WO2020248430A1 - 一种应用于移动情景的网络通信系统 - Google Patents

一种应用于移动情景的网络通信系统 Download PDF

Info

Publication number
WO2020248430A1
WO2020248430A1 PCT/CN2019/107395 CN2019107395W WO2020248430A1 WO 2020248430 A1 WO2020248430 A1 WO 2020248430A1 CN 2019107395 W CN2019107395 W CN 2019107395W WO 2020248430 A1 WO2020248430 A1 WO 2020248430A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
network
base station
cpe
switch
Prior art date
Application number
PCT/CN2019/107395
Other languages
English (en)
French (fr)
Inventor
朱玲华
莫畏
Original Assignee
广州新世纪通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州新世纪通信科技有限公司 filed Critical 广州新世纪通信科技有限公司
Publication of WO2020248430A1 publication Critical patent/WO2020248430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the utility model relates to the technical field of mobile communication, in particular to a network communication system applied to mobile scenarios.
  • high-speed rail lines began after the basic coverage in the 4G era, but there was huge business demand at the beginning of 5G.
  • high-speed rail has become the first choice for travel.
  • the total passenger flow of high-speed rail was 2.03 billion, which far exceeded the total passenger flow of civil aviation by 620 million.
  • High-end customers of high-speed rail travel are also the first batch of key target customers for 5G.
  • the purpose of the utility model is to overcome the shortcomings of the existing technology and provide a network communication system that can be used in mobile scenarios, which allows users to maintain stability, effectively access operators’ 4G or 5G base stations, and greatly improves the perception of network usage .
  • wireless base station subsystem Including analysis and monitoring service subsystem, wireless base station subsystem and in-vehicle coverage subsystem; wireless base station subsystem is connected between analysis and monitoring service subsystem and in-vehicle coverage subsystem;
  • the analysis and monitoring service subsystem is used to process and analyze the message of the in-vehicle coverage subsystem and to monitor the in-vehicle coverage subsystem;
  • the wireless base station subsystem is a transmission network system, which is used to construct a communication channel between the analysis and monitoring service subsystem and the in-vehicle coverage subsystem;
  • the in-vehicle coverage subsystem is used to solve the 4G or 5G and WIFI access of the user terminal operator in the mobile scenario.
  • the analysis and monitoring service subsystem includes a CPE gateway, a CPE network management, an in-car coverage unit network management, and a core network; the CPE gateway, CPE network management, and in-car coverage unit network management are respectively connected to the core network;
  • the CPE gateway is used to establish a VPN tunnel between the CPE client and the CPE gateway, transparently transmit the in-vehicle data flow, and forward it to different core network elements for processing according to the traffic category, analyze the in-vehicle equipment messages, and establish and in-vehicle coverage Subsystem transmission;
  • the CPE network management is responsible for monitoring the CPE status of the entire network, CPE version upgrade, and parameter configuration;
  • the in-vehicle coverage unit network manager is responsible for monitoring the in-vehicle coverage subsystem.
  • the wireless base station subsystem includes a central computer room and operator 4G or 5G communication base stations arranged along the line; the operator 4G or 5G communication base station is connected to the central computer room through an optical cable.
  • the in-car coverage subsystem includes a train antenna, a CPE client, an MEC server, a switch, and a base station transceiver module; wherein, the train antenna is connected to the CPE client through a radio frequency cable; the CPE client is connected to the CPE client through an optical fiber or network cable The switch is connected; the switch is connected to the MEC server through optical fiber or network cable; the base station transceiver module is connected to the switch through optical fiber or network cable.
  • the base station transceiver module includes a first baseband processing unit BBU and a plurality of first radio remote units RRU; the first baseband processing unit BBU is connected between the CPE client and the switch through an optical fiber or a network cable; an MEC server The first baseband processing unit BBU is connected to the switch; the multiple first radio remote units RRU are respectively connected to the switch through optical fibers or network cables.
  • the train antenna, the CPE client, the MEC server, the switch, and the first baseband processing unit BBU are all installed in a communication carriage, and the plurality of first radio remote unit RRUs are respectively installed in each row of customer carriages, Provide operators 4G or 5G network signals and WIFI signals for customers in each customer compartment.
  • the base station transceiver module is an integrated small base station, which is connected to the switch through an optical fiber or a network cable.
  • the train antenna, CPE client, MEC server, and switch are all installed in the communication carriage, and the integrated small base station is installed in each row of customer carriages, and provides operators 4G or 4G for customers in each row of customer carriages.
  • 5G network signal and WIFI signal are all installed in the communication carriage.
  • the integrated small base station includes a second baseband processing unit BBU, a second remote radio unit RRU, an external interface module, a power supply module, and a base station synchronization clock; wherein, the second baseband processing unit BBU communicates with the switch through the external interface module Connection; the base station synchronization clock is connected between the second baseband processing unit BBU and the second remote radio unit RRU; the power module is connected to the external interface module.
