WO2016008271A1 - 数字光纤射频拉远轨旁无线通信系统 - Google Patents

数字光纤射频拉远轨旁无线通信系统 Download PDF

Info

Publication number
WO2016008271A1
WO2016008271A1 PCT/CN2014/095716 CN2014095716W WO2016008271A1 WO 2016008271 A1 WO2016008271 A1 WO 2016008271A1 CN 2014095716 W CN2014095716 W CN 2014095716W WO 2016008271 A1 WO2016008271 A1 WO 2016008271A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
radio frequency
remote
processing module
module
Prior art date
Application number
PCT/CN2014/095716
Other languages
English (en)
French (fr)
Inventor
周宗仪
廖晓如
Original Assignee
宽兆科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宽兆科技(深圳)有限公司 filed Critical 宽兆科技(深圳)有限公司
Publication of WO2016008271A1 publication Critical patent/WO2016008271A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a digital optical fiber radio frequency remote trackside wireless communication system.
  • the current rail-side wireless communication system for high-speed railways has two problems, such as Doppler frequency shift and frequent switching between covered cells, resulting in user terminals for high-speed rail track coverage.
  • the communication access interruption rate is high and even cannot communicate.
  • the high-speed railway trackside wireless communication system in foreign countries adopts the analog fiber remote communication mode. Because of the analog fiber-optic remote communication, the communication distance is greatly affected by the transmission loss of the fiber, and the internal noise is high. The problem of large number of hardware devices invested and low overall communication efficiency can only meet low-rate wireless access.
  • the baseband processing part is not integrated in the near-end machine, and is generally designed and installed in an indoor environment, and is not suitable for the actual engineering requirements of a high-speed railway linear cloth network.
  • the technical problem to be solved by the present invention is to provide a digital fiber-optic radio frequency remote track-side wireless communication system, which can reduce the base station switching frequency when performing communication on a high-speed train.
  • the present invention is implemented as follows:
  • a digital fiber-optic radio frequency remote track-side wireless communication system includes a near-end machine and a plurality of remote machines; the near-end machine is connected to a remote machine through an optical fiber; and the remote machine is cascade-connected through an optical fiber The way is to connect several other remote machines; each remote machine is arranged along the railway.
  • the near-end machine includes a baseband processing module, a first digital processing module, and a first optical module unit that are sequentially connected;
  • the baseband processing module is configured to encode the baseband signal, and convert the encoded baseband signal into a baseband radio frequency signal, and then send the signal to the first digital processing module;
  • the first digital processing module is configured to encode the baseband radio frequency signal received from the baseband processing module and send it through the first optical module unit;
  • the first digital processing module is further configured to decode the baseband radio frequency signal received by the first optical module unit and send the signal to the baseband processing module;
  • the baseband processing module is further configured to decode the baseband radio frequency signal received from the first digital processing module and convert the signal into a baseband signal.
  • the first optical module unit includes two first optical transceiver modules; the two first optical transceiver modules are each connected to a remote camera, and the two first optical transceiver modules are respectively corresponding to the proximal end thereof.
  • the first digital processing module of the machine is connected.
  • the near-end machine further includes a first Gigabit Ethernet interface connected to the first digital processing module.
  • the near-end machine further includes a first monitoring module; the first monitoring module is connected to the baseband processing module and the first digital processing module, and is configured to monitor the baseband processing module and the first digital processing module Configuration information and working status.
  • the remote unit includes a second optical module unit, a second digital processing module, a power amplifier module unit, a filter unit, and an antenna unit that are sequentially connected;
  • the second digital processing module is configured to receive and decode a baseband radio frequency signal from a near-end machine or other remote unit connected thereto through the second optical module unit, and convert the decoded baseband radio frequency signal into The radio frequency signal is sent to the power amplifier module unit;
  • the power amplifier module unit is configured to amplify the radio frequency signal received from the second optical module unit and send the signal to the filter unit;
  • the filter unit is configured to filter the radio frequency signal received from the power amplifier module unit and send it out through the antenna unit;
  • the filter unit is further configured to filter the radio frequency signal received by the antenna unit and send the signal to the power amplifier module unit;
  • the power amplifier module unit is further configured to: amplify the radio frequency signal received from the filter unit and send the signal to the second digital processing module;
  • the second digital processing module is further configured to encode and convert the radio frequency signal received from the power amplifier module unit into a baseband radio frequency signal, and then send the signal through the second optical module unit.
  • the second optical module unit includes two second optical transceiver modules; the two second optical transceiver modules are configured to establish a cascade relationship with a proximal or remote machine cascaded in front and rear, and the two Each of the second optical transceiver modules is connected to a second digital processing module of the corresponding remote unit.
