WO2013152509A1 - 实现显微镜系统超分辨成像的方法 - Google Patents
实现显微镜系统超分辨成像的方法 Download PDFInfo
- Publication number
- WO2013152509A1 WO2013152509A1 PCT/CN2012/074033 CN2012074033W WO2013152509A1 WO 2013152509 A1 WO2013152509 A1 WO 2013152509A1 CN 2012074033 W CN2012074033 W CN 2012074033W WO 2013152509 A1 WO2013152509 A1 WO 2013152509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- scattering intensity
- focusing mirror
- microscope system
- microscope
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
- G02B21/08—Condensers
- G02B21/10—Condensers affording dark-field illumination
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/58—Optics for apodization or superresolution; Optical synthetic aperture systems
Definitions
- the present invention relates to the field of super-resolution microscopy, and more particularly to a method for achieving super-resolution imaging of an X-ray microscope system. Background technique
- X-ray microscopy has unique advantages over traditional optical microscopy, electron microscopy and other technologies.
- the X-ray has a short wavelength and is affected by the diffraction effect, which can achieve high resolution.
- the three-dimensional imaging can achieve a resolution of 26 nm, and the two-dimensional imaging can achieve a resolution of 12 nm.
- the X-ray penetrating ability is strong, and the ability to perform non-destructive imaging of the internal structure of a thick sample can effectively reduce the preparation time of the sample, and the imaging mechanism is diverse, such as absorption, phase, scattering, etc., and the contrast source is rich.
- X-ray microscopy can observe and analyze a variety of microscopic physical, chemical changes and micro-nanostructure morphology.
- nano-resolution X-ray microscopes have been rapidly developed in the world's various synchrotron radiation light sources, and have become an important tool for nanostructure characterization.
- X-ray microscopy is mainly divided into two categories: X-ray probe scanning microscopy and X-ray full-field microscope. Both types of microscopes have their own advantages and disadvantages.
- X-ray probe scanning microscope is a micro-probe that focuses X-rays on the order of micrometers or nanometers. It can not only scan the points of the sample point by point, but also can scan the energy of any point in the sample separately to form a spatial resolution spectrum. learn. Because the sample data is acquired point by point, the data acquisition speed must be fast enough, and the luminous flux through the X-ray microprobe must be large enough, so this type of microscope is more suitable for building on the third-generation homogenous radiation source with high brightness.
- the structure of the X-ray full field microscope is shown in Figure 1. Its principle is the same as that of a conventional optical microscope, and mainly includes an X-ray source, a tubular condenser, a zone plate objective lens, and an X-ray image detector. In the experiment, the whole two-dimensional image of the sample can be taken into the image detector at one time, without scanning, so the data acquisition speed is faster. When a phase ring is added to the system, a high contrast Zemike phase contrast imaging can be performed on the weakly absorbing sample. X-ray full field microscope can also be combined with Computed Tomography (CT) to form X-ray nano-components. Identify three-dimensional imaging.
- CT Computed Tomography
- the advantage of the X-ray full field microscope is that it can be built not only on the first and second generations of the same-radio source, but also on conventional X-ray sources.
- the existence of the above characteristics makes the X-ray full field microscope have great advantages and broad application prospects in three-dimensional non-destructive imaging with respect to the X-ray probe scanning microscope.
- X-ray full-field microscopy relies mainly on the absorption or phase changes of X-rays as they pass through the sample.
- Zermke phase contrast imaging has a certain degree of improvement in image contrast of weakly absorbing substances, it is still not ideal, and phase contrast imaging is still a non-quantitative imaging method.
- X-ray full field microscopes are still not suitable for research in the fields of cells and materials. Therefore, how to achieve higher resolution and high contrast X-ray imaging methods in existing X-ray full field microscope devices has become a subject of research.
- the present invention provides a method for realizing super-resolution imaging of a microscope system to maximize resolution and obtain more microstructure information based on existing microscope system hardware.
- a method of achieving super-resolution imaging of a microscope system comprises: the method is based on a microscope system comprising a light source, a focusing mirror, an objective lens and an image detector, comprising: constructing a microscope system; changing a numerical aperture of the focusing mirror in the microscope system, and collecting the sample corresponding to the numerical aperture of the different focusing mirrors respectively At least two dark field images; extracting scattering intensity values of corresponding pixels in at least two dark field images, constructing an experimental scattering intensity curve with the extracted scattering intensity value as a dependent variable as an independent variable; From the experimental scattering intensity curve, the microstructure information of the sub-resolution scale inside the Rayleigh resolution unit on the sample is obtained, and the super-resolution imaging of the microscope is realized.
- a scattering intensity curve is obtained from a plurality of dark field images, and microscopic holes/particles in the Rayleigh resolution unit on the sample can be obtained by fitting with a scattering intensity curve of a microscopic hole/particle of a known size. Particle size
- an iterative method is used to reconstruct a sample function in a Rayleigh resolution unit from a plurality of dark field images by scattering intensity image reconstruction.
- FIG. 1 is a schematic structural view of a prior art X-ray microscope
- 2 is a flow chart of a method for realizing super-resolution imaging of a microscope system according to an embodiment of the present invention
- FIG. 3 is a schematic diagram showing a method for changing a numerical aperture of a focusing mirror in a super-resolution imaging method of a microscope system according to an embodiment of the present invention, wherein, in FIG. 3a and FIG. 3b Changing the focus aperture of the focusing mirror by replacing the focusing mirror and changing the radius of the annular aperture;
- FIG. 4 is a schematic diagram of obtaining a dark field image of a sample by the method shown in FIG. 3a in a super-resolution imaging method for a microscope system according to an embodiment of the present invention, wherein: (a) is a schematic view of the sample; and FIG. 4 (b) - FIG. (e) obtaining a plurality of dark field images of the sample when the numerical aperture of the focusing mirror is changed from small to large;
- FIG. 5 is a microscopic view of three kinds of particle diameters obtained by a theoretical simulation method in the super-resolution imaging method of the microscope system according to an embodiment of the present invention; a reference scattering intensity curve of the pore/particle;
- FIG. 6 is a flow chart of a method for reconstructing an internal sample function of a single Rayleigh resolution unit on a sample in a super-resolution imaging method of a microscope system according to an embodiment of the present invention.
- the present invention acquires a series of dark field images of a sample by changing the numerical aperture of the focusing mirror based on the existing microscope. These dark-field images reflect the axial scattering intensity of the fine structure at each point in the sample at different incident angles. Using these scattering information, the sample shape inside each Rayleigh Resolution Element (RRE) of the microscope is obtained. Appearance feature information.
- RRE Rayleigh Resolution Element
- a method of achieving super-resolution imaging of a microscope system is provided.
- 2 is a flow chart of a method for realizing a super-resolution imaging system of a microscope according to an embodiment of the present invention. As shown in FIG. 2, this embodiment includes:
- Step A set up the microscope light path
- the steps include: setting the position of the light source, the focusing mirror, the sample, the objective lens and the image detector in the microscope, so that the light emitted by the light source is concentrated by the focusing mirror to form a focused beam to illuminate the sample, and the focused beam passing through the objective lens passes through the objective lens Projected to the image detector.
- the numerical aperture (NA e ) of the focusing mirror can be equal to the numerical aperture (NA.) of the objective lens.
- the sample forms a bright field image on the detection plane.
- the Rayleigh resolution of the microscope system is determined by the outermost ring diameter dr of the zone plate and the geometric magnification image distance/object distance of the system.