  • the external interface module includes a network port return WAN port, a local commissioning LAN port and an optical port return port.
  • a new CPE gateway is added on the basis of the core network, which is used to establish a VPN tunnel between the CPE client and the CPE gateway, transparently transmit the data flow in the vehicle, and forward it to different core network elements for processing according to the traffic category, so as to resolve the vehicle
  • the purpose of the equipment message is to establish the transmission with the in-car coverage subsystem.
  • a new CPE network management system is added on the basis of the core network to monitor the CPE status of the entire network and complete the CPE version upgrade and parameter configuration.
  • the train antenna is connected to the CPE client through a radio frequency cable
  • the first baseband processing unit BBU is connected between the CPE client and the switch through an optical fiber or network cable
  • the MEC server passes through the first baseband processing unit BBU.
  • multiple first radio remote unit RRUs are respectively connected to the switch through optical fiber or network cable, which solves the problem that occurs when the mobile user terminal directly connects to the operator's 4G or 5G base station in the mobile scenario (high-speed rail, subway) Technical defects such as frequency shift, dropped calls, and frequent switching.
  • the train antenna, CPE client, MEC server, switch, and first baseband processing unit BBU are all installed in the communication compartment, and multiple first radio remote unit RRUs are installed in each row of customers.
  • the cellular network is divided into single customer carriages to reduce the pressure on the capacity of a single cell.
  • the base transceiver module includes the first baseband processing unit BBU and multiple first remote radio units RRU. If the base transceiver module in this solution is an integrated small base station Next, the same effects of advantages 3 and 4 can be achieved.
  • Fig. 1 is a schematic structural diagram of a network communication system applied to a mobile scenario in the first embodiment
  • Figure 2 is a schematic diagram of the structure of the in-vehicle coverage subsystem in the first embodiment
  • FIG. 3 is a schematic structural diagram of a network communication system applied to a mobile scenario in the second embodiment
  • Figure 4 is a schematic diagram of the structure of the in-vehicle coverage subsystem in the second embodiment
  • Fig. 5 is a schematic structural diagram of an integrated small base station in the second embodiment.
  • 1-Analysis and monitoring service subsystem 2-Wireless base station subsystem, 3-Car coverage subsystem, 1-1-CPE gateway, 1-2-CPE network management, 1-3-Car coverage unit network management, 1- 4-core network, 3- 1-train antenna, 3-2-CPE client, 3-3-MEC server, 3- 4-switch, 3- 5-integrated small base station, 3-6-first baseband processing Unit BBU, 3-7-The first remote radio unit RRU, 3-5-1-The second baseband processing unit BBU, 3-5-2-The second remote radio unit RRU, 3-5-3-External interface Module, 3-5-4-power module, 3-5-5-base station synchronization clock.
  • this embodiment is a network communication system applied to mobile scenarios, including analysis and monitoring service subsystem 1, wireless base station subsystem 2, and in-vehicle coverage subsystem 3; wireless base station subsystem 2 is connected to Analysis and monitoring between service subsystem 1 and in-vehicle coverage subsystem 3;
  • the analysis and monitoring service subsystem 1 is used to process and analyze the messages of the in-vehicle coverage subsystem 3 and to monitor the in-vehicle coverage subsystem 3;
  • the wireless base station subsystem 2 is a transmission network system that is used to construct analysis and monitoring services.
  • the communication channel between the system 1 and the in-vehicle coverage subsystem 3; the in-vehicle coverage subsystem 3 is used to solve the 4G or 5G and WIFI access of the user terminal in the mobile scenario.
  • the analysis and monitoring service subsystem 1 includes CPE gateway 1-1, CPE network management 1-2, in-car coverage unit network management 1-3, and core network 1-4; CPE gateway 1-1, CPE network management 1-2, The in-vehicle coverage unit network managers 1-3 are respectively connected to the core network 1-4.
  • CPE gateway 1-1 is used to establish a VPN tunnel between the CPE client and the CPE gateway, transparently transmit the in-vehicle data flow, and forward it to different core network elements for processing according to the traffic category, parse the in-vehicle equipment messages, and establish a connection with the in-vehicle Transmission of coverage subsystem 3;
  • CPE network management 1-2 responsible for monitoring the entire network CPE status, CPE version upgrade, parameter configuration;
  • in-vehicle coverage unit network management 1-3 responsible for monitoring the in-vehicle coverage subsystem 3.
  • the wireless base station subsystem 2 includes a central computer room and an operator's 4G or 5G communication base station arranged along the line; the operator's 4G or 5G communication base station is connected to the central computer room through an optical cable.
  • the in-car coverage subsystem 3 includes train antenna 3-1, CPE client 3-2, MEC server 3-3, switch 3-4, and base station transceiver modules;
  • the base station transceiver module includes a first baseband processing unit BBU3-6 and multiple first remote radio units RRU3-7;
  • the train antenna 3-1 is connected to the CPE client 3-2 through the radio frequency cable, and is connected to the operator’s 4G or 5G communication base station through the air interface;