  • the power amplifier module unit includes a first power amplifier module and a second power amplifier module;
  • the filter unit includes a first filter and a second filter;
  • the antenna unit includes a first antenna and a second antenna;
  • the first power amplifier module is connected to the first filter; the first filter is connected to the first antenna;
  • the second power amplifier module is connected to the second filter; the second filter is connected to the second antenna.
  • the second digital processing module is connected to a Gigabit Ethernet interface.
  • the remote machine further includes a second monitoring module; the second monitoring module is connected to the second digital processing module and the power amplifier module unit, and configured to monitor the second digital processing module and the Configuration information and working status of the power amplifier module unit.
  • proximal or remote machine has an integrated waterproof chassis.
  • the baseband processing module is further connected with a GPS interface.
  • the near-end machine and the remote unit may further include a power module for providing operating voltages for each functional module or unit in the near-end machine and the remote unit.
  • the first optical transceiver module and the second optical transceiver module in the near-end machine and the remote unit can adopt an SFP optical transceiver module, and the SFP is "SMALL".
  • SFP optical transceiver module is small in size, so that more optical transceiver modules can be arranged in the same size space, or the size of the device using the optical transceiver module can be reduced.
  • the digital optical fiber radio frequency remote trackside wireless communication system provided by the invention can significantly reduce the base station switching frequency when communicating on a high speed train, thereby ensuring communication on a high speed train. stability.
  • FIG. 1 is a schematic diagram showing the arrangement of a digital optical fiber radio frequency remote trackside wireless communication system provided by the present invention
  • Figure 2 Schematic diagram of the structure of the near-end machine in the above-mentioned digital optical fiber radio frequency remote track-side wireless communication system
  • Figure 3 Schematic diagram of the structure of the remote unit in the above-mentioned digital fiber-optic radio frequency remote track-side wireless communication system.
  • the present invention provides a digital optical fiber radio frequency remote trackside wireless communication system, which includes a near end machine 1 and a plurality of remote machines 2.
  • the local end machine 1 is connected to a remote unit 2 through an optical fiber
  • the remote unit 2 is connected to a plurality of other remote units 2 in a cascade-type manner through an optical fiber.
  • Each remote machine 2 is arranged along the railway and can be used for signal coverage of the cells along the railway (ie, the railway trackside cell 6).
  • the so-called string cascade is a connection method: the remote unit 2 connected to the near-end machine 1 and a plurality of other remote units 2 are connected in series, so that each remote unit 2 connected in series can be used as data exchange.
  • each remote unit 2 in series can exchange data with the local machine 1 through other remote units 2 connected in series between the remote unit 2 and the near end unit 1.
  • the near-end machine 1 is configured to receive the baseband signal of the base station 3, and convert the baseband signal into a baseband RF signal, and then transmit the optical fiber to the remote units 2 cascaded with the serial type, and the remote units 2 will again
  • the baseband radio frequency signal is converted into a radio frequency signal and then sent out, and the signal is reversely processed when the signal is uplinked. It can be seen that the more remote units 2 connected in series, the farther the signal of the base station 3 can be extended, that is, the wider the signal coverage of the base station 3.
  • the more remote units 2 connected in series the greater the delay that communication may occur, and the stability of communication is also affected. Therefore, the number of remote units 2 connected in series is also limited. Since the remote units 2 connected in series communicate with the same base station 3, if the remote units 2 connected in series are arranged along the railway, the remote units 2 are seamlessly connected in the signal coverage area along the railway. Then, when the train travels in the signal coverage area of the remote units 2 connected in series, the mobile terminal on the train does not need to perform the base station 3 switching, if multiple sets of such digital optical fiber radio frequency remote track wireless communication systems are arranged along the railway line. When communicating on a high-speed train, frequent base station 3 switching can be avoided, thereby ensuring the stability of communication on a train traveling at a high speed.
  • the near-end machine 1 may include a baseband processing module 101, a first digital processing module 102, and a first optical module unit 103 that are sequentially connected.
  • the baseband processing module 101 is configured to encode the baseband signal, and convert the encoded baseband signal into a baseband radio frequency signal, and then send the signal to the first digital processing module 102.
  • the first digital processing module 102 is configured to use the baseband processing module 101.
  • the received baseband radio frequency signal is encoded and transmitted through the first optical module unit 103; the first digital processing module 102 is further configured to decode the baseband radio frequency signal received by the first optical module unit 103 and send it to the baseband processing module 101; The baseband processing module 101 is further configured to decode the baseband radio frequency signal received from the first digital processing module 102 and convert it into a baseband signal.
  • the first optical module unit 103 can include two first optical transceiver modules 1031.