- setting the numerical aperture of the focusing mirror equal to the numerical aperture of the objective lens is only for the purpose of adjusting the position of the optical elements other than the focusing mirror in the microscope system.
- the focusing mirror with the numerical aperture larger than the numerical aperture of the objective lens can be directly used to set the optical path, and the step ⁇ is performed to obtain different values corresponding to the sample. Dark field image of the aperture.
- This embodiment has no special requirements for the type of microscope.
- the principle can also be applied to small numerical aperture microscope systems of other wavelengths, such as visible light microscope, electron microscope, neutron/gamma ray microscope. Taking the X-ray microscope shown in Fig. 1 as an example, various types of microscopes include the following parts:
- a light source for providing illumination to the entire imaging device.
- the X-ray source can use a homogenous radiation source, a laboratory X-ray source, or other quasi-monochromatic commercial X-ray source.
- the X-ray energy of conventional nano-resolved X-ray microscopy is typically between 0.2 and 20 keV.
- the source is visible light; in an electron microscope, the source is an electron gun; in a neutron/gamma ray microscope, the source is neutron/gamma Radiation emitting device.
- Focusing mirror used to condense the light generated by the light source into circular illumination to illuminate the sample.
- the focusing mirror generally uses a tubular focusing mirror to form a concentrated secondary illumination light using the principle of total reflection of X-rays.
- the sample is placed at the focus of the focusing mirror.
- the center of the focusing mirror further includes a circular beam stop whose diameter is slightly smaller than the exit aperture of the focusing mirror (exit NA), so that The exit pupil of the focusing mirror is annular, and the concentrated beam produces a hollow cone.
- the center of the focusing mirror due to the strong penetrability of X-rays, it is generally necessary to place a pinhole in front of the focal plane of the focusing mirror to filter out the effect of the through light, where the small hole is another separate component, and the focusing mirror Or the ring diaphragm has nothing to do.
- the focusing mirror should be an imaging element having an imaging function corresponding to the light source.
- the focusing mirror should be a convex lens; in the case of an electron microscope, the focusing mirror can be an electrostatic field or an electromagnetic lens.
- the focusing mirror can be a neutron/gamma ray diffraction focusing element, such as a zone plate.
- Objective lens used to image the sample with X-rays after passing through the sample.
- the most commonly used objective is the Fresnel zone plate lens.
- the distance between the objective lens and the sample that is, the object distance, is slightly longer than the focal length of 1x, so that an enlarged inverted real image can be formed behind the objective lens, which is then acquired by the image detector.
- the objective lens should be an imaging element having an imaging function corresponding to the light source.
- the objective lens may be a general convex lens.
- the objective lens is an electrostatic field or an electromagnetic lens.
- the objective lens can be a neutron/gamma ray diffractive focusing element, such as a zone plate.
- An image detector for collecting an image of the sample formed by the objective lens.
- the image detector is placed on the image plane of the objective zone plate.
- the high-angle scattering intensity of the general sample is small, it takes a long time to form an effective dark field image, so an image detector having a low background noise is required.
- the image detector should be an image acquisition device capable of operating at the wavelength of the source.
- the image detector can be a general CCD or CMOS array detector.
- the image detector can be a semiconductor detector or a scintillation detector.
- the image detector can be a scintillator detector.
- Step B changing the numerical aperture of the focusing mirror, and collecting at least two dark field images of the numerical aperture NA e of the different focusing mirrors of the sample;
- the numerical aperture NA e of the focusing mirror is equal to the numerical aperture NA of the objective lens.
- the sample forms a bright field image on the detection plane.
- the position and optical parameters of the light source, the objective lens and the image detector in the microscope system are kept unchanged, the positions of the sample and the focusing mirror are unchanged, and the numerical aperture NA e of the focusing mirror is increased step by step.
- the dark field image of the sample corresponding to the numerical aperture NA e (NA C >NA 0 ) of different focusing mirrors is acquired.
- Two methods for changing the numerical aperture NA e of the focusing mirror are given below: (1) Replace the original focusing mirror with a focusing mirror with a larger numerical aperture, as shown in Figure 3a.
- the diameter of the beam blank can also be increased to maintain the focusing mirror.
- the exit pupil does not change, thereby forming a ring-shaped illumination light having a larger radius and a constant width.
- the numerical aperture NA e '> 3NA of the initial focusing mirror For example, by using annular apertures of different radii, it is possible to filter out the numerical aperture NA e between NA. And 3NA.
- the numerical aperture NA e '>5NA 0 of the initial focusing mirror In order to expand the adjustment range of the numerical aperture of the focusing mirror, preferably, the numerical aperture NA e '>5NA 0 of the initial focusing mirror. At the same time, for easy adjustment, a device that can quickly change the ring diaphragm is used.
- the numerical aperture NA e of the focusing mirror is small, which is a milli-arc metric, so that the half-apex angle of the illumination cone can be directly used instead. Since the numerical aperture of the focusing mirror is larger than the numerical aperture of the objective lens, the light passing through the sample deviates from the edge of the objective lens, and the objective lens can only collect a part of the scattered light, thereby forming a dark field image of the sample on the image detector. As the numerical aperture NA e of the focusing mirror continues to increase, multiple sample dark field images can be obtained on the image detector.
- the range of the numerical aperture NA e of the focusing mirror needs to cover N times the numerical aperture NA of the objective lens.
- the numerical aperture of the focusing mirror is increased by an equal interval, and a dark field image of the sample corresponding to the numerical aperture of 3-5 focusing mirrors is obtained.
- FIG. 4 is a schematic diagram of obtaining a dark field image of a sample by the method shown in FIG. 3a in a super-resolution imaging method for a microscope system according to an embodiment of the present invention.
- 4 (a) is a schematic view of the sample
- FIG. 4 (b) - FIG. 4 (e) is an image dark field image obtained when the numerical aperture of the focusing mirror is changed from small to large.
- the intensity of each pixel in the image detector will receive the scattering information of the sample from low frequency to high frequency as the numerical aperture NA e of the focusing mirror increases. .
- Step C extracting the scattering intensity values of the corresponding pixels in at least two dark field images, constructing an experimental scattering intensity curve with the extracted scattering intensity value as a dependent variable as an independent variable;
- the scattering intensity information corresponding to each pixel is a single point. Value.
- the scattering intensity information corresponding to each pixel can be composed of a focusing mirror numerical aperture as an independent variable, and the extracted scattering intensity value is a dependent variable curve (the straight line can be seen It is a special form of the curve, called the scattering intensity curve, also known as the SDFI curve, as shown in Figure 5.
- the SDFI curve for each pixel is the raw data for super-resolution imaging.
- the pixel located at the image detector (the two-dimensional coordinate vector with the origin of the image detector as the origin), its light intensity/variation with the illumination apex angle ⁇ ⁇ is:
- the exit pupil function of the tubular focusing mirror (generally a ring shape), representing the distance from the sample to the belt mirror objective, representing the amplitude transfer function of the objective lens, ⁇ representing the transmittance function of the sample, M indicating the system magnification, and FJ representing the second
- the Fourier transform operation which illuminates the half apex angle, can be used as the numerical aperture NA C of the focusing mirror.
- Step D obtaining the microstructure information of the sub-resolution scale of the Rayleigh resolution unit on the sample from the experimental scattering intensity curve, and realizing super-resolution imaging of the microscope.
