的下行信号恢复变频,以及将第二传输线路中的上行信号变频,以使得在有源天线23中,并行的两路上行/下行信号能够实现物理隔离。
第一天线231则直接与第二合路/分路滤波器234连接,第二合路/分路滤波器234用于将并行传输的两路上行信号经过合路滤波后传送至室分系统21,还用于将来自室分系统21的下行信号经过分路滤波后生成两路下行信号,分别传送至第一天线231和第二变频模块233。
有源接入主机22和有源天线23的具体结构将分别在后续的实施例中进行详细说明,在此不赘述。
图3示出了本发明第二实施例提供的FDD-LTE室内覆盖系统的内部结构,为了便于说明,仅示出了与本实施例相关的部分。
本实施例对本发明第一实施例有源接入主机及有源天线中的变频模块进行了细化。参照图3,当在进行下行信号传输时,在有源接入主机中31中,包括了:
第一变频电路311,其由第一放大器3111和第一混频电路3112构成,用于将下行信号进行变频,以实现与第一传输线路中两路并行的下行信号的物理隔离。
同时,在有源天线32中,包括了:
第二变频电路321,其由第二混频电路3211和第二放大器3212构成,用于将经过了第一变频电路311变频的下行信号恢复变频,并从第二天线322中发射出去。
当在进行上行信号传输时,在有源天线32中,包括了:
第三变频电路323,其与第二天线322连接,由第一低噪声放大器3231、第三混频电路3232和第三放大器3233构成,用于将第二天线322接收到的上行信号进行变频,以实现第一传输线路中两路并行的上行信号的物理隔离。
作为本发明的一个实施例,在有源接入主机31中还设计有本振信号发生器,其在产生了本振信号之后,将其发送至有源天线32中,以供有源接入主机31和有源天线32中的混频电路共同使用,以避免传统方案中在有源接入主机和有源天线中各设计一个本振发生器所容易带来的频率差,且能够大大简化有源天线32的电路。
在有源接入主机31中,包括了:
第四变频电路312,其由第四混频电路3121和第四放大器3122构成,用于将经过了第三变频电路323变频的第二传输线路中的上行信号恢复变频,并传输至第二收发端口313进行发送。
在本实施例中,有源接入主机31还包括了分别连接在第一变频电路311和第四变频电路312两端的第一高速开关314和第二高速开关315,有源天线32还包括了分别连接在第二变频电路321和第三变频电路322两端的第三高速开关324和第四高速开关325,上述四个高速开关均根据同步子系统的控制,来同时对有源接入主机31和有源天线32中的上行/下行链路进行切换。
图4示出了本发明第三实施例提供的采用FDD-LTE室内覆盖系统进行下行信号传输的实现流程,详述如下:
在步骤S401中,同时接收来自信源端的第一下行信号和第二下行信号。
在步骤S402中,将第二下行信号变频,并与第一下行信号合路后发送至室分系统。
在步骤S403中,将第二下行信号恢复变频,从第二天线中发射出去,同时将第一下行信号从第一天线中发射出去。
图5示出了本发明第四实施例提供的采用FDD-LTE室内覆盖系统进行上行信号传输的实现流程,详述如下:
在步骤S501中,第一天线接收第一上行信号,同时第二天线接收第二上行信号。
在步骤S502中,将第二上行信号变频,并与第一上行信号合路后发送至室分系统。
在步骤S503中,将第二上行信号恢复变频,从第二收发端口发送出去,同时将第一上行信号从第一收发端口发送出去。
本发明实施例基于FDD-LTE网络,通过在现有室内覆盖系统中增加有源接入主机,并将原有的室内覆盖天线替换为有源天线,从而在不需要将现有室内覆盖系统的布线作任何变动的情况下,简单、便捷地实现FDD-LTE的MIMO技术,充分发挥了FDD-LTE技术的优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种FDD-LTE室内覆盖系统,包括室分系统,其特征在于,所述系统还包括分别连接于所述室分系统两端的有源接入主机和有源天线,所述有源接入主机和所述有源天线用于并行传输两路上行/下行信号,