  • the two first optical transceiver modules 1031 are each connected to a remote unit 2, and the two first optical transceiver modules 1031 are connected to the first digital processing module 102 of the corresponding near-end machine 1.
  • a near-end machine 1 can cascade a plurality of remote units 2 in two directions along the railway at the same time, thereby reducing the number of arrangements of the near-end machines 1.
  • the proximity machine 1 can also include a first Gigabit Ethernet interface 106 that is coupled to the first digital processing module 102 for use in the railroad department for other IP-based extended applications.
  • the proximity device 1 may further include a first monitoring module 104, which is connected to the baseband processing module 101 and the first digital processing module 102, and is configured to monitor configuration information of the baseband processing module 101 and the first digital processing module 102. And working status.
  • the baseband processing module 101 can also be connected to the GPS interface 105, and the GPS interface 105 is used for external GPS module to obtain the GPS clock signal to meet the requirements of the baseband processing clock synchronization.
  • the baseband processing module 101 of the near-end machine 1 adopts a special Doppler frequency shift measurement and pre-compensation technology to solve the high-speed train mobility support while ensuring the compatibility of the standard 4G terminal.
  • the first digital processing module 102 of the near-end machine 1 adopts a technique of power and delay equalization, which solves the problem of consistency of signal coverage.
  • the remote unit 2 may include a second optical module unit 201, a second digital processing module 202, a power amplifier module unit 203, and a filter that are sequentially connected.
  • the second digital processing module 202 is configured to receive and decode the baseband radio frequency signal from the near-end machine 1 or other remote units 2 connected thereto through the second optical module unit 201, and decode the decoded baseband radio frequency signal.
  • the power amplifier module unit 203 After being converted into a radio frequency signal, it is sent to the power amplifier module unit 203; the power amplifier module unit 203 is configured to amplify the radio frequency signal received from the second optical module unit 201 and then send it to the filter unit 204; the filter unit 204 is used for the power amplifier module.
  • the RF signal received by the unit 203 is filtered and sent out through the antenna unit 205.
  • the filter unit 204 is further configured to filter the RF signal received by the antenna unit 205 and send it to the power amplifier module unit 203.
  • the power amplifier module unit 203 is also used to The RF signal received from the filter unit 204 is amplified and sent to the second digital processing module 202.
  • the second digital processing module 202 is further configured to encode and convert the RF signal received from the power amplifier module unit 203 into a baseband RF signal.
  • the second optical module unit 201 sends out.
  • the second optical module unit 201 can include two second optical transceiver modules 2011 for establishing a cascade relationship with the proximal end machine 1 or the remote unit 2 that is cascaded before and after, and the two Each of the second optical transceiver modules 2011 is connected to the second digital processing module 202 of the corresponding remote unit 2.
  • the remote unit 2 shown in FIG. 3 is a remote unit 2 directly connected to the near-end machine 1, one optical transceiver module is connected to the near-end machine 1, and the other optical transceiver module is connected to another remote unit 2. If it is not the remote unit 2 directly connected to the near-end machine 1, the two second optical transceiver modules 2011 of the remote unit 2 are connected to the remote unit 2.
  • the power amplifier module unit 203 can include a first power amplifier module 2031 and a second power amplifier module 2032.
  • the filter unit 204 includes a first filter 2041 and a second filter 2042.
  • the antenna unit 205 includes a first antenna 2051 and a second antenna 2052.
  • the first power amplifier module 2031 is connected to the first filter 2041; the first power filter 2041 is connected to the first antenna 2051; the second power amplifier module 2032 is connected to the second filter 2042; and the second filter 2042 and the second antenna 2052 are connected. connection.
  • the first power amplifier module 2031 and the second power amplifier module 2032 are all integrated power amplifier modules, and both include a low noise amplifier and a power amplifier.
  • the low noise amplifier can be used to signal the signal of the first antenna 2051 or the second antenna 2052 received by the first filter 2041 or the second filter 2042 and then transmit the signal to the second digital processing module 202, and will be sent from the second
  • the signal received by the digital processing module 202 is power amplified and then transmitted to the first antenna 2051 or the second antenna 2052 via the first filter 2041 or the second filter 2042, and then transmitted.
  • the second digital processing module 202 can also be connected to the second Gigabit Ethernet interface 206 to provide customers with more application needs for railway services along the railway.
  • the remote unit 2 can also include a second monitoring module 208.
  • the second monitoring module 208 is connected to the second digital processing module 202 and the power amplifier module unit 203 for monitoring configuration information of the second digital processing module 202 and the power amplifier module unit 203. And working status.
  • the near-end machine 1 or the remote machine 2 have an integrated waterproof chassis, and each functional unit or module is installed in the integrated waterproof case, which is convenient It is arranged outdoors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信技术领域,尤其涉及一种数字光纤射频拉远轨旁无线通信系统。该数字光纤射频拉远轨旁无线通信系统包括近端机及若干远端机;所述近端机通过光纤与一台远端机连接;所述远端机通过光纤以串型级联的方式连接若干台其他远端机;各远端机沿铁路沿线布置。与现有技术相比,采用本发明提供的数字光纤射频拉远轨旁无线通信系统,可显著减少在高速行驶的列车上进行通讯时的基站切换频率,从而保证在高速行驶的列车上通信的稳定性。