  • the first baseband processing unit BBU3-6 is connected to the CPE client 3-2 through optical fiber or network cable Between the switch 3-4;
  • the MEC server 3-3 is connected to the switch 3-4 through the first baseband processing unit BBU3-6;
  • the multiple first remote radio units RRU3-7 are connected to the switch 3- through optical fiber or network cable respectively. 4 connection;
  • the train antenna 3-1, the CPE client 3-2, the MEC server 3-3, the switch 3-4, and the first baseband processing unit BBU3-6 are all installed in the communication carriage, and multiple first radios are remote Units RRU3-7 are installed in each row of customer cars.
  • the function of each module is described as follows:
  • the first remote radio unit RRU3-7 is responsible for the wireless access function of mobile users, and can transmit operators' 4G or 5G network signals and WIFI signals.
  • Switch 3-4 as a transmission conversion device, completes the signal conversion from the optical port to the Ethernet electrical port, the functions of downstream signal splitting, and upstream signal combining, and can be the first remote radio remote unit through POEPower over Ethernet RRU3-7 power supply.
  • the first baseband processing unit BBU3-6 is responsible for baseband signal modulation and demodulation.
  • the neighboring cell function can be automatically managed according to the measurement report reported by the UE to realize the self-configuration, self-optimization and self-operation of the neighboring cell.
  • the MEC server 3-3 provides an information technology service environment and cloud computing capabilities at a location close to mobile users, and distributes and pushes content to the side close to users, so that applications, services, and content are deployed in a highly distributed environment. According to user behavior, users can directly access local services, directly access the Internet or access through the core network, so as to achieve local traffic offloading, precise positioning, core network security encryption and authentication, seamless switching and reselection, and anti-interference.
  • CPE client 3-2 as the in-vehicle coverage subsystem 3 air interface transmission, supports air interface simultaneous access, wireless transmission; compatible with the 4G or 5G base station frequency bands of operators along the line, and supports the design of active and standby CPE backup.
  • the train antenna 3-1 is used for radio frequency transmission for 4G or 5G base station network signal access and network signal forwarding of the in-car coverage subsystem 3.
  • S1 The mobile user accesses the network through the first remote radio unit RRU3-7 in the customer compartment where he or she is located;
  • the first remote radio unit RRU3-7 sends the service requirements of the mobile user to the CPE client 3-2 through the switch 3-4;
  • the wireless base station subsystem 2 transmits the service requirements of mobile users and the service requirements of the wireless base station subsystem 2 itself to the core network 1-4 of the analysis and monitoring service subsystem 1;
  • the core network 1-4 directly handles the service requirements of the wireless base station subsystem 2 itself, and transmits the service requirements of mobile users to the CPE gateway 1-1 for processing;
  • This embodiment solves the technical defects such as Doppler shift, dropped calls, frequent handovers, etc. when the user terminal directly accesses the operator's 4G or 5G base station in a mobile scenario.
  • Multiple first radio remote unit RRUs are installed in each row of customer compartments, and the cellular network is divided according to a single row of customer compartments, which greatly reduces the capacity pressure of a single cell.
  • a new CPE gateway is added on the basis of the core network to achieve the purpose of parsing messages from on-board equipment and establishing transmission with the in-vehicle coverage subsystem.
  • the base transceiver module is an integrated small base station 3-5; the CPE client 3-2 is connected to the switch 3-4 through optical fiber or network cable, and the switch 3 -4 is connected to the MEC server 3-3 through optical fiber or network cable; multiple integrated small base stations 3-5 are installed in each row of customer cars, and are connected to the switch 3-4 through optical fiber or network cable.
  • the integrated small base station 3-5 includes a second baseband processing unit BBU3-5-1, a second remote radio unit RRU3-5-2, an external interface module 3-5-3, and a power supply Module 3-5-4 and base station synchronization clock 3-5-5; among them, the second baseband processing unit BBU3-5-1 is connected to switch 3-4 through external interface module 3-5-3; base station synchronization clock 3-5 -5 is connected between the second baseband processing unit BBU3-5-1 and the second remote radio unit RRU3-5-2; the power module 3-5-4 is connected to the external interface module 3-5-3.
  • the external interface module 3-5-3 includes network port return WAN port, local commissioning LAN port and optical port return port.
  • the second baseband processing unit BBU3-5-1 and the second remote radio unit RRU3-5-2 play the same roles as the first baseband processing unit BBU3-6 and the first remote radio unit RRU3-7.
  • the effect is the same.
  • the base station synchronization clock is used to ensure global clock synchronization and ensure the stability of the entire board clock.
  • This embodiment can achieve the same effect as the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种应用于移动情景的网络通信系统,包括解析与监控服务子系统、无线基站子系统以及车内覆盖子系统;无线基站子系统连接于解析与监控服务子系统和车内覆盖子系统之间;其中,所述解析与监控服务子系统,用于处理解析车内覆盖子系统的报文及监控车内覆盖子系统;所述无线基站子系统为传输网系统,用于构建解析与监控服务子系统与车内覆盖子系统的通讯通道;所述车内覆盖子系统,用于解决移动情景下用户终端的运营商4G或5G以及WIFI接入。本申请可解决移动情景下用户终端直接接入运营商4G或5G基站的时候出现的多普勒频移、掉线、切换频繁等技术缺陷问题。

