WO2013150913A1 - 画像表示装置および画像表示方法 - Google Patents

画像表示装置および画像表示方法 Download PDF

Info

Publication number
WO2013150913A1
WO2013150913A1 PCT/JP2013/058674 JP2013058674W WO2013150913A1 WO 2013150913 A1 WO2013150913 A1 WO 2013150913A1 JP 2013058674 W JP2013058674 W JP 2013058674W WO 2013150913 A1 WO2013150913 A1 WO 2013150913A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
primary color
subframe
component
Prior art date
Application number
PCT/JP2013/058674
Other languages
English (en)
French (fr)
Inventor
冨沢 一成
智彦 森
悠一 吉田
長谷川 誠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013150913A1 publication Critical patent/WO2013150913A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • G02F1/133622Colour sequential illumination
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to an image display device and an image display method, and more particularly to a technique for suppressing the occurrence of color breakup in an image display device using a field sequential method.
  • one pixel transmits a red pixel provided with a color filter that transmits red light, a green pixel provided with a color filter that transmits green light, and blue light. It is divided into three sub-pixels of a blue pixel provided with a color filter. Although color display is possible by the color filters provided in these three sub-pixels, about 2/3 of the backlight light irradiated to the liquid crystal panel is absorbed by the color filter. For this reason, the color filter type liquid crystal display device has a problem of low light utilization efficiency. Therefore, a field sequential type liquid crystal display device that performs color display without using a color filter has attracted attention. In the following, “red”, “green”, and “blue” are also simply referred to as “R”, “G”, and “B”, respectively.
  • the display period of one screen (one frame period) is divided into three subframes.
  • a sub-frame is also called a sub-field, in the following description, the word of a sub-frame is used uniformly.
  • a red screen is displayed based on the red component of the input signal
  • a green screen is displayed based on the green component of the input signal
  • a blue screen is displayed based on the blue component of the input signal.
  • FIG. 34 is a diagram showing the principle of occurrence of color breakup. 34, the vertical axis represents time, and the horizontal axis represents the position on the screen. Generally, when an object moves in the display screen, the observer's line of sight follows the object and moves in the moving direction of the object. For example, in the example shown in FIG. 34, when the white object moves from left to right in the display screen, the observer's line of sight moves in the direction of the oblique arrow. On the other hand, when three sub-frame images of R, G, and B are extracted from the video at the same moment, the position of the object in each sub-frame image is the same. For this reason, as shown in part B of FIG. 34, color breakup occurs in the image shown on the retina.
  • a method of dividing one frame period into four subframes (hereinafter referred to as “four-divided method”) has been proposed.
  • this 4-split method in the first subframe, white is displayed by turning on the red, green, and blue light sources, and in the second subframe, the blue light source is turned on by turning on only the blue light source.
  • green display is performed by lighting only the green light source
  • red display is performed by lighting only the red light source.
  • white having all color components of red, green, and blue is displayed in the first sub-frame in one frame period, whereby red, green, and blue single-color luminances are displayed.
  • Luminance in the second to fourth subframes can be reduced. Thereby, the occurrence of color breakup between RGB is suppressed.
  • Japanese Unexamined Patent Application Publication No. 2009-53475 discloses that one frame period is divided into five subframes to “white component, blue component, green component, red component, white component”. An invention that performs display in this order is disclosed.
  • Japanese Unexamined Patent Application Publication No. 2009-265135 discloses that one pixel is composed of a yellow sub-pixel and a blue sub-pixel, and a red light source and a cyan light source are alternately arranged.
  • An invention for lighting is disclosed (see FIG. 15 of Japanese Unexamined Patent Publication No. 2009-265135). According to the present invention, since one frame period is only divided into two subframes, the saturation of the display color can be increased.
  • the period during which the light source is turned on when displaying single colors such as red, green, and blue is only a quarter frame period in each frame period. For this reason, sufficient luminance may not be obtained during monochromatic display. Further, for example, when green single color display is performed, the transmittance changes as shown in FIG. Here, if the light source is turned on in a state where the response of the liquid crystal is insufficient, the color is not displayed correctly. For example, when the red light source is turned on during the period indicated by reference numeral T9 in FIG. 35, the red component is mixed in the display image even though green single color display should be performed.
  • the light source is turned on only in the latter half period in each subframe as shown in FIG. Specifically, all light sources are turned off during the periods indicated by reference numerals 91a, 92a, 93a, and 94a in FIG. 36 (the first half period of each subframe), and reference numerals 91b, 92b, 93b, and 94b in FIG.
  • the light source is turned on only during the period indicated by (second half of each subframe). In this way, the period during which the light source is turned on during monochromatic display is only about 1/8 frame period in each frame period. Therefore, it is difficult for a liquid crystal display device that employs a four-divided system to ensure sufficient luminance during monochromatic display.
  • an object of the present invention is to provide a field sequential type image display device capable of suppressing the occurrence of color breakup while sufficiently ensuring the luminance during monochromatic display.
  • a first aspect of the present invention includes a display unit in which a plurality of pixels are arranged, and three color light sources that respectively emit light of three primary colors of red, green, and blue.
  • An image display device that performs color display by switching the color of a light source that is in a lighting state by dividing into a plurality of subframe periods for each subframe period,
  • Each of the plurality of pixels includes a first sub-pixel that transmits light of the first primary color and the second primary color, which are two of the three primary colors of light, and the remaining one of the three primary colors of light.
  • a second sub-pixel that transmits light of the third primary color
  • a mixed color subframe period for displaying the mixed color of the first primary color and the second primary color by the first subpixel, and for displaying the first primary color by the first subpixel.
  • the light source of the first primary color is turned on at least in the second half of the color mixing subframe period and the second half of the first primary color subframe period
  • the light source of the second primary color is turned on at least in the second half of the sub-frame period for color mixture and the second half of the sub-frame period for second primary color
  • the light source of the third primary color is turned on throughout one frame period.
  • the light source of the first primary color is turned on also in the first half of the first primary color subframe period,
  • the light source of the second primary color is also lit in the first half of the color mixing subframe period.
  • the area of the first sub-pixel is twice the area of the second sub-pixel.
  • the sub-frame period subsequent to the mixed-color sub-frame period is a sub-frame period for a color having higher relative visibility among the first primary color and the second primary color.
  • the first primary color component and the second primary color component are divided into the mixed color subframe period, the first primary color subframe period, and the second primary color component.
  • the signal processing unit assigns the mixed color component to the display component of the mixed color subframe period, and displays a component obtained by removing the mixed color component from the first primary color component in the display of the first primary color subframe period.
  • the signal processing unit determines the color mixture component Assigned to the display component in the mixed color subframe period, assigns the component obtained by removing the mixed color component from the second primary color component to the display component in the second primary color subframe period, If the size of the color mixture component is equal to or greater than the threshold value, the signal processing unit assigns a component having a size equal to the threshold value among the color mixture components to the display component of the color mixture subframe period, and the first primary color
  • the components except the components having the same size as the threshold are allocated to the display components in the first primary color subframe period, and the components having the same size as the threshold are
  • a sixth aspect of the present invention is the fifth aspect of the present invention.
  • the threshold value is defined as a maximum luminance value obtained when the color mixture component is displayed only in the color mixture subframe period.
  • the first sub-pixel is a yellow pixel that transmits red light as the first primary color and green light as the second primary color
  • the second sub-pixel is a blue pixel that transmits blue light as the third primary color.
  • the first sub-pixel is a magenta pixel that transmits blue light as the first primary color and red light as the second primary color
  • the second sub-pixel is a green pixel that transmits green light as the third primary color.
  • the first sub-pixel is a cyan pixel that transmits blue light as the first primary color and green light as the second primary color
  • the second sub-pixel is a red pixel that transmits red light as the third primary color.
  • a tenth aspect of the present invention includes a display unit in which a plurality of pixels are arranged, and three color light sources that respectively emit light of three primary colors of red, green, and blue.
  • An image display method in an image display device that performs color display by switching the color of a light source that is in a lighting state by dividing into a plurality of subframe periods for each subframe period, Each pixel of the plurality of pixels is divided into a first sub-pixel that transmits light of the first primary color and the second primary color, which are two of the three primary colors of light, and the remaining one of the three primary colors of light.
  • a second sub-pixel that transmits the light of the third primary color, 1 frame period, a mixed color sub-frame period for displaying a mixed color of the first primary color and the second primary color by the first sub-pixel, and a display for displaying the first primary color by the first sub-pixel.
  • the light source of the first primary color is turned on at least in the second half of the sub-frame period for color mixing and the second half of the sub-frame period for first primary color;
  • the light source of the second primary color is turned on at least in the second half of the sub-frame period for color mixing and in the second half of the sub-frame period for second primary color,
  • the light source of the third primary color is turned on throughout one frame period.
  • the first aspect of the present invention since only the third primary color is displayed in the second sub-pixel, color breakup between the third primary color and other colors does not occur.
  • the first primary color and the second primary color are displayed.
  • a sub-frame period for displaying a mixed color of the first primary color and the second primary color is provided. For this reason, occurrence of color breakup between the first primary color and the second primary color is suppressed.
  • One frame period is only divided into three subframe periods. For this reason, a comparatively long period is ensured as a period for displaying each color.
  • an image display device capable of suppressing the occurrence of color breakup while ensuring the luminance during monochromatic display is realized.
  • the display period of 1/3 of each frame period can be secured for the first primary color and the second primary color, and the first primary color and the second primary color can be secured.
  • a display period of 5/6 of each frame period can be secured.
  • the area of the sub-pixel that transmits light of the first primary color and the second primary color is twice the area of the sub-pixel that transmits light of the third primary color. For this reason, although the lighting period of the light source of the first primary color and the light source of the second primary color is 1 ⁇ 2 of the lighting period of the light source of the third primary color, good white balance is maintained.
  • the moving image performance is improved.
  • the color mixture component of the first primary color and the second primary color is less than or equal to the threshold value, only the color break between the two colors may occur in the first sub-pixel. Therefore, the occurrence of color breakup is suppressed as compared with the conventional field sequential method in which color breakup between three colors (between RGB) occurs. Further, if the color mixture component of the first primary color and the second primary color is equal to or greater than the threshold value, the color mixture component having a size corresponding to the threshold value is displayed in one subframe, and the single color component is displayed in the remaining subframes. . Therefore, by setting the threshold value to a suitable value, it is possible to preferentially display the color mixture component in one subframe, and the occurrence of color breakup is suppressed.
  • the sixth aspect of the present invention as many color mixture components as possible of the first primary color and the second primary color are displayed in the first subframe. For this reason, relatively few monochromatic components are displayed in the second subframe and the third subframe. Thereby, generation
  • the seventh aspect of the present invention in a configuration in which one pixel is divided into a yellow pixel and a blue pixel, the same effect as in the first aspect of the present invention is obtained.
  • the eighth aspect of the present invention in a configuration in which one pixel is divided into a magenta pixel and a green pixel, the same effect as in the first aspect of the present invention is obtained.
  • the same effect as in the first aspect of the present invention is obtained.
  • the same effect as in the first aspect of the present invention can be achieved in the image display method.
  • the liquid crystal display device which concerns on the 1st Embodiment of this invention, it is a figure which shows the transition of the structure of a frame period, and the state of LED. It is a block diagram which shows the whole structure of the liquid crystal display device which concerns on the said 1st Embodiment.
  • the said 1st Embodiment it is the figure which showed typically the example of 1 structure of the backlight unit.
  • the said 1st Embodiment it is a figure which shows transition of the state of LED, and transition of the display state in a sub pixel.
  • FIG. 6 is a diagram for explaining a yellow display with a relatively low luminance in the first embodiment.
  • the said 1st Embodiment it is a figure for demonstrating the yellow display of comparatively high brightness
  • luminance In the said 1st Embodiment, it is a figure for demonstrating a blue monochromatic display.
  • the said 1st Embodiment it is a figure for demonstrating allocation to each sub-frame of the red component and green component when the magnitude
  • FIG. 6 is a diagram for comparing and explaining the luminance when red display is performed in the first embodiment and the luminance when red display is performed in the first modification of the first embodiment. It is a figure which shows the structure of the pixel in the 2nd modification of the said 1st Embodiment.
  • the said 2nd Embodiment it is a figure for demonstrating a red monochromatic display.
  • it is a figure for demonstrating the magenta display of a comparatively low brightness
  • it is a figure for demonstrating the magenta display of comparatively high brightness
  • It is a figure which shows the structure of the pixel in the 3rd Embodiment of this invention.
  • it is a figure which shows the structure of 1 frame period, transition of the state of LED, and transition of the display state in a sub pixel.
  • it is a figure for demonstrating a blue monochromatic display.
  • FIG. 2 is a block diagram showing the overall configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device includes a sub-frame image generation unit 100, a panel drive circuit 200, a backlight unit 300, and a display unit 400.
  • the display unit 400 includes a plurality of source bus lines (video signal lines) SL and a plurality of gate bus lines (scanning signal lines) GL.
  • a sub-pixel forming portion for forming a sub-pixel is provided corresponding to each intersection of the source bus line SL and the gate bus line GL.
  • one pixel is composed of two sub-pixels as will be described later.
  • this liquid crystal display device employs a field sequential method as a color display method.
  • Each sub-pixel forming portion includes a TFT 40 which is a switching element having a gate terminal connected to a gate bus line GL passing through a corresponding intersection and a source terminal connected to a source bus line SL passing through the intersection.
  • 42 and an auxiliary capacitor 43 formed by the pixel electrode 41 and the auxiliary capacitor electrode 45 are included.
  • the liquid crystal capacitor 42 and the auxiliary capacitor 43 constitute a pixel capacitor. Note that only the components corresponding to one sub-pixel forming portion are shown in the display portion 400 of FIG.
  • the sub-frame image generation unit 100 generates a digital video signal DV that is a signal for controlling the time aperture ratio of the liquid crystal in each sub-pixel formation unit in each sub-frame based on the input image signal DIN sent from the outside. And output it.
  • the time aperture ratio corresponds to the temporal integral value of the transmittance of the liquid crystal.
  • the sub-frame image generation unit 100 also outputs a light source control signal S for controlling the state (lighting state / lighting state) of each light source.
  • Various timing signals such as a horizontal synchronization signal and a vertical synchronization signal exist as input / output signals of the subframe image generation unit 100, but the timing signals are omitted in FIG.
  • the panel driving circuit 200 selectively drives the gate bus lines GL one by one and applies a driving video signal to each source bus line SL based on the digital video signal DV output from the subframe image generation unit 100. To do. By the way, a predetermined potential is applied to the common electrode 44 (a constant potential is applied, or a constant high potential and a constant low potential are alternately applied every predetermined period), and the pixel electrode 41 is driven. A potential based on the video signal is provided. As a result, charges are accumulated in the pixel capacitance of each sub-pixel forming portion based on the driving video signal.
  • the panel drive circuit 200 includes a gate driver (scanning signal line drive circuit) that drives the gate bus line GL and a source driver (video signal line drive circuit) that drives the source bus line SL. ing.
