WO2022160949A1 - 室内分布系统和信号传输方法 - Google Patents

室内分布系统和信号传输方法 Download PDF

Info

Publication number
WO2022160949A1
WO2022160949A1 PCT/CN2021/136204 CN2021136204W WO2022160949A1 WO 2022160949 A1 WO2022160949 A1 WO 2022160949A1 CN 2021136204 W CN2021136204 W CN 2021136204W WO 2022160949 A1 WO2022160949 A1 WO 2022160949A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
remote
coupling
module
Prior art date
Application number
PCT/CN2021/136204
Other languages
English (en)
French (fr)
Inventor
赖权
罗漫江
陈海宇
方绍湖
周进青
李馨
Original Assignee
京信网络系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信网络系统股份有限公司 filed Critical 京信网络系统股份有限公司
Priority to US18/274,994 priority Critical patent/US20240154702A1/en
Publication of WO2022160949A1 publication Critical patent/WO2022160949A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • H04W16/225Traffic simulation tools or models for indoor or short range network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an indoor distribution system and a signal transmission method.
  • the coupling unit in the analog indoor distribution system is used to adjust the power of the signal output by the extension unit and send it to the remote unit.
  • the coupling degree design of the coupling unit needs to consider various factors such as feeder loss, input signal strength, and power of the destination node. ), the smaller the input power in the transmission process, the smaller the coupling degree needs to be designed. If the antenna needs to be deployed in multiple stages, a variety of coupling units need to be deployed according to the different requirements of the coupling degree, and the relative positions of different coupling units and other coupling units in the system cannot be changed, which will increase the difficulty of construction.
  • the present disclosure provides an indoor distribution system.
  • the present disclosure provides an indoor distribution system, including: an access unit, an extension unit, a first coupling unit, and at least one remote cascading chain; wherein each of the remote cascading chains includes: at least one a second coupling unit and at least one remote unit; the remote unit includes a signal processing module;
  • At least one second coupling unit in each of the remote cascade chains is connected in cascade, and each of the remote units is respectively connected with its corresponding second coupling unit;
  • the first coupling unit configured to send the radio frequency signal transmitted by the expansion unit to the second coupling unit;
  • the second coupling unit is used to send the radio frequency signal of the input power to the remote unit connected with the second coupling unit according to the coupling degree;
  • the remote unit is configured to adjust the power of the radio frequency signal from the input power to the target power output through the signal processing module according to the input power and the target power.
  • the present disclosure provides a signal transmission method, which is applied to an indoor distribution system.
  • the indoor distribution system includes: an access unit, an extension unit, a first coupling unit, and at least one remote cascade chain; wherein each The remote cascade chain includes: at least one second coupling unit and at least one remote unit; the remote unit includes a signal processing module; at least one second coupling unit stage in each of the remote cascade chains connected, each of the remote units is connected to its corresponding second coupling unit respectively; the method includes:
  • the first coupling unit sends the radio frequency signal transmitted by the expansion unit to the second coupling unit;
  • the second coupling unit sends a radio frequency signal of input power to the remote unit connected to the second coupling unit according to the coupling degree;
  • the remote unit adjusts the power of the radio frequency signal from the input power to the target power output through the signal processing module according to the input power and the target power.
  • the second coupling unit divides its output power according to the coupling degree, and sends the radio frequency signal to the remote unit connected to it and the second coupling unit at the next level.
  • the remote unit automatically controls its signal processing module according to the input power and target power.
  • the gain of the radio frequency signal is adjusted from the input power to the target power output.
  • the input power of the radio frequency signal received by each remote unit is not the same, but it can adjust itself to output the radio frequency signal of the target power, so that the remote unit can output the radio frequency signal of the target power.
  • the second coupler in the end cascade chain can be set to one type, thereby reducing the difficulty of design and construction, improving the efficiency of design and construction, and increasing the practicability of the indoor distribution system.
  • Fig. 1 is the partial structure schematic diagram of a kind of indoor distribution system in the prior art
  • FIG. 2 is a schematic structural diagram of an indoor distribution system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a remote unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a topology architecture and a structure of a coupling unit according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a topology architecture and a structure of another coupling unit provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another remote unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another indoor distribution system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another indoor distribution system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an expansion unit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an access unit according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a first circuit according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a second circuit according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a third circuit according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a fourth circuit according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of a signal transmission method provided by an embodiment of the present disclosure.
  • 100 access unit; 110: first digital processing module; 120: first optical transceiver module; 130: first circuit; 140: second circuit; 150: third circuit; 160: fourth circuit; 200: expansion unit ; 210: second digital processing module; 220: signal conversion module; 230: second optical transceiver module; 300: first coupling unit; 400: remote cascade chain; 410: second coupling unit; 420: remote unit ; 421: Signal processing module; 422: Monitoring processing module.
  • the coupling degree (power ratio of each output end) of the coupling unit needs to be considered in the design of feeder length, feeder loss, input signal strength, and power of the destination node.
  • FIG. 1 is a schematic partial structure diagram of an indoor distribution system in the prior art.
  • the indoor distribution system includes: an access unit, an extension unit, a first coupling unit and at least one remote cascade chain (it is assumed here to be A remote cascade chain); each remote cascade chain includes: at least one second coupling unit and at least one remote unit, (it is assumed here that the remote cascade chain includes cascade-connected second coupling units 1 , a second coupling unit 2 and a second coupling unit 3), each second coupling unit is respectively connected to a remote unit.
  • the coupling degree of the second coupling unit (the coupling degree is defined as The ratio of the power of each output terminal) are:
  • coupling units with the same coupling degree are deployed on each remote cascade chain, and the remote unit automatically adjusts the power of the radio frequency signal as the goal power, and output the radio frequency signal at the target power, thus reducing the construction difficulty and improving the design and construction efficiency of the indoor distribution system.
  • FIG. 2 is a schematic structural diagram of an indoor distribution system according to an embodiment of the present disclosure. As shown in FIG. 1 , the system in this embodiment may include:
  • each remote cascade chain 400 includes: at least one second coupling unit 410 and at least one remote unit 420 ;
  • the remote unit 420 includes a signal processing module;
  • At least one second coupling unit 410 in each remote cascade chain 400 is connected in cascade, and each remote unit 420 is respectively connected with its corresponding second coupling unit 410;
  • the first coupling unit 300 is configured to send the radio frequency signal transmitted by the extension unit to the second coupling unit.
  • the second coupling unit 410 is configured to send a radio frequency signal of input power to the remote unit 420 connected to the second coupling unit 410 according to the coupling degree.
  • the remote unit 420 is configured to control the gain of the signal processing module according to the input power and the target power, and adjust the power of the radio frequency signal from the input power to the target power output.
  • the access unit 100 is configured to perform optional analog-to-digital conversion, process data on related input paths, interface conversion and rate adjustment, etc., and transmit the processed signal to the extension unit 200 .
  • the expansion unit 200 is configured to perform aggregation, distribution, and analog-to-digital conversion of interface data of the access unit 100, and is connected to the coupling unit for input and output of radio frequency signals.
  • the remote unit 420 is used for amplifying the radio frequency signal, gain control, and optional clock signal extraction and recovery and frequency conversion functions.
  • the access unit 100 receives the signal sent by the base station or the core network, and sends the signal to the extension unit 200, and the extension unit 200 converts the signal into a radio frequency signal and sends it to each remote through the first coupling unit 300.
  • the first coupling unit 300 is respectively connected to the first-stage second coupling unit 410 in each remote cascading chain 400, and the first-stage second coupling unit 410 of each remote cascading chain 400 receives the radio frequency signal, and each The second coupling unit 410 transmits radio frequency signals to the connected remote unit 420 and the next-level second coupling unit 410 according to its own coupling degree.
  • each remote unit 420 receives the radio frequency signal, obtains the input power of the received radio frequency signal, and controls its own signal processing module to adjust the power of the radio frequency signal from the input power to the target power output according to the input power and the target power, for example, , the attenuator connected to the signal processing module can be adjusted according to the input power and the target power, so that the power of the radio frequency signal output by the remote unit 420 is the target power.
  • the target power is preset, and each remote unit 420 can set the same target power, so that the signals are covered evenly.
  • the coupling degrees of the second coupling units 410 included in each remote cascading chain 400 are the same.
  • the coupling degree of the second coupling unit 410 included in each remote cascade chain 400 is the same, and the same coupling unit can be selected, and the remote unit 420 is also the same, and each remote unit 420 can be adjusted automatically.
  • the radio frequency signal of the target power is output, which makes the design and construction more convenient and improves the efficiency of the design and construction.
  • the indoor distribution system includes one remote cascading chain 400, and the remote cascading chain 400 includes three second coupling units 410 connected in cascade.
  • the three second coupling units 410 are respectively marked as The second coupling unit 1, the second coupling unit 2 and the second coupling unit 3, wherein the second coupling unit 3 is connected to the two remote units 420 respectively, the second coupling unit 1, the second coupling unit 2 and the second coupling unit The units 3 are connected in sequence, the second coupling unit 1 is connected to the first coupling unit 300, the second coupling unit 1, the second coupling unit 2 and the second coupling unit 3 are all selected coupling units with a coupling degree of 3:1, and the first coupling unit
  • the output power of the unit 300 is P
  • the target power is P/4.
  • the coupling degree of the first coupling unit and the second coupling unit are the same.
  • the coupling degrees of the second coupling units 410 included in different remote cascading chains 400 are the same or different.
  • the coupling degrees of the second coupling units 410 included in different remote cascading chains 400 may be the same or different, that is, the second coupling units 410 included in different remote cascading chains 400 may be the same type of coupling unit, Different kinds of coupling units are also possible.
  • each remote cascading chain 400 is more convenient in design and construction, which makes the design and construction of the indoor distribution system more convenient, and reduces the difficulty of design and construction.
  • the second coupling unit divides its output power according to the coupling degree, and sends the radio frequency signal to the remote unit connected to it and the second coupling unit at the next level.
  • the remote unit automatically controls the input power and the target power according to the input power and the target power.
  • the gain of its signal processing module outputs the RF signal of the target power.
  • the input power of the RF signal received by each remote unit is not the same, but it can adjust itself to output the RF signal of the target power, making the remote cascade cascade.
  • the second coupler in the chain can be set to one type, thereby reducing the difficulty of design and construction, improving the efficiency of design and construction, and increasing the practicability of the indoor distribution system.
  • FIG. 3 is a schematic structural diagram of a remote unit according to an embodiment of the present disclosure.
  • FIG. 3 is based on the embodiment shown in FIG. 2 .
  • the signal processing module 421 includes: an attenuator, The switch and the amplifier, the remote unit in this embodiment further includes: a monitoring processing module 422, and the monitoring processing module 422 includes: an input signal detection module and a monitoring module.