- two typical applications are taken as an example to describe the acquisition process of the microstructure information of the sub-resolution scale inside the Rayleigh resolution unit on the sample.
- step D in order to determine the microscopic size information of the sample inside a single Rayleigh resolution unit, step D may include the following sub-steps:
- Step Dla through experimental test or theoretical simulation, obtain reference scattering intensity curves corresponding to microscopic pores/microparticles of different particle sizes to establish a reference scattering intensity curve database;
- step A-step C it is feasible to use the step A-step C to obtain the scattering intensity value of the reference scattering intensity curve. In this case, it is mainly based on the standard aperture test results. Draw a scattering intensity curve.
- a theoretical simulation method is preferably employed.
- the theoretical simulation curve can be directly obtained using Equation 1 above.
- the implementation of this step requires pre-estimation of the granularity of the sub-resolved structure, and then selects the numerical aperture position corresponding to the 3-5 scattering intensity peaks on the reference scattered light intensity curve to obtain the dark field image.
- Step Dlb using microscopic holes/micro of different particle sizes in the sample scattering intensity curve database
- the plurality of reference scattering intensity curves of the particles respectively fit the experimental scattering intensity curve; and Die, the reference scattering intensity curve which is optimally fitted to the experimental scattering intensity curve is determined, and the particle diameter corresponding to the reference scattering intensity curve is the sample The particle size of the microscopic pores/particles.
- FIG. 5 is a graph showing scattering intensity curves of three kinds of microscopic pores/particles in a super-resolution imaging method of a microscope system according to an embodiment of the present invention.
- the three curves in the figure are the scattering intensity curves of three microscopic holes/particles with diameters of 5 nm, 10 nm, and 15 nm, respectively. Therefore, the numerical aperture of the focusing mirror can be varied within a limited range in discrete cases, for example, under ⁇ , ⁇ 2 , three different focusing mirror numerical aperture conditions, respectively, and the scattering intensity information of these regions is obtained.
- the relative change law of the light intensity of each of these data is on the scattering intensity curve. , ⁇ The relative intensity values of the three points. If it is known in advance that the sample contains only these three kinds of particles (such as small angle scattering technique), the spherical particles of 5 nm, 10 nm, and 15 nm can be distinguished.
- step Dlb In order to improve the accuracy of the measurement, you can take as many pictures as possible in step Dlb to improve the accuracy of the scattering intensity curve.
- a method in which a plurality of particle diameters are averaged specifically:
- step C extracting a plurality of corresponding pixels in at least two dark field images, preferably a scattering intensity value of all the pixels, and constructing a plurality of experimental scattering intensity curves;
- step D a plurality of reference scattering intensity curves are respectively used to fit the plurality of experimental scattering intensity curves; and a reference scattering intensity curve optimally fitted to the plurality of experimental scattering intensity curves is respectively determined;
- a plurality of microscopic pores/particle size of the experimental scattering intensity curve; the final particle size of the microscopic pores/particles on the sample is obtained by averaging the plurality of microscopic pores/particle size or by using a maximum probability method.
- the microstructure within each Rayleigh resolution unit can be located by a pixel intensity curve within the adjacent Rayleigh resolution unit.
- the sampling requirements in this step are different from the first application, and the coverage of the focusing mirror NA needs to be as continuous as possible. This can be done by using a larger focusing mirror or by increasing the number of shots.
- FIG. 6 is a flow chart of realizing reconstruction of microscopic topography information of a sample in a single Rayleigh resolution unit on a sample in a super-resolution imaging method of a microscope system according to an embodiment of the present invention. As shown in FIG. 6, the step includes the following sub-steps:
- Step D2a assigning an arbitrary initial value to the sample function of the unknown region in the real space
- Step D2b selecting a known Rayleigh resolution unit of a known region on the sample, and selecting a Rayleigh resolution unit of the unknown region adjacent to the known Rayleigh resolution unit as the Rayleigh resolution unit to be sought
- Step D2c calculating the diffraction amplitude distribution of the sample on the image detector by the Rayleigh resolution unit to be determined by the Fraunhofer diffraction principle and the formula (1);
- Step D2d correcting the above-mentioned diffraction amplitude distribution by using a scattering intensity curve of the Rayleigh resolution unit to be determined on the measured image detector;
- Step D2e inversely Fourier transforming the corrected diffraction amplitude distribution back into the real space to obtain an estimated sample function of the Rayleigh resolution unit in the real space on the sample;
- Step D2f in the real space, correct the sample function of the Rayleigh resolution unit using the sample function in the adjacent known Rayleigh resolution unit, and assign the sample function of the known Rayleigh resolution unit to it The area that the Rayleigh resolution unit covers in common.
- the present invention requires that the coverage of the adjacent known Rayleigh resolution unit and the to-be-required Rayleigh resolution unit have an overlap of at least 1/4 of the Rayleigh resolution unit width;
- Step D2g determining whether the sample function estimate is converged, and if so, using the sample function estimate as a sample function of the Rayleigh resolution unit to be sought, otherwise, performing step D2c, that is, repeating step D2c- Step D2f, until the sample function estimate of the Rayleigh resolution unit to be converge, that is, the Rayleigh resolution unit to be sought becomes a part of the known region;
- Step D2h the Rayleigh resolution unit to be sought is used as a known Rayleigh resolution unit, and the steps D2b to D2g are repeatedly performed, and the sample functions of all Rayleigh resolution units in the region of interest are known.
- the present invention relates the scattering intensity distribution of the sample to the geometry and electron density of the scatterer, and uses the full field microscopic imaging technique to obtain dark field imaging of the sample, and then collects the scattering intensity information of the sample.
- the method breaks the Rayleigh resolution limit of the imaging device under the condition that the processing process of the existing zone plate is limited and cannot improve the imaging resolution of the X-ray full field microscope, and reduces the processing process of the zone plate. Dependence.
- the invention is of great value for the application of X-ray full field microscopy in biomedicine and materials science.