  • the backlight unit 300 is provided on the back side of the display unit 400.
  • the backlight unit 300 includes a plurality of light source sets each including a red light source, a green light source, and a blue light source.
  • FIG. 3 is a diagram schematically illustrating a configuration example of the backlight unit 300 in the present embodiment.
  • an LED light emitting diode
  • the LED unit 30 as the light source group includes one red LED 31, one green LED 32, and one blue LED 33.
  • a plurality of LED units 30 are provided in the row direction and the column direction.
  • the backlight unit 300 also includes an LED control circuit (not shown) that controls the state of each LED (lighted state / lighted state). In such a configuration, the backlight unit 300 controls the state of each LED based on the light source control signal S output from the subframe image generation unit 100.
  • the display state of the screen is switched for each subframe, and a color image based on the input image signal DIN sent from the outside is displayed on the display unit 400.
  • FIG. 4 is a schematic diagram illustrating a configuration of a pixel in the present embodiment.
  • one pixel is composed of two sub-pixels (yellow pixel 401 and blue pixel 402).
  • the area of the yellow pixel 401 is almost twice the area of the blue pixel 402.
  • the yellow pixel 401 is a pixel provided with a color filter that transmits red light and green light
  • the blue pixel 402 is a pixel provided with a color filter that transmits blue light.
  • the first sub-pixel is realized by the yellow pixel 401 and the second sub-pixel is realized by the blue pixel 402. Also, red corresponds to the first primary color, green corresponds to the second primary color, and blue corresponds to the third primary color.
  • one frame period is composed of three subframes (first to third subframes) as shown in FIG.
  • the first sub-frame is a sub-frame for displaying yellow with the yellow pixel 401 (hereinafter also referred to as “yellow sub-frame”).
  • the second sub-frame is a sub-frame for displaying red in the yellow pixel 401 (hereinafter also referred to as “red sub-frame”).
  • the third sub-frame is a sub-frame (hereinafter, also referred to as “green sub-frame”) for displaying a green color with the yellow pixel 401. Note that blue display is performed in the blue pixel 402 throughout one frame period.
  • each color LED can take different states (lit / unlit) in the first half and second half of each subframe. That is, the state of each color LED (lighted state / lighted state) is controlled every 1/6 frame period. In the present embodiment, specifically, the state of the LED of each color is controlled as indicated by the line 51 in FIG. In FIG. 6, the lighting state is described as “on”, and the extinguishing state is described as “off”. For example, the green LED 32 is turned on in the first half, the second half, and the second half of the third subframe of the first subframe, and is turned off in the first half, the second half of the second subframe, and the first half of the third subframe. By the way, as shown in FIG. 6, the blue LED 33 is in a lighting state throughout one frame period. Therefore, in this embodiment, state control is performed only for the two types of LEDs, the red LED 31 and the green LED 32.
  • first half and the second half of each subframe are periods of 50 percent of each subframe, but the present invention is not limited to this.
  • the first half may be a 40% period and the second half may be a 60% period. The better the response of the liquid crystal, the shorter the length of the first half period.
  • the state of the LED is controlled as indicated by a line 51 in FIG. 6 so that the transition of the color of light emitted from the backlight unit 300 is indicated by a line 52 in FIG. It will be something.
  • the transition of the color displayed by the yellow pixel 401 and the blue pixel 402 is as shown by the line 53 in FIG.
  • the yellow pixel 401 transmits red light and green light while the green LED 32 and the blue LED 33 are in a lighting state during this period. Therefore, if the liquid crystal is in an open state, the yellow pixel 401 displays green in this period.
  • attention is paid to the portion indicated by reference numeral 55 only the blue LED 33 is in a lighting state during this period. Therefore, color display is not performed in the yellow pixel 401 during this period.
  • hyphens indicate that color display is not performed.
  • the blue LED 33 is always lit and two types of LEDs (red LED 31) are used. And the state of the green LED 32) are controlled every 1/6 frame period, the color of the light emitted from the backlight unit 300 is 1/6 in the order of "cyan, white, magenta, magenta, blue, cyan". It is switched every frame period.
  • the red single color display will be described with reference to FIG.
  • the transition of the transmittance of the yellow pixel 401 is shown on the upper side, and the transition of the LED state of each color (line 56) and the transition of the color displayed on the yellow pixel 401 are shown on the lower side. (Line 57).
  • the liquid crystal is closed at the yellow pixel 401. For this reason, color display is not performed in the yellow pixel 401 in the first subframe.
  • the yellow pixel 401 changes from a closed state to an open state. Further, in the second subframe, the red LED 31 is turned on and the green LED 32 is turned off.
  • red display is performed in the yellow pixel 401 in the second subframe.
  • the yellow pixel 401 changes from a liquid crystal open state to a closed state.
  • both the red LED 31 and the green LED 32 are turned off.
  • color display is not performed in the yellow pixel 401.
  • the red LED 31 is maintained in the off state, but the green LED 32 is in the on state.
  • the blue pixel 402 is in a state in which the liquid crystal is closed throughout one frame period when red single color display is performed.
  • the red LED 31 cannot be turned on during a period in which the liquid crystal changes from an open state to a closed state (a liquid crystal decay period). The reason is that the decay period of the liquid crystal when the red single color display is performed and the period during which the liquid crystal changes from the closed state to the open state when the green single color display is performed (referred to as a liquid crystal rise period). This is because both are in the first half of the third subframe, and if the red LED 31 is lit during this period, the red component is mixed into the display image when a single color display of green is to be performed.
  • the transmittance at the blue pixel 402 is determined according to the size of the blue component in the desired display color. That is, as the blue color component is included in the desired display color, the transmittance at the blue pixel 402 is increased.
  • the green single color display will be described with reference to FIG.
  • the green display is performed from the third subframe of a certain frame period to the first subframe of the next frame period.
  • the liquid crystal is closed at the yellow pixel 401.
  • color display is not performed in the yellow pixel 401 in the second subframe.
  • the yellow pixel 401 changes from a closed state to an open state.
  • neither the red LED 31 nor the green LED 32 is turned off, so that the yellow pixel 401 does not perform color display.
  • the red LED 31 is maintained in the off state, but the green LED 32 is in the on state.
  • the yellow pixel 401 performs green display.
  • the yellow pixel 401 changes from an open state to a closed state.
  • the red LED 31 is maintained in the off state, and the green LED 32 is maintained in the on state.
  • the yellow pixel 401 performs green display also in the first half of the first subframe.
  • both the red LED 31 and the green LED 32 are lit.
  • color display is not performed in the yellow pixel 401 in the second half of the first subframe.
  • the green LED 32 is turned on not only in the second half of the third subframe but also in the first subframe, thereby displaying green for 1/3 frame period of one frame period. It is possible to do. Note that when the green single color display is performed, the liquid crystal is closed in one frame period in the blue pixel 402 as in the case of the red single color display. When a mixed color display of green and blue is performed, the transmittance at the blue pixel 402 is determined according to the size of the blue component in the desired display color.
  • the yellow display will be described with reference to FIGS. In the present embodiment, different operations are performed when yellow display with relatively low luminance (low gradation) is performed and when yellow display with relatively high luminance (high gradation) is performed.
  • FIG. 9 is a diagram for explaining a relatively low luminance yellow display.
  • the yellow pixel 401 changes from a closed state to an open state.
  • the red LED 31 is turned off and the green LED 32 is turned on.
  • the yellow pixel 401 is displayed in green.
  • both the red LED 31 and the green LED 32 are lit.
  • yellow display is performed in the yellow pixel 401 in the second half of the first subframe.
  • the yellow pixel 401 changes from an open state to a closed state.
  • the green LED 32 is turned off, but the red LED 31 is kept on.
  • the yellow pixel 401 performs red display.
  • the red LED 31 is maintained in a lighting state.
  • color display is not performed in the yellow pixel 401 in the second half of the second subframe.
  • the yellow pixel 401 is maintained in a closed state. For this reason, color display is not performed in the yellow pixel 401 in the third subframe.
  • the yellow pixel 401 displays green in the first half of the first subframe and yellow in the second half of the first subframe. Is displayed, and red is displayed in the first half of the second subframe. That is, yellow display with a relatively low luminance can be performed over a half frame period of one frame period.
  • FIG. 10 is a diagram for explaining a relatively high luminance yellow display.
  • the yellow pixel 401 is in a state in which the liquid crystal is opened throughout one frame period.
  • the red LED 31 is turned off and the green LED 32 is turned on, so that the yellow pixel 401 displays green.
  • both the red LED 31 and the green LED 32 are lit, so that the yellow pixel 401 performs yellow display.
  • the red LED 31 is in the on state and the green LED 32 is in the off state, so that the yellow pixel 401 performs red display.
  • the yellow pixel 401 displays green in the second half of the third subframe and the first half of the first subframe. Yellow is displayed in the second half of the subframe, and red is displayed in the second subframe. That is, it is possible to perform yellow display with relatively high luminance over 5/6 frame period of one frame period.
  • the liquid crystal is closed in the blue pixel 402.
  • the size of the blue component is set. Accordingly, the transmittance at the blue pixel 402 is determined.
  • the blue single color display will be described with reference to FIG.
  • the liquid crystal is opened in the blue pixel 402 throughout one frame period as shown in FIG. Further, as described above, the blue LED 33 is always lit. Thereby, blue display is performed in the blue pixel 402 through one frame period. In the yellow pixel 401, the liquid crystal is closed throughout one frame period. As described above, blue single color display is performed.
  • the transmittance at the blue pixel 402 is determined according to the size of the blue component.
  • each pixel data usually includes a red component, a green component, and a blue component. Therefore, a description will be given of which sub-frames in one frame period display those color components and which sub-pixels display those color components.
  • the input image signal DIN given to the subframe image generation unit 100 includes red, green, and blue components that are the three primary colors of light.
  • FIG. 12 shows an example of a combination of a red component, a green component, and a blue component for one pixel data in the input image signal DIN.
  • the size of the red component is represented by an arrow 60R
  • the size of the green component is represented by an arrow 60G
  • the size of the blue component is represented by an arrow 60B.
  • the yellow component is a mixed color component of two colors including a red component and a green component. Accordingly, in the example shown in FIG. 12, the size of the yellow component is represented by an arrow with reference numeral 61. Considering this yellow component, the pixel data shown in FIG.
  • a yellow component having a size indicated by an arrow 61 a red component having a size indicated by an arrow 62, and an arrow having a symbol 60B. It can be processed as data consisting of a blue component of a specified size. Further, if a component having a size represented by an arrow 63 is extracted from the yellow component, the pixel data is represented by a yellow component having a size represented by an arrow 63 and an arrow 65. Can be processed as data consisting of a red component having a size, a green component having a size represented by an arrow 64, and a blue component having a size represented by an arrow 60B.
  • each pixel is divided into two sub-pixels, a yellow pixel 401 and a blue pixel 402.
  • the blue component of each pixel data is displayed by the blue pixel 402
  • the red component and the green component of each pixel data are displayed by the yellow pixel 401.
  • the blue component is displayed throughout one frame period (see FIG. 11).
  • the red component and the green component are allocated to each subframe as follows. This allocation is performed by the subframe image generation unit 100 as a signal processing unit. This allocation is divided into cases depending on whether or not the size of the yellow component is equal to or less than a predetermined threshold value.
  • the threshold value is typically the maximum luminance value that can be obtained simply by displaying the yellow display in the yellow subframe.
  • the yellow component in the pixel data is less than or equal to the threshold value, the yellow component is assigned to the first subframe, and the remaining components (red component or green component) are assigned to the corresponding subframe.
  • the threshold value is a value represented by the arrow 70
  • the yellow component represented by the arrow 71 is the first.
  • the component having the size indicated by the arrow 72 is assigned to the second subframe which is the red subframe.
  • the green component is not assigned to the third subframe that is the green subframe.
  • the component of the green component excluding the yellow component is assigned to the third subframe, and the red component is not assigned to the second subframe.
  • the color displayed by the yellow pixel 401 during one frame period is either “yellow and red” or “yellow and green”.
  • FIG. 14 is a diagram showing a change in transmittance in the yellow pixel 401 when the components of each color in the pixel data are as shown in FIG.
  • the transmittance changes according to the size of the yellow component.
  • the red LED 31 is turned off and the green LED 32 is turned on.
  • the green component of the yellow component is displayed in the yellow pixel 401.
  • both the red LED 31 and the green LED 32 are lit.
  • the yellow component is displayed in the yellow pixel 401 in the second half of the first subframe.
  • the transmittance changes in accordance with the size of the red component excluding the yellow component.
  • the green LED 32 is turned off and the red LED 31 is turned on.
  • the liquid crystal changes from an open state to a closed state.
  • both the red LED 31 and the green LED 32 are turned off. Thereby, in the first half of the third subframe, color display is not performed in the yellow pixel 401.
  • the red LED 31 is maintained in the off state, but the green LED 32 is in the on state.
  • the component of the yellow component having the same size as the threshold is assigned to the first subframe, and the remaining components (red component and green component) correspond. Assigned to a subframe. For example, when each color component is as shown in FIG. 15 and the threshold value is a value represented by the arrow 70, the component represented by the arrow 70 among the yellow components. Is assigned to the first subframe, and the component of the size indicated by the arrow 75 of the red component is assigned to the second subframe, and the component of the size indicated by the arrow 74 of the green component Are assigned to the third subframe.
  • the color component is assigned to all the subframes, and the yellow pixel 401 displays yellow, red, and green during one frame period. Is done. However, as many red and green components as possible are assigned to the first subframe.
  • FIG. 16 is a diagram showing a change in transmittance in the yellow pixel 401 when the components of each color in the pixel data are as shown in FIG.
  • the transmittance changes according to the threshold value. Since the LED state is as described above, in the yellow pixel 401, only the green component of the yellow component is displayed in the first half of the first subframe, and the yellow component is displayed in the second half of the first subframe.
  • the transmittance changes in accordance with the size of the red component excluding the yellow component.
  • the green LED 32 is turned off and the red LED 31 is turned on.
  • the second subframe only the red component of the yellow component is displayed in the yellow pixel 401.
  • the transmittance changes according to the size of the green component excluding the yellow component. Since the LED state is as described above, the yellow pixel 401 does not perform color display in the first half of the third subframe, and displays only the green component of the yellow component in the second half of the third subframe. As described above, the red component and the green component of the pixel data shown in FIG. 15 are displayed.
  • ⁇ 1.6 Effect> it is possible to secure a display period that is 1/3 of each frame period when a single color display of red is performed, and 1 of each frame period when a single color display of green is performed. A display period of / 3 can be secured. Further, when yellow is displayed, a display period of 5/6 of each frame period can be secured. When blue single color display is performed, display is performed through one frame period. In this way, sufficient luminance is ensured during monochrome display.
  • the size of the yellow component in the pixel data is equal to or greater than the threshold, as many red and green components as possible are assigned to the first subframe, and the remaining red and green components are assigned to the second subframe and the second subframe, respectively. Allocated to 3 subframes. In this way, as many color mixture components as possible of the red component and the green component are displayed in one subframe, so that the occurrence of color breakup is effectively suppressed.
  • a liquid crystal display device capable of suppressing the occurrence of color breakup while sufficiently securing the luminance during monochromatic display is realized.
  • the lighting period of the red LED 31 and the lighting period of the green LED 32 are 1 ⁇ 2 of the lighting period of the blue LED 33.
  • the area of the yellow pixel 401 that transmits red light and green light is twice the area of the blue pixel 402, good white balance is maintained.
  • a combination of “magenta and green” and a combination of “cyan and red” are also conceivable.
  • the combination of “yellow and blue” has the highest luminance efficiency of the panel. This is because the transmittance of yellow pixels is higher than that of magenta and cyan pixels.
  • the subframe next to the yellow subframe is the red subframe.