  • the monitoring module is respectively connected with the input signal detection module and the output signal detection module; the attenuator is connected with the switch and the amplifier in turn; the monitoring module is respectively connected with the attenuator and the switch;
  • the attenuator is used for receiving the radio frequency signal of input power sent by the second coupling unit.
  • the input signal detection module is used to determine the input power and send the input power to the monitoring module.
  • the monitoring module is used for adjusting the attenuator and the switch according to the input power and the target power, so that the amplifier outputs the radio frequency signal of the target power.
  • the input signal detection module is also used to realize the characteristic detection of the input signal.
  • the characteristic detection of the input signal may include but is not limited to detecting one or more of the following characteristics: input power, standing wave, signal type, signal state.
  • the monitoring module is also used for input signal monitoring and/or output signal monitoring and the like.
  • the remote unit may further include: an output signal detection module.
  • the output signal detection module is used to detect the characteristics of the output signal.
  • the characteristic detection of the output signal may include, but is not limited to, detection of one or more of the following characteristics: output power, standing wave, signal type, signal state, etc.
  • the signal processing module 421 further includes a frequency converter.
  • the remote unit receives the radio frequency signal of the input power sent by the second coupling unit
  • the input signal detection module detects the radio frequency signal, determines the input power, and sends the input power to the monitoring module
  • the monitoring module determines the input power according to the input power ( Input signal strength) and target power, determine the gain value, and make the amplifier output the radio frequency signal of target power by controlling the attenuator and switch on the signal transmission chain.
  • the monitoring module determines the gain value according to the input power and the target power determined by the input signal detection module, and controls the attenuator and switch on the signal transmission link to make the amplifier output the radio frequency signal of the target power, thereby achieving the effect of gain control , so that when the input power is different, the remote unit can automatically adjust according to the target power, so as to output the RF signal of the target power, so that the second coupler in the remote cascade chain can be set to one type, thus reducing the design , construction difficulty, improve the efficiency of design and construction.
  • the expansion unit is configured to send a power supply signal and a radio frequency signal to the first coupling unit.
  • the first coupling unit is used for sending the power supply signal and the radio frequency signal to the remote cascade chain.
  • the second coupling unit is configured to send a power supply signal and a radio frequency signal to the remote unit connected to the second coupling unit and to other second coupling units connected to the second coupling unit, respectively.
  • the power supply of the first coupling unit and the remote cascade chain can be provided by the expansion unit, that is, the expansion unit can transmit the radio frequency signal to the remote cascade chain through the first coupling unit, and can also transmit the radio frequency signal through the first coupling unit.
  • the line supplies the supply voltage to the first coupling unit and the remote cascade chain.
  • the expansion unit sends the power supply signal and the radio frequency signal to the first coupling unit, and the first coupling unit separates the power supply signal and the radio frequency signal, and then splits the power supply signal and the radio frequency signal according to the number of connected remote cascade chains.
  • the second coupling unit in the remote cascade chain receives the power supply signal and the radio frequency signal, it also first separates the power supply signal and the radio frequency signal, and then combines them and sends them to the next-level second coupling unit. and remote units.
  • the first coupling unit and the power supply signal of the remote cascade chain are provided by the extension unit together with the radio frequency signal.
  • the power supply signal can use the existing transmission line of the radio frequency signal, and the power supply signal in the remote cascade chain in the indoor distribution system.
  • the number of unit equipment is more than that of expansion units, so a lot of external power lines can be saved, construction difficulty is reduced, and the construction efficiency of the indoor distribution system is improved.
  • the digital indoor distribution system can use optical fiber or network cable for transmission, with the application of high bandwidth in the 5G era, the requirements for optical modules or electrical modules are getting higher and higher.
  • [1]2 represents the number of two carriers (carrier number);
  • [2] 122.88Mbps indicates the standard sampling rate of 100MHz signal
  • [3]2 means IQ two-way data (I/Q data);
  • [4]15 means the standard transmission bit width is 15bit
  • [5] 16/15 represents the control overhead of Common Public Radio Interface (CPRI) transmission
  • Ethernet transmission (based on 802.3ae protocol) supports up to 10Gbps, at least 4 cat7 (Cat7) network cables are required for transmission, and the expansion unit and remote unit also need to support 4 10G network processors, which increases the cost and Complexity of indoor distribution systems.
  • Cat7 Cat7
  • the expansion unit and remote unit also need to support 4 10G network processors, which increases the cost and Complexity of indoor distribution systems.
  • using optical fiber transmission using optical modules and FPGA devices that support 25Gbps in the industry, it is also necessary to use two groups of optical modules and FPGA interfaces. However, this increases the cost and complexity of the indoor distribution system.
  • the units at all levels after the expansion unit in the indoor distribution system are connected by radio frequency cables.
  • At least one second coupling unit in each remote cascading chain is connected in cascade through a radio frequency cable, and each second coupling unit is respectively connected with a remote unit through a radio frequency cable; the first coupling unit is respectively connected with each remote stage
  • the first-stage second coupling units in the chain are connected by radio frequency cables.
  • the radio frequency cable can be a bundled cable.
  • FIG. 4 is a schematic diagram of a topology and structure of a coupling unit according to an embodiment of the present disclosure.
  • the coupling unit includes: a power supply processing module and a radio frequency coupling module.
  • the coupling unit may be the first coupling unit or the second coupling unit.
  • the power supply processing module may include, but is not limited to, one or more of the following processing methods: input voltage detection, input current detection, input power signal filtering, output power splitting, output voltage filtering, and output power detection.
  • the radio frequency coupling module may include, but is not limited to, any one or any combination of the following processing methods: filtering the input signal, branching the radio frequency signal of the input signal to the output port.
  • the coupling unit separates the power supply and the radio frequency signal through a radio frequency cable, and sends it to the next-level coupling unit or the remote unit after being processed by the coupling unit.
  • the use of radio frequency cables can save costs than using optical fiber transmission.
  • more feeders and couplers need to be deployed in the simulated indoor sub-system, which makes the overall construction more difficult and costly.
  • This application example can meet the 4T4R requirements by deploying the RF cable solution only once.
  • each remote unit can be controlled individually, it can individually control to shut down the specified remote unit or reduce the transmit power during idle periods and areas with sparse traffic, so as to achieve the purpose of energy saving and emission reduction.
  • This is also a simulation A function that is difficult to perform in the room division system.
  • the units at all levels after the expansion unit in the indoor distribution system can be connected by feeders.
  • At least one second coupling unit in each remote cascading chain is connected in cascade through a feeder, and each second coupling unit is respectively connected with a remote unit through a feeder; the first coupling unit is respectively connected with each remote cascading chain
  • the first-stage second coupling unit in is connected by a feeder.
  • FIG. 5 is a schematic diagram of a topology and structure of another coupling unit according to an embodiment of the present disclosure.
  • the coupling unit may include a branching module, a power supply processing module, a radio frequency coupling module, and a combining module.
  • the coupling unit may be the first coupling unit or the second coupling unit.
  • the splitting module separates the power supply signal and the radio frequency signal through a filter.
  • the power supply processing module may include, but is not limited to, one or more of the following processing methods: input voltage detection, input current detection, input power signal filtering, output power splitting, output voltage filtering, output power detection, etc.
  • the radio frequency coupling module may include, but is not limited to, one or more of the following processing methods: filtering the input signal, branching the radio frequency signal of the input signal to the output port.
  • the combining module combines the power supply and the radio frequency signal through a combiner and outputs it to the next-level coupling unit or remote unit.
  • the power supply signal and the radio frequency signal of the expansion unit are transmitted to the coupling unit through the feeder, and the power supply signal and the radio frequency signal are separated in the coupling unit and sent to the next level coupling unit or remote unit.
  • the remote unit is connected to the second coupling unit for power extraction, monitoring information generation, radio frequency signal processing and sending to the antenna.
  • FIG. 6 is a schematic structural diagram of another remote unit provided by an embodiment of the present disclosure.
  • FIG. 6 is based on the above-mentioned embodiment. Further, as shown in FIG. Signal processing module, monitoring processing module and antenna module.
  • the signal separation module can be used to separate the power supply signal, radio frequency signal and monitoring signal, and send the separated power supply signal, radio frequency signal and monitoring signal to the power supply module, the signal processing module and the monitoring processing module respectively.
  • the functions of the signal separation module may include, but are not limited to, one or more of the following: DC signal separation, DC signal filtering, RF signal detection and filtering, RF signal output power adjustment, modulation and demodulation of monitoring signals, etc.
  • the power supply module is used to process the power supply signal sent by the signal separation module, and then distribute it to the monitoring processing module and the signal processing module as a power supply.
  • the functions of the power module may include, but are not limited to, one or more of the following processing methods: input voltage detection, input current detection, input power signal filtering, output voltage filtering, output power detection, and the like.
  • the signal processing module is used to perform signal processing in the radio frequency field on the radio frequency signal transmitted by the signal separation module, and then transmit it to the antenna module.
  • the signal from the air received by the antenna module is processed in the radio frequency field and sent to the signal.
  • Signal processing in the RF field may include, but is not limited to, one or more of the following processing methods: RF signal filtering, RF signal amplification, RF signal attenuation, RF up-conversion, RF down-conversion, extraction and comparison of envelope signals, time division Switch control of duplex (Time Division Duplexing, TDD for short) signal, power control of output signal, standing wave detection of output port, power detection of output port, etc.
  • the monitoring and processing module is used to generate a monitoring signal for the remote unit and transmit it to the signal processing module.
  • the monitoring and processing module includes but is not limited to one or more of the following processing methods: key indicator monitoring and management, alarm monitoring and reporting, Software upgrade and rollback, status reporting, etc.
  • the antenna module is used to transmit the signal transmitted by the signal processing module to the air, and at the same time transmit the radio frequency signal in the air to the signal processing module.
  • FIG. 7 is a schematic structural diagram of another indoor distribution system provided by an embodiment of the present disclosure.
  • FIG. 7 is based on the embodiments shown in FIGS. 2 to 6 . Further, as shown in FIG. 7 ,
  • the access unit 100 includes a first digital processing module 110, and the expansion unit 200 includes a second digital processing module 210 and a signal conversion module 220;
  • the extension unit 200 is connected to the first coupling unit 300; the extension unit 200 is directly connected to the access unit 100, or is connected to the access unit 100 through other extension units 200;
  • the access unit 100 is configured to perform first processing on the received signal through the first digital processing module 110 to obtain the first digital signal, and send the first digital signal to the expansion unit 200;
  • the expansion unit 200 is configured to perform second processing on the first digital signal through the second digital processing module 210 and the signal conversion module 220 to obtain a first analog signal; and send the first analog signal to the first coupling unit 300 .
  • the number of extension units 200 connected to the access unit 100 may be one or more. There may be one or more extension units 200 on the link between the access unit 100 and any one of the first coupling units 300 .