- the method of the present invention does not depend on the characteristics of the X-ray itself, and therefore can be applied to other small numerical aperture imaging systems to further enhance resolution, such as visible light microscopy, full field electron microscopy, and neutron/gamma. Ray microscopy, etc., and increase its resolution to several wavelengths.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
一种实现显微镜系统超分辨率成像的方法。该方法基于一包括光源、聚焦镜、物镜和图像探测器的显微镜系统,包括:搭建显微镜系统;改变显微镜系统中聚焦镜的数值孔径,采集样品的分别对应不同聚焦镜数值孔径的至少两张暗场像;在至少两张暗场像中分别提取对应像素的散射强度值,构造以聚焦镜数值孔径为自变量,以所提取的散射强度值为因变量的实验散射强度曲线;由实验散射强度曲线获得样品上瑞利分辨单元内部亚分辨尺度的微观结构信息,实现显微镜的超分辨成像。该方法突破显微镜系统的固有分辨率极限并提升成像衬度。
Description
实现显微镜系统超分辨成像的方法 技术领域
本发明涉及超分辨显微术 (super-resolution microscopy) 技术领域, 尤其涉及一种实现 X射线显微镜系统超分辨成像的方法。 背景技术
相对于传统光学显微镜、 电子显微镜等技术, X 射线显微镜具有独 特的优势。 X射线波长短, 受衍射效应影响小, 可以达到很高的分辨率, 目前三维成像可以达到 26nm的分辨率, 二维成像可以达到 12nm的分辨 率。 此外, X射线穿透能力强, 具有对厚样品的内部结构进行无损成像 的能力, 可以有效地减少了样品的准备时间, 而且成像机制多样, 如吸 收、 相位、 散射等, 衬度来源丰富。 因而 X射线显微镜可以观察、 分析 多种微观物理、 化学变化和微纳米结构的形貌。 近年来, 纳米分辨尺度 的 X 射线显微镜在世界各个同歩辐射光源 (synchrotron radiation light source ) 上得到了快速的发展, 成为纳米结构表征的一种重要工具。
X射线显微镜中主要分为两类: X射线探针扫描显微镜(X-my probe scanning microscopy)禾口 X射线全场显微镜 ( X-ray full-field microscope ) , 两类显微镜各有优劣。 X射线探针扫描显微镜是将 X射线聚焦成微米或 纳米量级的微探针, 不但可以对样品各点进行逐点扫描, 而且可以对样 品中任意一个点单独进行能量扫描, 形成空间分辨谱学。 因为是逐点获 取样品数据, 数据获取速度必须足够快, 通过 X射线微探针的光通量必 须足够大, 所以这类显微镜比较适合建在亮度高的第三代同歩辐射光源 上。 X射线全场显微镜的结构如图 1 所示。 它的原理与传统的光学显微 镜相同, 主要包括 X光源、管状聚焦镜(condenser)、波带片(zone plate ) 物镜, 以及 X射线图像探测器。 实验中可一次性地将样品的整体二维图 像摄入图像探测器, 无需扫描, 故数据获取速度较快。 当在此系统中加 入相移环 (phase ring) 的时候, 更可以对弱吸收样品进行高衬度的泽尼 克 (Zemike ) 相位衬度成像。 X射线全场显微镜还可以与计算机断层重 建技术 (Computed Tomography, 简称 CT ) 相结合, 形成 X射线纳米分
辨三维成像。 同时 X射线全场显微镜的优势还在于它不仅可以建立在第 一、 二代同歩辐射光源上, 还可以使用常规 X射线光源。 上述特性的存 在使得 X射线全场显微镜相对于 X射线探针扫描显微镜在三维无损成像 方面具有巨大的优势和广阔的应用前景。
现有的纳米分辨尺度的 X射线全场显微镜均使用波带片作为成像元 件。 根据光学衍射原理, X 射线全场显微镜的空间分辨率主要取决于波 带片。 由简单计算可知, 波带片数值孔径(Numerical Aperture, 简称 NA) 所决定的分辨率约等于波带片的最外环宽度。 由于受限于当前的微纳米 加工技术, 现有 X射线全场显微镜的分辨率在一般在几十 nm左右, 仍 然不能满足几个 nm大小的微小结构的研究需求,例如纳米科学中的纳米 结构三维形貌研究以及生命科学中的亚细胞体系 (sub-cellular structures) 的无损三维成像。 另一方面, X射线全场显微镜主要依靠 X射线穿过样 品时候的吸收或相位变化进行成像。 泽尼克 (Zermke) 相位衬度成像虽 然对于弱吸收物质的图像衬度有一定程度的改善, 但是仍然不是十分理 想, 且相位衬度成像依然是一种非定量的成像方法, 这些问题的存在使 得 X射线全场显微镜依然不适用于细胞、 材料等领域的研究。 因此如何 在现有 X射线全场显微镜装置中, 实现更高分辨率和高衬度的 X射线成 像方法成为人们研究的课题。
为了超越光学元件的限制, 获得更高的分辨率, 需要使用超分辨技 术。 现有的超分辨技术根据实现原理上可以分为两类: 近场超分辨显微 技术 ( near-field super-resolution microscopy) ,以及使用荧光 (fluorescence) 的远场超分辨显微技术。 其中, 近场显微术绕过了光波的空间传播过程, 不受到衍射的限制, 能够实现小于波长量级的探测。 但是由于依赖光波 的近场特性, 近场显微镜的工作距离被限制在一个波长之内, 无法实现 样品的 3D体成像, 而且一般需要通过二维的扫描过程来获得整幅图像。 另一方面, 基于荧光技术的远场超分辨显微术依靠荧光染料的光吸收 /发 射特性(photon absorption/emission) , 通过探测由荧光染料分子激发后产 生的光信息, 也能够实现超越波长极限的分辨率。
然而, 上述两种方法均不适用于 X射线全场显微镜: 对于近场超分 辨技术, X 射线的极短波长使得其近场范围在若干个纳米量级, 不能用
于显微结构表征; 对于荧光超分辨技术, 由于需要对样品进行荧光染色, 且荧光染料需要特定的波长激发, 无法应用于 X射线波段, 也不能体现 X射线全场显微镜的原位成像 (in-situ imaging) 和免扫描 (全场) 成像 的优势。 所以现阶段的纳米分辨尺度的 X射线显微镜仍然没有实现超分 辨成像的方法, 不能有效地满足纳米科学、 生命科学等领域的需求。 发明内容
(一) 要解决的技术问题
针对上述问题, 本发明提供了一种实现显微镜系统超分辨成像的方 法, 以在现有的显微镜系统硬件基础上尽可能提高分辨率, 获取更多的 微观结构信息。
(二) 技术方案
根据本发明的一个方面, 本发明公开了一种实现显微镜系统超分辨 成像的方法。 该方法包括: 该方法基于一包括光源、 聚焦镜、 物镜和图 像探测器的显微镜系统, 包括: 搭建显微镜系统; 改变显微镜系统中聚 焦镜的数值孔径, 采集样品的分别对应不同聚焦镜数值孔径的至少两张 暗场像; 在至少两张暗场像中分别提取对应像素的散射强度值, 构造以 聚焦镜数值孔径为自变量, 以所提取的散射强度值为因变量的实验散射 强度曲线; 由实验散射强度曲线获得样品上瑞利分辨单元内部亚分辨尺 度的微观结构信息, 实现显微镜的超分辨成像。
(三) 有益效果
本发明实现显微镜系统超分辨成像方法具有以下有益效果:
1、 本发明中, 由若干幅暗场像取得散射强度曲线, 通过与已知尺寸 的微观孔洞 /微粒的散射强度曲线进行拟合, 可以获得样品上瑞利分辨单 元内的微观孔洞 /微粒的粒径;
2、 本发明中, 采用迭代方法, 由若干幅暗场像通过散射强度图像重 构, 可以获得样品上瑞利分辨单元内的样品函数。 附图说明
图 1为现有技术 X射线显微镜的结构示意图;
图 2为本发明实施例实现显微镜系统超分辨成像方法的流程图; 图 3 为本发明实施例实现显微镜系统超分辨成像方法中改变聚焦镜 数值孔径方式的示意图, 其中, 在图 3a和图 3b中, 分别采取更换聚焦镜 和改变环形光阑半径的方式改变聚焦镜数值孔径;
图 4为本发明实施例实现显微镜系统超分辨成像方法中通过图 3a所 示的方式获得样品暗场像的示意图, 其中: 图 4 (a) 为样品的示意图; 图 4 (b) -图 4 (e)为聚焦镜数值孔径由小变大时得到样品的多张暗场像; 图 5 为本发明实施例实现显微镜系统超分辨成像方法中采用理论模 拟的方法获取的三种粒径的微观孔洞 /微粒的参照散射强度曲线;
图 6 为本发明实施例实现显微镜系统超分辨成像方法中样品上单个 瑞利分辨单元内部样品函数重构歩骤的流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一歩详细说明。 需要说明的是, 虽然 本文可提供包含特定值的参数的示范, 但应了解, 参数无需确切等于相 应的值, 而是可在可接受的误差容限或设计约束内近似于所述值。
本发明在现有显微镜的基础上, 通过改变聚焦镜的数值孔径, 获取 样品的一系列暗场像。 这些暗场像反映了样品中每一点处的精细结构在 不同入射角下的轴向散射强度, 利用这些散射信息获得显微镜的每个瑞 利分辨单元 (Rayleigh Resolution Element, 简称 RRE) 内部的样品形貌 特征信息。
在本发明的一个示例性实施例中, 提供了一种实现显微镜系统超分 辨成像的方法。 图 2 为本发明实施例实现显微镜系统超分辨成像方法的 流程图。 如图 2所示, 本实施例包括:
歩骤 A, 搭建显微镜光路;
本歩骤包括: 设置显微镜中光源、 聚焦镜、 样品、 物镜和图像探测 器的位置, 使光源发出的光经过聚焦镜的会聚作用后形成聚焦光束照射 在样品上, 经过样品的聚焦光束经过物镜后投影至图像探测器。 在初始 状态下, 聚焦镜的数值孔径 (NAe) 可以等于物镜的数值孔径 (NA。),
样品在探测平面形成明场像。 此时, 显微镜系统的瑞利分辨率决定于波 带片的最外环直径 dr和系统的几何放大率 像距 /物距。
在初始状态下, 设置聚焦镜的数值孔径等于物镜的数值孔径只是为 了便于调整显微镜系统中除聚焦镜之外的其他光学元件的位置。 当然, 如果显微镜系统中除聚焦镜之外的其他光学元件的位置和光学参数已 知, 就可以直接采用数值孔径大于物镜数值孔径的聚焦镜来设置光路, 执行歩骤 Β来获取样品对应不同数值孔径的暗场像。
本实施例对显微镜的类型没有特殊要求。 除 X射线全场显微镜外, 其原理也可应用于其他波长的小数值孔径显微镜系统, 如可见光显微镜、 电子显微镜、中子 /伽马射线显微镜等。以图 1所示的 X射线显微镜为例, 各种类型的显微镜均包括以下部分:
1、 光源, 用于对整个成像装置提供照明。
在 X射线全场显微镜中, X光源可以使用同歩辐射光源、 实验室 X 光源或者其他的准单色商用 X光源。 传统的纳米分辨尺度的 X射线显微 镜的 X射线能量典型值在 0.2 - 20keV。
在除 X射线显微镜之外的其他类型的显微镜中, 如在可见光显微镜 中, 光源为可见光; 在电子显微镜中, 光源为电子枪; 在中子 /伽马射线 显微镜中, 光源为中子 /伽马射线发射装置。
2、 聚焦镜, 用于将光源产生的光线会聚为环状照明光以照明样品。 在 X射线全场显微镜中, 聚焦镜一般采用管状聚焦镜, 利用 X射线 的全反射原理形成会聚的二级照明光。 样品放置在聚焦镜的焦点处。
如图 1所示, 在传统的 X射线显微镜中, 聚焦镜的中央还包括一个 圆形的光束遮挡器 (beam stop) , 其直径稍小于聚焦镜的出口数值孔径 (exit NA), 从而可以使聚焦镜的出瞳 (exit pupil) 呈环形, 会聚产生的 光束呈空心锥形。 另外, 由于 X射线的强穿透性, 一般还需要在聚焦镜 的焦平面前放置一个小孔 (pinhole) 以滤除直通光的影响, 此处的小孔 是另外的独立元件, 与聚焦镜或环形光阑无关。
在除 X射线显微镜之外的其他类型的显微镜中, 聚焦镜应当是与光 源相对应的具有成像作用的透镜元件。 在可见光显微镜中, 聚焦镜应当 为凸透镜; 在电子显微镜的情况下, 聚焦镜可以为静电场或电磁透镜。
在中子 /伽马射线显微镜的情况下, 聚焦镜可以为中子 /伽马射线衍射聚焦 元件, 如波带片。
3、 物镜, 用于利用经过样品后的 X射线对样品进行成像。
在 X射线全场显微镜中, 最为常用的物镜即为菲涅耳 (Fresnel) 波 带片透镜。 在纳米分辨 X射线显微镜中, 物镜与样品的距离, 即物距, 比 1 倍焦距稍长, 从而可以在物镜后方形成放大的倒立实像, 进而被图 像探测器获取。
同样的, 在除 X射线显微镜之外的其他类型的显微镜中, 物镜应当 是与光源相对应的具有成像作用的透镜元件。 在可见光显微镜的情况下, 物镜可以为一般的凸透镜。 在电子显微镜的情况下, 物镜为静电场或电 磁透镜。 在中子 /伽马射线显微镜的情况下, 物镜可以为中子 /伽马射线衍 射聚焦元件, 如波带片。
4、 图像探测器, 用以采集由上述物镜所成的样品图像。
在 X射线全场显微镜中, 图像探测器放置在物镜波带片的像平面上。 本实施例中, 由于一般样品的高角度散射强度较小, 需要曝光较长时间 才能形成有效的暗场像, 故需要本底噪声尽量低的图像探测器。
在除 X射线显微镜之外的其他类型的显微镜中, 图像探测器应当是 能够工作在光源波长下的图像获取装置。 在可见光显微镜的情况下, 图 像探测器可以为一般的 CCD或 CMOS阵列探测器。在电子显微镜的情况 下, 图像探测器可以为半导体探测器或闪烁体探测器 (scintillation detector ) o 在中子 /伽马射线显微镜的情况下, 图像探测器可以为闪烁体 探测器。
歩骤 B,改变聚焦镜的数值孔径,采集样品的对应不同聚焦镜数值孔 径 NAe的至少两张暗场像;
如在歩骤 A中所述, 在初始状态下, 聚焦镜的数值孔径 NAe等于物 镜的数值孔径 NA。, 样品在探测平面形成明场像。 而在本歩骤中, 保持 显微镜系统中光源、 物镜和图像探测器的位置和光学参数不变, 样品和 聚焦镜的位置不变, 分次逐歩增加聚焦镜的数值孔径 NAe。 采集对应不 同聚焦镜数值孔径 NAe (NAC>NA0) 时的样品暗场像。 以下给出两种改 变聚焦镜数值孔径 NAe的方法:
( 1 ) 将原聚焦镜更换为数值孔径更大的聚焦镜, 如图 3a所示; 在更换更大数值孔径 NAe的聚焦镜的同时, 还可以增大光束遮挡器 的直径以保持聚焦镜的出射光瞳不变, 从而形成半径更大而宽度不变的 环形照明光。 本领域技术人员应当清楚: 如果不增大光束遮挡器直径的 话, 则可能引起光强度的测量精度变差。 本领域技术人员应当很容易理 解并实现此种技术方案, 此处不再详细说明。
(2)在初始聚焦镜的数值孔径 NAe'范围较宽时,可以不更换聚焦镜, 只在聚焦镜后方更换不同半径的环形光阑 (annular aperture) , 以滤出不 同数值孔径的环形出射光, 如图 3b所示;