  • the present invention is not limited to this, and the subframe next to the yellow subframe is the green subframe. It may be a frame. That is, one frame period is composed of three subframes appearing in the order of “yellow subframe, green subframe, and red subframe”, and the LED state in each subframe is controlled as shown in FIG. You may do it.
  • the luminance when the red display is performed in the first embodiment is compared with the luminance when the red display is performed in the present modification.
  • the luminance corresponding to the area indicated by the hatched portion 81 in FIG. 18 is displayed. Is displayed with a luminance corresponding to the area indicated by the hatched portion in FIG. In FIG. 18, the area indicated by the hatched portion 81 is larger than the area indicated by the hatched portion 82. That is, with respect to red single color display, higher luminance is obtained in the first embodiment than in the present modification.
  • the present modification can provide a higher luminance than the first embodiment.
  • the area of the yellow pixel 401 is almost twice the area of the blue pixel 402 so as to obtain a desired white balance.
  • the present invention is not limited to this.
  • the area of the yellow pixel 401 and the area of the blue pixel 402 are made equal as shown in FIG. 19, and each LED unit 30 is divided into two red LEDs 31, two green LEDs 32, and one piece as shown in FIG. You may make it comprise with blue LED33.
  • the red LED 31 is turned on in the first half of the second subframe in addition to the second half of the first subframe and the second subframe, and the green LED 32 is in the first subframe and the third subframe.
  • the lighting state is in the first half of the first subframe in addition to the latter half, the present invention is not limited to this.
  • the red LED 31 and the green LED 32 may be turned off in the first half of each subframe.
  • the lighting period of each light source in each frame period is only about 1/8 frame period. Therefore, according to this modification, a longer lighting period can be obtained compared to the four-division method. Also, depending on the responsiveness of the liquid crystal and the conditions of the LED to be used, even if the state of the LED is controlled as in this modification, the occurrence of color breakup can be suppressed while sufficiently securing the luminance during monochromatic display. Is possible.
  • Second Embodiment> ⁇ 2.1 Overall configuration> A second embodiment of the present invention will be described. The overall configuration and the operation outline are the same as those in the first embodiment, and thus the description thereof is omitted (see FIGS. 2 and 3).
  • FIG. 22 is a schematic diagram illustrating a configuration of a pixel in the present embodiment.
  • one pixel is constituted by the magenta pixel 403 and the green pixel 404.
  • the area of the magenta pixel 403 is almost twice the area of the green pixel 404.
  • the magenta pixel 403 is a pixel provided with a color filter that transmits red light and blue light
  • the green pixel 404 is a pixel provided with a color filter that transmits green light.
  • the first sub-pixel is realized by the magenta pixel 403, and the second sub-pixel is realized by the green pixel 404. Further, blue corresponds to the first primary color, red corresponds to the second primary color, and green corresponds to the third primary color.
  • the first subframe for displaying magenta by the magenta pixel 403 and the blue display by the magenta pixel 403 are displayed.
  • the second sub-frame blue sub-frame
  • the third sub-frame for displaying red in the magenta pixel 403.
  • the green pixel 404 is displayed in green throughout one frame period.
  • the state of each color LED (lighted state / lighted state) is controlled every 1/6 frame period. Specifically, as shown in the row of reference numeral 81 in FIG. 23, the state of each color LED is controlled. The green LED 32 is in a lighting state throughout one frame period. Therefore, in this embodiment, state control is performed only for two types of LEDs, the red LED 31 and the blue LED 33.
  • the state of the LEDs As shown in the row of reference numeral 81 in FIG. 23, the color transition of the emitted light from the backlight unit 300 becomes as shown in the row of reference numeral 82 in FIG.
  • the transition of the color displayed by the magenta pixel 403 and the green pixel 404 is as shown by a line 83 in FIG.
  • the blue monochromatic display will be described.
  • the liquid crystal is closed at the magenta pixel 403. Therefore, color display is not performed on the magenta pixel 403 in the first subframe.
  • the magenta pixel 403 changes from a closed state to an open state.
  • the red LED 31 is turned off and the blue LED 33 is turned on.
  • blue display is performed on the magenta pixel 403 in the second subframe.
  • the magenta pixel 403 changes from the open state to the closed state.
  • both the red LED 31 and the blue LED 33 are turned off.
  • color display is not performed on the magenta pixel 403 in the first half of the third subframe.
  • the blue LED 33 is maintained in the off state, while the red LED 31 is in the on state.
  • the magenta pixel 403 does not perform color display even in the second half of the third subframe.
  • the green pixel 404 the liquid crystal is closed throughout one frame period when a single color display of blue is performed. As described above, blue display can be performed for 1/3 frame period of one frame period.
  • the transmittance of the green pixel 404 is determined according to the size of the green component in the desired display color.
  • the red single color display will be described with reference to FIG.
  • the red display is performed from the third subframe of a certain frame period to the first subframe of the next frame period.
  • the liquid crystal is closed at the magenta pixel 403. Therefore, color display is not performed on the magenta pixel 403 in the second subframe.
  • the magenta pixel 403 changes from a closed state to an open state.
  • the blue LED 33 is maintained in the off state, while the red LED 31 is in the on state.
  • red display is performed in the magenta pixel 403 in the second half of the third subframe.
  • the magenta pixel 403 changes from an open state to a closed state.
  • the blue LED 33 is maintained in the off state, and the red LED 31 is maintained in the on state.
  • red display is performed on the magenta pixel 403 also in the first half of the first subframe.
  • both the red LED 31 and the blue LED 33 are turned on.
  • red display can be performed for 1/3 frame period of one frame period.
  • the transmittance of the green pixel 404 is determined according to the size of the green component in the desired display color.
  • FIG. 26 and 27 Similar to the yellow display in the first embodiment, different operations are performed when magenta display with relatively low luminance (low gradation) is performed and when magenta display with relatively high luminance (high gradation) is performed. Is done.
  • FIG. 26 is a diagram for explaining magenta display with relatively low luminance.
  • the magenta pixel 403 changes from a closed state to an open state.
  • the red LED 31 is turned on and the blue LED 33 is turned off. Accordingly, red display is performed on the magenta pixel 403 in the first half of the first subframe.
  • both the red LED 31 and the blue LED 33 are turned on. Thereby, magenta display is performed in the magenta pixel 403 in the second half of the first subframe.
  • the magenta pixel 403 changes from an open state to a closed state.
  • the red LED 31 is turned off, while the blue LED 33 is kept on.
  • the magenta pixel 403 performs blue display.
  • the blue LED 33 is maintained in a lighting state.
  • color display is not performed on the magenta pixel 403 in the second half of the second subframe.
  • the liquid crystal is maintained in the magenta pixel 403 in a closed state. Therefore, color display is not performed on the magenta pixel 403 in the third subframe.
  • FIG. 27 is a diagram for explaining magenta display with relatively high luminance.
  • magenta display with a relatively high luminance is performed, as shown in FIG. 27, the magenta pixel 403 is in a state where the liquid crystal is opened throughout one frame period.
  • the red LED 31 is turned on and the blue LED 33 is turned off, so that the magenta pixel 403 displays red.
  • both the red LED 31 and the blue LED 33 are lit, so that the magenta pixel 403 performs magenta display.
  • the red LED 31 is turned off and the blue LED 33 is turned on, so that the magenta pixel 403 performs blue display.
  • the red LED 31 and the blue LED 33 are both turned off, so that the magenta pixel 403 does not perform color display.
  • the red LED 31 is turned on and the blue LED 33 is turned off, so that the magenta pixel 403 performs red display.
  • the green component of each pixel data is displayed by the green pixel 404, and the red component and blue component of each pixel data are displayed by the magenta pixel 403.
  • the green component is displayed throughout one frame period.
  • the red component and the blue component are allocated to each subframe in the same manner as the allocation for the red component and the green component in the first embodiment.
  • the threshold value at that time is typically the maximum luminance value obtained by simply displaying the magenta display in the magenta subframe (first subframe).
  • the magenta component is assigned to the first subframe, and the remaining components (red component or blue component) are assigned to the corresponding subframe.
  • the size of the magenta component in the pixel data is greater than or equal to the threshold, the component having the size equal to the threshold among the magenta components is assigned to the first subframe, and the remaining components (red component and blue component) Are assigned to the corresponding subframes.
  • a liquid crystal display device capable of suppressing the occurrence of color breakup while sufficiently securing the luminance during monochromatic display is realized.
  • the green LED having the highest specific visibility is always in the on state. For this reason, the occurrence of flicker is suppressed.
  • red and blue have lower relative visibility than green, the occurrence of color breakup is suppressed as compared with the first embodiment in which red and green are displayed by one subpixel.
  • FIG. 28 is a schematic diagram illustrating a configuration of a pixel in the present embodiment.
  • one pixel is constituted by the cyan pixel 405 and the red pixel 406.
  • the area of the cyan pixel 405 is almost twice the area of the red pixel 406.
  • the cyan pixel 405 is a pixel provided with a color filter that transmits green light and blue light
  • the red pixel 406 is a pixel provided with a color filter that transmits red light.
  • the first sub-pixel is realized by the cyan pixel 405, and the second sub-pixel is realized by the red pixel 406. Further, blue corresponds to the first primary color, green corresponds to the second primary color, and red corresponds to the third primary color.
  • the first subframe for displaying cyan with the cyan pixel 405 and the blue display with cyan pixel 405 are displayed.
  • the second sub-frame blue sub-frame
  • the third sub-frame for displaying the green color with the cyan pixel 405. Note that red display is performed in the red pixel 406 throughout one frame period.
  • the state of each color LED (lighted state / lighted state) is controlled every 1/6 frame period. Specifically, as shown in the row of reference numeral 84 in FIG. 29, the state of each color LED is controlled. The red LED 31 is in a lighting state throughout one frame period. Therefore, in this embodiment, state control is performed only for two types of LEDs, the green LED 32 and the blue LED 33. 29, the state of the LED is controlled as indicated by a line 84 in FIG. 29, so that the color transition of the light emitted from the backlight unit 300 becomes as indicated by the line 85 in FIG. As a result, when the liquid crystal is in an open state, the transition of the color displayed by the cyan pixel 405 and the red pixel 406 is as shown by the line 86 in FIG.
  • color display is not performed in the cyan pixel 405 in the first half of the third subframe.
  • the blue LED 33 is maintained in the off state, but the green LED 32 is in the on state.
  • color display is not performed in the cyan pixel 405 even in the second half of the third subframe.
  • the red pixel 406 is in a state where the liquid crystal is closed throughout one frame period when a blue single color display is performed. As described above, blue display can be performed for 1/3 frame period of one frame period.
  • the transmittance of the red pixel 406 is determined according to the size of the red component in the desired display color.
  • the green single color display will be described with reference to FIG.
  • the green display is performed from the third subframe of a certain frame period to the first subframe of the next frame period.
  • the liquid crystal is closed at the cyan pixel 405.
  • color display is not performed in the cyan pixel 405 in the second subframe.
  • the cyan pixel 405 changes from a closed state to an open state.
  • the blue LED 33 is maintained in the off state, but the green LED 32 is in the on state.
  • the cyan pixel 405 is displayed in green.
  • the cyan pixel 405 changes from an open state to a closed state.
  • the blue LED 33 is kept off and the green LED 32 is kept on.
  • green display is performed on the cyan pixel 405 also in the first half of the first subframe.
  • both the green LED 32 and the blue LED 33 are lit.
  • color display is not performed in the cyan pixel 405 in the second half of the first subframe.
  • green display can be performed for 1/3 frame period of one frame period.
  • the transmittance at the red pixel 406 is determined according to the size of the red component in the desired display color.
  • Cyan display> With reference to FIGS. 32 and 33, the display of cyan will be described. Note that, as in the yellow display in the first embodiment and the magenta display in the second embodiment, a relatively low luminance (high gradation) and a cyan display with a relatively low luminance (low gradation) are performed. Different operations are performed when cyan display is performed.
  • FIG. 32 is a diagram for explaining a relatively low luminance cyan display.
  • the cyan pixel 405 changes from a closed state to an open state.
  • the green LED 32 is turned on and the blue LED 33 is turned off.
  • the cyan pixel 405 is displayed in green.
  • both the green LED 32 and the blue LED 33 are lit.
  • cyan display is performed in the cyan pixel 405 in the second half of the first subframe.
  • the cyan pixel 405 changes from an open state to a closed state.
  • the green LED 32 is turned off, but the blue LED 33 is kept on. Thereby, blue display is performed in the cyan pixel 405 in the first half of the second subframe.
  • the blue LED 33 is maintained in a lighting state.
  • color display is not performed in the cyan pixel 405 in the second half of the second subframe.
  • the cyan pixel 405 is maintained in a liquid crystal closed state. For this reason, in the third subframe, color display is not performed in the cyan pixel 405.
  • FIG. 33 is a diagram for explaining a relatively high luminance cyan display.
  • the cyan pixel 405 is in a state where the liquid crystal is opened throughout one frame period.
  • the green LED 32 is lit and the blue LED 33 is turned off, so that the cyan pixel 405 displays green.
  • both the green LED 32 and the blue LED 33 are lit, so that cyan display is performed in the cyan pixel 405.
  • the cyan pixel 405 performs blue display.
  • both the green LED 32 and the blue LED 33 are turned off, so that color display is not performed in the cyan pixel 405.
  • the green LED 32 is lit and the blue LED 33 is turned off, so that the cyan pixel 405 displays green.
  • the red component of each pixel data is displayed as a red pixel 406, and the green component and blue component of each pixel data are displayed as a cyan pixel 405. Further, the red component is displayed throughout one frame period.
  • the green component and the blue component are allocated to each subframe in the same manner as the allocation for the red component and the green component in the first embodiment.
  • the threshold value at that time is typically the maximum luminance value that can be obtained simply by displaying in the cyan subframe (first subframe) for cyan display.
  • the cyan component in the pixel data is equal to or smaller than the threshold value, the cyan component is assigned to the first subframe, and the remaining components (green component or blue component) are assigned to the corresponding subframe.
  • the size of the cyan component in the pixel data is equal to or greater than the threshold, the component having the same size as the threshold among the cyan components is assigned to the first subframe, and the remaining components (green component and blue component) Are assigned to the corresponding subframes.
  • a liquid crystal display device capable of suppressing the occurrence of color breakup while sufficiently securing the luminance during monochromatic display is realized.
  • the color shift due to the color mixing between green and blue is the color shift due to the color mixing between green and red (see above).
  • the viewer is not concerned. This is because the human eye is relatively sensitive to color changes for red, orange (skin color), and yellow, but is not very sensitive to color changes for the cyan color.
  • Each pixel has a first sub-pixel that transmits light of two of the three primary colors RGB (here, “S color” and “T color”) and the remaining one color (here “U color”). And the second sub-pixel that transmits light.
  • One frame period is composed of three subframes. Specifically, in one frame period, a first subframe for displaying a mixed color component of S and T colors in the first subpixel, and a second subframe for displaying the S color component in the first subpixel. A sub-frame and a third sub-frame for displaying a T-color component by the first sub-pixel.
  • the S color light source is turned on at least in the second half of the first subframe and the second half of the second subframe
  • the T color light source is turned on at least in the second half of the first subframe and the second half of the third subframe.
  • the U-color light source is always lit.
  • the S-color light source is turned on also in the first half of the second subframe
  • the T-color light source is turned on also in the first half of the first subframe. Just do it.
  • the size of the mixed color component of the S color and the T color in the pixel data is equal to or smaller than a threshold value (typically, the maximum luminance value obtained only by displaying the mixed color component in the first subframe)
  • the color mixture component is assigned to the first subframe, and the remaining components (S color component or T color component) are assigned to the corresponding subframe.
  • the threshold value typically, the maximum luminance value obtained only by displaying the mixed color component in the first subframe
  • an example in which an LED is employed as a backlight has been described.
  • the present invention is not limited to this.
  • a light source other than the LED may be employed as the backlight.
  • the liquid crystal display device has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to an image display device other than a liquid crystal display device as long as it adopts a method of switching the color of a light source in a lighting state for each subframe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することのできる、フィールドシーケンシャル方式の画像表示装置を提供する。 各画素は、赤色光と緑色光とを透過するイエロー画素および青色光を透過する青色画素の2つのサブ画素によって構成される。イエロー画素での表示色に着目すると、1フレーム期間は、イエロー,赤色,および緑色をそれぞれ表示するための第1,第2,および第3サブフレームによって構成される。青色LEDは常時点灯状態とされる。赤色LEDは、第1サブフレームの後半および第2サブフレームの前半・後半に点灯状態とされる。緑色LEDは、第1サブフレームの前半・後半および第3サブフレームの後半に点灯状態とされる。イエロー成分については、できるだけ多くの成分が第1サブフレームに表示される。