  • the first digital processing module 110 may include but is not limited to one or more of the following: Field Programmable Gate Array (Field Programmable Gate Array, referred to as FPGA), Application Specific Integrated Circuits (Application Specific Integrated Circuits, referred to as ASIC), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD), etc., are not limited in this disclosure.
  • Field Programmable Gate Array Field Programmable Gate Array, referred to as FPGA
  • ASIC Application Specific Integrated Circuits
  • ASIC Application Specific Integrated Circuits
  • CPLD Complex Programmable Logic Device
  • the second digital processing module 210 may include but is not limited to one or more of the following: Field Programmable Gate Array (Field Programmable Gate Array, referred to as FPGA), Application Specific Integrated Circuits (Application Specific Integrated Circuits, referred to as ASIC), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD), etc., are not limited in this disclosure.
  • Field Programmable Gate Array Field Programmable Gate Array, referred to as FPGA
  • ASIC Application Specific Integrated Circuits
  • ASIC Application Specific Integrated Circuits
  • CPLD Complex Programmable Logic Device
  • the access unit 100 and the extension unit 200 are connected through optical fibers or network cables.
  • the extension unit 200 is connected with other extension units 200, they are connected by optical fibers or network cables.
  • the access signal of the access unit 100 may be a signal transmitted by the remote radio unit of the base station, which is an analog signal, or a signal transmitted by the baseband processing unit of the base station or the core network, which is a digital signal.
  • the access unit 100 converts the analog signal into a digital signal, inputs the first digital processing module 110 to obtain the first digital signal, and then sends the second digital signal to the extension unit 200
  • the digital processing module 210 sends the first digital signal.
  • the access unit 100 When the access signal of the access unit 100 is a digital signal, the access unit 100 inputs the digital signal into the first digital processing module 110 to obtain the first digital signal, and then sends the digital signal to the second digital processing module 210 of the expansion unit 200 the first digital signal.
  • the second digital processing module 210 and the signal conversion module 220 in the expansion unit 200 process the first digital signal, wherein the processing performed by the second digital processing module 210 includes one or more of the following processing: digital combining, signal grouping Framing, signal de-framing, signal serial-to-parallel conversion, signal parallel-to-serial conversion, clock recovery, digital up-conversion processing, digital down-conversion processing, monitoring signal extraction and processing.
  • the second digital processing module 210 transmits the processed first digital signal to the signal conversion module 220 .
  • the signal conversion module 220 may be configured to perform digital-to-analog conversion on the signal transmitted by the second digital processing module 210 , and send the first analog signal obtained by the digital-to-analog conversion to the first coupling unit 300 .
  • the signal conversion module 220 is further configured to perform analog-to-digital conversion on the analog signal transmitted by the first coupling unit 300 , and transmit the digital signal obtained by the analog-to-digital conversion to the second digital processing module 210 .
  • the related devices used for digital signal processing are usually relatively expensive.
  • the related devices of digital signal processing are placed in the access unit and the extension unit, and the extension unit passes the first
  • the signal transmitted by the coupling unit to the remote cascade chain is an analog signal, thus constructing a "digital + analog" indoor distributed system. Therefore, the "digital + analog" indoor distributed system can save a lot of digital signal processing related devices, thereby reducing the cost, so that the system capacity can be expanded, and the construction and operation and maintenance are simple.
  • FIG. 8 is a schematic structural diagram of still another indoor distribution system provided by an embodiment of the present disclosure.
  • FIG. 8 is based on the embodiment shown in FIG. 7 .
  • the access unit 100 further includes a first The optical transceiver module 120;
  • the expansion unit 200 further includes a second optical transceiver module 230;
  • the first optical transceiver module 120 and the second optical transceiver module 230 are connected by optical fibers.
  • the first optical transceiver module 120 is used to convert the electrical signal output by the first digital processing module into an optical signal, so as to transmit the converted optical signal through the optical fiber, and can also be used to convert the optical signal received through the expansion unit 200 is an electrical signal, so that the converted electrical signal is sent to the first digital processing module.
  • the second optical transceiver module 230 is used to convert the electrical signal output by the second digital processing module into an optical signal, so as to transmit the converted optical signal through the optical fiber, and can also be used to convert the optical signal received through the access unit 100 into an optical signal. the electrical signal, so as to send the converted electrical signal to the second digital processing module.
  • the first optical transceiver module 120 is further configured to perform rate adjustment and protocol conversion on the signal sent by the first digital processing module, and then transmit the signal to the expansion unit 200 .
  • the second optical transceiver module 230 is used to communicate and transmit the optical fiber signal from the access unit 100 or the expansion unit 200, including but not limited to one or more of the following processing: interaction of communication protocols, transmission rate Matching, error correction and retransmission of optical fiber transmission, extraction of optical module information, etc., and connect the processed data to the digital signal processing module.
  • the second optical transceiver module 230 may include at least one optical transceiver device.
  • FIG. 9 is a schematic structural diagram of an extension unit according to an embodiment of the present disclosure.
  • FIG. 9 is based on the embodiment shown in FIG. 8 .
  • the extension unit may further include: The third optical transceiver module, monitoring management module and radio frequency module.
  • the third optical transceiver module is used to communicate and transmit the optical fiber signal from the next-level expansion unit, including but not limited to one or more of the following processing: interaction of communication protocols, matching of transmission rates, optical fiber transmission error correction and retransmission, extraction of optical module information, etc., and transmit the processed data to the digital processing module.
  • the third optical transceiver module may include at least one optical transceiver device.
  • the monitoring management module is used to generate monitoring signals for the expansion unit and manage the monitoring information for the remote units, and transmit the generated monitoring information to the signal conversion module, and process the monitoring information transmitted by the signal conversion module.
  • the radio frequency module can be used to process the radio frequency signal transmitted by the signal conversion module and send it to the coupling unit; the radio frequency module can also be used to process the radio frequency signal of the coupling unit and send it to the signal conversion module.
  • the processing method of the RF signal by the RF module may include, but is not limited to, one or more of the following processing methods: RF filtering, RF signal amplification, RF signal attenuation, RF up-conversion, RF down-conversion, and envelope signal extraction and comparison, power detection, etc.
  • the extension unit may further include: a power feeding module.
  • the power feeding module is used to supply power to the first coupling unit and the remote cascade chain, and the power feeding module may include, but is not limited to, one or more of the following processing methods: AC-DC conversion, input voltage detection, input Current detection, input power signal filtering, output voltage filtering, output power detection, etc.
  • a centralized feeding network is used in the system, and the remote unit is supplied with remote power through the coupling unit, which can effectively reduce the difficulty of construction.
  • the electrical signals to be transmitted between the access unit and the expansion unit can be converted into optical signals through the respective optical transceiver modules, and the optical signals can be transmitted through optical fibers.
  • the optical signal is transmitted through the optical fiber, so that the transmission efficiency of the signal is higher and the quality of the output signal is better.
  • the signal received by the access unit includes one or more of the following signals: a first signal, a second signal, a third signal and a fourth signal;
  • the first signal is the signal sent by the remote radio unit (RRU) of the base station through the wireless coupler
  • the second signal is the signal sent by the remote radio unit of the base station through the wired coupler
  • the third signal is the baseband processing unit of the base station (BBU) signal sent
  • the fourth signal is the signal sent by the core network.
  • the input signal of the access unit includes one or more of the following:
  • the wireless coupling input of the remote radio unit of the base station including but not limited to the input of the radio frequency signal in the air of a single or multiple remote radio units of the base station;
  • Wired coupled RF signal input of the remote radio unit of the base station
  • the digital signal input of the baseband processing unit of the base station including the input based on the private protocol of the traditional BBU and the input based on the open protocol of the open base station processing unit (Open RAN BBU);
  • the service signal input of the core network unit is the service signal input of the core network unit.
  • the processing of different sources of information is satisfied, including the radio frequency signal coupled in the air, the radio frequency signal coupled by the wire of the remote radio frequency unit of the base station, the digital signal of the baseband unit of the base station, and the digital service signal of the core network. Realize the input of various signal sources.
  • FIG. 10 is a schematic structural diagram of an access unit according to an embodiment of the present disclosure.
  • FIG. 10 is based on any of the embodiments shown in FIG. 2 to FIG. 9 .
  • the access unit includes One or more of the following circuits: a first circuit 130, a second circuit 140, a third circuit 150 and a fourth circuit 160;
  • the first circuit 130 is connected to the remote radio unit of the base station through a wireless coupler, the first circuit 130 is connected to the extension unit;
  • the second circuit 140 is connected to the remote radio unit of the base station through a wired coupler, and the second circuit 140 is connected to the extension unit connection;
  • the third circuit 150 is respectively connected with the baseband processing unit and the extension unit of the base station;
  • the fourth circuit 160 is respectively connected with the core network and the extension unit;
  • the first circuit 130 is configured to process the received first signal, obtain the processed first signal, and send the processed first signal to the expansion unit;
  • the second circuit 140 is configured to process the received second signal to obtain the processed second signal; send the processed second signal to the expansion unit;
  • the third circuit 150 is configured to process the received third signal to obtain the processed third signal; send the processed third signal to the expansion unit;
  • the fourth circuit 160 is configured to process the received fourth signal to obtain a processed fourth signal; and send the processed fourth signal to the expansion unit.
  • the extension unit supports the first frequency band, the second frequency band, the third frequency band unit and the fourth frequency band unit
  • the remote unit supports the first frequency band, the second frequency band, the third frequency band and the fourth frequency band
  • the frequency band is the frequency band corresponding to the radio frequency signal of the base station remote radio unit in the air received by the access unit through the wireless coupler.
  • the second frequency band is the frequency band corresponding to the access unit connected to the base station remote radio unit through the wired coupler.
  • the frequency band is the frequency band corresponding to when the access unit is connected to the baseband processing unit of the base station
  • the fourth frequency band is the frequency band corresponding to when the access unit is connected to the core network.
  • the first digital processing module may include one or more of the following modules: a first digital processing sub-module, a second digital processing sub-module, a main control module and a control module, and the first photoelectric conversion module may include one or more of the following: modules: a first optical module, a second optical module, a third optical module and a fourth optical module.
  • FIG. 11 is a schematic structural diagram of a first circuit according to an embodiment of the present disclosure.
  • the first circuit includes: a first radio frequency processing module, a first digital processing sub-module, and a first optical module .
  • the first radio frequency processing module is used to perform radio frequency filtering (including multiple or single frequency selective filtering) on the wirelessly coupled radio frequency signal, gain adjustment of the filtered radio frequency signal, analog-digital signal conversion, and then transmit the signal to the first radio frequency signal.
  • radio frequency filtering including multiple or single frequency selective filtering
  • the first digital processing sub-module is configured to perform framing or de-framing, synchronization signal extraction, digital filtering, sampling rate conversion on the signal transmitted by the first radio frequency processing module, and then send the signal to the first optical module.