Description

一种应用于移动情景的网络通信系统 技术领域
本实用新型涉及移动通信的技术领域,尤其涉及到一种应用于移动情景的网络通信系统。
背景技术
截止2018年9月,中国已完成2.8万公里的高铁建设,2019年高铁规划约4200公里,到2020年将超过3万公里,预计2025年超过3.8万公里。随着高铁乘客的高价值性和智能终端的普及,高铁乘客通过智能终端连接互联网“打发”旅途时间。
4G时代基础覆盖后,高铁线路才开始建设,但5G伊始便有巨大的业务需求。1000Km内,高铁成为出行首选,2018年高铁总客流20.3亿人次远超民航总客流6.2亿人次。高铁出行的高端客户同样是5G的首批重点目标客户。
为了提升运营商品牌形象,高铁场景下的5G覆盖需要满足客户基础业务需求。由于车厢厢体的衰减、多普勒频移、高铁线路周边运营商4G或5G基站稀少等综合原因导致高铁用户终端无法保持稳定、有效的接入运营商4G或5G基站,从而导致高铁乘客的网络使用感知度大大降低。
除了高铁,地铁等移动场景下也存在相同的问题。
发明内容
本实用新型的目的在于克服现有技术的不足,提供一种应用于移动情景的、能让用户保持稳定、有效地接入运营商4G或5G基站、使网络使用感知度大大提高的网络通信系统。
为实现上述目的,本实用新型所提供的技术方案为:
包括解析与监控服务子系统、无线基站子系统以及车内覆盖子系统;无线基站子系统连接于解析与监控服务子系统和车内覆盖子系统之间;
其中,所述解析与监控服务子系统,用于处理解析车内覆盖子系统的报文及监控车内覆盖子系统;
所述无线基站子系统为传输网系统,用于构建解析与监控服务子系统与车内覆盖子系统的通讯通道;
所述车内覆盖子系统,用于解决移动情景下用户终端的运营商4G或5G以及WIFI接入。
进一步地,所述解析与监控服务子系统包括CPE网关、CPE网管、车内覆盖单元网管以及核心网;所述CPE网关、CPE网管、车内覆盖单元网管分别接入核心网;
所述CPE网关,用于CPE客户端和CPE网关之间建立VPN隧道,透传车内数据流,并根据流量类别转发到不同的核心网元处理,解析车载设备报文,建立与车内覆盖子系统的传输;
所述CPE网管,负责全网CPE状态监控,CPE版本升级,参数配置;
所述车内覆盖单元网管,负责监控车内覆盖子系统。
进一步地,所述无线基站子系统包括中心机房以及沿着线路沿线布置的运营商4G或5G通信基站;运营商4G或5G通信基站通过光缆与中心机房连接。
进一步地,所述车内覆盖子系统包括列车天线、CPE客户端、MEC服务器、交换机以及基站收发模块;其中,所述列车天线通过射频电缆与CPE客户端连接;CPE客户端通过光纤或网线与交换机连接;交换机通过光纤或网线与MEC服务器连接;基站收发模块通过光纤或网线与该交换机连接。
进一步地,所述基站收发模块包括第一基带处理单元BBU和多个第一射频拉远单元RRU;所述第一基带处理单元BBU通过光纤或网线连接于CPE客户端与交换机之间;MEC服务器通过该第一基带处理单元BBU与交换机连接;所述多个第一射频拉远单元RRU分别通过光纤或网线与交换机连接。
进一步地,所述列车天线、CPE客户端、MEC服务器、交换机、第一基带处 理单元BBU均安装于通信车厢中,所述多个第一射频拉远单元RRU分别安装于每列客户车厢中,为每列客户车厢中的客户提供运营商4G或5G网络信号以及WIFI信号。
进一步地,所述基站收发模块为一体化小基站,该一体化小基站通过光纤或网线与交换机连接。
进一步地,所述列车天线、CPE客户端、MEC服务器、交换机均安装于通信车厢中,所述一体化小基站安装于每列客户车厢中,为每列客户车厢中的客户提供运营商4G或5G网络信号以及WIFI信号。
进一步地,所述一体化小基站包括第二基带处理单元BBU、第二射频拉远单元RRU、对外接口模块、电源模块以及基站同步时钟;其中,第二基带处理单元BBU通过对外接口模块与交换机连接;基站同步时钟连接于该第二基带处理单元BBU与第二射频拉远单元RRU之间;电源模块与对外接口模块连接。
进一步地,所述对外接口模块包括网口回传WAN口、本地调测LAN口和光口回传端口。
与现有技术相比,本方案原理和优点如下:
1.在核心网的基础上新增CPE网关,用于CPE客户端和CPE网关之间建立VPN隧道,透传车内数据流,并根据流量类别转发到不同的核心网元处理,达到解析车载设备报文,建立与车内覆盖子系统的传输的目的。
2.在核心网的基础上新增CPE网管,使得监控全网CPE状态,完成CPE版本升级以及参数配置。
3.车内覆盖子系统中,列车天线通过射频电缆与CPE客户端连接,第一基带处理单元BBU通过光纤或网线连接于CPE客户端与交换机之间,MEC服务器通过该第一基带处理单元BBU与交换机连接,多个第一射频拉远单元RRU分别通过光纤或网线与交换机连接,解决了移动情景下(高铁、地铁)移动用户终端直接接入运营商4G或5G基站的时候出现的多普勒频移、掉线、切换频繁等技术缺陷问题。
4.车内覆盖子系统中,列车天线、CPE客户端、MEC服务器、交换机、第一基带处理单元BBU均安装于通信车厢内,而多个第一射频拉远单元RRU分别安装于每列客户车厢内,按单列客户车厢划分蜂窝网,降低单小区容量压力。
5.上述优点3和4为基站收发模块包括第一基带处理单元BBU和多个第一射频拉远单元RRU的情况下所达到的,本方案中的基站收发模块若为一体化小基站的情况下,一样可以达到优点3和4的效果。
附图说明
图1为实施例一中一种应用于移动情景的网络通信系统的结构示意图;
图2为实施例一中车内覆盖子系统的结构示意图;
图3为实施例二中一种应用于移动情景的网络通信系统的结构示意图;
图4为实施例二中车内覆盖子系统的结构示意图;
图5为实施例二中一体化小基站的结构示意图。
图中标记如下:
1-解析与监控服务子系统,2-无线基站子系统,3-车内覆盖子系统,1-1-CPE网关,1-2-CPE网管,1-3-车内覆盖单元网管,1-4-核心网,3-1-列车天线,3-2-CPE客户端,3-3-MEC服务器,3-4-交换机,3-5-一体化小基站,3-6-第一基带处理单元BBU,3-7-第一射频拉远单元RRU,3-5-1-第二基带处理单元BBU,3-5-2-第二射频拉远单元RRU,3-5-3-对外接口模块,3-5-4-电源模块,3-5-5-基站同步时钟。
具体实施方式
下面结合两个具体实施例对本实用新型作进一步说明:
实施例一:
参见图1所示,本实施例为一种应用于移动情景的网络通信系统,包括解析与监控服务子系统1、无线基站子系统2以及车内覆盖子系统3;无线基站子系统2连接于解析与监控服务子系统1和车内覆盖子系统3之间;
其中,解析与监控服务子系统1,用于处理解析车内覆盖子系统3的报文及监控车内覆盖子系统3;无线基站子系统2为传输网系统,用于构建解析与监控服务子系统1与车内覆盖子系统3的通讯通道;车内覆盖子系统3,用于解决移动情景下用户终端的运营商4G或5G以及WIFI接入。
具体地,解析与监控服务子系统1包括CPE网关1-1、CPE网管1-2、车内覆盖单元网管1-3以及核心网1-4;CPE网关1-1、CPE网管1-2、车内覆盖单元网管1-3分别接入核心网1-4。
CPE网关1-1,用于CPE客户端和CPE网关之间建立VPN隧道,透传车内数据流,并根据流量类别转发到不同的核心网元处理,解析车载设备报文,建立与车内覆盖子系统3的传输;CPE网管1-2,负责全网CPE状态监控,CPE版本升级,参数配置;车内覆盖单元网管1-3,负责监控车内覆盖子系统3。
无线基站子系统2包括中心机房以及沿着线路沿线布置的运营商4G或5G通信基站;运营商4G或5G通信基站通过光缆与中心机房连接。
如图2所示,车内覆盖子系统3包括列车天线3-1、CPE客户端3-2、MEC服务器3-3、交换机3-4以及基站收发模块;
本实施例中,基站收发模块包括第一基带处理单元BBU3-6和多个第一射频拉远单元RRU3-7;
列车天线3-1通过射频电缆与CPE客户端3-2连接,通过空中接口与运营商4G或5G通信基站连接;第一基带处理单元BBU3-6通过光纤或网线连接于CPE客户端3-2与交换机3-4之间;MEC服务器3-3通过该第一基带处理单元BBU3-6与交换机3-4连接;多个第一射频拉远单元RRU3-7分别通过光纤或网线与交换机3-4连接;