Description

画像表示装置および画像表示方法
 本発明は、画像表示装置および画像表示方法に関し、更に詳しくは、フィールドシーケンシャル方式を用いた画像表示装置において色割れの発生を抑制する技術に関する。
 一般に、カラー表示を行う液晶表示装置では、1つの画素は、赤色光を透過するカラーフィルタが設けられた赤色画素,緑色光を透過するカラーフィルタが設けられた緑色画素,および青色光を透過するカラーフィルタが設けられた青色画素の3つのサブ画素に分割されている。これら3つのサブ画素に設けられたカラーフィルタによってカラー表示が可能となっているが、液晶パネルに照射されるバックライト光の約2/3がカラーフィルタで吸収される。このため、カラーフィルタ方式の液晶表示装置は光利用効率が低いという問題を有する。そこで、カラーフィルタを用いずにカラー表示を行うフィールドシーケンシャル方式の液晶表示装置が注目されている。なお、以下においては、「赤色」,「緑色」,および「青色」のことをそれぞれ単に「R」,「G」,および「B」ともいう。
 フィールドシーケンシャル方式を採用する一般的な液晶表示装置では、1画面の表示期間(1フレーム期間)は3つのサブフレームに分割されている。なお、サブフレームはサブフィールドとも呼ばれるが、以下の説明では、統一してサブフレームの語を用いる。例えば、第1サブフレームでは、入力信号の赤色成分に基づいて赤色の画面が表示され、第2サブフレームでは、入力信号の緑色成分に基づいて緑色の画面が表示され、第3サブフレームでは、入力信号の青色成分に基づいて青色の画面が表示される。以上のようにして1つずつ原色を表示することにより、液晶パネルにカラー画像が表示される。このようにしてカラー画像の表示が行われるので、フィールドシーケンシャル方式の液晶表示装置ではカラーフィルタが不要となる。これにより、フィールドシーケンシャル方式の液晶表示装置では、カラーフィルタ方式の液晶表示装置に比べて光利用効率が約3倍になる。
 しかしながら、フィールドシーケンシャルカラー方式には、色割れ(カラーブレーク)が発生するという問題がある。図34は、色割れの発生原理を示す図である。図34のA部において、縦軸は時間を表し、横軸は画面上の位置を表す。一般に、表示画面内を物体が移動したとき、観測者の視線は物体を追随して物体の移動方向に移動する。例えば図34に示す例では、白色物体が表示画面内を左から右へ移動したとき、観測者の視線は斜め矢印方向に移動する。一方、R,G,およびBの3個のサブフレーム画像を同じ瞬間の映像から抽出した場合、各サブフレーム画像における物体の位置は同じである。このため、図34のB部に示すように、網膜に映る映像には色割れが発生する。
 そこで、1フレーム期間を4つのサブフレームに分割する方式(以下、「4分割方式」という。)が提案されている。この4分割方式においては、第1サブフレームでは、赤色,緑色,および青色の光源を点灯させることによりホワイトの表示が行われ、第2サブフレームでは、青色の光源のみを点灯させることにより青色の表示が行われ、第3サブフレームでは、緑色の光源のみを点灯させることにより緑色の表示が行われ、第4サブフレームでは、赤色の光源のみを点灯させることにより赤色の表示が行われる。この4分割方式によれば、赤,緑,および青の全ての色成分を持つホワイトの表示を1フレーム期間のうちの最初のサブフレームに行うことによって、赤色,緑色,および青色の単色の輝度(第2~第4サブフレームにおける輝度)を小さくすることができる。これにより、RGB間での色割れの発生が抑制される。なお、4分割方式に関連して、日本の特開2009-53475号公報には、1フレーム期間を5つのサブフレームに分割して「白色成分、青色成分、緑色成分、赤色成分、白色成分」の順序で表示を行う発明が開示されている。
 また、本件発明に関連して、日本の特開2009-265135号公報には、1つの画素をイエローのサブ画素と青色のサブ画素とで構成して赤色の光源とシアンの光源とを交互に点灯させる発明が開示されている(日本の特開2009-265135号公報の図15を参照)。この発明によると、1フレーム期間は2つのサブフレームに分割されているだけであるので表示色の彩度を高めることができるとされている。
日本の特開2009-53475号公報 日本の特開2009-265135号公報
 ところが、上述した4分割方式によると、赤,緑,および青などの単色の表示が行われる際に光源が点灯する期間は、各フレーム期間中の1/4フレーム期間だけである。このため、単色表示の際に充分な輝度が得られないことがある。また、例えば緑の単色表示が行われる際には、透過率は図35に示すように変化する。ここで、液晶の応答が不充分な状態で光源を点灯させると、正しく色が表示されない。例えば図35で符号T9で示す期間に赤色の光源を点灯させると、緑の単色表示が行われるべきにもかかわらず、表示画像に赤色成分が混ざってしまう。このため、液晶の応答性を考慮して、図36に示すように各サブフレームにおいて後半の期間だけ光源の点灯が行われる。詳しくは、図36で符号91a,92a,93a,および94aで示す期間(各サブフレームの前半の期間)には全ての光源が消灯状態とされ、図36で符号91b,92b,93b,および94bで示す期間(各サブフレームの後半の期間)にのみ光源が点灯状態とされる。このようにして、単色表示の際に光源が点灯する期間は、各フレーム期間中の約1/8フレーム期間だけとなる。従って、4分割方式を採用する液晶表示装置では、単色表示の際に充分な輝度を確保することが困難となっている。これについては、日本の特開2009-53475号公報に開示された発明においても同様である。なお、光源の数を増やすことによって短時間で高い輝度を得ることは可能であるが、光源の数の増加に伴いコスト増となる。
 また、日本の特開2009-265135号公報に開示された発明によれば、1フレーム期間は2つのサブフレームに分割されるだけであるので、単色表示の際の輝度は充分に得られる。しかしながら、イエローのサブ画素において、赤色と緑色との色割れが生じやすい。何故ならば、イエローのサブ画素では、各サブフレームにおいて、赤色または緑色のいずれかの表示すなわち単色成分の表示が行われるだけで、赤色と緑色との混色成分の表示が行われないからである。
 そこで本発明は、単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することのできる、フィールドシーケンシャル方式の画像表示装置を提供することを目的とする。
 本発明の第1の局面は、複数個の画素が配置された表示部と、光の3原色である赤色,緑色,および青色の光をそれぞれ照射する3色の光源とを備え、1フレーム期間を複数のサブフレーム期間に分割して点灯状態となる光源の色をサブフレーム期間毎に切り替えることによりカラー表示を行う画像表示装置であって、
 前記複数個の画素の各画素は、光の3原色のうちの2色である第1原色および第2原色の光を透過する第1サブ画素と、光の3原色のうちの残りの1色である第3原色の光を透過する第2サブ画素とからなり、
 1フレーム期間は、前記第1原色と前記第2原色との混色を前記第1サブ画素で表示するための混色用サブフレーム期間と、前記第1原色を前記第1サブ画素で表示するための第1原色用サブフレーム期間と、前記第2原色を前記第1サブ画素で表示するための第2原色用サブフレーム期間とからなり、
 前記第1原色の光源は、少なくとも前記混色用サブフレーム期間の後半および前記第1原色用サブフレーム期間の後半に点灯状態とされ、
 前記第2原色の光源は、少なくとも前記混色用サブフレーム期間の後半および前記第2原色用サブフレーム期間の後半に点灯状態とされ、
 前記第3原色の光源は、1フレーム期間を通じて点灯状態とされることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1原色の光源は、前記第1原色用サブフレーム期間の前半にも点灯状態とされ、
 前記第2原色の光源は、前記混色用サブフレーム期間の前半にも点灯状態とされることを特徴とする。
 本発明の第3の局面は、本発明の第1または第2の局面において、
 前記第1サブ画素の面積は、前記第2サブ画素の面積の2倍であることを特徴とする。
 本発明の第4の局面は、本発明の第1または第2の局面において、
 前記混色用サブフレーム期間の次のサブフレーム期間は、前記第1原色および前記第2原色のうち比視感度の高い方の色用のサブフレーム期間であることを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 入力画像信号に含まれる光の3原色の成分のうちの前記第1原色の成分と前記第2原色の成分とを前記混色用サブフレーム期間,前記第1原色用サブフレーム期間,および前記第2原色用サブフレーム期間のそれぞれの表示成分として割り振る信号処理部を備え、
 前記第1原色と前記第2原色との混色成分の大きさが予め定められた閾値以下であって、かつ、前記第1原色の成分の大きさが前記第2原色の成分の大きさ以上であれば、前記信号処理部は、前記混色成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第1原色の成分から前記混色成分を除いた成分を前記第1原色用サブフレーム期間の表示成分に割り当て、
 前記混色成分の大きさが前記閾値以下であって、かつ、前記第1原色の成分の大きさが前記第2原色の成分の大きさ以下であれば、前記信号処理部は、前記混色成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第2原色の成分から前記混色成分を除いた成分を前記第2原色用サブフレーム期間の表示成分に割り当て、
 前記混色成分の大きさが前記閾値以上であれば、前記信号処理部は、前記混色成分のうち前記閾値に等しい大きさの成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第1原色の成分のうち前記閾値に等しい大きさの成分を除いた成分を前記第1原色用サブフレーム期間の表示成分に割り当て、前記第2原色の成分のうち前記閾値に等しい大きさの成分を除いた成分を前記第2原色用サブフレーム期間の表示成分に割り当てることを特徴とする。
 本発明の第6の局面は、本発明の第5の局面において、
 前記閾値は、前記混色成分が前記混色用サブフレーム期間のみに表示された場合に得られる最大輝度値に定められていることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記第1サブ画素は、前記第1原色としての赤色の光と前記第2原色としての緑色の光とを透過する黄色画素であって、
 前記第2サブ画素は、前記第3原色としての青色の光を透過する青色画素であることを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記第1サブ画素は、前記第1原色としての青色の光と前記第2原色としての赤色の光とを透過するマゼンダ画素であって、
 前記第2サブ画素は、前記第3原色としての緑色の光を透過する緑色画素であることを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記第1サブ画素は、前記第1原色としての青色の光と前記第2原色としての緑色の光とを透過するシアン画素であって、
 前記第2サブ画素は、前記第3原色としての赤色の光を透過する赤色画素であることを特徴とする。
 本発明の第10の局面は、複数個の画素が配置された表示部と、光の3原色である赤色,緑色,および青色の光をそれぞれ照射する3色の光源とを備え、1フレーム期間を複数のサブフレーム期間に分割して点灯状態となる光源の色をサブフレーム期間毎に切り替えることによりカラー表示を行う画像表示装置における画像表示方法であって、
 前記複数個の画素の各画素を、光の3原色のうちの2色である第1原色および第2原色の光を透過する第1サブ画素と、光の3原色のうちの残りの1色である第3原色の光を透過する第2サブ画素とによって構成し、
 1フレーム期間を、前記第1原色と前記第2原色との混色を前記第1サブ画素で表示するための混色用サブフレーム期間と、前記第1原色を前記第1サブ画素で表示するための第1原色用サブフレーム期間と、前記第2原色を前記第1サブ画素で表示するための第2原色用サブフレーム期間とによって構成し、
 前記第1原色の光源を、少なくとも前記混色用サブフレーム期間の後半および前記第1原色用サブフレーム期間の後半に点灯状態とし、
 前記第2原色の光源を、少なくとも前記混色用サブフレーム期間の後半および前記第2原色用サブフレーム期間の後半に点灯状態とし、
 前記第3原色の光源を、1フレーム期間を通じて点灯状態とすることを特徴とする。
 本発明の第1の局面によれば、第2サブ画素では第3原色のみが表示されるので、第3原色と他の色との色割れが生じることはない。第1サブ画素では第1原色と第2原色とが表示されるところ、1フレーム期間中には第1原色と第2原色との混色を表示するためのサブフレーム期間が設けられている。このため、第1原色と第2原色との間の色割れの発生が抑制される。また、1フレーム期間は3つのサブフレーム期間に分割されているだけである。このため、各色を表示するための期間として比較的長い期間が確保される。以上より、単色表示の際の輝度を確保しつつ色割れの発生を抑制することのできる画像表示装置が実現される。
 本発明の第2の局面によれば、第1原色および第2原色の単色表示については、各フレーム期間の1/3の表示期間を確保することができ、第1原色と第2原色との混色の表示については、各フレーム期間の5/6の表示期間を確保することができる。これにより、画像表示装置において、色割れの発生を抑制するとともに単色表示の際の輝度を充分に確保することが可能となる。
 本発明の第3の局面によれば、第1原色および第2原色の光を透過するサブ画素の面積が第3原色の光を透過するサブ画素の面積の2倍となる。このため、第1原色の光源および第2原色の光源の点灯期間が第3原色の光源の点灯期間の1/2になっているにもかかわらず、ホワイトバランスの良好さが保たれる。
 本発明の第4の局面によれば、比較的高い輝度の表示を行うサブフレーム期間が各フレーム期間の前半に集中するため、動画性能が向上する。
 本発明の第5の局面によれば、第1原色と第2原色との混色成分が閾値以下であれば、第1サブ画素では2つの色間の色割れのみが生じ得る。従って、3つの色間(RGB間)の色割れが生じる従来のフィールドシーケンシャル方式と比較して、色割れの発生が抑制される。また、第1原色と第2原色との混色成分が閾値以上であれば、当該閾値に相当する大きさの混色成分が1つのサブフレームに表示され、残りのサブフレームに単色成分が表示される。従って、閾値を好適な値に設定することにより、混色成分を1つのサブフレームに優先的に表示させることが可能となり、色割れの発生が抑制される。
 本発明の第6の局面によれば、第1原色と第2原色とのできるだけ多くの混色成分が第1サブフレームに表示される。このため、第2サブフレームおよび第3サブフレームでは比較的少ない単色成分が表示される。これにより、色割れの発生が効果的に抑制される。
 本発明の第7の局面によれば、1つの画素が黄色画素と青色画素とに分割された構成において、本発明の第1の局面と同様の効果が得られる。
 本発明の第8の局面によれば、1つの画素がマゼンダ画素と緑色画素とに分割された構成において、本発明の第1の局面と同様の効果が得られる。
 本発明の第9の局面によれば、1つの画素がシアン画素と赤色画素とに分割された構成において、本発明の第1の局面と同様の効果が得られる。
 本発明の第10の局面によれば、本発明の第1の局面と同様の効果を画像表示方法において奏することができる。
本発明の第1の実施形態に係る液晶表示装置において、フレーム期間の構成およびLEDの状態の推移を示す図である。 上記第1の実施形態に係る液晶表示装置の全体構成を示すブロック図である。 上記第1の実施形態において、バックライトユニットの一構成例を模式的に示した図である。 上記第1の実施形態における画素の構成を示す図である。 上記第1の実施形態における1フレーム期間の構成を示す図である。 上記第1の実施形態において、LEDの状態の推移やサブ画素での表示状態の推移を示す図である。 上記第1の実施形態において、赤色の単色表示について説明するための図である。 上記第1の実施形態において、緑色の単色表示について説明するための図である。 上記第1の実施形態において、比較的低い輝度のイエロー表示について説明するための図である。 上記第1の実施形態において、比較的高い輝度のイエロー表示について説明するための図である。 上記第1の実施形態において、青色の単色表示について説明するための図である。 上記第1の実施形態において、各サブフレームおよび各サブ画素への色成分の割り振りについて説明するための図である。 上記第1の実施形態において、イエロー成分の大きさが閾値以下であるときの赤色成分および緑色成分の各サブフレームへの割り振りについて説明するための図である。 上記第1の実施形態において、イエロー成分の大きさが閾値以下であるときのイエロー画素での透過率の変化の一例を示す図である。 上記第1の実施形態において、イエロー成分の大きさが閾値以上であるときの赤色成分および緑色成分の各サブフレームへの割り振りについて説明するための図である。 上記第1の実施形態において、イエロー成分の大きさが閾値以上であるときのイエロー画素での透過率の変化の一例を示す図である。 上記第1の実施形態の第1の変形例において、フレーム期間の構成およびLEDの状態の推移を示す図である。 上記第1の実施形態において赤色表示が行われた際の輝度と上記第1の実施形態の第1の変形例において赤色表示が行われた際の輝度とを比較説明するための図である。 上記第1の実施形態の第2の変形例における画素の構成を示す図である。 上記第1の実施形態の第2の変形例におけるLEDユニットの構成を示す図である。 上記第1の実施形態の第3の変形例において、1フレーム期間の構成,LEDの状態の推移,およびサブ画素での表示状態の推移を示す図である。 本発明の第2の実施形態における画素の構成を示す図である。 上記第2の実施形態において、1フレーム期間の構成,LEDの状態の推移,およびサブ画素での表示状態の推移を示す図である。 上記第2の実施形態において、青色の単色表示について説明するための図である。 上記第2の実施形態において、赤色の単色表示について説明するための図である。 上記第2の実施形態において、比較的低い輝度のマゼンダ表示について説明するための図である。 上記第2の実施形態において、比較的高い輝度のマゼンダ表示について説明するための図である。 本発明の第3の実施形態における画素の構成を示す図である。 上記第3の実施形態において、1フレーム期間の構成,LEDの状態の推移,およびサブ画素での表示状態の推移を示す図である。 上記第3の実施形態において、青色の単色表示について説明するための図である。 上記第3の実施形態において、緑色の単色表示について説明するための図である。 上記第3の実施形態において、比較的低い輝度のシアン表示について説明するための図である。 上記第3の実施形態において、比較的高い輝度のシアン表示について説明するための図である。 色割れの発生原理を示す図である。 従来例(4分割方式)における緑色の単色表示について説明するための図である。 従来例(4分割方式)におけるフレーム期間の構成およびLEDの状態の推移を示す図である。