Description

数字光纤射频拉远轨旁无线通信系统 技术领域
本发明涉及通信技术领域,尤其涉及一种数字光纤射频拉远轨旁无线通信系统。
背景技术
随着国内高速铁路的大规模建设和应用,目前针对高速铁路的轨旁无线通信系统,因为存在多普勒频移及覆盖小区间频繁切换两大问题,从而导致高速铁路轨旁覆盖出现用户终端通信接入中断率高甚至无法通信的难题。
目前国内运营商采用传统的宏基站密集覆盖方式,因为基带处理部分主要面向的是普通消费用户,未对列车高速移动的多普勒频移进行修正和优化,同时宏基站的覆盖距离有限,当列车高速行驶时会快速通过相邻的几个基站覆盖区域,必然造成信号覆盖区域的频繁切换。基于以上两点,传统的宏基站覆盖方式无法保证在高速行驶的列车上与外界通信的稳定性。
为规避小区间频繁切换这个问题,目前国外的高速铁路轨旁无线通信系统采用的是模拟光纤拉远通信方式,因模拟光纤拉远通信存在通信距离受光纤的传输损耗影响大、内部噪声高、投入的硬件设备数量大、整体通信效率低等问题,只能满足低速率的无线接入。传统的射频拉远系统,基带处理部分未集成于近端机内,且一般设计安装于室内环境,不适用于高速铁路线状布网的工程实际需求。
技术问题
本发明所要解决的技术问题是,提供一种数字光纤射频拉远轨旁无线通信系统,减少在高速行驶的列车上进行通讯时的基站切换频率。
技术解决方案
本发明是这样实现的:
一种数字光纤射频拉远轨旁无线通信系统,包括近端机及若干远端机;所述近端机通过光纤与一台远端机连接;所述远端机通过光纤以串型级联的方式连接若干台其他远端机;各远端机沿铁路沿线布置。
进一步地,所述近端机包括依次连接的基带处理模块、第一数字处理模块及第一光模块单元;
所述基带处理模块用于将基带信号进行编码,并将编码后的基带信号转换为基带射频信号后发送到第一数字处理模块;
所述第一数字处理模块用于将从基带处理模块接收到的基带射频信号编码后通过第一光模块单元发送出去;
所述第一数字处理模块还用于将通过第一光模块单元接收到的基带射频信号解码后发送到基带处理模块;
所述基带处理模块还用于将从第一数字处理模块接收到的基带射频信号解码后转换为基带信号。
进一步地,所述第一光模块单元包括两个第一光收发模块;所述两个第一光收发模块各自连接一台远端机,且该两个第一光收发模块都与其对应近端机的第一数字处理模块连接。
进一步地,所述近端机还包括与所述第一数字处理模块连接的第一千兆以太网接口。
进一步地,所述近端机还包括第一监控模块;所述第一监控模块与所述基带处理模块及第一数字处理模块连接,用于监控所述基带处理模块及第一数字处理模块的配置信息及工作状态。
进一步地,所述远端机包括依次连接的第二光模块单元、第二数字处理模块、功放模块单元、滤波器单元及天线单元;
所述第二数字处理模块用于通过所述第二光模块单元接收来自近端机或与其连接的其他远端机的基带射频信号并对其进行解码,并将解码后的基带射频信号转换为射频信号后发送到所述功放模块单元;
所述功放模块单元用于将从所述第二光模块单元接收到的射频信号放大后发送到所述滤波器单元;
所述滤波器单元用于将从所述功放模块单元接收到的射频信号滤波后通过所述天线单元发送出去;
所述滤波器单元还用于将通过所述天线单元接收到的射频信号滤波后发送到所述功放模块单元;
所述功放模块单元还用于将从所述滤波器单元接收到的射频信号放大后发送到所述第二数字处理模块;
所述第二数字处理模块还用于将从所述功放模块单元接收到的射频信号编码并转换为基带射频信号后通过所述第二光模块单元发送出去。
进一步地,所述第二光模块单元包括两个第二光收发模块;所述两个第二光收发模块用于与其前后级联的近端机或远端机建立级联关系,且该两个第二光收发模块都与其对应远端机的第二数字处理模块连接。
进一步地,所述功放模块单元包括第一功放模块及第二功放模块;所述滤波器单元包括第一滤波器及第二滤波器;所述天线单元包括第一天线及第二天线;
所述第一功放模块与所述第一滤波器连接;所述第一滤波器与所述第一天线连接;
所述第二功放模块与所述第二滤波器连接;所述第二滤波器与所述第二天线连接。
进一步地,所述第二数字处理模块连接有千兆以太网接口。
进一步地,所述远端机还包括第二监控模块;所述第二监控模块与所述第二数字处理模块及所述功放模块单元连接,用于监控所述第二数字处理模块及所述功放模块单元的配置信息及工作状态。