上述中,列车天线3-1、CPE客户端3-2、MEC服务器3-3、交换机3-4、第一基带处理单元BBU3-6均安装于通信车厢内,而多个第一射频拉远单元RRU3-7分别安装于每列客户车厢内。各模块的功能描述如下:
第一射频拉远单元RRU3-7,负责移动用户的无线接入功能,可发射运营商4G 或5G网络信号以及WIFI信号。
交换机3-4,作为传输转换设备,完成光口到以太网电口的信号转换,下行信号分路,上行信号合路的功能,并可通过POEPower over Ethernet为远端的第一射频拉远单元RRU3-7供电。
第一基带处理单元BBU3-6,负责基带信号的调制和解调。可根据UE上报的测量报告自动管理邻区功能,实现邻区的自配置、自优化和自操作。
MEC服务器3-3,在靠近移动用户的位置上提供信息技术服务环境和云计算能力,并将内容分发推送到靠近用户侧,使应用、服务和内容都部署在高度分布的环境中。根据用户行为选择让用户直接访问本地业务、直接访问互联网或通过核心网访问,从而实现本地流量卸载、精准定位、核心网安全加密及鉴权、无缝切换及重选和抗干扰。
CPE客户端3-2,作为车内覆盖子系统3空口传输,支持空口同步接入,无线传输;兼容线路沿线运营商4G或5G基站频段,支持主备CPE备份设计。
列车天线3-1,用于4G或5G基站网络信号接入和车内覆盖子系统3的网络信号转发的射频传输。
本实施例中,整个网络通信系统的具体工作流程如下:
S1:移动用户通过自己所在该列客户车厢中的第一射频拉远单元RRU3-7接入网络;
S2:第一射频拉远单元RRU3-7通过交换机3-4把移动用户的业务需求发送到CPE客户端3-2;
S3:CPE客户端3-2接收到移动用户的业务需求后,把移动用户的业务需求封装到VPN隧道,并将其通过列车天线3-1发送到无线基站子系统2;
S4:无线基站子系统2将移动用户的业务需求以及无线基站子系统2自身的业务需求传输到解析与监控服务子系统1的核心网1-4;
S5:核心网1-4直接处理无线基站子系统2自身的业务需求,把移动用户的业 务需求传输到CPE网关1-1处理;
S6:CPE网关1-1把客户车厢中的移动用户的业务需求解封装VPN隧道后,再将其传输到核心网1-4处理;
S7:移动用户的业务需求处理完后,处理结果按原路返回到移动用户终端中。
由于CPE网管1-2、车内覆盖单元网管1-3、第一基带处理单元BBU3-6、MEC服务器3-3等已作详述,因此,本实施例的具体工作流程不另作论述。
本实施例解决了移动情景下用户终端直接接入运营商4G或5G基站的时候出现的多普勒频移、掉线、切换频繁等技术缺陷问题。将多个第一射频拉远单元RRU分别安装于每列客户车厢内,按单列客户车厢划分蜂窝网,大大降低了单小区容量压力。在核心网的基础上新增CPE网关,达到了解析车载设备报文,建立与车内覆盖子系统的传输的目的。
实施例二:
如图3和4所示,本实施例与实施例一相比,基站收发模块为一体化小基站3-5;CPE客户端3-2通过光纤或网线与交换机3-4连接,而交换机3-4通过光纤或网线与MEC服务器3-3连接;多个一体化小基站3-5分别安装于每列客户车厢中,且分别通过光纤或网线与交换机3-4连接。
具体地,如图5所示,一体化小基站3-5包括第二基带处理单元BBU3-5-1、第二射频拉远单元RRU3-5-2、对外接口模块3-5-3、电源模块3-5-4以及基站同步时钟3-5-5;其中,第二基带处理单元BBU3-5-1通过对外接口模块3-5-3与交换机3-4连接;基站同步时钟3-5-5连接于该第二基带处理单元BBU3-5-1与第二射频拉远单元RRU3-5-2之间;电源模块3-5-4与对外接口模块3-5-3连接。
对外接口模块3-5-3包括网口回传WAN口、本地调测LAN口和光口回传端口。
本实施例中,第二基带处理单元BBU3-5-1和第二射频拉远单元RRU3-5-2所起的作用与第一基带处理单元BBU3-6和第一射频拉远单元RRU3-7所起的作用一致。基站同步时钟用于保证全局时钟同步,保证整板时钟稳定。
本实施例一样可以达到实施例一一样的效果。
以上所述之实施例子只为本实用新型之较佳实施例,并非以此限制本实用新型的实施范围,故凡依本实用新型之形状、原理所作的变化,均应涵盖在本实用新型的保护范围内。