以初始聚焦镜的数值孔径 NAe'〉3NA。为例, 通过使用不同半径的环 形光阑, 就可以滤出数值孔径 NAe介于 NA。和 3NA。之间的环形出射光。 为了扩大聚焦镜数值孔径的调整范围, 优选地, 初始聚焦镜的数值孔径 NAe'〉5NA0。 同时, 为了方便调节, 采用可快速更换环形光阑的装置。
通常情况下, 聚焦镜数值孔径 NAe很小, 为毫弧度量级, 因此可直 接使用照明光锥的半顶角 代替。 由于聚焦镜的数值孔径大于物镜的数 值孔径, 穿过样品后的光线偏离了物镜的边缘, 物镜只能收集到一部分 散射光, 从而在图像探测器上形成了样品暗场像。 随着聚焦镜的数值孔 径 NAe不断变大, 图像探测器上可以获得多张样品暗场像。
本歩骤中, 为了达到 N倍的超分辨效果, 聚焦镜数值孔径 NAe的变 化范围需要覆盖 N倍的物镜数值孔径 NA。。 优选地, 以等间距逐歩增大 聚焦镜的数值孔径, 获取对应 3-5个聚焦镜数值孔径的样品暗场像。
图 4为本发明实施例实现显微镜系统超分辨成像方法中通过图 3a所 示的方式获得样品暗场像的示意图。其中图 4 (a)为样品的示意图, 图 4 (b) -图 4 (e)为聚焦镜数值孔径由小变大时得到的图像暗场像。 如图 4 (b) -图 4 (e) 所示, 图像探测器内的每个像素的光强会随着聚焦镜数 值孔径 NAe的增加, 接收到从低频到高频的样品的散射信息。
歩骤 C,在至少两张暗场像中分别提取对应像素的散射强度值,构造 以聚焦镜数值孔径为自变量, 以所提取的散射强度值为因变量的实验散 射强度曲线;
当样品暗场像为一张时, 每个像素所对应的散射强度信息为一单点
数值。 当样品暗场像为大于或等于两张时, 每个像素所对应的散射强度 信息可以组成一条以聚焦镜数值孔径为自变量, 以所提取的散射强度值 为因变量的曲线 (直线可以看作是曲线的一种特殊形式), 称为散射强度 曲线, 又称 SDFI曲线, 如图 5所示。 每个像素所对应的 SDFI曲线是超 分辨成像的原始数据。
其中, 代表管状聚焦镜的出瞳函数 (一般为环形), 代表样品至 波带片物镜的距离, 表示物镜的振幅传递函数, ^表示样品的透射率 函数, M表示系统放大率, FJ表示二维傅立叶变换操作, 为照明半顶 角, 可以将其作为聚焦镜的数值孔径 NAC。
歩骤 D, 由实验散射强度曲线获得样品上瑞利分辨单元内部亚分辨 尺度的微观结构信息, 实现显微镜的超分辨成像。 下文中以两种典型的 应用为例, 对样品上瑞利分辨单元内部亚分辨尺度的微观结构信息的获 取过程进行具体描述。
在第一种应用中, 为了确定单个瑞利分辨单元内部的样品微观尺寸 信息, 歩骤 D可以包括以下子歩骤:
歩骤 Dla, 经过实验测试或理论模拟, 获取不同粒径的微观孔洞 /微 粒对应的参照散射强度曲线, 以建立参照散射强度曲线数据库;
需要说明的, 如果仅需要少数散射强度点的话, 采用歩骤 A-歩骤 C 来获取参照散射强度曲线的散射强度值是可行的, 在这种情况下, 主要 以标准孔径的测试结果为基准绘制散射强度曲线。
如果要绘制如图 6所示的一整条曲线, 即非常多的数据点, 则优选 地采用理论模拟的方法。 该理论模拟曲线可以使用上述公式 1直接求得。 此外, 本歩骤的实施需要预先对亚分辨结构的粒度大小有预先估计, 然 后在参照散射光强曲线上选择 3-5 个散射强度峰值对应的数值孔径位置 获取暗场像。
歩骤 Dlb, 采用样品散射强度曲线数据库中不同粒径的微观孔洞 /微
粒的多条参照散射强度曲线分别对实验散射强度曲线进行拟合; 歩骤 Die, 确定与实验散射强度曲线拟合最优的参照散射强度曲线, 该参照散射强度曲线对应的粒径即为样品上微观孔洞 /微粒的粒径。
图 5 为本发明实施例实现显微镜系统超分辨成像方法中三种粒径微 观孔洞 /微粒的散射强度曲线。图中三条曲线分别为直径 5nm, 10nm, 15nm 的三种微观孔洞 /微粒的散射强度曲线。 因此, 可在离散的情况下, 在有 限的范围内变化聚焦镜的数值孔径, 例如在 Α, θ2, 三个不同的聚焦镜 数值孔径条件下, 分别获得这些区域的散射强度信息。 这些数据各自的 光强相对变化规律即是散射强度曲线上的
, Θ 三个点的相对强度值。 如果事先能够得知样品中仅含有这三种颗粒 (如小角散射技术), 即可区 分 5nm、 10nm、 15nm球状颗粒。
为了提高测量的精度, 在歩骤 Dlb中可以尽量多地拍摄照片, 以提 高散射强度曲线的精度。 此外, 还可以采取多个粒径进行平均的方法, 具体为:
歩骤 C中, 在至少两张暗场像中分别提取多个对应像素, 优选为全 部像素, 的散射强度值, 构造多条实验散射强度曲线;
歩骤 D中, 采用多条参照散射强度曲线分别对所述多条实验散射强 度曲线进行拟合; 分别确定与该多条实验散射强度曲线拟合最优的参照 散射强度曲线; 获得对应多条实验散射强度曲线的多个微观孔洞 /微粒粒 径; 通过对该多个微观孔洞 /微粒粒径进行平均或采用最大概率法获得样 品上微观孔洞 /微粒的最终粒径。
由于 X射线全场显微镜中的样品被部分相干光照明, 最终获得的数 字图像中的相邻瑞利分辨单元之间存在有一定的关联性。 通过使用迭代 方法, 可以进一歩由相邻瑞利分辨单元内的像素光强变化曲线定位每个 瑞利分辨率单元内的微结构。 本歩骤中的采样要求与第一种应用不同, 需要使聚焦镜 NA的覆盖范围尽量连续。这可以通过使用更大 的聚焦 镜实现, 也可以通过增加拍摄张数来实现。
在第二种应用中, 是实现样品上单个瑞利分辨单元内部的样品微观 形貌信息的重构, 需要注意的是: 这种方法针对的是视场内的每一个瑞 利分辨单元, 所以完整的超分辨定位需要首先在样品中具有已知区域,
例如样品四周的空白部分, 从而可以将已知区域逐歩扩散至整个视场。 图 6 为本发明实施例实现显微镜系统超分辨成像方法中实现样品上单个 瑞利分辨单元内部的样品微观形貌信息重构的流程图。 如图 6所示, 该 歩骤包括以下子歩骤:
歩骤 D2a, 在实空间对未知区域的样品函数赋任意初值;
歩骤 D2b,选择样品上已知区域的一个已知瑞利分辨单元,选择与所 述已知瑞利分辨单元相邻的未知区域的瑞利分辨单元作为待求瑞利分辨 单元
歩骤 D2c, 通过夫琅和费衍射原理以及公式 (1 ) 计算样品在图像探 测器上由待求瑞利分辨单元产生的衍射振幅分布;
歩骤 D2d, 使用实测的图像探测器上待求瑞利分辨单元的散射强度 曲线修正上述衍射振幅分布;
歩骤 D2e,将修正后的衍射振幅分布逆傅里叶变换回实空间,得到样 品上实空间内待求瑞利分辨单元的样品函数估计值;
歩骤 D2f, 在实空间内, 使用相邻的已知瑞利分辨单元内的样品函数 对待求瑞利分辨单元的样品函数进行修正, 即将已知瑞利分辨单元的样 品函数赋值给它与本瑞利分辨单元共同覆盖到的区域。 本歩骤要求相邻 的已知瑞利分辨单元与该待求瑞利分辨单元的覆盖范围有至少 1/4 个瑞 利分辨单元宽度的重叠;
歩骤 D2g, 判断该样品函数估计值是否收敛, 如果是, 则将该样品 函数估计值作为所述待求瑞利分辨单元的样品函数,否则,执行歩骤 D2c, 即重复进行歩骤 D2c-歩骤 D2f, 直至待求瑞利分辨单元的样品函数估计 值收敛, 即待求瑞利分辨单元成为已知区域的一部分;
歩骤 D2h, 将待求瑞利分辨单元作为已知的瑞利分辨单元, 重复执 行所述歩骤 D2b至 D2g, 至感兴趣区域内所有瑞利分辨单元的样品函数 已知。
综上所述, 本发明将样品的散射强度分布与散射体的几何结构和电 子密度相关, 利用全场显微成像技术在获得样品暗场成像, 进而收集样 品的散射强度信息。 利用散射强度信息将不同形状、 不同尺寸的样品与 不同的散射强度曲线相对应, 从而进行超过显微镜系统极限分辨率的样
品信息的获取。 因此本方法对于在现有波带片加工工艺受限, 无法进一 歩提高 X射线全场显微镜成像分辨率的条件下, 突破了成像设备的瑞利 分辨率极限, 降低人们对于波带片加工工艺的依赖性。