进一步地,所述近端机或远端机具有一体化防水机箱。
进一步地,所述基带处理模块还连接有GPS接口。
有益效果
近端机及远端机还可包括一电源模块,用于为近端机及远端机内的各功能模块或单元提供工作电压。近端机及远端机中的第一光收发模块及第二光收发模块可采用SFP光收发模块,SFP为“SMALL FORM PLUGGABLE”的简写,为“小型可插拔”的意思,SFP光收发模块体积小,从而使得可在相同大小空间内布置更多的光收发模块,或减小采用光收发模块的装置的体积。
与现有技术相比,采用本发明提供的数字光纤射频拉远轨旁无线通信系统,可显著减少在高速行驶的列车上进行通讯时的基站切换频率,从而保证在高速行驶的列车上通信的稳定性。
附图说明
图1:本发明提供的数字光纤射频拉远轨旁无线通信系统布置示意图;
图2:上述数字光纤射频拉远轨旁无线通信系统中近端机结构示意图;
图3:上述数字光纤射频拉远轨旁无线通信系统中远端机结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,本发明提供了一种数字光纤射频拉远轨旁无线通信系统,该系统包括近端机1及若干远端机2。其中,近端机1通过光纤与一台远端机2连接,该远端机2又通过光纤以串型级联的方式连接若干台其他远端机2。各远端机2沿铁路沿线布置,可用于对铁路沿线的小区(即铁路轨旁小区6)进行信号覆盖。所谓串型级联是这样一种连接方式:与近端机1连接的远端机2及若干台其他远端机2串联,这样,串联的每一台远端机2都可以作为数据交换的节点,从而使串联的每一台远端机2都可以通过串联在该台远端机2与该近端机1之间的其他远端机2与该近端机1进行数据交换。信号下行时,近端机1用于接收基站3的基带信号,并将基带信号转换为基带射频信号后通过光纤传输到与其串型级联的各远端机2,各远端机2再将该基带射频信号转换为射频信号后发送出去,信号上行时信号反向处理。由此可知,串联的远端机2越多,基站3的信号就能拉远到越远的地方,即基站3的信号覆盖范围就越广。但是,串联的远端机2越多,通信可能产生的延迟越大,通信稳定性也会受到影响,因此,串联的远端机2数量也是有限制的。由于串联的这些远端机2都与同一基站3进行通信,因此,如果将串联的各远端机2沿铁路沿线间隔布置,使各远端机2在铁路沿线的信号覆盖区域无缝衔接,那么,当列车在串联的这些远端机2的信号覆盖区域穿行时,列车上的移动终端不需要进行基站3切换,如果在铁路沿线布置多套这样的数字光纤射频拉远轨旁无线通信系统,在高速行驶的列车上进行通讯时就可以避免频繁的基站3切换,从而保证了在高速行驶的列车上通信的稳定性。
如图2所示,在该数字光纤射频拉远轨旁无线通信系统中,近端机1可包括依次连接的基带处理模块101、第一数字处理模块102及第一光模块单元103。其中,基带处理模块101用于将基带信号进行编码,并将编码后的基带信号转换为基带射频信号后发送到第一数字处理模块102;第一数字处理模块102用于将从基带处理模块101接收到的基带射频信号编码后通过第一光模块单元103发送出去;第一数字处理模块102还用于将通过第一光模块单元103接收到的基带射频信号解码后发送到基带处理模块101;基带处理模块101还用于将从第一数字处理模块102接收到的基带射频信号解码后转换为基带信号。
第一光模块单元103可包括两个第一光收发模块1031。该两个第一光收发模块1031各自连接一台远端机2,且该两个第一光收发模块1031都与其对应近端机1的第一数字处理模块102连接。这样,如图1所示,一台近端机1可同时在铁路沿线的两个方向上串型级联多台远端机2,从而可减少近端机1的布置数量。
近端机1还可包括第一千兆以太网接口106,该第一千兆以太网接口106与第一数字处理模块102连接,可用于铁路部门作其它基于IP的扩展应用。
近端机1还可包括第一监控模块104,该第一监控模块104与基带处理模块101及第一数字处理模块102连接,可用于监控基带处理模块101及第一数字处理模块102的配置信息及工作状态。近端机1中,基带处理模块101还可连接GPS接口105,GPS接口105用于外接GPS模块,以获取GPS时钟信号,满足基带处理时钟同步的要求。