    当传输下行信号时,所述有源接入主机将一路下行信号变频,通过所述室分系统发送至所述有源天线,所述有源天线将该下行信号恢复变频后进行发射;当传输上行信号时,所述有源天线将一路上行信号变频,通过所述室分系统发送至所述有源接入主机,所述有源接入主机将该上行信号恢复变频后发送至基站。
  2. 如权利要求1所述的系统,其特征在于,所述有源接入主机包括:
    第一收发端口和第二收发端口,用于并行接收/发送两路下行/上行信号;
    与所述第二收发端口连接的第一变频模块,用于将下行/上行信号变频/恢复变频;
    同时连接所述第一收发端口和所述第一变频模块的第一合路/分路滤波器,用于将来自所述第一收发端口和所述第一变频模块的下行信号合路后发送至所述室分系统,以及用于将来自所述室分系统的上行信号分路至所述第一收发端口和所述第一变频模块。
  3. 如权利要求1所述的系统,其特征在于,所述有源天线包括:
    第一天线和第二天线,用于并行发射/接收两路下行/上行信号;
    与所述第二天线连接的第二变频模块,用于将上行/下行信号变频/恢复变频;
    同时连接所述第一天线和所述第二变频模块的第二合路/分路滤波器,用于将来自所述室分系统的下行信号分路至所述第一天线和所述第二变频模块,以及用于将来自所述第一天线和所述第二变频模块的上行信号合路后发送至所述室分系统。
  4. 如权利要求2所述的系统,其特征在于,所述第一变频模块包括:
    第一变频电路,用于将下行信号变频;
    第四变频电路,用于将上行信号恢复变频;
    所述第二变频模块包括:
    第二变频电路,用于将下行信号恢复变频;
    第三变频电路,用于将上行信号变频。
  5. 如权利要求4所述的系统,其特征在于,所述第一变频模块还包括:
    分别连接在所述第一变频电路和所述第四变频电路两端的第一高速开关和第二高速开关,用于控制所述第一变频模块在所述第一变频电路和所述第四变频电路之间切换;
    所述第二变频模块还包括:
    分别连接在所述第二变频电路和所述第三变频电路两端的第三高速开关和第四高速开关,用于控制所述第二变频模块在所述第二变频电路和所述第三变频电路之间切换。
  6. 如权利要求4所述的系统,其特征在于,所述第一变频电路包括第一放大器和第一混频器,所述第二变频电路包括第二混频器和第二放大器。
  7. 如权利要求4所述的系统,其特征在于,所述第三变频电路包括第一低噪声放大器、第三混频器和第三放大器,所述第四变频电路包括第四混频器和第四放大器。
  8. 一种采用如权利要求1至7任一项所述的FDD-LTE室内覆盖系统进行下行信号传输的方法,其特征在于,所述方法包括下述步骤:
    同时接收来自信源端的第一下行信号和第二下行信号;
    将第二下行信号变频,并与第一下行信号合路后发送至室分系统;
    将第二下行信号恢复变频,从第二天线中发射出去,同时将第一下行信号从第一天线中发射出去。
  9. 一种采用如权利要求1至7任一项所述的FDD-LTE室内覆盖系统进行上行信号传输的方法,其特征在于,所述方法包括下述步骤:
    第一天线接收第一上行信号,同时第二天线接收第二上行信号;
    将第二上行信号变频,并与第一上行信号合路后发送至室分系统;
    将第二上行信号恢复变频,从第二收发端口发送出去,同时将第一上行信号从第一收发端口发送出去。
PCT/CN2011/081931 2011-08-01 2011-11-08 一种fdd-lte室内覆盖系统 WO2013016905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110218430 CN102281548A (zh) 2011-08-01 2011-08-01 一种fdd-lte室内覆盖系统
CN201110218430.7 2011-08-01