  • the first optical module is used to perform rate adjustment and protocol conversion on the signal received through the first digital processing sub-module, and then transmit the signal to the expansion unit.
  • the first circuit is connected to the remote radio unit of the base station through a wireless coupler, converts the radio-coupled radio frequency signal input by the remote radio of the base station into an optical signal, and then transmits the optical signal to the extension unit. Therefore, the access unit can be used to process the remote radio unit of the base station connected by the wireless coupler.
  • FIG. 12 is a schematic structural diagram of a second circuit according to an embodiment of the present disclosure.
  • the second circuit includes: a second radio frequency processing module, a second digital processing sub-module, and a second optical module .
  • the second radio frequency processing module is used for signal power detection, radio frequency gain control, radio frequency filtering, gain adjustment of the filtered radio frequency signal, analog-to-digital conversion, and then transmitting to the second digital processing sub-module.
  • the second digital processing sub-module is configured to perform framing or de-framing, synchronization signal extraction, digital filtering, sampling rate conversion on the signal transmitted by the second radio frequency processing module, and then send the signal to the second optical module.
  • the second optical module is used to perform rate adjustment and protocol conversion on the signal received through the digital processing sub-module, and then transmit it to the expansion unit.
  • the second circuit is connected to the remote radio frequency unit of the base station through a wired coupler, converts the wired coupled radio frequency signal input by the remote radio frequency of the base station into an optical signal, and then transmits the optical signal to the extension unit.
  • FIG. 13 is a schematic structural diagram of a third circuit according to an embodiment of the present disclosure.
  • the third circuit includes: a first standard module, a main control module, and a third optical module.
  • a standard module includes but is not limited to one or more of the following modules: 2G module, 3G module, 4G module, 5G module, NB-IoT module.
  • the 2G module is used to transmit the 2G electrical signal to the main control module through modulation and demodulation, framing or de-framing, digital filtering and shaping;
  • the 3G module is used to transmit the 3G standard electrical signal to the main control module through modulation and demodulation, framing or de-framing, digital filtering and shaping;
  • the 4G module is used to transmit the 4G standard electrical signal to the main control module through modulation and demodulation, framing or de-framing, digital filtering and shaping.
  • the 4G module can use either the traditional base station baseband processing unit protocol-Common Public Radio Interface (CPRI), or the Enhanced Common Public Radio Interface protocol (Enhanced). Common Public Radio Interface, referred to as eCPRI).
  • CPRI base station baseband processing unit protocol-Common Public Radio Interface
  • Enhanced Enhanced Common Public Radio Interface protocol
  • eCPRI Common Public Radio Interface
  • the 5G module is used to transmit the 5G standard electrical signal to the main control module through modulation and demodulation, framing or de-framing, digital filtering and shaping; similarly, in actual implementation, when the 5G module is used as the main access module, both The traditional base station baseband processing unit protocol-CPRI can be used, and the use of eCPRI is also supported.
  • the NB-IoT module is used to transmit the electrical signal of the NB-IoT standard to the main control module through modulation and demodulation, framing or de-framing, digital filtering and shaping.
  • the main control module is used to perform data merging, sampling rate conversion, and transmission rate matching on the signals transmitted by the first standard module, and transmit them to the third optical module.
  • the third optical module is used to perform rate adjustment and protocol conversion on the signal transmitted by the main control module, and then transmit it to the expansion unit.
  • the third circuit is connected to the baseband processing unit of the base station through an optical fiber or a network cable, converts the electrical signal transmitted by the baseband processing unit of the base station into an optical signal, and then transmits the optical signal to the expansion unit.
  • FIG. 14 is a schematic structural diagram of a fourth circuit provided by an embodiment of the present disclosure.
  • the fourth circuit includes: a second standard module, a control module, and a fourth optical module, wherein the second The standard module may include, but is not limited to, one or more of the following modules: 2G communication module, 3G communication module, 4G communication module and 5G communication module.
  • the 2G communication module is used to transmit 2G electrical signals to the control module through core network interface docking, baseband signal processing (2G signal encoding and decoding, modulation and demodulation, signaling processing);
  • the 3G communication module is used to transmit the 3G standard electrical signals to the control module through core network interface docking, baseband signal processing (3G signal encoding and decoding, modulation and demodulation, signaling processing);
  • the 4G communication module is used to transmit 4G electrical signals to the control module through core network interface docking, baseband signal processing (4G signal encoding and decoding, modulation and demodulation, signaling processing);