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。
<1.第1の実施形態>
<1.1 全体構成および動作概要>
 図2は、本発明の第1の実施形態に係る液晶表示装置の全体構成を示すブロック図である。この液晶表示装置は、サブフレーム画像生成部100とパネル駆動回路200とバックライトユニット300と表示部400とによって構成されている。表示部400には、複数本のソースバスライン(映像信号線)SLと複数本のゲートバスライン(走査信号線)GLとが配設されている。ソースバスラインSLとゲートバスラインGLとの各交差点に対応して、サブ画素を形成するサブ画素形成部が設けられている。なお、本実施形態においては、後述するように1つの画素は2つのサブ画素によって構成されている。また、この液晶表示装置は、カラー表示の方式としてフィールドシーケンシャル方式を採用している。
 各サブ画素形成部には、対応する交差点を通過するゲートバスラインGLにゲート端子が接続されると共に当該交差点を通過するソースバスラインSLにソース端子が接続されたスイッチング素子であるTFT40と、そのTFT40のドレイン端子に接続された画素電極41と、全てのサブ画素形成部に共通的に設けられた共通電極44および補助容量電極45と、画素電極41と共通電極44とによって形成される液晶容量42と、画素電極41と補助容量電極45とによって形成される補助容量43とが含まれている。液晶容量42と補助容量43とによって画素容量が構成されている。なお、図2の表示部400内には、1つのサブ画素形成部に対応する構成要素のみを示している。
 サブフレーム画像生成部100は、外部から送られる入力画像信号DINに基づき、各サブフレームでの各サブ画素形成部における液晶の時間開口率を制御するための信号であるデジタル映像信号DVを生成し、それを出力する。なお、時間開口率とは液晶の透過率の時間的な積分値に相当するものである。サブフレーム画像生成部100は、また、各光源の状態(点灯状態/消灯状態)を制御するための光源制御信号Sを出力する。なお、サブフレーム画像生成部100の入出力信号として水平同期信号,垂直同期信号などの各種タイミング信号も存在するが、図2ではタイミング信号を省略している。
 パネル駆動回路200は、ゲートバスラインGLを1本ずつ選択的に駆動するとともに、サブフレーム画像生成部100から出力されたデジタル映像信号DVに基づき各ソースバスラインSLに駆動用の映像信号を印加する。ところで、共通電極44には所定電位が与えられ(一定の電位が与えられ、または、一定の高電位と一定の低電位とが所定期間毎に交互に与えられ)、画素電極41には駆動用の映像信号に基づく電位が与えられる。これにより、駆動用の映像信号に基づいて、各サブ画素形成部の画素容量に電荷が蓄積される。なお、典型的には、パネル駆動回路200は、ゲートバスラインGLを駆動するゲートドライバ(走査信号線駆動回路)とソースバスラインSLを駆動するソースドライバ(映像信号線駆動回路)とで構成されている。
 バックライトユニット300は、表示部400の背面側に設けられている。バックライトユニット300には、赤色の光源,緑色の光源,および青色の光源をひと組とする複数の光源組が含まれている。図3は、本実施形態におけるバックライトユニット300の一構成例を模式的に示した図である。本実施形態においては、光源としてLED(発光ダイオード)が採用されている。光源組としてのLEDユニット30には、赤色LED31,緑色LED32,および青色LED33が1個ずつ含まれている。また、図3に示すように、バックライトユニット300内において、LEDユニット30は行方向および列方向に複数個ずつ設けられている。なお、バックライトユニット300には、各LEDの状態(点灯状態/消灯状態)を制御するLED制御回路(不図示)も含まれている。このような構成において、バックライトユニット300は、サブフレーム画像生成部100から出力された光源制御信号Sに基づいて各LEDの状態を制御する。
 以上のように各構成要素が動作することによって、サブフレーム毎に画面の表示状態が切り替えられ、外部から送られた入力画像信号DINに基づくカラー画像が表示部400に表示される。
<1.2 画素の構成>
 図4は、本実施形態における画素の構成を示す模式図である。本実施形態においては、図4に示すように、1つの画素は2つのサブ画素(イエロー画素401および青色画素402)によって構成されている。イエロー画素401の面積は、青色画素402の面積のほぼ2倍となっている。なお、イエロー画素401は赤色光と緑色光とを透過するカラーフィルタが設けられた画素であって、青色画素402は青色光を透過するカラーフィルタが設けられた画素である。
 本実施形態においては、イエロー画素401によって第1サブ画素が実現され、青色画素402によって第2サブ画素が実現されている。また、赤色が第1原色に相当し、緑色が第2原色に相当し、青色が第3原色に相当する。
<1.3 1フレーム期間の構成>
 次に、図1,図5,および図6を参照しつつ、1画面分の画像を表示するための期間である1フレーム期間の構成について説明する。本実施形態においては、1フレーム期間は図5に示すように3つのサブフレーム(第1~第3サブフレーム)で構成されている。第1サブフレームは、イエロー画素401でイエローの表示を行うためのサブフレーム(以下、「イエロー用サブフレーム」ともいう。)である。第2サブフレームは、イエロー画素401で赤色の表示を行うためのサブフレーム(以下、「赤用サブフレーム」ともいう。)である。第3サブフレームは、イエロー画素401で緑色の表示を行うためのサブフレーム(以下、「緑用サブフレーム」ともいう。)である。なお、青色画素402では1フレーム期間を通じて青色の表示が行われる。
 各色のLEDは、各サブフレームの前半と後半とで異なる状態(点灯状態/消灯状態)を取り得る。すなわち、各色のLEDの状態(点灯状態/消灯状態)は、1/6フレーム期間毎に制御される。本実施形態においては、具体的には図6で符号51の行に示すように、各色のLEDの状態が制御される。なお、図6では、点灯状態を「オン」と記し、消灯状態を「オフ」と記している。例えば緑色LED32については、第1サブフレームの前半,後半および第3サブフレームの後半には点灯状態となり、第2サブフレームの前半,後半および第3サブフレームの前半には消灯状態となる。ところで、青色LED33については、図6に示すように、1フレーム期間を通じて点灯状態となっている。従って、本実施形態においては、赤色LED31および緑色LED32の2種類のLEDについてのみ、状態の制御が行われる。
 なお、本説明においては、各サブフレームの前半,後半はそれぞれ各サブフレームの50パーセントの期間であるものと仮定して説明しているが、本発明はこれには限定されない。液晶の応答性に応じて、例えば、前半を40パーセントの期間とし、後半を60パーセントの期間としても良い。液晶の応答性が優れているほど、前半の期間の長さを短くすることができる。
 本実施形態においては、図6で符号51の行に示すようにLEDの状態が制御されることにより、バックライトユニット300からの出射光の色の推移は図6で符号52の行に示すようなものとなる。これにより、液晶が開いた状態であれば、イエロー画素401および青色画素402で表示される色の推移は図6で符号53の行に示すようなものとなる。ここで、例えば、符号54で示す部分に着目すると、この期間には緑色LED32および青色LED33が点灯状態となっているところ、イエロー画素401は赤色光および緑色光を透過する。従って、液晶が開いた状態であれば、この期間にはイエロー画素401では緑色の表示が行われる。また、符号55で示す部分に着目すると、この期間には青色LED33のみが点灯状態となっている。従って、この期間にはイエロー画素401ではカラー表示が行われない。なお、図6では、カラー表示が行われないことをハイフンで示している。
 以上のように、本実施形態においては、1つの画素がイエロー画素401および青色画素402の2つのサブ画素に分割された構成において、青色LED33は常時点灯状態とされ、2種類のLED(赤色LED31および緑色LED32)の状態が1/6フレーム期間毎に制御されることにより、バックライトユニット300からの出射光の色が「シアン、ホワイト、マゼンダ、マゼンダ、青、シアン」の順序で1/6フレーム期間毎に切り替えられる。
<1.4 各色の表示>
 次に、本実施形態における色の表示の仕方について説明する。
<1.4.1 赤色の表示>
 図7を参照しつつ、赤色の単色表示について説明する。なお、図7において、上方にはイエロー画素401での透過率の推移を示しており、下方には各色のLEDの状態の推移(符号56の行)およびイエロー画素401で表示される色の推移(符号57の行)を示している。第1サブフレームには、イエロー画素401では液晶が閉じた状態にされる。このため、第1サブフレームには、イエロー画素401ではカラー表示が行われない。第2サブフレームには、イエロー画素401では液晶が閉じた状態から開いた状態へと変化する。また、第2サブフレームには、赤色LED31は点灯状態かつ緑色LED32は消灯状態となる。これにより、第2サブフレームには、イエロー画素401では赤色表示が行われる。第3サブフレームには、イエロー画素401では液晶が開いた状態から閉じた状態へと変化する。また、第3サブフレームの前半には、赤色LED31も緑色LED32も消灯状態となる。これにより、第3サブフレームの前半には、イエロー画素401ではカラー表示が行われない。第3サブフレームの後半には、赤色LED31は消灯状態で維持されるが、緑色LED32は点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第3サブフレームの後半にもイエロー画素401ではカラー表示が行われない。青色画素402については、赤色の単色表示が行われるときには1フレーム期間を通じて液晶が閉じた状態とされる。
 以上のように、本実施形態においては、1フレーム期間のうちの1/3フレーム期間、赤色の表示を行うことが可能となっている。なお、液晶が開いた状態から閉じた状態へと変化する期間(液晶のディケイ期間)には、赤色LED31を点灯状態とすることはできない。その理由は、赤色の単色表示が行われる際の液晶のディケイ期間と緑色の単色表示が行われる際に液晶が閉じた状態から開いた状態へと変化する期間(液晶のライズ期間という。)とはともに第3サブフレームの前半の期間となり、当該期間に仮に赤色LED31を点灯させると、緑色の単色表示が行われるべき場合に赤色成分が表示画像に混ざるからである。
 なお、ここでは赤色の単色表示について説明したが、赤色と青色との混色の表示が行われるときにもイエロー画素401では同様の動作が行われる。但し、青色画素402での透過率が、所望の表示色中の青色成分の大きさに応じて決定される。すなわち、所望の表示色中に青色成分が多く含まれているほど青色画素402での透過率が高められる。
<1.4.2 緑色の表示>
 図8を参照しつつ、緑色の単色表示について説明する。なお、緑色の表示は、或るフレーム期間の第3サブフレームからその次のフレーム期間の第1サブフレームにかけて行われる。第2サブフレームには、イエロー画素401では液晶が閉じた状態にされる。このため、第2サブフレームには、イエロー画素401ではカラー表示が行われない。第3サブフレームには、イエロー画素401では液晶が閉じた状態から開いた状態へと変化する。第3サブフレームの前半には、赤色LED31も緑色LED32も消灯状態となっているので、イエロー画素401ではカラー表示が行われない。第3サブフレームの後半には、赤色LED31は消灯状態で維持されるが、緑色LED32は点灯状態となる。これにより、第3サブフレームの後半には、イエロー画素401では緑色表示が行われる。第1サブフレームには、イエロー画素401では液晶が開いた状態から閉じた状態へと変化する。第1サブフレームの前半には、赤色LED31は消灯状態で維持され、緑色LED32は点灯状態で維持される。これにより、第1サブフレームの前半にも、イエロー画素401では緑色表示が行われる。第1サブフレームの後半には、赤色LED31も緑色LED32も点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第1サブフレームの後半にはイエロー画素401ではカラー表示が行われない。
 以上のように、本実施形態においては、第3サブフレームの後半だけでなく第1サブフレームにも緑色LED32を点灯させることにより、1フレーム期間のうちの1/3フレーム期間、緑色の表示を行うことが可能となっている。なお、緑色の単色表示が行われるときには、赤色の単色表示が行われるときと同様、青色画素402では1フレーム期間を通じて液晶が閉じた状態とされる。また、緑色と青色との混色の表示が行われるときには、所望の表示色中の青色成分の大きさに応じて青色画素402での透過率が決定される。
<1.4.3 イエローの表示>
 図9および図10を参照しつつ、イエローの表示について説明する。なお、本実施形態においては、比較的低い輝度(低階調)のイエロー表示が行われるときと比較的高い輝度(高階調)のイエロー表示が行われるときとで異なる動作が行われる。
 図9は、比較的低い輝度のイエロー表示について説明するための図である。第1サブフレームには、イエロー画素401では液晶が閉じた状態から開いた状態へと変化する。第1サブフレームの前半には、赤色LED31は消灯状態かつ緑色LED32は点灯状態となる。これにより、第1サブフレームの前半には、イエロー画素401では緑色表示が行われる。第1サブフレームの後半には、赤色LED31も緑色LED32も点灯状態となる。これにより、第1サブフレームの後半には、イエロー画素401ではイエロー表示が行われる。第2サブフレームには、イエロー画素401では液晶が開いた状態から閉じた状態へと変化する。第2サブフレームの前半には、緑色LED32は消灯状態となるが、赤色LED31は点灯状態で維持される。これにより、第2サブフレームの前半には、イエロー画素401では赤色表示が行われる。第2サブフレームの後半には、赤色LED31は点灯状態で維持される。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第2サブフレームの後半にはイエロー画素401ではカラー表示が行われない。第3サブフレームには、イエロー画素401では液晶が閉じた状態で維持される。このため、第3サブフレームには、イエロー画素401ではカラー表示が行われない。
 以上のように、本実施形態においては、比較的低い輝度のイエロー表示が行われる際、イエロー画素401では、第1サブフレームの前半には緑色が表示され、第1サブフレームの後半にはイエローが表示され、第2サブフレームの前半には赤色が表示される。すなわち、1フレーム期間のうちの1/2フレーム期間をかけて比較的低い輝度のイエロー表示を行うことが可能となっている。
 図10は、比較的高い輝度のイエロー表示について説明するための図である。比較的高い輝度のイエロー表示が行われるときには、図10に示すように、イエロー画素401では1フレーム期間を通じて液晶が開いた状態とされる。第1サブフレームの前半には、赤色LED31は消灯状態かつ緑色LED32は点灯状態となるので、イエロー画素401では緑色表示が行われる。第1サブフレームの後半には、赤色LED31も緑色LED32も点灯状態となるので、イエロー画素401ではイエロー表示が行われる。第2サブフレームには、赤色LED31は点灯状態かつ緑色LED32は消灯状態となるので、イエロー画素401では赤色表示が行われる。第3サブフレームの前半には、赤色LED31も緑色LED32も消灯状態となるので、イエロー画素401ではカラー表示が行われない。第3サブフレームの後半には、赤色LED31は消灯状態かつ緑色LED32は点灯状態となるので、イエロー画素401では緑色表示が行われる。
 以上のように、本実施形態においては、比較的高い輝度のイエロー表示が行われる際、イエロー画素401では、第3サブフレームの後半および第1サブフレームの前半には緑色が表示され、第1サブフレームの後半にはイエローが表示され、第2サブフレームには赤色が表示される。すなわち、1フレーム期間のうちの5/6フレーム期間をかけて比較的高い輝度のイエロー表示を行うことが可能となっている。
 なお、所望の表示色中に青色成分が含まれない場合には、青色画素402では液晶が閉じた状態とされ、所望の表示色中に青色成分が含まれる場合には、青色成分の大きさに応じて青色画素402での透過率が決定される。
<1.4.4 青色の表示>
 図11を参照しつつ、青色の単色表示について説明する。青色の単色表示が行われるときには、図11に示すように、1フレーム期間を通じて青色画素402では液晶が開いた状態とされる。また、上述したように、青色LED33は常時点灯状態とされる。これにより、1フレーム期間を通じて、青色画素402では青色表示が行われる。また、イエロー画素401では1フレーム期間を通じて液晶が閉じた状態とされる。以上のようにして、青色の単色表示が行われる。なお、青色画素402での透過率については、青色成分の大きさに応じて決定される。