为支持高铁系统高速移动的需求,近端机1的基带处理模块101采用了特殊的多普勒频移测量和预补偿技术,在保障标准4G终端兼容性的同时,解决了高速列车移动性支持的问题。近端机1的第一数字处理模块102采用了功率和时延均衡的技术,很好地解决了信号覆盖的一致性问题。
如图3所示,在该数字光纤射频拉远轨旁无线通信系统中,远端机2可包括依次连接的第二光模块单元201、第二数字处理模块202、功放模块单元203、滤波器单元204及天线单元205。其中,第二数字处理模块202用于通过第二光模块单元201接收来自近端机1或与其连接的其他远端机2的基带射频信号并对其进行解码,并将解码后的基带射频信号转换为射频信号后发送到功放模块单元203;功放模块单元203用于将从第二光模块单元201接收到的射频信号放大后发送到滤波器单元204;滤波器单元204用于将从功放模块单元203接收到的射频信号滤波后通过天线单元205发送出去;滤波器单元204还用于将通过天线单元205接收到的射频信号滤波后发送到功放模块单元203;功放模块单元203还用于将从滤波器单元204接收到的射频信号放大后发送到第二数字处理模块202;第二数字处理模块202还用于将从功放模块单元203接收到的射频信号编码并转换为基带射频信号后通过第二光模块单元201发送出去。
第二光模块单元201可包括两个第二光收发模块2011,该两个第二光收发模块2011用于与其前后级联的近端机1或远端机2建立级联关系,且该两个第二光收发模块2011都与其对应远端机2的第二数字处理模块202连接。图3中所示的远端机2为与近端机1直接连接的远端机2,其一个光收发模块与近端机1连接,另一光收发模块与另一远端机2连接。如果不是与近端机1直接连接的远端机2,则远端机2的两个第二光收发模块2011都与远端机2连接。
功放模块单元203可包括第一功放模块2031及第二功放模块2032,滤波器单元204包括第一滤波器2041及第二滤波器2042,天线单元205包括第一天线2051及第二天线2052。其中,第一功放模块2031与第一滤波器2041连接;第一滤波器2041与第一天线2051连接;第二功放模块2032与第二滤波器2042连接;第二滤波器2042与第二天线2052连接。第一功放模块2031及第二功放模块2032都为一体化功放模块,都包括了低噪声放大器及功率放大器。低噪声放大器可用于将经第一滤波器2041或第二滤波器2042接收的第一天线2051或第二天线2052的信号进行信号放大后发送到第二数字处理模块202,以及,将从第二数字处理模块202接收到的信号进行功率放大后经第一滤波器2041或第二滤波器2042发送到第一天线2051或第二天线2052,再发送出去。
第二数字处理模块202也可连接第二千兆以太网接口206,可为客户提供更多铁路沿线业务的应用需要。
远端机2还可包括第二监控模块208,该第二监控模块208与第二数字处理模块202及功放模块单元203连接,用于监控第二数字处理模块202及功放模块单元203的配置信息及工作状态。
本发明所提供的数字光纤射频拉远轨旁无线通信系统中,近端机1或远端机2都具有一体化防水机箱,其各功能单元或模块都安装在该一体化防水机箱内,便于布置在室外。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种数字光纤射频拉远轨旁无线通信系统,其特征在于,包括近端机及若干远端机;所述近端机通过光纤与一台远端机连接;所述远端机通过光纤以串型级联的方式连接若干台其他远端机;各远端机沿铁路沿线布置。
  2. 如权利要求1所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述近端机包括依次连接的基带处理模块、第一数字处理模块及第一光模块单元;
    所述基带处理模块用于将基带信号进行编码,并将编码后的基带信号转换为基带射频信号后发送到第一数字处理模块;
    所述第一数字处理模块用于将从基带处理模块接收到的基带射频信号编码后通过第一光模块单元发送出去;
    所述第一数字处理模块还用于将通过第一光模块单元接收到的基带射频信号解码后发送到基带处理模块;
    所述基带处理模块还用于将从第一数字处理模块接收到的基带射频信号解码后转换为基带信号。