  • the 5G communication module is used to transmit the 5G standard electrical signals to the control module through core network interface docking, baseband signal processing (5G signal encoding and decoding, modulation and demodulation, signaling processing);
  • the control module is used to perform data merging, sampling rate conversion, and transmission rate matching on the signal transmitted by the second standard module, and transmit it to the fourth optical module;
  • the fourth optical module is used to perform rate adjustment and protocol conversion on the signal transmitted by the control module, and then transmit it to the expansion unit.
  • the fourth circuit is connected to the core network through optical fibers or network cables, converts the electrical signals transmitted from the core network into optical signals, and then transmits the optical signals to the expansion unit.
  • the flexible configuration of the access unit satisfies the processing of different sources of information, including the radio frequency signal coupled in the air, the radio frequency signal coupled by the cable of the remote radio frequency unit of the base station, the digital signal of the baseband unit of the base station and/or the digital service of the core network signal, can realize the input of various signal sources.
  • the indoor distribution system includes any indoor distribution system in the foregoing system embodiments.
  • the method provided in this embodiment may include:
  • the first coupling unit sends the radio frequency signal transmitted by the expansion unit to the second coupling unit.
  • the second coupling unit sends a radio frequency signal of input power to the remote unit connected to the second coupling unit according to the coupling degree.
  • the remote unit outputs a radio frequency signal of the target power through the signal processing module according to the input power and the target power.
  • the second coupling unit divides its output power according to the coupling degree, and sends the radio frequency signal to the remote unit connected to it and the second coupling unit at the next level, and the remote unit is based on the input power and the second coupling unit.
  • Target power automatically control the gain of its signal processing module, adjust the power of the RF signal from the input power to the target power output, each remote unit can adjust itself to output the target power RF signal, so that the remote cascade chain
  • the second coupler can be set as one, which can reduce the difficulty of design and construction, increase the practicability of the indoor distribution system, and has strong industrial practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种室内分布系统和信号传输方法,包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链;其中,每个远端级联链包括:至少一个第二耦合单元和至少一个远端单元;远端单元包括信号处理模块;每个远端级联链中的至少一个第二耦合单元级联连接,每个远端单元分别与其对应的第二耦合单元连接;第一耦合单元,用于向第二耦合单元发送扩展单元传输的射频信号;第二耦合单元,用于按照耦合度,向与第二耦合单元连接的远端单元发送输入功率的射频信号;远端单元用于根据输入功率和目标功率,通过信号处理模块将射频信号的功率从输入功率调整至目标功率输出,从而降低了设计、施工难度,提高了设计、施工的效率,增加了室内分布系统的可实施性。

Description

室内分布系统和信号传输方法
本公开要求于2021年1月29日提交中国专利局、申请号为2021101296811、发明名称为“室内分布系统和信号传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种室内分布系统和信号传输方法。
背景技术
模拟室内分布系统中的耦合单元用于将扩展单元输出的信号的功率进行调整,发送给远端单元。
模拟室内分布系统在施工时,耦合单元的耦合度设计需要考虑馈线损耗、输入信号强度以及目的节点的功率等多种因素,例如,距离扩展单元越远的耦合单元(以及其连接的远端单元),其传输过程中的输入功率越小,其耦合度需要设计的越小。如果需要多级部署天线,根据耦合度的不同要求,需要部署多种耦合单元,且不同耦合单元在系统中与其他耦合单元的相对位置不能改变,这将增大施工难度。
发明内容
(一)要解决的技术问题
模拟室内分布系统在施工时,施工难度较大。
(二)技术方案
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种室内分布系统。
第一方面,本公开提供了一种室内分布系统,包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链;其中,每个所述远端级联链包括:至少一个第二耦合单元和至少一个远端单元;所述远端单元包括信号处理模块;
每个所述远端级联链中的至少一个第二耦合单元级联连接,每个所述远端单元分别与其对应的第二耦合单元连接;
所述第一耦合单元,用于向所述第二耦合单元发送所述扩展单元传输的射频信号;
所述第二耦合单元,用于按照耦合度,向与所述第二耦合单元连接的 所述远端单元发送输入功率的射频信号;
所述远端单元用于根据所述输入功率和目标功率,通过所述信号处理模块将射频信号的功率从输入功率调整至目标功率输出。
第二方面,本公开提供一种信号传输方法,应用于室内分布系统,所述室内分布系统包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链;其中,每个所述远端级联链包括:至少一个第二耦合单元和至少一个远端单元;所述远端单元包括信号处理模块;每个所述远端级联链中的至少一个第二耦合单元级联连接,每个所述远端单元分别与其对应的第二耦合单元连接;所述方法包括:
所述第一耦合单元向所述第二耦合单元发送所述扩展单元传输的射频信号;
所述第二耦合单元按照耦合度,向与所述第二耦合单元连接的所述远端单元发送输入功率的射频信号;
所述远端单元根据所述输入功率和目标功率,通过所述信号处理模块将射频信号的功率从输入功率调整至目标功率输出。
(三)有益效果
第二耦合单元将其输出功率按照耦合度进行划分,将射频信号发送给与其连接的远端单元和下一级第二耦合单元,远端单元根据输入功率和目标功率,自动控制其信号处理模块的增益,将射频信号的功率从输入功率调整至目标功率输出,每个远端单元接收到的射频信号的输入功率并不相同,但是其可以通过自身调节,输出目标功率的射频信号,使得远端级联链中的第二耦合器可以设置成一种,从而降低了设计、施工难度,提高了设计、施工的效率,增加了室内分布系统的可实施性。
附图说明
图1为现有技术中一种室内分布系统的局部结构示意图;
图2为本公开实施例提供的一种室内分布系统的结构示意图;
图3为本公开实施例提供的一种远端单元的结构示意图;
图4为本公开实施例提供的一种耦合单元的拓扑架构和结构示意图;
图5为本公开实施例提供的另一种耦合单元的拓扑架构和结构示意图;
图6为本公开实施例提供的另一种远端单元的结构示意图;
图7为本公开实施例提供的另一种室内分布系统的结构示意图。
图8为本公开实施例提供的再一种室内分布系统的结构示意图;
图9为本公开实施例提供的一种扩展单元的结构示意图;
图10为本公开实施例提供的一种接入单元的结构示意图;
图11为本公开实施例提供的一种第一电路的结构示意图;
图12为本公开实施例提供的一种第二电路的结构示意图;
图13为本公开实施例提供的一种第三电路的结构示意图;
图14为本公开实施例提供的一种第四电路的结构示意图;
图15为本公开实施例提供的一种信号传输方法的流程示意图。
附图标记说明:
100:接入单元;110:第一数字处理模块;120:第一光收发模块;130:第一电路;140:第二电路;150:第三电路;160:第四电路;200:扩展单元;210:第二数字处理模块;220:信号转换模块;230:第二光收发模块;300:第一耦合单元;400:远端级联链;410:第二耦合单元;420:远端单元;421:信号处理模块;422:监控处理模块。
具体实施方式
在一些场景中,室内分布系统在设计、施工时,耦合单元的耦合度(各个输出端功率比值)设计需要考虑馈线长度、馈线损耗、输入信号强度以及目的节点的功率等多种因素。
示例性的,图1为现有技术中一种室内分布系统的局部结构示意图,室内分布系统包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链(此处假设为一个远端级联链);每个远端级联链包括:至少一个第二耦合单元和至少一个远端单元,(此处假设远端级联链中包含级联连接的第二耦合单元1、第二耦合单元2和第二耦合单元3),每个第二耦合单元分别与一个远端单元连接。假设不考虑传输线的功率损耗,也就是传输线的功率损耗为零,第一耦合单元输出功率为P,远端单元的输入功率为P/4,则第二耦合单元的耦合度(耦合度定义为各个输出端功率的比值)分别为:
第二耦合单元1的耦合度为(P-0.25P)/0.25P=3:1;
第二耦合单元2的耦合度为(P-0.25P-0.25P)/0.25P=2:1;
第二耦合单元3的耦合度为(P-0.25P-0.25P-0.25P)/0.25P=1:1;
则该远端级联链中需要采用3种不同的耦合单元,从而完成该室内分布系统的设计。
由上可知,如果需要多级部署覆盖点,根据耦合度的不同要求,需要部署多种耦合单元,且不同耦合单元在系统中与其他耦合单元的相对位置不能改变,增加了施工难度,并且可维护性不高。
在另一些场景中,为减小施工难度,本公开实施例提供的室内分布系 统,在每个远端级联链上部署相同耦合度的耦合单元,远端单元自动调节射频信号的功率为目标功率,并以目标功率输出射频信号,从而降低了施工难度,提高了室内分布系统的设计施工效率。
图2为本公开实施例提供的一种室内分布系统的结构示意图,如图1所示,本实施例的系统可以包括:
接入单元100、扩展单元200、第一耦合单元300和至少一个远端级联链400,其中,每个远端级联链400包括:至少一个第二耦合单元410和至少一个远端单元420;远端单元420包括信号处理模块;
每个远端级联链400中的至少一个第二耦合单元410级联连接,每个远端单元420分别与其对应的第二耦合单元410连接;
第一耦合单元300,用于向第二耦合单元发送扩展单元传输的射频信号。
第二耦合单元410,用于根据耦合度,向与第二耦合单元410连接的远端单元420发送输入功率的射频信号。