Claims (10)

  1. 一种应用于移动情景的网络通信系统,其特征在于,包括解析与监控服务子系统(1)、无线基站子系统(2)以及车内覆盖子系统(3);无线基站子系统(2)连接于解析与监控服务子系统(1)和车内覆盖子系统(3)之间;
    其中,所述解析与监控服务子系统(1),用于处理解析车内覆盖子系统(3)的报文及监控车内覆盖子系统(3);
    所述无线基站子系统(2)为传输网系统,用于构建解析与监控服务子系统(1)与车内覆盖子系统(3)的通讯通道;
    所述车内覆盖子系统(3),用于解决移动情景下用户终端的运营商4G或5G以及WIFI接入。
  2. 根据权利要求1所述的一种应用于移动情景的网络通信系统,其特征在于,所述解析与监控服务子系统(1)包括CPE网关(1-1)、CPE网管(1-2)、车内覆盖单元网管(1-3)以及核心网(1-4);所述CPE网关(1-1)、CPE网管(1-2)、车内覆盖单元网管(1-3)分别接入核心网(1-4);
    所述CPE网关(1-1),用于CPE客户端和CPE网关之间建立VPN隧道,透传车内数据流,并根据流量类别转发到不同的核心网元处理,解析车载设备报文,建立与车内覆盖子系统(3)的传输;
    所述CPE网管(1-2),负责全网CPE状态监控,CPE版本升级,参数配置;
    所述车内覆盖单元网管(1-3),负责监控车内覆盖子系统(3)。
  3. 根据权利要求1所述的一种应用于移动情景的网络通信系统,其特征在于,所述无线基站子系统(2)包括中心机房以及沿着线路沿线布置的运营商4G或5G通信基站;运营商4G或5G通信基站通过光缆与中心机房连接。
  4. 根据权利要求1所述的一种应用于移动情景的网络通信系统,其特征在于,所述车内覆盖子系统(3)包括列车天线(3-1)、CPE客户端(3-2)、MEC服务器(3-3)、交换机(3-4)以及基站收发模块;其中,所述列车天线(3-1) 通过射频电缆与CPE客户端(3-2)连接;CPE客户端(3-2)通过光纤或网线与交换机(3-4)连接;交换机(3-4)通过光纤或网线与MEC服务器(3-3)连接;基站收发模块通过光纤或网线与该交换机(3-4)连接。
  5. 根据权利要求4所述的一种应用于移动情景的网络通信系统,其特征在于,所述基站收发模块包括第一基带处理单元BBU(3-6)和多个第一射频拉远单元RRU(3-7);所述第一基带处理单元BBU(3-6)通过光纤或网线连接于CPE客户端(3-2)与交换机(3-4)之间;MEC服务器(3-3)通过该第一基带处理单元BBU(3-6)与交换机(3-4)连接;所述多个第一射频拉远单元RRU(3-7)分别通过光纤或网线与交换机(3-4)连接。
  6. 根据权利要求5所述的一种应用于移动情景的网络通信系统,其特征在于,所述列车天线(3-1)、CPE客户端(3-2)、MEC服务器(3-3)、交换机(3-4)、第一基带处理单元BBU(3-6)均安装于通信车厢中,所述多个第一射频拉远单元RRU(3-7)分别安装于每列客户车厢中,为每列客户车厢中的客户提供运营商4G或5G网络信号以及WIFI信号。
  7. 根据权利要求4所述的一种应用于移动情景的网络通信系统,其特征在于,所述基站收发模块为一体化小基站(3-5),该一体化小基站(3-5)通过光纤或网线与交换机(3-4)连接。
  8. 根据权利要求7所述的一种应用于移动情景的网络通信系统,其特征在于,所述列车天线(3-1)、CPE客户端(3-2)、MEC服务器(3-3)、交换机(3-4)均安装于通信车厢中,所述一体化小基站(3-5)安装于每列客户车厢中,为每列客户车厢中的客户提供运营商4G或5G网络信号以及WIFI信号。
  9. 根据权利要求8所述的一种应用于移动情景的网络通信系统,其特征在于,所述一体化小基站(3-5)包括第二基带处理单元BBU(3-5-1)、第二射频拉远单元RRU(3-5-2)、对外接口模块(3-5-3)、电源模块(3-5-4)以及基站同步时钟(3-5-5);其中,第二基带处理单元BBU(3-5-1)通过对外接口模块 (3-5-3)与交换机(3-4)连接;基站同步时钟(3-5-5)连接于该第二基带处理单元BBU(3-5-1)与第二射频拉远单元RRU(3-5-2)之间;电源模块(3-5-4)与对外接口模块(3-5-3)连接。
  10. 根据权利要求9所述的一种应用于移动情景的网络通信系统,其特征在于,所述对外接口模块(3-5-3)包括网口回传WAN口、本地调测LAN口和光口回传端口。
PCT/CN2019/107395 2019-06-13 2019-09-24 一种应用于移动情景的网络通信系统 WO2020248430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920883628.9U CN209402739U (zh) 2019-06-13 2019-06-13 一种应用于移动情景的网络通信系统
CN201920883628.9 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020248430A1 true WO2020248430A1 (zh) 2020-12-17