Publications (1)

Publication Number Publication Date
WO2013016905A1 true WO2013016905A1 (zh) 2013-02-07

Family

ID=45106663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081931 WO2013016905A1 (zh) 2011-08-01 2011-11-08 一种fdd-lte室内覆盖系统

Country Status (2)

Country Link
CN (2) CN102281548A (zh)
WO (1) WO2013016905A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950062A (zh) * 2020-06-30 2022-01-18 中国移动通信集团设计院有限公司 支持5g信号覆盖的家庭宽带装置
WO2023065576A1 (zh) * 2021-10-21 2023-04-27 普罗斯通信技术(苏州)有限公司 一种组网接入装置及系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014000207A2 (pt) * 2011-07-14 2017-06-13 Shenzhen Winhap Communications Inc sistema, dispositivo e método de transmissão de sinais de múltiplas entradas e múltiplas saídas
CN103037384B (zh) * 2012-12-07 2015-08-26 中邮科通信技术股份有限公司 采用共缆传输和mimo进行信号覆盖的系统及组网方法
CN103067317B (zh) * 2012-12-24 2016-08-03 京信通信系统(中国)有限公司 一种对上行信号进行噪声抑制的方法、设备和系统
CN102970260B (zh) * 2012-12-24 2016-05-04 京信通信系统(中国)有限公司 噪声抑制方法、装置及lte数字微波射频拉远覆盖系统
CN103067319A (zh) * 2012-12-24 2013-04-24 京信通信系统(中国)有限公司 一种上行信号处理方法、设备和系统
CN103118425B (zh) * 2013-02-19 2016-08-03 中邮科通信技术股份有限公司 支持td-lte双通道传输的实现方法及有源微功率分布系统
CN103546215B (zh) * 2013-11-04 2017-01-11 中邮科通信技术股份有限公司 一种基于数字技术实现ftth的lte传输与覆盖系统
CN105519012B (zh) * 2014-07-09 2019-06-11 华为技术有限公司 一种信号传输方法及设备
CN105337646B (zh) * 2014-08-06 2019-07-23 华为技术有限公司 多天线实现方法、装置及系统
CN104467929B (zh) * 2014-10-17 2017-10-24 广州杰赛科技股份有限公司 一种多输入多输出室内分布系统
CN105634576B (zh) * 2014-10-31 2018-12-18 上海诺基亚贝尔股份有限公司 一种在基站上实施传输mimo数据的方法及其装置
CN105553528B (zh) * 2014-10-31 2022-06-17 罗森伯格技术(昆山)有限公司 基于lte的多网融合接入系统
CN105491577B (zh) * 2016-01-22 2019-02-05 北京邮电大学 非对称单双流混合室内覆盖系统
CN209345154U (zh) * 2019-01-23 2019-09-03 易力声科技(深圳)有限公司 一种可用于音频和蓝牙信号的天线线路
CN110649944B (zh) * 2019-08-21 2021-11-09 内江喜马雅拉网络技术有限公司 叠层1t1r天线系统及单输入多输出功率均衡方法
CN112512055B (zh) * 2020-11-24 2023-07-07 中国移动通信集团黑龙江有限公司 一种室内分布单路覆盖系统
CN114915980B (zh) * 2021-02-10 2023-08-01 中国移动通信集团广东有限公司 基于无线变频的5g室内多路基站信号覆盖方法
CN114286355B (zh) * 2021-12-30 2024-03-22 陕西天基通信科技有限责任公司 一种有源拉远单元及基于其的室内覆盖系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414799A (zh) * 2002-09-21 2003-04-30 京信通信系统(广州)有限公司 移动通信双频段室内信号光纤分布系统
CN2591903Y (zh) * 2002-11-22 2003-12-10 深圳市联波通信技术有限公司 移动通信多网汇接室内覆盖系统
CN201248143Y (zh) * 2008-08-29 2009-05-27 福建三元达通讯股份有限公司 压带超远覆盖系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112547B2 (en) * 2007-08-31 2015-08-18 Adc Telecommunications, Inc. System for and method of configuring distributed antenna communications system
CN102098688A (zh) * 2009-12-09 2011-06-15 中国移动通信集团公司 一种室内分布系统的多输入多输出实现方法、系统及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414799A (zh) * 2002-09-21 2003-04-30 京信通信系统(广州)有限公司 移动通信双频段室内信号光纤分布系统
CN2591903Y (zh) * 2002-11-22 2003-12-10 深圳市联波通信技术有限公司 移动通信多网汇接室内覆盖系统
CN201248143Y (zh) * 2008-08-29 2009-05-27 福建三元达通讯股份有限公司 压带超远覆盖系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950062A (zh) * 2020-06-30 2022-01-18 中国移动通信集团设计院有限公司 支持5g信号覆盖的家庭宽带装置
CN113950062B (zh) * 2020-06-30 2023-08-15 中国移动通信集团设计院有限公司 支持5g信号覆盖的家庭宽带装置
WO2023065576A1 (zh) * 2021-10-21 2023-04-27 普罗斯通信技术(苏州)有限公司 一种组网接入装置及系统