远端单元420用于根据输入功率和目标功率,控制信号处理模块的增益,将射频信号的功率从输入功率调整至目标功率输出。
可选的,接入单元100用于完成可选的模数转换,以及对相关输入路径的数据的处理,接口转换以及速率调整等,并将处理完成后的信号传输到扩展单元200。
可选的,扩展单元200用于完成接入单元100接口数据的汇聚、分发,模数转换、并连接到耦合单元进行射频信号的输入和输出。
可选的,远端单元420用于完用于对射频信号进行放大,增益控制,以及可选的时钟信号提取恢复和频率变换功能。
在实际应用中,接入单元100接到基站或者核心网发送的信号,将该信号发送给扩展单元200,扩展单元200将该信号转换为射频信号并通过第一耦合单元300发送给各个远端级联链400。第一耦合单元300分别与每个远端级联链400中的首级第二耦合单元410连接,每个远端级联链400的首级第二耦合单元410接收到该射频信号,每个第二耦合单元410根据自身耦合度,将射频信号发送给与其连接的远端单元420和下一级第二耦合单元410,最后一级第二耦合单元410可以与两个远端单元420连接。相应的,每个远端单元420接收射频信号,获取接收到的射频信号的输入功率,根据输入功率和目标功率,控制自身信号处理模块将射频信号的功率从输入功率调整至目标功率输出,例如,可以根据输入功率和目标功率,调节与信号处理模块连接的衰减器,从而使得远端单元420输出的射频信号的功率为目标功率。其中,目标功率为预先设置的,各个远端单元420可以设置相同的目标功率,从而使得信号均匀覆盖。
可选的,每个远端级联链400中包含的第二耦合单元410的耦合度相同。
在实际应用中,每个远端级联链400中包含的第二耦合单元410的耦合度相同,可以选用相同的耦合单元,远端单元420也相同,每个远端单元420可以自动调节,输出目标功率的射频信号,从而使得设计、施工更加方便,提高了设计、施工的效率。
示例性的,假设室内分布系统中包含一个远端级联链400,远端级联链400中包含级联连接的三个第二耦合单元410,例如将三个第二耦合单元410分别标记为第二耦合单元1、第二耦合单元2和第二耦合单元3,其中,第二耦合单元3分别与两个远端单元420连接,第二耦合单元1、第二耦合单元2和第二耦合单元3依次连接,第二耦合单元1与第一耦合单元300连接,第二耦合单元1、第二耦合单元2和第二耦合单元3均选用耦合度为3:1的耦合单元,第一耦合单元300输出功率为P,目标功率为P/4。
由于远端单元420有输出功率控制功能,因此只要确定目标功率,远端单元420即可自动计算增益,从而调节自身输出目标功率的射频信号。此假设的情况下,远端单元420可以根据输入功率分别自动调节自身的增益(目标功率与输入功率的比值)为:0.25P/0.25P=1、0.25P/0.1875P=1.33、0.25P/0.1406P=1.78和0.25P/0.4218P=0.59,那么就可以保证每个远端单元420输出0.25P功率的射频信号。此假设的情况下,远端级联链400中可以采用同种第二耦合单元410。
进一步地,第一耦合单元与第二耦合单元的耦合度相同。
可选的,不同的远端级联链400中包含的第二耦合单元410的耦合度相同或者不同。
不同的远端级联链400中包含的第二耦合单元410的耦合度可以相同也可以不同,即不同的远端级联链400中包含的第二耦合单元410可以为相同种类的耦合单元,也可以为不同种类的耦合单元。
在不同远端级联链400包含的第二耦合单元410的耦合度相同的情况下,即室内分布系统中的第二耦合单元410及远端单元420均相同,降低了室内分布系统整体的设计、施工难度。
在不同远端级联链400中包含的第二耦合单元410的耦合度不同的情况下,其各自远端级联链400在设计、施工时更加方便,不同远端级联链400在不同的物理位置部署,例如,不同的楼层,则不同的远端级联链400中包含的第二耦合单元410的耦合度不同,但远端级联链400中包含的第二耦合单元410的耦合度相同,每个远端级联链400在设计、施工时更加方便,从而使得室内分布系统在设计施工时也更加方便,降低了设计、施 工的难度。
本实施例,第二耦合单元将其输出功率按照耦合度进行划分,将射频信号发送给与其连接的远端单元和下一级第二耦合单元,远端单元根据输入功率和目标功率,自动控制其信号处理模块的增益,输出目标功率的射频信号,每个远端单元接收到的射频信号的输入功率并不相同,但是其可以通过自身调节,输出目标功率的射频信号,使得远端级联链中的第二耦合器可以设置成一种,从而降低了设计、施工难度,提高了设计、施工的效率,增加了室内分布系统的可实施性。
图3为本公开实施例提供的一种远端单元的结构示意图,图3是在图2所示实施例的基础上,进一步地,如图3所示,信号处理模块421包括:衰减器、开关和放大器,本实施例的远端单元还包括:监控处理模块422,监控处理模块422包括:输入信号检测模块和监控模块。
监控模块分别与输入信号检测模块和输出信号检测模块连接;衰减器依次与开关和放大器连接;监控模块分别与衰减器和开关连接;
衰减器,用于接收第二耦合单元发送的输入功率的射频信号。
输入信号检测模块,用于确定输入功率,向监控模块发送输入功率。
监控模块,用于根据输入功率和目标功率,调整衰减器和开关,以使放大器输出目标功率的射频信号。
可选的,输入信号检测模块,还用于实现输入信号的特性检测,输入信号的特性检测可以包括但不限于对以下一项或多项特性进行检测:输入功率、驻波、信号类型、信号状态。
可选的,监控模块还用于输入信号监控和/或输出信号监控等。
可选的,远端单元还可以包括:输出信号检测模块。
输出信号检测模块用于实现输出信号的特性检测,输出信号的特性检测可以包括但不限于对以下一项或多项特性进行检测:输出功率、驻波、信号类型、信号状态等。
可选的,信号处理模块421还包括变频器。
在实际应用中,远端单元接收第二耦合单元发送的输入功率的射频信号,输入信号检测模块对该射频信号进行检测,确定输入功率,向监控模块发送该输入功率,监控模块根据输入功率(输入信号强度)和目标功率,确定增益值,通过控制信号传输链路上的衰减器和开关使得放大器输出目标功率的射频信号。
本实施例,监控模块根据输入信号检测模块确定的输入功率和目标功率,确定增益值,通过控制信号传输链路上的衰减器和开关使得放大器输出目标功率的射频信号,从而达到增益控制的效果,使得输入功率为不同值时,远端单元均可以按照目标功率进行自动调节,从而输出目标功率的 射频信号,使得远端级联链中的第二耦合器可以设置成一种,从而降低了设计、施工难度,提高了设计、施工的效率。
在上述实施例的基础上,进一步地,扩展单元用于向第一耦合单元发送供电信号和射频信号。
第一耦合单元用于向远端级联链发送供电信号和射频信号。
第二耦合单元用于向与第二耦合单元连接的远端单元和与第二耦合单元连接的其他第二耦合单元,分别发送供电信号和射频信号。
在实际应用中,第一耦合单元和远端级联链的电源可以由扩展单元提供,也就是,扩展单元除了经第一耦合单元将射频信号传输给远端级联链以外,还可以通过传输线路将供电电压提供给第一耦合单元和远端级联链。扩展单元向第一耦合单元发送供电信号和射频信号,第一耦合单元将供电信号和射频信号分离,然后根据连接的远端级联链的数量将供电信号和射频信号进行分路。相应的,远端级联链中的第二耦合单元在接收到供电信号和射频信号时,也是先将供电信号与射频信号分离,然后再分别将其合路发送给下一级第二耦合单元和远端单元。
本实施例,通过第一耦合单元和远端级联链的供电信号与射频信号一起由扩展单元提供,供电信号可以使用现有的射频信号的传输线,室内分布系统中远端级联链中的单元设备比扩展单元的数量多,因此,可以节省大量的外接电源线,降低了施工难度,提高了室内分布系统的施工效率。
在另一些场景中,由于数字室内分布系统可以采用光纤或者网线传输,随着5G时代高带宽的应用,光模块或者电模块需求的规格越来越高。以5G室内分布系统的共享应用为例,如果远端单元实现四发四收(4T4R)多入多出(MIMO),双载波,每个载波100MHz传输,并且采用标准的CPRI 8.0协议,那么其需要的带宽为:2 [1]*122.88Mbps [2]*2 [3]*15 [4]*(16/15) [5]*(10/8) [6]*4 [7]=39321.6Mbps,
其中,[1]2表示两个载波数量(carrier number);
[2]122.88Mbps表示100MHz信号的标准采样率;
[3]2表示IQ两路数据(I/Q data);
[4]15表示标准的传输位宽15bit;
[5]16/15表示通用公共无线接口(Common Public Radio Interface,简称CPRI)传输的控制开销;
[6]10/8表示光电转换的开销;
以太网传输(基于802.3ae协议)最高支持10Gbps,至少需要4条七类线(Cat7)类型的网线传输,同时扩展单元和远端单元也需要支持4个万兆网络处理器,增加了成本和室内分布系统的复杂性。而采用光纤传输,使用业内支持25Gbps的光模块和FPGA器件,也需要使用2组的光模块 和FPGA接口。然而,这样增加了成本和室内分布系统的复杂性。
进一步地,本公开的一个实施例中,采用射频电缆或者馈线的方案,则可以节省大量的光电接口资源,从而节省整体成本,降低室内分布系统的复杂性。
一种可能的设计中,室内分布系统中扩展单元之后的各级单元设备由射频电缆连接。
每个远端级联链中的至少一个第二耦合单元通过射频电缆级联连接,每个第二耦合单元分别与一个远端单元通过射频电缆连接;第一耦合单元分别与每个远端级联链中的首级第二耦合单元通过射频电缆连接。
可选的,射频电缆可以为集束电缆。
图4为本公开实施例提供的一种耦合单元的拓扑架构和结构示意图,如图4所示,耦合单元包括:供电处理模块和射频耦合模块。该耦合单元可以为第一耦合单元,也可以为第二耦合单元。其中供电处理模块可以包括但不限于以下处理方式中的一种或多种:输入电压检测、输入电流检测、输入电源信号滤波、输出电源分路、输出电压滤波、输出功率检测等。射频耦合模块可以包括但不限于以下处理方式中的任意一种或任意组合:输入信号滤波、输入信号的射频信号分路到输出端口。
本实施例,耦合单元通过射频电缆将供电和射频信号分离,通过耦合单元处理后发送到下一级耦合单元或者远端单元。采用射频电缆的方式,比使用光纤传输能够节省成本。同时对于越来越多5G的室内分布系统中4T4R应用场景,模拟室分系统需要部署更多的馈线和耦合器,使得整体施工难度增大,成本高昂。本申请例可以通过射频电缆方案,仅需部署一次便可以满足4T4R需求。另外在后期维护中,由于每个远端单元都可以单独控制,因此在空闲时段、人流稀少的区域可以单独控制关闭指定的远端单元或者减少发射功率,达到节能减排的目的,这也是模拟室分系统难以完成的功能。
另一种可能的设计中,室内分布系统中扩展单元之后的各级单元设备可以由馈线连接。
每个远端级联链中的至少一个第二耦合单元通过馈线级联连接,每个第二耦合单元分别与一个远端单元通过馈线连接;第一耦合单元分别与每个远端级联链中的首级第二耦合单元通过馈线连接。
图5为本公开实施例提供的另一种耦合单元的拓扑架构和结构示意图,如图5所示,耦合单元可以包括分路模块、供电处理模块、射频耦合模块、合路模块。该耦合单元可以为第一耦合单元,也可以为第二耦合单元。其中,分路模块通过滤波器将供电信号和射频信号分离。供电处理模块可以包括但不限于以下处理方式中的一种或多种:输入电压检测、输入 电流检测、输入电源信号滤波、输出电源分路、输出电压滤波、输出功率检测等。射频耦合模块可以包括但不限于以下处理方式中的一种或多种:输入信号滤波、输入信号的射频信号分路到输出端口。合路模块通过合路器将供电和射频信号合路后输出到下一级的耦合单元或者远端单元。
本实施例,扩展单元的供电信号和射频信号通过馈线传输到耦合单元,在耦合单元实现将供电信号和射频信号分离,发送到下一级的耦合单元或者远端单元。从而节省了光器件。
相应的,远端单元连接到第二耦合单元,用于供电电源提取、监控信息产生、射频信号的处理并发送到天线。
图6为本公开实施例提供的另一种远端单元的结构示意图,图6是在上述实施例的基础上,进一步地,如图6所示,远端单元包括信号分离模块、电源模块、信号处理模块、监控处理模块和天线模块。
其中,信号分离模块可以用于对供电信号、射频信号、监控信号的分离,并将分离出来的供电信号、射频信号、监控信号分别发送到电源模块、信号处理模块和监控处理模块。
信号分离模块的功能可以包括但不限于以下一种或多种:直流信号分离、直流信号滤波、射频信号检测和滤波、射频信号输出功率调整、监控信号的调制与解调等。
电源模块用于对信号分离模块发送的供电信号进行处理,然后分发到监控处理模块和信号处理模块作为供电电源。电源模块的功能可以包括但不限于以下处理方式中的一种或多种:输入电压检测、输入电流检测、输入电源信号滤波、输出电压滤波、输出功率检测等。
信号处理模块用于对信号分离模块传输的射频信号,进行射频领域的信号处理,然后传输到天线模块,另外,也将天线模块接收的来自空中的信号,进行射频领域的信号处理后送到信号分离模块。射频领域的信号处理可以包括但不限于以下处理方式中的一种或多种:射频信号滤波、射频信号放大、射频信号衰减、射频上变频、射频下变频、包络信号的提取和比较、时分双工(Time Division Duplexing,简称TDD)信号的开关控制、输出信号的功率控制、输出端口的驻波检测、输出端口的功率检测等。
监控处理模块用于产生对于远端单元的监控信号,并且传输到信号处理模块,监控处理模块包括单不限于以下处理方式中的一种或多种:关键指标监控和管理、告警监控和上报、软件升级和回退、状态量上报等。
天线模块用于将信号处理模块传输的信号,传输到空中,同时将空中的射频信号送到信号处理模块。
图7为本公开实施例提供的另一种室内分布系统的结构示意图,图7是在图2-图6所示实施例的基础上,进一步地,如图7所示,
接入单元100包括第一数字处理模块110,扩展单元200包括第二数字处理模块210和信号转换模块220;