本发明对于 X射线全场显微镜在生物医学、 材料学上的应用具有重 要的价值。 此外, 本发明中的方法不依赖于 X射线本身的特性, 因此也 可以应用至其他小数值孔径的成像系统以进一歩提升分辨率, 如可见光 显微镜、 全场电子显微镜、 以及中子 /伽马射线显微镜等, 并提升其分辨 率至若干个波长量级。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种实现显微镜系统超分辨成像的方法, 该方法基于一包括 光源、 聚焦镜、 物镜和图像探测器的显微镜系统, 包括:
搭建所述显微镜系统;
改变所述显微镜系统中聚焦镜的数值孔径,采集样品的分别对应 不同聚焦镜数值孔径的至少两张暗场像;
在所述至少两张暗场像中分别提取对应像素的散射强度值,构造 以聚焦镜数值孔径为自变量, 以所提取的散射强度值为因变量的实验 散射强度曲线;
由所述实验散射强度曲线获得样品上瑞利分辨单元内部亚分辨 尺度的微观结构信息, 实现显微镜的超分辨成像。
2、 根据权利要求 1所述的实现显微镜系统超分辨成像的方法, 其中,
所述搭建显微镜系统的歩骤包括:使聚焦镜的数值孔径等于物镜 的数值孔径, 样品在图像探测器的探测平面成明场像;
所述改变显微镜系统中聚焦镜的数值孔径,采集样品的分别对应 不同聚焦镜数值孔径的至少两张暗场像的歩骤包括:保持所述显微镜 系统中光源、物镜和图像探测器的位置和光学参数不变, 样品和聚焦 镜的位置不变, 分次逐歩增加聚焦镜的数值孔径; 采集每次聚焦镜数 值孔径增加后, 样品在图像探测器的探测平面所成的暗场像。
3、 根据权利要求 2所述的实现显微镜系统超分辨成像的方法, 其中, 所述分次逐歩增加聚焦镜的数值孔径的歩骤中, 通过以下方式 来增加聚焦镜的数值孔径:
将第一聚焦镜更换为第二聚焦镜,第二聚焦镜的数值孔径大于第 一聚焦镜的数值孔径。
4、 根据权利要求 3所述的实现显微镜系统超分辨成像的方法, 其中, 所述搭建显微镜系统的歩骤还包括: 在聚焦镜和样品之间设置 光束遮挡器; 所述将第一聚焦镜更换为第二聚焦镜之后, 该方法还包括: 增大 光束遮挡器的直径以保持聚焦镜的出射光瞳环宽度不变。
5、 根据权利要求 2所述的实现显微镜系统超分辨成像的方法, 其中, 所述搭建显微镜系统的歩骤中, 采用数值孔径大于 3倍物镜数 值孔径的聚焦镜, 并在聚焦镜和样品之间设置环形光阑;
所述分次逐歩增加聚焦镜的数值孔径的歩骤中,通过以下方式来 增加聚焦镜的数值孔径: 增加所述环形光阑的半径。
6、 根据权利要求 2所述的实现显微镜系统超分辨成像的方法, 其中, 所述分次逐歩增加聚焦镜的数值孔径的歩骤包括: 以等间距分 次逐歩增大聚焦镜的数值孔径。
7、 根据权利要求 1所述的实现显微镜系统超分辨成像的方法, 所述采集样品的分别对应不同聚焦镜数值孔径的至少两张暗场 像的歩骤中: 采集样品的分别对应 3-5个聚焦镜数值孔径的暗场像; 所述构造实验散射强度曲线的歩骤中,所述实验散射强度曲线上 的取样点数为所述的 3-5个。
8、 根据权利要求 1所述的实现显微镜系统超分辨成像的方法, 其中,所述由实验散射强度曲线获得样品上瑞利分辨单元内部亚分辨 尺度的微观结构信息的歩骤包括:
获取不同粒径的微观孔洞 /微粒各自对应的参照散射强度曲线; 采用所述多条参照散射强度曲线分别对所述实验散射强度曲线 进行拟合;
确定与所述实验散射强度曲线拟合最优的参照散射强度曲线,该 参照散射强度曲线对应的粒径即为样品上微观孔洞 /微粒的粒径。
9、 根据权利要求 8所述的实现显微镜系统超分辨成像的方法, 其中, 所述获取不同粒径的微观孔洞 /微粒各自对应的参照散射强度 曲线的歩骤中, 通过以下公式来理论模拟特定粒径的微观孔洞 /微粒 对应的参照散射强度值: ) = J
10、 根据权利要求 8所述的实现显微镜系统超分辨成像的方法, 其中,
所述在至少两张暗场像中分别提取对应像素的散射强度值,构造 实验散射强度曲线的歩骤包括:在至少两张暗场像中分别提取感兴趣 区域内全部像素的散射强度值,对每一像素构造一条实验散射强度曲 线;
所述采用多条参照散射强度曲线分别对所述实验散射强度曲线 进行拟合的歩骤包括:采用多条参照散射强度曲线分别对所述多条实 验散射强度曲线进行拟合;
所述确定与该实验散射强度曲线拟合最优的参照散射强度曲线, 该参照散射强度曲线对应的粒径即为样品上微观孔洞 /微粒的粒径的 歩骤包括:分别确定与该多条实验散射强度曲线拟合最优的参照散射 强度曲线; 获得对应该多条实验散射强度曲线的多个微观孔洞 /微粒 粒径; 通过对该多个微观孔洞 /微粒粒径进行平均或采用最大概率法 确定样品上微观孔洞 /微粒的最终粒径。
11、 根据权利要求 1所述的实现显微镜系统超分辨成像的方法, 其中,所述由所述散射强度曲线获得样品上瑞利分辨单元内部亚分辨 尺度的微观结构信息的歩骤包括:
歩骤 D2a, 在实空间对未知区域的样品函数赋任意初值; 歩骤 D2b, 选择样品上已知区域的一个已知瑞利分辨单元, 选择 与所述已知瑞利分辨单元相邻的未知区域的一个瑞利分辨单元作为 待求瑞利分辨单元;
歩骤 D2c, 计算样品在图像探测器上由待求瑞利分辨单元产生的 衍射振幅分布;
歩骤 D2d,使用实测的图像探测器上待求瑞利分辨单元的实验散 歩骤 D2e, 将修正后的衍射振幅分布进行逆傅里叶变换, 将其变 换回实空间,得到样品上实空间内待求瑞利分辨单元的样品函数估计 值;
歩骤 D2f, 在实空间内, 使用相邻的已知瑞利分辨单元的样品函 数对所述待求瑞利分辨单元的样品函数估计值进行修正;
歩骤 D2g, 判断该样品函数估计值是否收敛, 如果是, 则将该样 品函数估计值作为所述待求瑞利分辨单元的样品函数, 否则, 执行歩 骤 D2c。
12、根据权利要求 11所述的实现显微镜系统超分辨成像的方法, 其中, 所述歩骤 D2g之后还包括:
将待求瑞利分辨单元作为已知的瑞利分辨单元,重复执行所述歩 骤 D2b至 D2g, 至感兴趣区域内所有瑞利分辨单元的样品函数已知。
13、根据权利要求 12所述的实现显微镜系统超分辨成像的方法, 其中, 当第一次执行歩骤 D2b时: 已知区域为样品四周的空白区域。
14、根据权利要求 11所述的实现显微镜系统超分辨成像的方法, 其中, 所述歩骤 D2b 中: 相邻的已知瑞利分辨单元和待求瑞利分辨 单元的相互重叠的覆盖范围大于一个所述显微镜系统瑞利分辨单元 宽度的 1/4。
15、 根据权利要求 1至 14中任一项所述的实现显微镜系统超分 辨成像的方法, 其中, 所述显微镜为以下显微镜的一种: X射线显微 镜、 光学显微镜、 电子显微镜或中子 /伽马射线显微镜。
16、根据权利要求 15所述的实现显微镜系统超分辨成像的方法, 其中, 所述显微镜为 X射线全场显微镜;
所述光源为 X射线光源; 所述聚焦镜为管状聚焦镜; 所述物镜 为波带片物镜; 所述图像探测器为 X射线图像探测器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/074033 WO2013152509A1 (zh) | 2012-04-14 | 2012-04-14 | 实现显微镜系统超分辨成像的方法 |
CN201210111518.3A CN103377746B (zh) | 2012-04-14 | 2012-04-16 | 实现显微镜系统超分辨成像的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/074033 WO2013152509A1 (zh) | 2012-04-14 | 2012-04-14 | 实现显微镜系统超分辨成像的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013152509A1 true WO2013152509A1 (zh) | 2013-10-17 |