<1.5 各サブフレームおよび各サブ画素への色成分の割り振り>
 上記においては、単色およびイエローの表示について説明した。しかしながら、通常、各画素データには赤色成分,緑色成分,および青色成分が含まれている。そこで、それらの色成分を1フレーム期間中のどのサブフレームに表示するかについて及びそれらの色成分をどのサブ画素で表示するかについて説明する。
 サブフレーム画像生成部100に与えられる入力画像信号DINには、光の3原色である赤色,緑色,および青色のそれぞれの成分が含まれている。図12には、入力画像信号DIN中の1つの画素データについての赤色成分,緑色成分,および青色成分の組み合わせの一例を示している。なお、図12では、赤色成分の大きさが符号60Rの矢印で表され、緑色成分の大きさが符号60Gの矢印で表され、青色成分の大きさが符号60Bの矢印で表されている。ところで、イエロー成分は、赤色成分と緑色成分とからなる2色の混色成分である。従って、図12に示す例では、イエロー成分の大きさは符号61の矢印で表される。このイエロー成分を考慮すると、図12に示す画素データについては、符号61の矢印で表される大きさのイエロー成分と符合62の矢印で表される大きさの赤色成分と符号60Bの矢印で表される大きさの青色成分とからなるデータとして処理することができる。また、イエロー成分のうち仮に符号63の矢印で表される大きさの成分を抽出すると、この画素データについては、符号63の矢印で表される大きさのイエロー成分と符合65の矢印で表される大きさの赤色成分と符号64の矢印で表される大きさの緑色成分と符号60Bの矢印で表される大きさの青色成分とからなるデータとして処理することができる。
 上述したように、各画素はイエロー画素401および青色画素402の2つのサブ画素に分割されている。本実施形態においては、各画素データのうち青色成分は青色画素402で表示され、各画素データのうち赤色成分および緑色成分はイエロー画素401で表示される。また、青色成分については、1フレーム期間を通じて表示が行われる(図11参照)。赤色成分および緑色成分については、以下のように各サブフレームへの割り振りが行われる。この割り振りは、信号処理部としてのサブフレーム画像生成部100によって行われる。また、この割り振りについては、イエロー成分の大きさが予め定められた閾値以下であるか否かによって、場合分けが行われる。その閾値は、典型的には、イエローの表示についてイエロー用サブフレームに表示するだけで得られる最大輝度値とされる。
 画素データ中のイエロー成分の大きさが閾値以下であれば、当該イエロー成分は第1サブフレームに割り当てられ、残りの成分(赤色成分または緑色成分)は対応するサブフレームに割り当てられる。例えば、各色の成分が図13に示すようなものであって閾値が符号70の矢印で表される大きさの値である場合、符号71の矢印で表される大きさのイエロー成分は第1サブフレームに割り当てられ、赤色成分のうち符合72の矢印で表される大きさの成分が赤用サブフレームである第2サブフレームに割り当てられる。このようにイエロー成分の大きさが閾値以下であって、かつ、緑色成分よりも赤色成分の方が大きい場合、緑用サブフレームである第3サブフレームには緑色成分は割り当てられない。なお、赤色成分よりも緑色成分の方が大きい場合には、緑色成分のうちのイエロー成分を除いた成分が第3サブフレームに割り当てられ、第2サブフレームには赤色成分は割り当てられない。以上のようにして、1フレーム期間中にイエロー画素401で表示される色は、「イエローと赤」または「イエローと緑」のいずれかとなる。
 図14は、画素データ中の各色の成分が図13に示すようなものであるときのイエロー画素401での透過率の変化を示す図である。第1サブフレームには、イエロー成分の大きさに応じて透過率が変化する。第1サブフレームの前半には、赤色LED31は消灯状態かつ緑色LED32は点灯状態となる。これにより、第1サブフレームの前半には、イエロー画素401ではイエロー成分のうち緑色成分のみが表示される。第1サブフレームの後半には、赤色LED31も緑色LED32も点灯状態となる。これにより、第1サブフレームの後半には、イエロー画素401ではイエロー成分が表示される。第2サブフレームには、赤色成分のうちのイエロー成分を除いた成分の大きさに応じて透過率が変化する。また、第2サブフレームには、緑色LED32は消灯状態かつ赤色LED31は点灯状態となる。これにより、第2サブフレームには、イエロー画素401ではイエロー成分のうち赤色成分のみが表示される。第3サブフレームには、液晶が開いた状態から閉じた状態へと変化する。第3サブフレームの前半には、赤色LED31も緑色LED32も消灯状態となる。これにより、第3サブフレームの前半には、イエロー画素401ではカラー表示が行われない。第3サブフレームの後半には、赤色LED31は消灯状態で維持されるが、緑色LED32は点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第3サブフレームの後半にもイエロー画素401ではカラー表示が行われない。以上のように、図13に示した画素データについての赤色成分および緑色成分の表示が行われる。
 画素データ中のイエロー成分の大きさが閾値以上であれば、当該イエロー成分のうちの閾値に等しい大きさの成分は第1サブフレームに割り当てられ、残りの成分(赤色成分および緑色成分)は対応するサブフレームに割り当てられる。例えば、各色の成分が図15に示すようなものであって閾値が符号70の矢印で表される大きさの値である場合、イエロー成分のうち符号70の矢印で表される大きさの成分が第1サブフレームに割り当てられ、赤色成分のうち符号75の矢印で表される大きさの成分が第2サブフレームに割り当てられ、緑色成分のうち符号74の矢印で表される大きさの成分が第3サブフレームに割り当てられる。このように、イエロー成分の大きさが閾値以上である場合には、全てのサブフレームに対して色成分の割り当てが行われ、イエロー画素401では1フレーム期間中にイエロー,赤,および緑が表示される。但し、できるだけ多くの赤色成分,緑色成分が第1サブフレームに割り当てられる。
 図16は、画素データ中の各色の成分が図15に示すようなものであるときのイエロー画素401での透過率の変化を示す図である。第1サブフレームには、閾値の大きさに応じて透過率が変化する。LEDの状態は上述したとおりであるので、イエロー画素401では、第1サブフレームの前半にはイエロー成分のうち緑色成分のみが表示され、第1サブフレームの後半にはイエロー成分が表示される。第2サブフレームには、赤色成分のうちのイエロー成分を除いた成分の大きさに応じて透過率が変化する。また、第2サブフレームには、緑色LED32は消灯状態かつ赤色LED31は点灯状態となる。これにより、第2サブフレームには、イエロー画素401ではイエロー成分のうち赤色成分のみが表示される。第3サブフレームには、緑色成分のうちのイエロー成分を除いた成分の大きさに応じて透過率が変化する。LEDの状態は上述したとおりであるので、イエロー画素401では、第3サブフレームの前半にはカラー表示が行われず、第3サブフレームの後半にはイエロー成分のうち緑色成分のみが表示される。以上のように、図15に示した画素データについての赤色成分および緑色成分の表示が行われる。
<1.6 効果>
 本実施形態によれば、赤色の単色表示が行われる際に各フレーム期間の1/3の表示期間を確保することができ、また、緑色の単色表示が行われる際にも各フレーム期間の1/3の表示期間を確保することができる。さらに、イエローの表示が行われる際には、各フレーム期間の5/6の表示期間を確保することができる。青色の単色表示が行われる際には、1フレーム期間を通じて表示が行われる。このように、単色表示の際の輝度が充分に確保される。
 また、青色画素402では青色成分のみが表示されるので、青色と他の色との色割れが生じることはない。イエロー画素401では赤色成分および緑色成分が表示される。ここで、画素データ中のイエロー成分の大きさが予め定められた閾値以下であれば、1フレーム期間中にイエロー画素401で表示される色は、「イエローと赤」または「イエローと緑」のいずれかとなる。すなわち、イエロー画素401では、2つの色間の色割れのみが生じ得る。従って、3つの色間(RGB間)の色割れが生じる従来のフィールドシーケンシャル方式と比較して、色割れの発生が抑制される。また、画素データ中のイエロー成分の大きさが閾値以上であれば、できるだけ多くの赤色成分,緑色成分が第1サブフレームに割り当てられ、残りの赤色成分,緑色成分がそれぞれ第2サブフレーム,第3サブフレームに割り当てられる。このように赤色成分と緑色成分とのできるだけ多くの混色成分が1つのサブフレームに表示されるので、色割れの発生が効果的に抑制される。
 以上より、本実施形態によれば、単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することのできる液晶表示装置が実現される。なお、本実施形態においては、赤色LED31の点灯期間および緑色LED32の点灯期間は青色LED33の点灯期間の1/2となっている。しかしながら、赤色光と緑色光とを透過するイエロー画素401の面積を青色画素402の面積の2倍にすることによって、ホワイトバランスの良好さが保たれている。また、2つのサブ画素の色の組み合わせについては、本実施形態のような「イエローと青」の組み合わせの他に「マゼンダと緑」の組み合わせ、「シアンと赤」の組み合わせも考えられる。これらの中では、「イエローと青」の組み合わせが、最もパネルの輝度効率が良い。これは、イエローの画素における透過率がマゼンダやシアンの画素における透過率よりも高いためである。
<1.7 変形例>
 以下、上記第1の実施形態の変形例について説明する。
<1.7.1 第1の変形例>
 上記第1の実施形態においては、イエロー用サブフレームの次のサブフレームは赤用サブフレームであったが、本発明はこれに限定されず、イエロー用サブフレームの次のサブフレームが緑用サブフレームであっても良い。すなわち、1フレーム期間を「イエロー用サブフレーム、緑用サブフレーム、赤用サブフレーム」の順序で現れる3つのサブフレームで構成し、各サブフレームにおけるLEDの状態を図17に示すように制御するようにしても良い。
 ここで、上記第1の実施形態において赤色表示が行われたときの輝度と本変形例において赤色表示が行われたときの輝度とを比較する。液晶の応答と赤色LED31の点灯期間とを考慮すると、上記第1の実施形態においては図18で符号81の斜線部で示す面積に相当する輝度の表示が行われるのに対し、本変形例においては図18で符号82の斜線部で示す面積に相当する輝度の表示が行われる。図18において、符号82の斜線部で示す面積よりも符号81の斜線部で示す面積の方が大きい。すなわち、赤色の単色表示に関しては、本変形例よりも上記第1の実施形態の方が高い輝度が得られる。逆に、緑色表示に関しては、上記第1の実施形態よりも本変形例の方が高い輝度が得られる。ところで、一般に、緑色表示の際に高い輝度が得られるよりも赤色表示の際の高い輝度が得られる方が視聴者にとっては表示品位が良好に感じられる。従って、表示品位の観点では、本変形例よりも上記第1の実施形態の方が好ましい。
 しかしながら、本変形例においては、赤と比べて比視感度の高いイエローや緑を表示するためのサブフレームが1フレーム期間中の前半に集中している。従って、本変形例によれば、上記第1の実施形態と比較して、高い動画性能が得られる。
<1.7.2 第2の変形例>
 上記第1の実施形態においては、所望のホワイトバランスが得られるよう、イエロー画素401の面積は青色画素402の面積のほぼ2倍にされていた。しかしながら、本発明はこれに限定されない。“イエロー画素の面積:青色画素の面積=A(Y):A(B)”とし、“赤色LEDの数:青色LEDの数=L(R):L(B)”としたとき(但し、赤色LEDの数と緑色LEDの数とを等しくする)、“A(Y)×L(R)=2×A(B)×L(B)”が成立すれば所望のホワイトバランスが得られる。例えば、図19に示すようにイエロー画素401の面積と青色画素402の面積とを等しくし、各LEDユニット30を図20に示すように2個の赤色LED31と2個の緑色LED32と1個の青色LED33とで構成するようにしても良い。
<1.7.3 第3の変形例>
 上記第1の実施形態においては、赤色LED31は第1サブフレームおよび第2サブフレームの後半に加え第2サブフレームの前半にも点灯状態となり、緑色LED32は第1サブフレームおよび第3サブフレームの後半に加え第1サブフレームの前半にも点灯状態となっていたが、本発明はこれに限定されない。図21に示すように、各サブフレームの前半には赤色LED31および緑色LED32は消灯状態となるようにしても良い。
 本変形例によれば、使用するLEDの条件(数,性能など)が同じであれば上記第1の実施形態ほど単色の輝度は得られない。しかしながら、上述した4分割方式によれば各フレーム期間における各光源の点灯期間は約1/8フレーム期間にすぎないので、本変形例によれば4分割方式と比較すると長い点灯期間が得られる。また、液晶の応答性や使用するLEDの条件によっては、本変形例のようにLEDの状態を制御しても、単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することが可能となる。
<2.第2の実施形態>
<2.1 全体構成など>
 本発明の第2の実施形態について説明する。全体構成および動作概要については、上記第1の実施形態と同様であるので、説明を省略する(図2および図3を参照)。
<2.2 画素の構成>
 図22は、本実施形態における画素の構成を示す模式図である。本実施形態においては、マゼンダ画素403と緑色画素404とによって1つの画素が構成されている。マゼンダ画素403の面積は、緑色画素404の面積のほぼ2倍となっている。なお、マゼンダ画素403は赤色光と青色光とを透過するカラーフィルタが設けられた画素であって、緑色画素404は緑色光を透過するカラーフィルタが設けられた画素である。
 本実施形態においては、マゼンダ画素403によって第1サブ画素が実現され、緑色画素404によって第2サブ画素が実現されている。また、青色が第1原色に相当し、赤色が第2原色に相当し、緑色が第3原色に相当する。
<2.3 1フレーム期間の構成>
 本実施形態においては、図23に示すように、1フレーム期間は、マゼンダ画素403でマゼンダの表示を行うための第1サブフレーム(マゼンダ用サブフレーム)とマゼンダ画素403で青色の表示を行うための第2サブフレーム(青用サブフレーム)とマゼンダ画素403で赤色の表示を行うための第3サブフレーム(赤用サブフレーム)とによって構成されている。なお、緑色画素404では1フレーム期間を通じて緑色の表示が行われる。
 上記第1の実施形態と同様、各色のLEDの状態(点灯状態/消灯状態)は、1/6フレーム期間毎に制御される。具体的には図23で符号81の行に示すように、各色のLEDの状態が制御される。なお、緑色LED32については、1フレーム期間を通じて点灯状態となっている。従って、本実施形態においては、赤色LED31および青色LED33の2種類のLEDについてのみ、状態の制御が行われる。図23で符号81の行に示すようにLEDの状態が制御されることにより、バックライトユニット300からの出射光の色の推移は図23で符号82の行に示すようなものとなる。これにより、液晶が開いた状態であれば、マゼンダ画素403および緑色画素404で表示される色の推移は図23で符号83の行に示すようなものとなる。
<2.4 各色の表示>
 次に、本実施形態における色の表示の仕方について説明する。
<2.4.1 青色の表示>
 図24を参照しつつ、青色の単色表示について説明する。第1サブフレームには、マゼンダ画素403では液晶が閉じた状態にされる。このため、第1サブフレームには、マゼンダ画素403ではカラー表示が行われない。第2サブフレームには、マゼンダ画素403では液晶が閉じた状態から開いた状態へと変化する。また、第2サブフレームには、赤色LED31は消灯状態かつ青色LED33は点灯状態となる。これにより、第2サブフレームには、マゼンダ画素403では青色表示が行われる。第3サブフレームには、マゼンダ画素403では液晶が開いた状態から閉じた状態へと変化する。また、第3サブフレームの前半には、赤色LED31も青色LED33も消灯状態となる。これにより、第3サブフレームの前半には、マゼンダ画素403ではカラー表示が行われない。第3サブフレームの後半には、青色LED33は消灯状態で維持されるが、赤色LED31は点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第3サブフレームの後半にもマゼンダ画素403ではカラー表示が行われない。緑色画素404については、青色の単色表示が行われるときには1フレーム期間を通じて液晶が閉じた状態とされる。以上のように、1フレーム期間のうちの1/3フレーム期間、青色の表示を行うことが可能となっている。なお、青色と緑色との混色の表示が行われるときには、所望の表示色中の緑色成分の大きさに応じて緑色画素404での透過率が決定される。
<2.4.2 赤色の表示>