扩展单元200与第一耦合单元300连接;扩展单元200与接入单元100直接连接,或者通过其他扩展单元200与接入单元100连接;
接入单元100,用于通过第一数字处理模块110对接收到的信号进行第一处理,得到第一数字信号,向扩展单元200发送第一数字信号;
扩展单元200,用于通过第二数字处理模块210和信号转换模块220对第一数字信号进行第二处理,得到第一模拟信号;向第一耦合单元300发送第一模拟信号。
可选的,接入单元100连接的扩展单元200可以为一个或多个。接入单元100与任一个第一耦合单元300的链路上可以有一个或多个扩展单元200。
可选的,第一数字处理模块110可以包括但不限于以下一种或多种:现场可编程门阵列(Field Programmable Gate Array,简称FPGA),专用集成电路(Application Specific Integrated Circuits,简称ASIC),复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)等,对此本公开不做限定。
可选的,第二数字处理模块210可以包括但不限于以下一种或多种:现场可编程门阵列(Field Programmable Gate Array,简称FPGA),专用集成电路(Application Specific Integrated Circuits,简称ASIC),复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)等,对此本公开不做限定。
可选的,接入单元100与扩展单元200通过光纤或网线连接。在扩展单元200与其他扩展单元200连接的情况下,其通过光纤或网线连接。
在实际应用中,接入单元100的接入信号可以为基站的射频拉远单元传输的信号,其为模拟信号,也可以为基站的基带处理单元或者核心网传输的信号,其为数字信号。
在接入单元100的接入信号为模拟信号的情况下,接入单元100将模拟信号转换为数字信号,输入第一数字处理模块110,得到第一数字信号,然后向扩展单元200的第二数字处理模块210发送第一数字信号。
在接入单元100的接入信号为数字信号的情况下,接入单元100将数字信号输入第一数字处理模块110,得到第一数字信号,然后向扩展单元200的第二数字处理模块210发送第一数字信号。
扩展单元200中的第二数字处理模块210和信号转换模块220对第一数字信号进行处理,其中,第二数字处理模块210进行的处理包括以下一种或多种处理:数字合路、信号组帧、信号解帧、信号串并变换、信号并 串变换、时钟恢复、数字上变频处理、数字下变频处理、监控信号提取和处理。第二数字处理模块210将处理后的第一数字信号传输到信号转换模块220。信号转换模块220可用于对第二数字处理模块210传输的信号进行数模转换,并将数模转换得到的第一模拟信号发送给第一耦合单元300。相应的,信号转换模块220还可用于对第一耦合单元300传输的模拟信号进行模数转换,并将模数转换得到的数字信号传输到第二数字处理模块210。
本实施例,用于数字信号处理的相关器件通常比较昂贵,通过将数字处理能力集中在接入单元和扩展单元,数字信号处理的相关器件放置在接入单元和扩展单元,扩展单元通过第一耦合单元传输给远端级联链的信号为模拟信号,从而构建了“数字+模拟”的室内分布式系统,随着室内分布系统的发展,其远端单元的数量比接入单元和扩展单元的数量多,因此,“数字+模拟”的室内分布式系统可以节省大量的数字信号处理的相关器件,从而降低成本,从而使得系统容量可扩展、施工和运维简便。
图8为本公开实施例提供的再一种室内分布系统的结构示意图,图8是在图7所示实施例的基础上,进一步地,如图8所示,接入单元100还包括第一光收发模块120;扩展单元200还包括第二光收发模块230;
第一光收发模块120与第二光收发模块230通过光纤连接。
其中,第一光收发模块120用于将第一数字处理模块输出的电信号转换为光信号,从而通过光纤传输转换为的光信号,也可以用于将通过扩展单元200接收到的光信号转换为电信号,从而将转换为的电信号发送给第一数字处理模块。
第二光收发模块230用于将第二数字处理模块输出的电信号转换为光信号,从而通过光纤传输转换为的光信号,也可以用于将通过接入单元100接收到的光信号转换为电信号,从而将转换为的电信号发送给第二数字处理模块。
可选的,第一光收发模块120还用于对第一数字处理模块发送的信号进行速率调整、协议转换,然后传输到扩展单元200。
可选的,第二光收发模块230用于对来自接入单元100或扩展单元200的光纤信号进行通信和传输,包括但不限于进行以下一种或多种处理:通信协议的交互、传输速率的匹配、光纤传输的纠错和重传、光模块信息的提取等,并将处理完的数据对接到数字信号处理模块。
可选地,第二光收发模块230可包括至少一个光收发器件。
可选的,图9为本公开实施例提供的一种扩展单元的结构示意图,图9是在图8所示实施例的基础上,进一步地,如图9所示,扩展单元还可以包括:第三光收发模块、监控管理模块和射频模块。
其中,第三光收发模块用于对来自下一级的扩展单元的光纤信号进行通信和传输,包括但不限于进行以下一种或多种处理:通信协议的交互、传输速率的匹配、光纤传输的纠错和重传、光模块信息的提取等,并将处理完的数据传输到数字处理模块。
可选地,第三光收发模块可包括至少一个光收发器件。
监控管理模块用于产生对于扩展单元的监控信号,以及管理对于远端单元的监控信息,其产生的监控信息传输到信号转换模块,并将信号转换模块传输的监控信息进行处理。
射频模块可以用于将信号转换模块传输的射频信号进行处理后,发送给耦合单元;射频模块还可以用于将耦合单元的射频信号进行处理后,发送给信号转换模块。其中,射频模块对射频信号的处理方式可以包括但不限于以下处理方式中的一种或多种:射频滤波、射频信号放大、射频信号衰减、射频上变频、射频下变频、包络信号的提取和比较、功率检测等。
可选的,扩展单元还可以包括:馈电模块。
其中,馈电模块用于对第一耦合单元及远端级联链进行供电,馈电模块可以包括但不限于以下处理方式中的一种或多种:交流-直流变换、输入电压检测、输入电流检测、输入电源信号滤波、输出电压滤波、输出功率检测等。
通过馈电模块的设置,系统中使用集中的馈电网络,通过耦合单元,对远端单元进行远程供电,从而可以有效地减少施工难度。
在实际应用中,接入单元与扩展单元之间的需要传输的电信号可以通过各自的光收发模块转换为光信号,通过光纤传输光信号。
本实施例,通过光纤传输光信号,从而使得信号的传输效率更高,输出的信号质量更好。
在上述实施例的基础上,进一步地,接入单元接收到的信号包括以下一种或多种信号:第一信号、第二信号、第三信号和第四信号;
其中,第一信号为基站的射频拉远单元(RRU)通过无线耦合器发送的信号,第二信号为基站的射频拉远单元通过有线耦合器发送的信号,第三信号为基站的基带处理单元(BBU)发送的信号,第四信号为核心网发送的信号。
在实际应用中,接入单元的输入信号包括以下一种或多种:
基站的射频拉远单元的无线耦合输入,其中,包括但不限于单个或者多个基站射频拉远单元空中射频信号的输入;
基站的射频拉远单元的有线耦合射频信号输入;
基站的基带处理单元的数字信号输入,包括传统BBU基于私有协议的输入和开放式基站处理单元(Open RAN BBU)的基于公开协议的输入;
核心网单元的业务信号输入。
本实施例,通过接入单元的灵活配置,满足不同的信源来源的处理,包括空中耦合的射频信号、基站射频拉远单元有线耦合射频信号、基站基带单元数字信号、核心网数字业务信号,实现多种信号源的输入。
图10为本公开实施例提供的一种接入单元的结构示意图,图10是在图2-图9任一所示实施例的基础上,进一步地,如图10所示,接入单元包括以下一种或多种电路:第一电路130,第二电路140,第三电路150和第四电路160;
第一电路130通过无线耦合器与基站的射频拉远单元连接,第一电路130与扩展单元连接;第二电路140通过有线耦合器与基站的射频拉远单元连接,第二电路140与扩展单元连接;第三电路150分别与基站的基带处理单元和扩展单元连接;第四电路160分别与核心网和扩展单元连接;
第一电路130用于对接收到的第一信号进行处理,得到处理后的第一信号,并向扩展单元发送处理后的第一信号;
第二电路140用于对接收到的第二信号进行处理,得处理后的第二信号;向扩展单元发送处理后的第二信号;
第三电路150用于对接收到的第三信号进行处理,得处理后的第三信号;向扩展单元发送处理后的第三信号;
第四电路160用于对接收到的第四信号进行处理,得处理后的第四信号;向扩展单元发送处理后的第四信号。
在实际应用中,扩展单元支持第一频段、第二频段、第三频段单元和第四频段单元,远端单元支持第一频段、第二频段、第三频段和第四频段;其中,第一频段是接入单元通过无线耦合器接收空中的基站射频拉远单元的射频信号对应的频段,第二频段是接入单元为通过有线耦合器连接到基站射频拉远单元时对应的频段,第三频段是接入单元为连接基站基带处理单元对应的频段,第四频段是接入单元为连接到核心网时对应的频段。
可选的,第一数字处理模块可以包括以下一个或多个模块:第一数字处理子模块、第二数字处理子模块、主控模块和控制模块,第一光电转换模块可以包括以下一个或多个模块:第一光模块、第二光模块、第三光模块和第四光模块。
可选的,图11为本公开实施例提供的一种第一电路的结构示意图,如图11所示,第一电路包括:第一射频处理模块、第一数字处理子模块和第一光模块。
其中,第一射频处理模块用于对无线耦合射频信号进行射频滤波(包括多个或单个频率选择性滤波)、滤波后射频信号的增益调整、模拟-数字信号转换、然后将信号传输到第一数字处理子模块。
第一数字处理子模块用于对第一射频处理模块传输的信号进行组帧或解帧、同步信号提取、数字滤波、采样率变换然后发送到第一光模块。
第一光模块用于对通过第一数字处理子模块接收到的信号,进行速率调整、协议转换,然后传输到扩展单元。
在实际应用中,第一电路通过无线耦合器与基站射频拉远单元连接,将基站射频拉远输入的无线耦合射频信号转换为光信号,进而将光信号传输至扩展单元。从而使得接入单元可以用于处理无线耦合器接入的基站的射频拉远单元。
可选的,图12为本公开实施例提供的一种第二电路的结构示意图,如图12所示,第二电路包括:第二射频处理模块、第二数字处理子模块和第二光模块。
第二射频处理模块用于对有线耦合射频信号进行信号功率检测、射频增益控制、射频滤波、滤波后射频信号的增益调整、模拟-数字转换、然后传输到第二数字处理子模块。
第二数字处理子模块用于对第二射频处理模块传输的信号进行组帧或解帧、同步信号提取、数字滤波、采样率变换然后发送到第二光模块。
第二光模块用于对通过数字处理子模块接收到的信号,进行速率调整、协议转换,然后传输到扩展单元。
在实际应用中,第二电路通过有线耦合器与基站射频拉远单元连接,将基站射频拉远输入的有线耦合射频信号转换为光信号,进而将光信号传输至扩展单元。
可选的,图13为本公开实施例提供的一种第三电路的结构示意图,如图13所示,第三电路包括:第一制式模块、主控模块、第三光模块,其中,第一制式模块包括但不限于以下一种或多种模块:2G模块、3G模块、4G模块、5G模块、NB-IoT模块。
2G模块用于将2G制式的电信号通过调制解调、组帧或解帧、数字滤波和成型,传输至主控模块;
3G模块用于将3G制式的电信号,通过调制解调、组帧或解帧、数字滤波和成型,传输至主控模块;
4G模块用于将4G制式的电信号,通过调制解调、组帧或解帧、数字滤波和成型,传输至主控模块。可选的,4G模块作为主接入模块时,既可以采用传统的基站基带处理单元协议-通用公共无线接口(Common Public Radio Interface,简称CPRI),也可以采用增强型通用公共无线接口协议(Enhanced Common Public Radio Interface,简称eCPRI)。
5G模块用于将5G制式的电信号,通过调制解调、组帧或解帧、数字滤波和成型,传输至主控模块;同样地,实际实现中,5G模块作为主 接入模块时,既可以采用传统的基站基带处理单元协议-CPRI,也支持采用eCPRI。
NB-IoT模块用于将NB-IoT制式的电信号,通过调制解调、组帧或解帧、数字滤波和成型,传输至主控模块。
主控模块用于将第一制式模块传输的信号,进行数据合并、采样率转换、传输速率匹配,传输至第三光模块。
第三光模块用于将主控模块传输的信号进行速率调整、协议转换,然后传输到扩展单元。
在实际应用中,第三电路通过光纤或者网线与基站基带处理单元连接,将基站基带处理单元传输过来的电信号转换为光信号,进而将光信号传输至扩展单元。
可选的,图14为本公开实施例提供的一种第四电路的结构示意图,如图14所示,第四电路包括:第二制式模块、控制模块和第四光模块,其中,第二制式模块可以包括但不限于以下一种或多种模块:2G通信模块、3G通信模块、4G通信模块和5G通信模块。
2G通信模块用于将2G制式的电信号,通过核心网接口对接、基带信号处理(2G信号编解码、调制解调、信令处理),传输至控制模块;
3G通信模块用于将3G制式的电信号,通过核心网接口对接、基带信号处理(3G信号编解码、调制解调、信令处理),传输至控制模块;
4G通信模块用于将4G制式的电信号,通过核心网接口对接、基带信号处理(4G信号编解码、调制解调、信令处理),传输至控制模块;
5G通信模块用于将5G制式的电信号,通过核心网接口对接、基带信号处理(5G信号编解码、调制解调、信令处理),传输至控制模块;
控制模块用于将第二制式模块传输的信号,进行数据合并、采样率转换、传输速率匹配,传输至第四光模块;
第四光模块用于将控制模块传输的信号进行速率调整、协议转换,然后传输到扩展单元。
在实际应用中,第四电路通过光纤或者网线与核心网连接,将核心网传输过来的的电信号转换为光信号,进而将光信号传输至扩展单元。
本实施例,通过接入单元的灵活配置,满足不同的信源来源的处理,包括空中耦合的射频信号、基站射频拉远单元有线耦合射频信号、基站基带单元数字信号和/或核心网数字业务信号,可以实现多种信号源的输入。