Family
ID=49327019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/074033 WO2013152509A1 (zh) | 2012-04-14 | 2012-04-14 | 实现显微镜系统超分辨成像的方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013152509A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3889885A1 (en) * | 2020-04-01 | 2021-10-06 | Koninklijke Philips N.V. | Bias correction for dark-field imaging based on sliding window phase retrieval |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07281098A (ja) * | 1994-04-13 | 1995-10-27 | Mitsutoyo Corp | 暗視野照明装置を備えた顕微鏡 |
CN1685220A (zh) * | 2002-09-30 | 2005-10-19 | 应用材料以色列股份有限公司 | 暗场检测系统 |
CN101216601A (zh) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | 使用锥镜实现暗场显微及荧光显微的方法及装置 |
CN102033308A (zh) * | 2010-10-22 | 2011-04-27 | 浙江大学 | 一种超高分辨率的光学显微成像方法及装置 |
-
2012
- 2012-04-14 WO PCT/CN2012/074033 patent/WO2013152509A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07281098A (ja) * | 1994-04-13 | 1995-10-27 | Mitsutoyo Corp | 暗視野照明装置を備えた顕微鏡 |
CN1685220A (zh) * | 2002-09-30 | 2005-10-19 | 应用材料以色列股份有限公司 | 暗场检测系统 |
CN101216601A (zh) * | 2007-12-29 | 2008-07-09 | 中国科学院西安光学精密机械研究所 | 使用锥镜实现暗场显微及荧光显微的方法及装置 |
CN102033308A (zh) * | 2010-10-22 | 2011-04-27 | 浙江大学 | 一种超高分辨率的光学显微成像方法及装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3889885A1 (en) * | 2020-04-01 | 2021-10-06 | Koninklijke Philips N.V. | Bias correction for dark-field imaging based on sliding window phase retrieval |
WO2021197952A1 (en) * | 2020-04-01 | 2021-10-07 | Koninklijke Philips N.V. | Bias correction for dark-field imaging based on sliding window phase retrieval |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103377746B (zh) | 实现显微镜系统超分辨成像的方法 | |
EP3248208B1 (en) | Fourier ptychographic tomography | |
Chen et al. | Optical and digital microscopic imaging techniques and applications in pathology | |
JP6416887B2 (ja) | 構造化照明を用いた組織試料の顕微鏡観察 | |
US20150055745A1 (en) | Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask | |
JP5479733B2 (ja) | 顕微鏡照明装置及びアダプタ | |
CN105758799B (zh) | 一种超分辨阵列虚拟结构光照明成像装置及其成像方法 | |
US20140085623A1 (en) | Technique for tomographic image recording | |
CN102830102B (zh) | 基于空心聚焦光斑激发的共聚焦显微方法和装置 | |
CN106841136B (zh) | 一种对超薄细胞的高精度轴向定位与成像方法与装置 | |
Booth et al. | A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope | |
US20220262087A1 (en) | Method and apparatus for super-resolution optical imaging | |
CN107664648B (zh) | 一种x射线微分相位衬度显微镜系统及其二维成像方法 | |
US9297990B2 (en) | Confocal microscope | |
CN111024659B (zh) | 一种基于并行探测的多图像重建显微成像方法和装置 | |
US20240062562A1 (en) | Superresolution Metrology Methods based on Singular Distributions and Deep Learning | |
JP5714861B2 (ja) | X線画像撮影方法およびx線画像撮影装置 | |
CN108801863A (zh) | 可获取溶液中胶体粒子动力学及成像信息的飞秒光镊系统 | |
CN112041660A (zh) | 用于移动粒子三维成像的系统、装置与方法 | |
CN217639724U (zh) | 一种暗场显微镜 | |
CN106066315A (zh) | 用于表征和量化微粒样本的图像细胞仪 | |
WO2024183199A1 (zh) | 基于衍射极限尺寸小孔的双光子合成孔径成像方法及装置 | |
WO2013152509A1 (zh) | 实现显微镜系统超分辨成像的方法 | |
CN103234634B (zh) | 一种实现极紫外波段多能点光谱分辨的成像系统及其应用 | |
WO2020178994A1 (ja) | 顕微鏡観察方法、透過型顕微鏡装置、および走査透過型顕微鏡装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12873924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12873924 Country of ref document: EP Kind code of ref document: A1 |