Also Published As

Publication number Publication date
CN102761352A (zh) 2012-10-31
CN102281548A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2013016905A1 (zh) 一种fdd-lte室内覆盖系统
WO2017020604A1 (zh) 一种收发共用天线的同时同频全双工终端及其通信方法
WO2013152588A1 (zh) 一种全双工无线通信装置、方法及系统
KR20150118987A (ko) 분산형 안테나 시스템으로부터 소싱된 기지국 네트워크 인터페이스를 위한 마스터 기준
WO2022218030A1 (zh) 一种远端装置及5g分布式系统
WO2017008542A1 (zh) 同时同频全双工终端和系统
CN206332853U (zh) 移动通信分布覆盖系统
WO2017115925A1 (ko) 메인 유닛 및 이를 포함하는 분산 안테나 시스템
WO2018120934A1 (zh) Lte基站基带处理板主备信号处理方法
WO2017092388A1 (zh) 一种实现智能手表支持多种无线连接的方法及智能手表
WO2007012284A1 (fr) Dispositif station de base sans fil multimode et de niveau supérieur, système sans fil multimode, procédé de transfert et procédé d’accès
CN216751793U (zh) 一种多功能多协议智能网关
WO2007006213A1 (fr) Systeme radio de station de base multimode
WO2016008271A1 (zh) 数字光纤射频拉远轨旁无线通信系统
WO2017190499A9 (zh) 具有多通道收发器的移动终端和系统
WO2018170774A1 (zh) RTEX-EtherCAT协议转换装置及工业控制系统
WO2014101340A1 (zh) 一种tdd lte塔顶放大器的高性能射频通道
WO2018094685A1 (zh) 基于 lora 无线通信的数据传输方法及中继器
WO2016021764A1 (ko) 단일입력 단일출력 간섭 제거 중계 장치
WO2017190500A1 (zh) 一种移动终端及其通讯方法和通讯系统
WO2016179959A1 (zh) 一种无线终端及其数据接收、发送方法
WO2023163259A1 (ko) 분산종단유닛에 대하여 주파수자원 분배 경로를 가진 오픈랜에 적용되는 인빌딩 라디오유닛, 이를 포함한 시스템 및 이의 제어방법
WO2013007213A1 (zh) 多输入多输出信号的传输系统、装置及方法
WO2014043852A1 (zh) 一种微波传输设备供电系统及方法、信号处理装置
KR20140073116A (ko) Du/ru 분리형 구조의 멀티코어 dsp 기반 기지국 기저대역 신호처리를 위한 무선통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11870310

Country of ref document: EP

Kind code of ref document: A1