  3. 如权利要求2所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述第一光模块单元包括两个第一光收发模块;所述两个第一光收发模块各自连接一台远端机,且该两个第一光收发模块都与其对应近端机的第一数字处理模块连接。
  4. 如权利要求2所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述近端机还包括与所述第一数字处理模块连接的第一千兆以太网接口。
  5. 如权利要求2所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述近端机还包括第一监控模块;所述第一监控模块与所述基带处理模块及第一数字处理模块连接,用于监控所述基带处理模块及第一数字处理模块的配置信息及工作状态。
  6. 如权利要求1所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述远端机包括依次连接的第二光模块单元、第二数字处理模块、功放模块单元、滤波器单元及天线单元;
    所述第二数字处理模块用于通过所述第二光模块单元接收来自近端机或与其连接的其他远端机的基带射频信号并对其进行解码,并将解码后的基带射频信号转换为射频信号后发送到所述功放模块单元;
    所述功放模块单元用于将从所述第二光模块单元接收到的射频信号放大后发送到所述滤波器单元;
    所述滤波器单元用于将从所述功放模块单元接收到的射频信号滤波后通过所述天线单元发送出去;
    所述滤波器单元还用于将通过所述天线单元接收到的射频信号滤波后发送到所述功放模块单元;
    所述功放模块单元还用于将从所述滤波器单元接收到的射频信号放大后发送到所述第二数字处理模块;
    所述第二数字处理模块还用于将从所述功放模块单元接收到的射频信号编码并转换为基带射频信号后通过所述第二光模块单元发送出去。
  7. 如权利要求6所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述第二光模块单元包括两个第二光收发模块;所述两个第二光收发模块用于与其前后级联的近端机或远端机建立级联关系,且该两个第二光收发模块都与其对应远端机的第二数字处理模块连接。
  8. 如权利要求6所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述功放模块单元包括第一功放模块及第二功放模块;所述滤波器单元包括第一滤波器及第二滤波器;所述天线单元包括第一天线及第二天线;
    所述第一功放模块与所述第一滤波器连接;所述第一滤波器与所述第一天线连接;
    所述第二功放模块与所述第二滤波器连接;所述第二滤波器与所述第二天线连接。
  9. 如权利要求6所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述第二数字处理模块连接有千兆以太网接口。
  10. 如权利要求6所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述远端机还包括第二监控模块;所述第二监控模块与所述第二数字处理模块及所述功放模块单元连接,用于监控所述第二数字处理模块及所述功放模块单元的配置信息及工作状态。
  11. 如权利要求1所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述近端机或远端机具有一体化防水机箱。
  12. 如权利要求2所述的数字光纤射频拉远轨旁无线通信系统,其特征在于,所述基带处理模块还连接有GPS接口。
PCT/CN2014/095716 2014-07-15 2014-12-30 数字光纤射频拉远轨旁无线通信系统 WO2016008271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420391459.4 2014-07-15
CN201420391459.4U CN204119529U (zh) 2014-07-15 2014-07-15 数字光纤射频拉远轨旁无线通信系统