 図25を参照しつつ、赤色の単色表示について説明する。なお、赤色の表示は、或るフレーム期間の第3サブフレームからその次のフレーム期間の第1サブフレームにかけて行われる。第2サブフレームには、マゼンダ画素403では液晶が閉じた状態にされる。このため、第2サブフレームには、マゼンダ画素403ではカラー表示が行われない。第3サブフレームには、マゼンダ画素403では液晶が閉じた状態から開いた状態へと変化する。第3サブフレームの前半には、赤色LED31も青色LED33も消灯状態となっているので、マゼンダ画素403ではカラー表示が行われない。第3サブフレームの後半には、青色LED33は消灯状態で維持されるが、赤色LED31は点灯状態となる。これにより、第3サブフレームの後半には、マゼンダ画素403では赤色表示が行われる。第1サブフレームには、マゼンダ画素403では液晶が開いた状態から閉じた状態へと変化する。第1サブフレームの前半には、青色LED33は消灯状態で維持され、赤色LED31は点灯状態で維持される。これにより、第1サブフレームの前半にも、マゼンダ画素403では赤色表示が行われる。第1サブフレームの後半には、赤色LED31も青色LED33も点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第1サブフレームの後半にはマゼンダ画素403ではカラー表示が行われない。以上のように、1フレーム期間のうちの1/3フレーム期間、赤色の表示を行うことが可能となっている。なお、赤色と緑色との混色の表示が行われるときには、所望の表示色中の緑色成分の大きさに応じて緑色画素404での透過率が決定される。
<2.4.3 マゼンダの表示>
 図26および図27を参照しつつ、マゼンダの表示について説明する。なお、上記第1の実施形態におけるイエロー表示と同様、比較的低い輝度(低階調)のマゼンダ表示が行われるときと比較的高い輝度(高階調)のマゼンダ表示が行われるときとで異なる動作が行われる。
 図26は、比較的低い輝度のマゼンダ表示について説明するための図である。第1サブフレームには、マゼンダ画素403では液晶が閉じた状態から開いた状態へと変化する。第1サブフレームの前半には、赤色LED31は点灯状態かつ青色LED33は消灯状態となる。これにより、第1サブフレームの前半には、マゼンダ画素403では赤色表示が行われる。第1サブフレームの後半には、赤色LED31も青色LED33も点灯状態となる。これにより、第1サブフレームの後半には、マゼンダ画素403ではマゼンダ表示が行われる。第2サブフレームには、マゼンダ画素403では液晶が開いた状態から閉じた状態へと変化する。第2サブフレームの前半には、赤色LED31は消灯状態となるが、青色LED33は点灯状態で維持される。これにより、第2サブフレームの前半には、マゼンダ画素403では青色表示が行われる。第2サブフレームの後半には、青色LED33は点灯状態で維持される。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第2サブフレームの後半にはマゼンダ画素403ではカラー表示が行われない。第3サブフレームには、マゼンダ画素403では液晶が閉じた状態で維持される。このため、第3サブフレームには、マゼンダ画素403ではカラー表示が行われない。以上のようにして、1フレーム期間のうちの1/2フレーム期間をかけて比較的低い輝度のマゼンダ表示を行うことが可能となっている。
 図27は、比較的高い輝度のマゼンダ表示について説明するための図である。比較的高い輝度のマゼンダ表示が行われるときには、図27に示すように、マゼンダ画素403では1フレーム期間を通じて液晶が開いた状態とされる。第1サブフレームの前半には、赤色LED31は点灯状態かつ青色LED33は消灯状態となるので、マゼンダ画素403では赤色表示が行われる。第1サブフレームの後半には、赤色LED31も青色LED33も点灯状態となるので、マゼンダ画素403ではマゼンダ表示が行われる。第2サブフレームには、赤色LED31は消灯状態かつ青色LED33は点灯状態となるので、マゼンダ画素403では青色表示が行われる。第3サブフレームの前半には、赤色LED31も青色LED33も消灯状態となるので、マゼンダ画素403ではカラー表示が行われない。第3サブフレームの後半には、赤色LED31は点灯状態かつ青色LED33は消灯状態となるので、マゼンダ画素403では赤色表示が行われる。以上のようにして、1フレーム期間のうちの5/6フレーム期間をかけて比較的高い輝度のマゼンダ表示を行うことが可能となっている。
<2.5 各サブフレームおよび各サブ画素への色成分の割り振り>
 本実施形態においては、各画素データのうち緑色成分は緑色画素404で表示され、各画素データのうち赤色成分および青色成分はマゼンダ画素403で表示される。また、緑色成分については、1フレーム期間を通じて表示が行われる。赤色成分および青色成分については、上記第1の実施形態における赤色成分および緑色成分についての割り振りと同様にして、各サブフレームへの割り振りが行われる。その際の閾値は、典型的には、マゼンダの表示についてマゼンダ用サブフレーム(第1サブフレーム)に表示するだけで得られる最大輝度値とされる。そして、画素データ中のマゼンダ成分の大きさが閾値以下であれば、当該マゼンダ成分は第1サブフレームに割り当てられ、残りの成分(赤色成分または青色成分)は対応するサブフレームに割り当てられる。一方、画素データ中のマゼンダ成分の大きさが閾値以上であれば、当該マゼンダ成分のうちの閾値に等しい大きさの成分は第1サブフレームに割り当てられ、残りの成分(赤色成分および青色成分)は対応するサブフレームに割り当てられる。
<2.6 効果>
 本実施形態によれば、上記第1の実施形態と同様、単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することのできる液晶表示装置が実現される。また、本実施形態によれば、比視感度の最も高い緑色のLEDが常時点灯状態となる。このため、フリッカの発生が抑制される。さらに、赤色や青色は緑色と比較して比視感度が低いため、赤色と緑色を1つのサブ画素で表示する上記第1の実施形態よりも色割れの発生が抑制される。
<3.第3の実施形態>
<3.1 全体構成など>
 本発明の第3の実施形態について説明する。全体構成および動作概要については、上記第1の実施形態と同様であるので、説明を省略する(図2および図3を参照)。
<3.2 画素の構成>
 図28は、本実施形態における画素の構成を示す模式図である。本実施形態においては、シアン画素405と赤色画素406とによって1つの画素が構成されている。シアン画素405の面積は、赤色画素406の面積のほぼ2倍となっている。なお、シアン画素405は緑色光と青色光とを透過するカラーフィルタが設けられた画素であって、赤色画素406は赤色光を透過するカラーフィルタが設けられた画素である。
 本実施形態においては、シアン画素405によって第1サブ画素が実現され、赤色画素406によって第2サブ画素が実現されている。また、青色が第1原色に相当し、緑色が第2原色に相当し、赤色が第3原色に相当する。
<3.3 1フレーム期間の構成>
 本実施形態においては、図29に示すように、1フレーム期間は、シアン画素405でシアンの表示を行うための第1サブフレーム(シアン用サブフレーム)とシアン画素405で青色の表示を行うための第2サブフレーム(青用サブフレーム)とシアン画素405で緑色表示を行うための第3サブフレーム(緑用サブフレーム)とによって構成されている。なお、赤色画素406では1フレーム期間を通じて赤色の表示が行われる。
 上記第1および第2の実施形態と同様、各色のLEDの状態(点灯状態/消灯状態)は、1/6フレーム期間毎に制御される。具体的には図29で符号84の行に示すように、各色のLEDの状態が制御される。なお、赤色LED31については、1フレーム期間を通じて点灯状態となっている。従って、本実施形態においては、緑色LED32および青色LED33の2種類のLEDについてのみ、状態の制御が行われる。図29で符号84の行に示すようにLEDの状態が制御されることにより、バックライトユニット300からの出射光の色の推移は図29で符号85の行に示すようなものとなる。これにより、液晶が開いた状態であれば、シアン画素405および赤色画素406で表示される色の推移は図29で符号86の行に示すようなものとなる。
<3.4 各色の表示>
 次に、本実施形態における色の表示の仕方について説明する。
<3.4.1 青色の表示>
 図30を参照しつつ、青色の単色表示について説明する。第1サブフレームには、シアン画素405では液晶が閉じた状態にされる。このため、第1サブフレームには、シアン画素405ではカラー表示が行われない。第2サブフレームには、シアン画素405では液晶が閉じた状態から開いた状態へと変化する。また、第2サブフレームには、緑色LED32は消灯状態かつ青色LED33は点灯状態となる。これにより、第2サブフレームには、シアン画素405では青色表示が行われる。第3サブフレームには、シアン画素405では液晶が開いた状態から閉じた状態へと変化する。また、第3サブフレームの前半には、緑色LED32も青色LED33も消灯状態となる。これにより、第3サブフレームの前半には、シアン画素405ではカラー表示が行われない。第3サブフレームの後半には、青色LED33は消灯状態で維持されるが、緑色LED32は点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第3サブフレームの後半にもシアン画素405ではカラー表示が行われない。赤色画素406については、青色の単色表示が行われるときには1フレーム期間を通じて液晶が閉じた状態とされる。以上のように、1フレーム期間のうちの1/3フレーム期間、青色の表示を行うことが可能となっている。なお、青色と赤色との混色の表示が行われるときには、所望の表示色中の赤色成分の大きさに応じて赤色画素406での透過率が決定される。
<3.4.2 緑色の表示>
 図31を参照しつつ、緑色の単色表示について説明する。なお、緑色の表示は、或るフレーム期間の第3サブフレームからその次のフレーム期間の第1サブフレームにかけて行われる。第2サブフレームには、シアン画素405では液晶が閉じた状態にされる。このため、第2サブフレームには、シアン画素405ではカラー表示が行われない。第3サブフレームには、シアン画素405では液晶が閉じた状態から開いた状態へと変化する。第3サブフレームの前半には、緑色LED32も青色LED33も消灯状態となっているので、シアン画素405ではカラー表示が行われない。第3サブフレームの後半には、青色LED33は消灯状態で維持されるが、緑色LED32は点灯状態となる。これにより、第3サブフレームの後半には、シアン画素405では緑色表示が行われる。第1サブフレームには、シアン画素405では液晶が開いた状態から閉じた状態へと変化する。第1サブフレームの前半には、青色LED33は消灯状態で維持され、緑色LED32は点灯状態で維持される。これにより、第1サブフレームの前半にも、シアン画素405では緑色表示が行われる。第1サブフレームの後半には、緑色LED32も青色LED33も点灯状態となる。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第1サブフレームの後半にはシアン画素405ではカラー表示が行われない。以上のように、1フレーム期間のうちの1/3フレーム期間、緑色の表示を行うことが可能となっている。なお、緑色と赤色との混色の表示が行われるときには、所望の表示色中の赤色成分の大きさに応じて赤色画素406での透過率が決定される。
<3.4.3 シアンの表示>
 図32および図33を参照しつつ、シアンの表示について説明する。なお、上記第1の実施形態におけるイエロー表示および上記第2の実施形態におけるマゼンダ表示と同様、比較的低い輝度(低階調)のシアン表示が行われるときと比較的高い輝度(高階調)のシアン表示が行われるときとで異なる動作が行われる。
 図32は、比較的低い輝度のシアン表示について説明するための図である。第1サブフレームには、シアン画素405では液晶が閉じた状態から開いた状態へと変化する。第1サブフレームの前半には、緑色LED32は点灯状態かつ青色LED33は消灯状態となる。これにより、第1サブフレームの前半には、シアン画素405では緑色表示が行われる。第1サブフレームの後半には、緑色LED32も青色LED33も点灯状態となる。これにより、第1サブフレームの後半には、シアン画素405ではシアン表示が行われる。第2サブフレームには、シアン画素405では液晶が開いた状態から閉じた状態へと変化する。第2サブフレームの前半には、緑色LED32は消灯状態となるが、青色LED33は点灯状態で維持される。これにより、第2サブフレームの前半には、シアン画素405では青色表示が行われる。第2サブフレームの後半には、青色LED33は点灯状態で維持される。しかしながら、液晶の応答により透過率が充分に低くなっている限りにおいては、第2サブフレームの後半にはシアン画素405ではカラー表示が行われない。第3サブフレームには、シアン画素405では液晶が閉じた状態で維持される。このため、第3サブフレームには、シアン画素405ではカラー表示が行われない。以上のようにして、1フレーム期間のうちの1/2フレーム期間をかけて比較的低い輝度のシアン表示を行うことが可能となっている。
 図33は、比較的高い輝度のシアン表示について説明するための図である。比較的高い輝度のシアン表示が行われるときには、図33に示すように、シアン画素405では1フレーム期間を通じて液晶が開いた状態とされる。第1サブフレームの前半には、緑色LED32は点灯状態かつ青色LED33は消灯状態となるので、シアン画素405では緑色表示が行われる。第1サブフレームの後半には、緑色LED32も青色LED33も点灯状態となるので、シアン画素405ではシアン表示が行われる。第2サブフレームには、緑色LED32は消灯状態かつ青色LED33は点灯状態となるので、シアン画素405では青色表示が行われる。第3サブフレームの前半には、緑色LED32も青色LED33も消灯状態となるので、シアン画素405ではカラー表示が行われない。第3サブフレームの後半には、緑色LED32は点灯状態かつ青色LED33は消灯状態となるので、シアン画素405では緑色表示が行われる。以上のようにして、1フレーム期間のうちの5/6フレーム期間をかけて比較的高い輝度のシアン表示を行うことが可能となっている。
<3.5 各サブフレームおよび各サブ画素への色成分の割り振り>
 本実施形態においては、各画素データのうち赤色成分は赤色画素406で表示され、各画素データのうち緑色成分および青色成分はシアン画素405で表示される。また、赤色成分については、1フレーム期間を通じて表示が行われる。緑色成分および青色成分については、上記第1の実施形態における赤色成分および緑色成分についての割り振りと同様にして、各サブフレームへの割り振りが行われる。その際の閾値は、典型的には、シアンの表示についてシアン用サブフレーム(第1サブフレーム)に表示するだけで得られる最大輝度値とされる。そして、画素データ中のシアン成分の大きさが閾値以下であれば、当該シアン成分は第1サブフレームに割り当てられ、残りの成分(緑色成分または青色成分)は対応するサブフレームに割り当てられる。一方、画素データ中のシアン成分の大きさが閾値以上であれば、当該シアン成分のうちの閾値に等しい大きさの成分は第1サブフレームに割り当てられ、残りの成分(緑色成分および青色成分)は対応するサブフレームに割り当てられる。
<3.6 効果>
 本実施形態によっても、上記第1の実施形態と同様、単色表示の際の輝度を充分に確保しつつ色割れの発生を抑制することのできる液晶表示装置が実現される。また、本実施形態によれば、液晶の応答が不充分な時、緑と青の間で色が混ざることによる色のシフトが、緑と赤の間で色が混ざることによる色のシフト(上記第1の実施形態)と比べて、視聴者にとっては気にならない。これは、人間の目が、赤色,オレンジ(肌色),黄色についての色の変化には比較的敏感であるが、シアン側の色についての色の変化にはそれほど敏感でないからである。
<4.その他>
 以上説明した3つの実施形態については、次のような概念に集約することができる。各画素は、RGBの3原色のうちの2色(ここでは「S色」および「T色」とする。)の光を透過する第1サブ画素と残りの1色(ここでは「U色」とする。)の光を透過する第2サブ画素とで構成される。1フレーム期間は、3つのサブフレームで構成される。詳しくは、1フレーム期間は、第1サブ画素でS色とT色との混色の成分を表示するための第1サブフレームと、第1サブ画素でS色の成分を表示するための第2サブフレームと、第1サブ画素でT色の成分を表示するための第3サブフレームとで構成される。S色の光源は少なくとも第1サブフレームの後半および第2サブフレームの後半に点灯状態とされ、T色の光源は少なくとも第1サブフレームの後半および第3サブフレームの後半に点灯状態とされ、U色の光源は常時点灯状態とされる。ここで、単色表示の際の輝度を充分に得るためには、S色の光源を第2サブフレームの前半にも点灯状態とし、T色の光源を第1サブフレームの前半にも点灯状態とすれば良い。また、画素データ中のS色の成分およびT色の成分を次のようにサブフレームに割り当てるのが好ましい。画素データ中のS色とT色との混色成分の大きさが閾値(典型的には、当該混色成分の表示について第1サブフレームに表示するだけで得られる最大輝度値)以下であれば、当該混色成分は第1サブフレームに割り当てられ、残りの成分(S色の成分またはT色の成分)は対応するサブフレームに割り当てられる。一方、画素データ中のS色とT色との混色成分の大きさが閾値以上であれば、当該混色成分のうちの閾値に等しい大きさの成分は第1サブフレームに割り当てられ、残りの成分(S色の成分およびT色の成分)は対応するサブフレームに割り当てられる。以上のようにすることで、色割れの発生が抑制されるとともに、単色表示の際の輝度も充分に確保される。
 また、上記各実施形態においては、バックライトとしてLEDが採用されている例を挙げて説明したが、本発明はこれに限定されない。例えば、LED以外の光源がバックライトとして採用されていても良い。さらに、上記各実施形態においては液晶表示装置を例に挙げて説明しているが、本発明はこれに限定されない。点灯状態となる光源の色をサブフレーム毎に切り替える方式を採用するものであれば、液晶表示装置以外の画像表示装置にも本発明を適用することができる。
 30…LEDユニット
 31…赤色LED
 32…緑色LED
 33…青色LED
 100…サブフレーム画像生成部
 200…パネル駆動回路
 300…バックライトユニット
 400…表示部
 401…イエロー画素
 402…青色画素
 403…マゼンダ画素
 404…緑色画素
 405…シアン画素
 406…赤色画素
 DIN…入力画像信号
 DV…デジタル映像信号
 S…光源制御信号