图15为本公开实施例提供的一种信号传输方法的流程示意图,应用于室内分布系统,该室内分布系统包括上述系统实施例中的任一室内分布系统,本实施例提供的方法可以包括:
S151、第一耦合单元向第二耦合单元发送扩展单元传输的射频信号。
S152、第二耦合单元按照耦合度,向与第二耦合单元连接的远端单元发送输入功率的射频信号。
S153、远端单元根据输入功率和目标功率,通过信号处理模块输出目标功率的射频信号。
本实施例的方法其实现原理和技术效果与上述系统实施例类似,此处不再赘述。
工业实用性
本公开提供的室内分布系统中,第二耦合单元将其输出功率按照耦合度进行划分,将射频信号发送给与其连接的远端单元和下一级第二耦合单元,远端单元根据输入功率和目标功率,自动控制其信号处理模块的增益,将射频信号的功率从输入功率调整至目标功率输出,每个远端单元可以通过自身调节,输出目标功率的射频信号,使得远端级联链中的第二耦合器可以设置成一种,从而可以降低设计和施工难度,增加了室内分布系统的可实施性,具有很强的工业实用性。

Claims (11)

  1. 一种室内分布系统,其特征在于,包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链;其中,每个所述远端级联链包括:至少一个第二耦合单元和至少一个远端单元;所述远端单元包括信号处理模块;
    每个所述远端级联链中的至少一个第二耦合单元级联连接,每个所述远端单元分别与其对应的第二耦合单元连接;
    所述第一耦合单元,用于向所述第二耦合单元发送所述扩展单元传输的射频信号;
    所述第二耦合单元,用于按照耦合度,向与所述第二耦合单元连接的所述远端单元发送输入功率的射频信号;
    所述远端单元用于根据所述输入功率和目标功率,通过所述信号处理模块将射频信号的功率从输入功率调整至目标功率输出。
  2. 根据权利要求1所述的系统,其特征在于,所述信号处理模块包括:衰减器、开关和放大器;所述远端单元还包括:监控处理模块,所述监控处理模块包括:输入信号检测模块和监控模块;
    所述监控模块与所述输入信号检测模块连接;所述衰减器依次与开关和放大器连接;所述监控模块分别与所述衰减器和所述开关连接;
    所述衰减器,用于接收所述第二耦合单元发送的所述输入功率的射频信号;
    所述输入信号检测模块,用于确定输入功率,向所述监控模块发送所述输入功率;
    所述监控模块,用于根据输入功率和目标功率,调整所述衰减器和所述开关,以使所述放大器输出所述目标功率的射频信号。
  3. 根据权利要求1所述的系统,其特征在于,每个所述远端级联链中包含的第二耦合单元的耦合度相同;
    不同的所述远端级联链中包含的第二耦合单元的耦合度相同或者不同。
  4. 根据权利要求1所述的系统,其特征在于,所述接入单元包括第一数字处理模块,所述扩展单元包括第二数字处理模块和信号转换模块;
    所述扩展单元与所述第一耦合单元连接;所述扩展单元与所述接 入单元直接连接,或者通过其他扩展单元与所述接入单元连接;
    所述接入单元,用于通过所述第一数字处理模块对接收到的信号进行第一处理,得到第一数字信号,向所述扩展单元发送所述第一数字信号;
    所述扩展单元,用于通过所述第二数字处理模块和所述信号转换模块对所述第一数字信号进行第二处理,得到第一模拟信号;向所述第一耦合单元发送所述第一模拟信号。
  5. 根据权利要求4所述的系统,其特征在于,所述接入单元还包括第一光收发模块;所述扩展单元还包括第二光收发模块;
    所述第一光收发模块与所述第二光收发模块通过光纤连接。
  6. 根据权利要求1所述的系统,其特征在于,所述接入单元接收到的信号包括以下一种或多种信号:第一信号、第二信号、第三信号和第四信号;
    其中,所述第一信号为基站的射频拉远单元通过无线耦合器发送的信号,所述第二信号为基站的射频拉远单元通过有线耦合器发送的信号,所述第三信号为基站的基带处理单元发送的信号,所述第四信号为核心网发送的信号。
  7. 根据权利要求6所述的系统,其特征在于,所述接入单元包括以下一种或多种电路:第一电路,第二电路,第三电路和第四电路;
    所述第一电路通过所述无线耦合器与所述基站的射频拉远单元连接,所述第一电路与所述扩展单元连接;所述第二电路通过所述有线耦合器与所述基站的射频拉远单元连接,所述第二电路与所述扩展单元连接;所述第三电路分别与所述基站的基带处理单元和所述扩展单元连接;所述第四电路分别与所述核心网和所述扩展单元连接;
    所述第一电路用于对接收到的所述第一信号进行处理,得到处理后的第一信号,并向所述扩展单元发送所述处理后的第一信号;
    所述第二电路用于对接收到的所述第二信号进行处理,得到处理后的第二信号,并向所述扩展单元发送所述处理后的第二信号;
    所述第三电路用于对接收到的所述第三信号进行处理,得到处理后的第三信号,并向所述扩展单元发送所述处理后的第三信号;
    所述第四电路用于对接收到的所述第四信号进行处理,得到处理后的第四信号,并向所述扩展单元发送所述处理后的第四信号。
  8. 根据权利要求1-7任一项所述的系统,其特征在于,所述扩展 单元用于向所述第一耦合单元发送供电信号和射频信号;
    所述第一耦合单元用于向所述远端级联链发送供电信号和射频信号;
    所述第二耦合单元用于向与所述第二耦合单元连接的远端单元和与所述第二耦合单元连接的其他第二耦合单元,分别发送供电信号和射频信号。
  9. 根据权利要求8所述的系统,其特征在于,每个所述远端级联链中的至少一个第二耦合单元通过射频电缆级联连接,每个所述第二耦合单元分别与一个所述远端单元通过射频电缆连接;所述第一耦合单元分别与每个所述远端级联链中的首级第二耦合单元通过射频电缆连接。
  10. 根据权利要求8所述的系统,其特征在于,每个所述远端级联链中的至少一个第二耦合单元通过馈线级联连接,每个所述第二耦合单元分别与一个所述远端单元通过馈线连接;所述第一耦合单元分别与每个所述远端级联链中的首级第二耦合单元通过馈线连接。
  11. 一种信号传输方法,其特征在于,应用于室内分布系统,所述室内分布系统包括:接入单元、扩展单元、第一耦合单元和至少一个远端级联链;其中,每个所述远端级联链包括:至少一个第二耦合单元和至少一个远端单元;所述远端单元包括信号处理模块;每个所述远端级联链中的至少一个第二耦合单元级联连接,每个所述远端单元分别与其对应的第二耦合单元连接;所述方法包括:
    所述第一耦合单元向所述第二耦合单元发送所述扩展单元传输的射频信号;
    所述第二耦合单元按照耦合度,向与所述第二耦合单元连接的所述远端单元发送输入功率的射频信号;
    所述远端单元根据所述输入功率和目标功率,通过所述信号处理模块将射频信号的功率从输入功率调整至目标功率输出。
PCT/CN2021/136204 2021-01-29 2021-12-07 室内分布系统和信号传输方法 WO2022160949A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/274,994 US20240154702A1 (en) 2021-01-29 2021-12-07 Indoor distribution system and signal transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110129681.1A CN112804691A (zh) 2021-01-29 2021-01-29 室内分布系统和信号传输方法
CN202110129681.1 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022160949A1 true WO2022160949A1 (zh) 2022-08-04

Family

ID=75813015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136204 WO2022160949A1 (zh) 2021-01-29 2021-12-07 室内分布系统和信号传输方法

Country Status (3)

Country Link
US (1) US20240154702A1 (zh)
CN (1) CN112804691A (zh)
WO (1) WO2022160949A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804691A (zh) * 2021-01-29 2021-05-14 京信网络系统股份有限公司 室内分布系统和信号传输方法
CN113341811A (zh) * 2021-06-11 2021-09-03 罗森伯格技术有限公司 兼容两种tdd开关信号传输的方法、远端设备及系统
CN113727361A (zh) * 2021-08-20 2021-11-30 深圳国人无线通信有限公司 一种移动网络室内信号覆盖系统
CN114245393B (zh) * 2021-12-21 2023-09-12 中信科移动通信技术股份有限公司 无线分布式信号覆盖系统
CN114679693B (zh) * 2022-03-22 2023-12-19 中国电信股份有限公司 耦合装置及室分系统
CN115277300B (zh) * 2022-09-30 2022-12-09 深圳国人无线通信有限公司 一种优化的室分系统覆盖方法和室分系统
CN117439635B (zh) * 2023-12-20 2024-02-23 广州市瀚云信息技术有限公司 一种有源分布系统主从通信装置及实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090289A (zh) * 2007-07-18 2007-12-19 中兴通讯股份有限公司 用于延伸覆盖的通信系统及方法
CN110278011A (zh) * 2019-06-12 2019-09-24 京信通信系统(中国)有限公司 分布式天线系统、方法和装置
CN209767546U (zh) * 2019-06-12 2019-12-10 京信通信系统(中国)有限公司 分布式天线系统
CN112804691A (zh) * 2021-01-29 2021-05-14 京信网络系统股份有限公司 室内分布系统和信号传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090289A (zh) * 2007-07-18 2007-12-19 中兴通讯股份有限公司 用于延伸覆盖的通信系统及方法
CN110278011A (zh) * 2019-06-12 2019-09-24 京信通信系统(中国)有限公司 分布式天线系统、方法和装置
CN209767546U (zh) * 2019-06-12 2019-12-10 京信通信系统(中国)有限公司 分布式天线系统
CN112804691A (zh) * 2021-01-29 2021-05-14 京信网络系统股份有限公司 室内分布系统和信号传输方法

Also Published As

Publication number Publication date
CN112804691A (zh) 2021-05-14
US20240154702A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2022160949A1 (zh) 室内分布系统和信号传输方法
US11818642B2 (en) Distributed antenna system
US11923905B2 (en) Distributed antenna system, method and apparatus
EP2222130B1 (en) Base band unit, radio frequency unit and distributed bs system based on srio protocol
US20110170577A1 (en) High Speed Switch With Data Converter Physical Ports
CN107113032A (zh) 用于mimo信号的分布式天线系统
CN103973396A (zh) 传输无线基带数据的方法、装置和射频拉远模块rru
CN105874824B (zh) 用于分布式天线网络的网络交换机
WO2012092810A1 (zh) 多模数字射频拉远系统
CN103401598A (zh) 一种新型的多网融合室内分布系统
WO2023115907A1 (zh) 一种多业务有源分布系统
CN209767546U (zh) 分布式天线系统
CN101902281A (zh) 可环形组网自愈的数字光纤直放站系统及其数据通信方法
CN105406925A (zh) 多频段数字光纤分布式天线系统
CN104144432A (zh) 一种gsm-r微功率光纤分布式装置
CN101998518B (zh) 基站ir接口数据传输系统及方法
CN214315621U (zh) 室内分布系统
WO2022142636A1 (zh) 直放站
WO2015085572A1 (zh) 分布式天线系统及近端机
CN207490910U (zh) 一种全数字模块化大动态输出功率的分布式天线系统
KR101060582B1 (ko) 중계기 시스템 및 그 제어방법
CN216146471U (zh) 矿用的本安型通信系统
WO2013053237A1 (zh) 一种室内覆盖射频通信系统
CN201758393U (zh) 可环形组网自愈的数字光纤直放站系统
WO2022110993A1 (zh) 时钟信号同步电路和网络通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.23)