Publications (1)

Publication Number Publication Date
WO2016008271A1 true WO2016008271A1 (zh) 2016-01-21

Family

ID=52336804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095716 WO2016008271A1 (zh) 2014-07-15 2014-12-30 数字光纤射频拉远轨旁无线通信系统

Country Status (2)

Country Link
CN (1) CN204119529U (zh)
WO (1) WO2016008271A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363087A (zh) * 2018-04-10 2018-08-03 厦门信同信息技术有限公司 利用直放站的铁路定位系统及其定位方法
CN114189875A (zh) * 2021-10-26 2022-03-15 江苏通鼎宽带有限公司 5g 4t4r智能分布式拉远系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763257B (zh) * 2016-04-25 2018-08-17 北京科技大学 一种高铁通信系统
CN107835052B (zh) * 2017-10-20 2020-05-26 北京凤凰汇通科技有限公司 无线通信方法
CN107786962B (zh) * 2017-10-20 2020-03-31 北京凤凰汇通科技有限公司 无线通信装置及无线通信组列

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200973095Y (zh) * 2004-11-05 2007-11-07 京信通信系统(广州)有限公司 移动通信数字光纤直放站系统
CN101488811A (zh) * 2008-03-27 2009-07-22 赛乐(天津)微波科技有限公司 基于波分复用方式的基站载频光纤拉远分布式系统
CN102006683A (zh) * 2010-11-27 2011-04-06 武汉虹信通信技术有限责任公司 适用于双通信制式的数字射频拉远系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200973095Y (zh) * 2004-11-05 2007-11-07 京信通信系统(广州)有限公司 移动通信数字光纤直放站系统
CN101488811A (zh) * 2008-03-27 2009-07-22 赛乐(天津)微波科技有限公司 基于波分复用方式的基站载频光纤拉远分布式系统
CN102006683A (zh) * 2010-11-27 2011-04-06 武汉虹信通信技术有限责任公司 适用于双通信制式的数字射频拉远系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363087A (zh) * 2018-04-10 2018-08-03 厦门信同信息技术有限公司 利用直放站的铁路定位系统及其定位方法
CN108363087B (zh) * 2018-04-10 2023-09-26 厦门信同信息技术有限公司 利用直放站的铁路定位系统及其定位方法
CN114189875A (zh) * 2021-10-26 2022-03-15 江苏通鼎宽带有限公司 5g 4t4r智能分布式拉远系统

Also Published As

Publication number Publication date
CN204119529U (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016008271A1 (zh) 数字光纤射频拉远轨旁无线通信系统
WO2013016905A1 (zh) 一种fdd-lte室内覆盖系统
WO2016108650A1 (ko) 디지털 맵핑 데이터 전송 방법
CN101902281B (zh) 可环形组网自愈的数字光纤直放站系统及其数据通信方法
CN103117909A (zh) 一种多制式数字光纤五类线分布系统
CN108966240A (zh) 跨频段融合电力无线专网的多信道传输系统
WO2020248430A1 (zh) 一种应用于移动情景的网络通信系统
CN201726403U (zh) 一种输电线路状态监测数据传输体系架构
CN110234128A (zh) 无线接入频谱灵活光网络的能耗优化方法、系统
CN203554447U (zh) 一种千兆智能型光纤收发器
WO2018094685A1 (zh) 基于 lora 无线通信的数据传输方法及中继器
CN215344613U (zh) 轨道交通车辆系统双trdp以太网专用网关
CN101345593A (zh) 集中监控的覆盖系统网络及其多系统接入器
CN202906946U (zh) 一种海底观测网络的多节点通信系统
CN206602543U (zh) 用于实现不同厂家tetra系统中心级互联互通系统
RU81025U1 (ru) Устройство сетевого стыка абонентского цифрового концентратора с оптическим интерфейсом
CN206237560U (zh) 一种基于ptn和乡所以太网交换机的电力通信网建设系统
CN103391383A (zh) 一种有线数话远传模块及其实现方法
CN203151693U (zh) 一种otn网络和数据网构成的广播系统
CN204928975U (zh) 一种基于dreamnet的音视频编解码传输系统
CN102350997B (zh) 车站台/控制盒远程传输设备
CN220067706U (zh) 微基站和WiFi融合设备和通信系统
CN210670084U (zh) 集成onu和ap的一体化网络设备
RU78022U1 (ru) Универсальное устройство сетевого стыка цифровой атс и абонентского цифрового концентратора с волоконно-оптическим интерфейсом
CN206993122U (zh) 低功耗型gsm‑r数字光纤直放站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897600

Country of ref document: EP

Kind code of ref document: A1