Family

ID=67900356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107395 WO2020248430A1 (zh) 2019-06-13 2019-09-24 一种应用于移动情景的网络通信系统

Country Status (2)

Country Link
CN (1) CN209402739U (zh)
WO (1) WO2020248430A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209402739U (zh) * 2019-06-13 2019-09-17 广州新世纪通信科技有限公司 一种应用于移动情景的网络通信系统
CN112954706A (zh) * 2021-01-27 2021-06-11 深圳国人无线通信有限公司 一种无线网络通信室内分布系统
CN113411772B (zh) * 2021-06-09 2022-12-23 国铁吉讯科技有限公司 一种高铁场景下的5g组网系统及方法
CN113473413B (zh) * 2021-07-02 2023-06-30 国铁吉讯科技有限公司 一种高铁场景下的5g语音业务处理系统及处理方法
CN113573278A (zh) * 2021-08-27 2021-10-29 太仓市同维电子有限公司 一种交通领域移动通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063753A1 (en) * 2016-08-24 2018-03-01 Parallel Wireless, Inc. Optimized Train Solution
CN109327875A (zh) * 2018-11-02 2019-02-12 南京乾能科技有限公司 一种基于4g模块的无线通信传输装置的传输方法技术领域
CN109474935A (zh) * 2018-11-28 2019-03-15 中科凯普(天津)卫星导航通信技术有限公司 一种隧道微波通信传输系统及方法
CN109587656A (zh) * 2018-12-31 2019-04-05 广东超讯通信技术股份有限公司 一种通信方法、无线保真设备及终端设备
CN209402739U (zh) * 2019-06-13 2019-09-17 广州新世纪通信科技有限公司 一种应用于移动情景的网络通信系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063753A1 (en) * 2016-08-24 2018-03-01 Parallel Wireless, Inc. Optimized Train Solution
CN109327875A (zh) * 2018-11-02 2019-02-12 南京乾能科技有限公司 一种基于4g模块的无线通信传输装置的传输方法技术领域
CN109474935A (zh) * 2018-11-28 2019-03-15 中科凯普(天津)卫星导航通信技术有限公司 一种隧道微波通信传输系统及方法
CN109587656A (zh) * 2018-12-31 2019-04-05 广东超讯通信技术股份有限公司 一种通信方法、无线保真设备及终端设备
CN209402739U (zh) * 2019-06-13 2019-09-17 广州新世纪通信科技有限公司 一种应用于移动情景的网络通信系统

Also Published As

Publication number Publication date
CN209402739U (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020248430A1 (zh) 一种应用于移动情景的网络通信系统
Chen et al. Development trends of mobile communication systems for railways
AU2013394097B2 (en) Small cell network architecture for servicing multiple network operators
CN102082713B (zh) 一种高铁移动通信系统及其工作方法
WO2012139402A1 (zh) 高速移动通信的实现方法和设备
CN112672427B (zh) 一种矿井通信方法、装置、设备、系统及存储介质
CN205320302U (zh) 一种基于lte网络主备地址转换系统
CN105120533A (zh) 列车无线网络覆盖系统
CN108791373B (zh) 一种铁路平面调车系统
CN103428709B (zh) 混合通信方法及系统
Tang et al. Field test results analysis in urban rail transit train ground communication systems of integrated service using LTE-M
CN111130622A (zh) 一种基于多卫星链路的新型集群通信系统及其通信方法
CN104010345A (zh) 车载多模lte接入及wlan热点系统设备
CN108777875B (zh) 一种业务处理方法及装置
Jaffry et al. Mobile cells assisting future cellular communication
CN206061159U (zh) 一种4g‑lte地空宽带通讯系统
CN209806096U (zh) 一种机载局域网系统
CN109218040A (zh) 基于lte技术的轨道交通行业数据传输通信系统与方法
CN117022665A (zh) 一种基于5G毫米波和Sub6GHz的飞机地面检修维护方法
CN207460521U (zh) 一种基于lte技术的铁路stp系统
Zhang et al. The design and performance test of train control data communication systems based on train-to-train communication
CN207283533U (zh) 一种基于电力应急集群通信技术的融合指挥系统
CN206894698U (zh) 一种基于td‑lte的轨道交通无线通信系统
CN206517397U (zh) 一种应用于轨道交通通信的站台通信装置以及通信系统
CN110392359A (zh) 用于列车部件损伤数据传输的车地lte通讯系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932872

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19932872

Country of ref document: EP

Kind code of ref document: A1