Claims (10)

  1.  複数個の画素が配置された表示部と、光の3原色である赤色,緑色,および青色の光をそれぞれ照射する3色の光源とを備え、1フレーム期間を複数のサブフレーム期間に分割して点灯状態となる光源の色をサブフレーム期間毎に切り替えることによりカラー表示を行う画像表示装置であって、
     前記複数個の画素の各画素は、光の3原色のうちの2色である第1原色および第2原色の光を透過する第1サブ画素と、光の3原色のうちの残りの1色である第3原色の光を透過する第2サブ画素とからなり、
     1フレーム期間は、前記第1原色と前記第2原色との混色を前記第1サブ画素で表示するための混色用サブフレーム期間と、前記第1原色を前記第1サブ画素で表示するための第1原色用サブフレーム期間と、前記第2原色を前記第1サブ画素で表示するための第2原色用サブフレーム期間とからなり、
     前記第1原色の光源は、少なくとも前記混色用サブフレーム期間の後半および前記第1原色用サブフレーム期間の後半に点灯状態とされ、
     前記第2原色の光源は、少なくとも前記混色用サブフレーム期間の後半および前記第2原色用サブフレーム期間の後半に点灯状態とされ、
     前記第3原色の光源は、1フレーム期間を通じて点灯状態とされることを特徴とする、画像表示装置。
  2.  前記第1原色の光源は、前記第1原色用サブフレーム期間の前半にも点灯状態とされ、
     前記第2原色の光源は、前記混色用サブフレーム期間の前半にも点灯状態とされることを特徴とする、請求項1に記載の画像表示装置。
  3.  前記第1サブ画素の面積は、前記第2サブ画素の面積の2倍であることを特徴とする、請求項1または2に記載の画像表示装置。
  4.  前記混色用サブフレーム期間の次のサブフレーム期間は、前記第1原色および前記第2原色のうち比視感度の高い方の色用のサブフレーム期間であることを特徴とする、請求項1または2に記載の画像表示装置。
  5.  入力画像信号に含まれる光の3原色の成分のうちの前記第1原色の成分と前記第2原色の成分とを前記混色用サブフレーム期間,前記第1原色用サブフレーム期間,および前記第2原色用サブフレーム期間のそれぞれの表示成分として割り振る信号処理部を備え、
     前記第1原色と前記第2原色との混色成分の大きさが予め定められた閾値以下であって、かつ、前記第1原色の成分の大きさが前記第2原色の成分の大きさ以上であれば、前記信号処理部は、前記混色成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第1原色の成分から前記混色成分を除いた成分を前記第1原色用サブフレーム期間の表示成分に割り当て、
     前記混色成分の大きさが前記閾値以下であって、かつ、前記第1原色の成分の大きさが前記第2原色の成分の大きさ以下であれば、前記信号処理部は、前記混色成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第2原色の成分から前記混色成分を除いた成分を前記第2原色用サブフレーム期間の表示成分に割り当て、
     前記混色成分の大きさが前記閾値以上であれば、前記信号処理部は、前記混色成分のうち前記閾値に等しい大きさの成分を前記混色用サブフレーム期間の表示成分に割り当て、前記第1原色の成分のうち前記閾値に等しい大きさの成分を除いた成分を前記第1原色用サブフレーム期間の表示成分に割り当て、前記第2原色の成分のうち前記閾値に等しい大きさの成分を除いた成分を前記第2原色用サブフレーム期間の表示成分に割り当てることを特徴とする、請求項1に記載の画像表示装置。
  6.  前記閾値は、前記混色成分が前記混色用サブフレーム期間のみに表示された場合に得られる最大輝度値に定められていることを特徴とする、請求項5に記載の画像表示装置。
  7.  前記第1サブ画素は、前記第1原色としての赤色の光と前記第2原色としての緑色の光とを透過する黄色画素であって、
     前記第2サブ画素は、前記第3原色としての青色の光を透過する青色画素であることを特徴とする、請求項1に記載の画像表示装置。
  8.  前記第1サブ画素は、前記第1原色としての青色の光と前記第2原色としての赤色の光とを透過するマゼンダ画素であって、
     前記第2サブ画素は、前記第3原色としての緑色の光を透過する緑色画素であることを特徴とする、請求項1に記載の画像表示装置。
  9.  前記第1サブ画素は、前記第1原色としての青色の光と前記第2原色としての緑色の光とを透過するシアン画素であって、
     前記第2サブ画素は、前記第3原色としての赤色の光を透過する赤色画素であることを特徴とする、請求項1に記載の画像表示装置。
  10.  複数個の画素が配置された表示部と、光の3原色である赤色,緑色,および青色の光をそれぞれ照射する3色の光源とを備え、1フレーム期間を複数のサブフレーム期間に分割して点灯状態となる光源の色をサブフレーム期間毎に切り替えることによりカラー表示を行う画像表示装置における画像表示方法であって、
     前記複数個の画素の各画素を、光の3原色のうちの2色である第1原色および第2原色の光を透過する第1サブ画素と、光の3原色のうちの残りの1色である第3原色の光を透過する第2サブ画素とによって構成し、
     1フレーム期間を、前記第1原色と前記第2原色との混色を前記第1サブ画素で表示するための混色用サブフレーム期間と、前記第1原色を前記第1サブ画素で表示するための第1原色用サブフレーム期間と、前記第2原色を前記第1サブ画素で表示するための第2原色用サブフレーム期間とによって構成し、
     前記第1原色の光源を、少なくとも前記混色用サブフレーム期間の後半および前記第1原色用サブフレーム期間の後半に点灯状態とし、
     前記第2原色の光源を、少なくとも前記混色用サブフレーム期間の後半および前記第2原色用サブフレーム期間の後半に点灯状態とし、
     前記第3原色の光源を、1フレーム期間を通じて点灯状態とすることを特徴とする、画像表示方法。
PCT/JP2013/058674 2012-04-02 2013-03-26 画像表示装置および画像表示方法 WO2013150913A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-083727 2012-04-02
JP2012083727 2012-04-02

Publications (1)

Publication Number Publication Date
WO2013150913A1 true WO2013150913A1 (ja) 2013-10-10

Family

ID=49300406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058674 WO2013150913A1 (ja) 2012-04-02 2013-03-26 画像表示装置および画像表示方法

Country Status (1)

Country Link
WO (1) WO2013150913A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956144A (zh) * 2013-12-13 2014-07-30 天津三星电子有限公司 一种显示驱动方法、装置及显示器
CN107908033A (zh) * 2017-12-29 2018-04-13 深圳市华星光电半导体显示技术有限公司 液晶显示器
US12067950B2 (en) 2022-09-27 2024-08-20 Japan Display Inc. Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149129A (ja) * 2000-11-13 2002-05-24 Sharp Corp カラーシーケンシャルディスプレイ装置
JP2003107472A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 画像表示装置
JP2006301043A (ja) * 2005-04-18 2006-11-02 Agilent Technol Inc ディスプレイ装置
JP2009134156A (ja) * 2007-11-30 2009-06-18 Univ Of Electro-Communications 画像表示の信号処理方法及び画像表示装置
JP2011128562A (ja) * 2009-12-21 2011-06-30 Hitachi Displays Ltd 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149129A (ja) * 2000-11-13 2002-05-24 Sharp Corp カラーシーケンシャルディスプレイ装置
JP2003107472A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 画像表示装置
JP2006301043A (ja) * 2005-04-18 2006-11-02 Agilent Technol Inc ディスプレイ装置
JP2009134156A (ja) * 2007-11-30 2009-06-18 Univ Of Electro-Communications 画像表示の信号処理方法及び画像表示装置
JP2011128562A (ja) * 2009-12-21 2011-06-30 Hitachi Displays Ltd 液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956144A (zh) * 2013-12-13 2014-07-30 天津三星电子有限公司 一种显示驱动方法、装置及显示器
CN107908033A (zh) * 2017-12-29 2018-04-13 深圳市华星光电半导体显示技术有限公司 液晶显示器
WO2019127816A1 (zh) * 2017-12-29 2019-07-04 深圳市华星光电半导体显示技术有限公司 液晶显示器
US12067950B2 (en) 2022-09-27 2024-08-20 Japan Display Inc. Display device

Similar Documents

Publication Publication Date Title
JP5855024B2 (ja) 画像表示装置および画像表示方法
TWI541790B (zh) 顯示裝置及其驅動方法
JP6273284B2 (ja) 液晶表示装置およびその駆動方法
JP2008076416A (ja) 表示パネルの駆動装置、表示パネル及びそれを備えた表示装置並びに表示パネルの駆動方法
US20100117942A1 (en) Liquid crystal display
WO2016002424A1 (ja) 液晶表示装置
WO2017077931A1 (ja) カラー画像表示装置およびカラー画像表示方法
WO2015087598A1 (ja) 画像表示装置およびその駆動方法
JP2012242453A (ja) 表示装置
WO2016042885A1 (ja) 液晶表示装置およびその駆動方法
CN101963721A (zh) 一种场色域液晶显示器
US8044925B2 (en) Method for driving field sequential LCD backlight
WO2012157553A1 (ja) 画像表示装置および画像表示方法
WO2015186593A1 (ja) 表示装置
WO2013150913A1 (ja) 画像表示装置および画像表示方法
JP5827682B2 (ja) 画像表示装置および画像表示方法
CN106531101A (zh) 显示面板及具有该显示面板的显示装置
EP2525351A2 (en) Field-sequential color display device
KR102305011B1 (ko) 표시 장치 및 이의 구동 방법
WO2018051889A1 (ja) フィールドシーケンシャル方式の表示装置および表示方法
WO2013031610A1 (ja) 液晶表示装置、液晶パネルの駆動方法
WO2015107723A1 (ja) 表示装置
WO2012099041A1 (ja) 画像表示装置および画像表示方法
JP2010145645A (ja) 液晶表示装置
KR102150290B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13773148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP