WO2013150697A1 - アラーム信号生成回路、アラーム信号生成方法 - Google Patents

アラーム信号生成回路、アラーム信号生成方法 Download PDF

Info

Publication number
WO2013150697A1
WO2013150697A1 PCT/JP2013/000441 JP2013000441W WO2013150697A1 WO 2013150697 A1 WO2013150697 A1 WO 2013150697A1 JP 2013000441 W JP2013000441 W JP 2013000441W WO 2013150697 A1 WO2013150697 A1 WO 2013150697A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm signal
phase
failure
alarm
type
Prior art date
Application number
PCT/JP2013/000441
Other languages
English (en)
French (fr)
Inventor
貴浩 森
昭 中森
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP13772550.3A priority Critical patent/EP2824814B1/en
Priority to JP2014509005A priority patent/JP5861773B2/ja
Priority to CN201380005364.2A priority patent/CN104040855B/zh
Publication of WO2013150697A1 publication Critical patent/WO2013150697A1/ja
Priority to US14/329,024 priority patent/US11333694B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/15Indicating that frequency of pulses is either above or below a predetermined value or within or outside a predetermined range of values, by making use of non-linear or digital elements (indicating that pulse width is above or below a certain limit)
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to an alarm signal generation circuit and an alarm signal generation method, and more particularly, to an alarm signal output from an IPM (Intelligent Power Module), a circuit for generating an alarm signal for determining a failed phase and a failure type, and an alarm signal generation method About.
  • IPM Intelligent Power Module
  • IPM is an intelligent power device that incorporates a driver IC that incorporates a drive and protection function in a module that includes an IGBT (Insulated Gate Bipolar Transistor) chip or an FWD (Free Wheeling Diode) chip.
  • the driver IC incorporated in the IPM has a function of detecting the temperature of the IGBT chip and the current flowing through the IGBT chip. When the temperature detection value of the IGBT chip exceeds a predetermined value, the driver IC detects it as overheating. Further, the driver IC detects an overcurrent when the current flowing through the IGBT chip exceeds a predetermined value. When the driver IC detects such overheating or overcurrent, it outputs an alarm.
  • Patent Document 1 describes a technique for transmitting different signals to a control circuit so that the severity of a failure can be recognized depending on the type of failure. That is, in the technique described in Patent Document 1, a pulse generator that generates a 1 ms wide pulse as a signal indicating a major failure and a pulse generator that generates a 2 ms wide pulse as a signal indicating a minor failure are provided. Depending on the type, different signals are transmitted to the control circuit so that the severity of the failure can be understood.
  • Patent Document 2 after overcurrent detection, a diagnostic signal is sequentially added to each switching element, and it is determined that the switching element that is paired with the same arm as when the overcurrent is detected is destroyed. It describes that DC braking is performed by applying a drive signal for causing a DC braking current to flow to the switching elements of other arms connected to the reverse voltage bus to which the switching elements are connected.
  • Patent Document 3 discloses an overcurrent detection circuit for detecting an overcurrent, a failure phase detection circuit for detecting a failure phase, identifying a failure phase and a healthy phase, and controlling the on / off of a healthy phase arm. It is described that a direct current is supplied to an electric motor, and the electric motor is stopped by applying a direct current.
  • JP 2003-88093 A Japanese Patent Laid-Open No. 5-30771 JP-A-8-149868
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to generate an alarm signal generating circuit and an alarm signal generating circuit that can determine the type of failure that has occurred and the phase in which the failure has occurred based on the number of pulses and the pulse width. Is to provide a method.
  • An alarm signal generation circuit includes a determination unit that determines a failure type or a failed phase for a device that performs a multi-phase operation, and a failure type or a plurality of phases according to a determination result by the determination unit.
  • An alarm signal generating unit that generates an alarm signal including a pulse corresponding to the failed phase, and the failure content and the failed phase can be determined by the alarm signal generated by the alarm signal generating unit It is characterized by that. According to such a configuration, it is generated by a configuration that generates an alarm signal having a pulse number corresponding to the phase in which the failure has occurred or a configuration that generates an alarm signal having a pulse width corresponding to the phase in which the failure has occurred. The type of failure that occurred and the phase in which the failure occurred can be determined by the number of pulses and the pulse width.
  • the apparatus further includes a single terminal for deriving an alarm signal generated by the pulse generation unit, and the failure content and the failed phase can be determined by the alarm signal derived from the single terminal.
  • the apparatus in a device or circuit that receives an alarm signal derived from a single terminal, the type of failure and the phase in which the failure has occurred can be determined.
  • the determination unit includes a latch circuit that receives a signal output from the device, and a monostable multivibrator that outputs a pulse having a width corresponding to a failure type from the transition timing of the output of the latch circuit. Is desirable. According to this configuration, a pulse having a width corresponding to the failed phase can be generated, and the failed phase can be determined.
  • the alarm signal generation unit may include a counter that outputs a number of pulses corresponding to a failed phase among the plurality of phases. With this counter, the number of pulses corresponding to the failed phase can be generated, and the failed phase can be determined.
  • the alarm signal generation unit may include a monostable multivibrator that outputs a pulse having a width corresponding to a failed phase among the plurality of phases. With this monostable multivibrator, a pulse having a width corresponding to the failed phase can be generated, and the failed phase can be determined.
  • a determination unit determines a failure type or a failed phase according to a determination result of the first step, A second step of generating an alarm signal including a pulse corresponding to a failure type or a phase that has failed among the plurality of phases, and the details of the failure by the alarm signal generated in the second step, it is characterized in that it is possible to determine a failed phase.
  • the type of the failure that has occurred can be determined by the number of pulses and the pulse width.
  • the type of fault and the type of fault that occurred are generated by a configuration that generates an alarm signal having the number of pulses corresponding to the phase in which the fault has occurred or a configuration that generates an alarm signal having a pulse width that corresponds to the phase in which the fault has occurred.
  • the detected phase can be determined by the number of pulses and the pulse width. For this reason, in a device or circuit that receives an alarm signal derived from a single terminal, the type of failure and the phase in which the failure has occurred can be determined.
  • the phase in which the failure has occurred can be determined by the number of pulses and the pulse width included in the alarm signal. That is, the above-described problem is solved by a configuration for generating an alarm signal having a pulse number corresponding to a phase in which a failure has occurred or a configuration for generating an alarm signal having a pulse width corresponding to a phase in which a failure has occurred.
  • “failure” refers to a state in which some trouble occurs and normal operation cannot be performed. In addition to the case where the state continues, the case where the state is intermittently included is also included.
  • an alarm signal including a pulse width corresponding to the type of failure and including the number of pulses corresponding to the phase in which the failure has occurred is generated.
  • This alarm signal is derived from a single terminal, and the type of failure and the phase in which the failure has occurred are determined in a device or circuit that receives the alarm signal.
  • FIG. 1 is a diagram showing a configuration example of an alarm signal generation circuit according to the first embodiment of the present invention.
  • the alarm signal generation circuit according to the present embodiment has an alarm signal OCx, OCy, OCz, OHx, OHy, OHz as input, and a phase determination unit 10 that determines a phase in which a failure has occurred, and this phase determination unit 10.
  • an alarm signal generation unit 20 for generating an alarm signal The output of the alarm signal generator 20 is derived from a single terminal 100.
  • the alarm signal OCx is a signal indicating that an overcurrent (OC) failure has occurred in the x phase.
  • the alarm signal OCy is a signal indicating that an OC failure has occurred in the y phase.
  • the alarm signal OCz is a signal indicating that an OC failure has occurred in the z phase.
  • the alarm signal OHx is a signal indicating that an overheat (OH) failure has occurred in the x phase.
  • the alarm signal OHy is a signal indicating that an OH failure has occurred in the y phase.
  • the alarm signal OHz is a signal indicating that an OH failure has occurred in the z phase.
  • the phase determination unit 10 that receives these alarm signals is configured as shown in FIG. 2, for example.
  • the phase discriminating unit 10 includes latch circuits 11-1, 11-2, 11-3, 11-4 provided corresponding to the alarm signals OCx, OCy, OCz, OHx, OHy, OHz. 11-5, 11-6, and monostable multivibrators (indicated as “MM” in the figure) 12-1, 12-2, 12-3, 12- provided corresponding to the respective latch circuits 4, 12-5, 12-6.
  • the latch circuits 11-1 to 11-6 have a function of holding the logic level of the alarm signal when the corresponding alarm signal is input.
  • the monostable multivibrators 12-1 to 12-6 have different time constants for each type of failure, and correspond to the type of failure and differ for each type of failure from the transition timing of the outputs of the latch circuits 11-1 to 11-6. Output a pulse of width.
  • monostable multivibrators hereinafter simply abbreviated as monomulti mono multivibrator
  • 12-1, 12-2 and 12-3 corresponding to alarm signals OCx, OCy and OCz indicating an OC failure
  • the mono multis 12-4, 12-5 and 12-6 corresponding to the alarm signals OHx, OHy and OHz indicating the OH failure output pulses having different pulse widths.
  • the pulse width of the alarm signals OCx, OCy and OCz indicating an OC failure is Po and the pulse width of the alarm signals OHx, OHy and OHz indicating an OH failure is Ph
  • the magnitude of the pulse width is such that Po ⁇ Ph. It is in.
  • Outputs of the monostable multivibrators 12-1 to 12-6 are input to the alarm signal generator.
  • alarm signals OCx ′, OCy ′, and OCz ′ having pulse widths corresponding to failure types are input to the OC alarm output circuit 21 in the alarm signal generation unit 20.
  • alarm signals OHx ′, OHy ′, and OHz ′ having a pulse width corresponding to the failure type are input to the OH alarm output circuit 22 in the alarm signal generation unit 20.
  • the OC alarm output circuit 21 is configured as shown in FIG. 3, for example.
  • the OC alarm output circuit 21 of this example includes delay circuits 21-1 and 21-2 provided corresponding to the alarm signals OCx ′, OCy ′, and OCz ′ having different pulse widths for each type of failure.
  • 21-3 counters 21-4, 21-5, 21-6 provided corresponding to the alarm signals OCx ′, OCy ′, OCz ′, and counters 21-4, 21-5, 21, respectively.
  • OR gates 21-7, 21-8, 21-9 that output the logical sum of the pulses output from ⁇ 6 with the corresponding alarm signals OCx ′, OCy ′, OCz ′, and these OR gates 21-7 OR gate 21-10 that outputs a logical sum of the outputs of 21-8 and 21-9.
  • Delay circuits 21-1, 21-2, and 21-3 delay and output corresponding alarm signals OCx ', OCy', and OCz 'by a predetermined time.
  • the delay time by the delay circuits 21-1, 21-2, and 21-3 is the same, and is longer than the time corresponding to the maximum width of the pulse width that is different for each failure type, which will be described later.
  • the counters 21-4, 21-5, and 21-6 output different numbers of pulses when the corresponding alarm signals OCx ′, OCy ′, and OCz ′ are input. That is, the number of pulses corresponding to the phase is output.
  • the number of pulses corresponding to the alarm signal OCx ′ is “1”
  • the number of pulses corresponding to the alarm signal OCy ′ is “2”
  • the number of pulses corresponding to the alarm signal OCz ′ is “3”.
  • the pulses output from the counters 21-4, 21-5, 21-6 are respectively output by the OR gates 21-7, 21-8, 21-9, 21-10 to the corresponding alarm signals OCx ′, OCy ′, ORed with OCz ′ and output.
  • the OH alarm output circuit 22 is configured as shown in FIG. 4, for example.
  • the OH alarm output circuit 22 of this example includes delay circuits 22-1 and 22-2 provided corresponding to alarm signals OHx ′, OHy ′, and OHz ′ having different pulse widths depending on the type of failure.
  • Delay circuits 22-1, 22-2, and 22-3 delay and output corresponding alarm signals OHx ′, OHy ′, and OHz ′ by a predetermined time.
  • the delay time by these delay circuits 22-1, 22-2, and 22-3 is the same, and is longer than the time corresponding to the maximum width of the pulse width that is different for each failure type, which will be described later.
  • the counters 22-4, 22-5, and 22-6 receive different numbers of pulses (that is, the numbers corresponding to the failed phases) when the corresponding alarm signals OHx ′, OHy ′, and OHz ′ are input. Pulse). In this example, the number of pulses corresponding to the alarm signal OHx ′ is “1”, the number of pulses corresponding to the alarm signal OHy ′ is “2”, and the number of pulses corresponding to the alarm signal OHz ′ is “3”.
  • the pulses output from the counters 22-4, 22-5, 22-6 are respectively output by the OR gates 22-7, 22-8, 22-9, 22-10 to the corresponding alarm signals OHx ′, OHy ′, ORed with OHz 'and output.
  • the output of the OC alarm output circuit 21 and the output of the OH alarm output circuit 22 are logically ORed by an OR gate 23 to become an alarm signal ALM.
  • an example of the alarm signal ALM derived by the present embodiment will be described with reference to FIG.
  • the alarm signal ALM has six types of waveforms S1 shown in FIG. ⁇ S6 are generated.
  • the relationship between the pulse width Po of the alarm signal indicating the OC failure and the pulse width Ph of the alarm signal indicating the OH failure is Po ⁇ Ph. Therefore, the type of failure can be determined based on the pulse width of the first part of the alarm signal waveform.
  • the number of pulses is “1” when the failed phase is the x phase
  • the number of pulses is “2” when the failed phase is the y phase
  • the failed phase is the z phase.
  • the number of pulses “3” is included in the waveform of the alarm signal. Therefore, the failed phase can be determined based on the number of pulses.
  • the type of failure can be determined by the pulse width for the alarm signal output from the single terminal 100, and the number of pulses can be determined. The phase where the failure occurred can be identified.
  • the pulse width of the alarm signal indicating OC failure is Po
  • the pulse width of the alarm signal indicating OH failure is Ph
  • the pulse width of the alarm signal indicating UV failure is Pu
  • the magnitude of the pulse width is Po ⁇ Ph. ⁇ Pu relationship. Therefore, the type of failure can be determined based on the pulse width of the first part of the alarm signal waveform.
  • the number of pulses is “1” when the failed phase is the x phase
  • the number of pulses is “2” when the failed phase is the y phase
  • the failed phase is the z phase.
  • the number of pulses “3” is included in the waveform of the alarm signal. Therefore, the failed phase can be determined based on the number of pulses.
  • an alarm signal including a pulse width corresponding to the type of failure and including a pulse width corresponding to the phase in which the failure has occurred is generated.
  • This alarm signal is derived from a single terminal, and the type of failure and the phase in which the failure has occurred are identified in a device or circuit that receives the alarm signal.
  • FIG. 7 is a diagram showing a configuration example of an alarm signal generation circuit according to the second embodiment of the present invention.
  • the alarm signal generation circuit according to the present embodiment includes an alarm type determination unit 30 that receives an alarm signal OCx, OCy, OCz, OHx, OHy, OHz, UVx, UVy, and UVz and determines a failure type.
  • An alarm signal generation unit 40 that receives a determination signal from the alarm type determination unit 30 and generates an alarm signal is provided.
  • the alarm signal OCx is a signal indicating that an overcurrent (OC) failure has occurred in the x phase.
  • the alarm signal OCy is a signal indicating that an OC failure has occurred in the y phase.
  • the alarm signal OCz is a signal indicating that an OC failure has occurred in the z phase.
  • the alarm signal OHx is a signal indicating that an overheat (OH) failure has occurred in the x phase.
  • the alarm signal OHy is a signal indicating that an OH failure has occurred in the y phase.
  • the alarm signal OHz is a signal indicating that an OH failure has occurred in the z phase.
  • the alarm signal UVx is a signal indicating that a low voltage (UV) failure has occurred in the x phase.
  • the alarm signal UVy is a signal indicating that a UV failure has occurred in the y phase.
  • the alarm signal UVz is a signal indicating that a UV failure has occurred in the z phase.
  • the alarm type determination unit 30 that receives these alarm signals is configured as shown in FIG. 8, for example.
  • the alarm type discriminating unit 30 ORs 31-1, 31-2, and 31-3 for outputting the logical sum of each alarm signal for each phase, and a monophonic device provided corresponding to each phase. Multi-32-1, 32-2 and 32-3, and OR gates 31-4, 31-5 and 31-6 for outputting the logical sum of each alarm type for each failure type are provided.
  • the monomulties 32-1, 32-2 and 32-3 are provided corresponding to the phases, and signals x, y and having a pulse width corresponding to each phase from the transition timing of the output of the corresponding OR gate.
  • z is output.
  • the pulse width of the signal x corresponding to the x phase is Px
  • the pulse width of the signal y corresponding to the y phase is Py
  • the pulse width of the signal z corresponding to the z phase is Pz
  • the magnitude of the pulse width is in the relationship of Px ⁇ Py ⁇ Pz. That is, the signal x, the signal y, and the signal z are signals having a pulse width corresponding to each phase.
  • the alarm signal generator 40 generates an alarm signal OC indicating an OC failure, an alarm signal OH indicating an OH failure, and an alarm signal UV indicating a UV failure as AND gates 43-1, 43-2, 43-. 3 and an alarm type-specific pulse generation circuit 41 that is input via the No. 3 signal.
  • the alarm signal generator 40 includes a reset / set flip-flop (hereinafter abbreviated as RSFF) 42 in which the output of the pulse generation circuit 41 for each alarm type is input to a set terminal (S terminal), and a Q terminal of the RSFF 42.
  • RSFF reset / set flip-flop
  • Selector 44 that receives the output of the selector 44, monomulties 45-1, 45-2, and 45-3 that receive the output of the selector 44, and outputs of these monomulties 5-1, 45-2, and 45-3 And an OR gate 46 that outputs a logical sum of the two.
  • the alarm type-specific pulse generation circuit 41 ORs the mono multis 41-1, 41-2, and 41-3 and outputs the logical sum of the outputs of the mono multis 41-1, 41-2, and 41-3. -4.
  • the mono multi 41-1, 41-2 and 41-3 output a signal having a pulse width corresponding to the failure type.
  • the monomulti 41-1 is a signal OC having a pulse width corresponding to an OC failure
  • the monomulti 41-2 is a signal OH having a pulse width corresponding to an OH failure
  • the monomulti 41-3 is compatible with a UV failure.
  • a signal UV having a pulse width to be output is output.
  • the RSFF 42 is set by a signal having a pulse width corresponding to the type of failure, which is output from the mono-multi 41-1, 41-2 and 41-3.
  • the output of the RSFF 42 is input to any of mono-multies 45-1, 45-2, and 45-3 by the selector 44.
  • the mono-multies 45-1, 45-2, and 45-3 are provided corresponding to the signal x, the signal y, and the signal z, respectively, and in this example, they correspond to each phase from the falling timing of the corresponding signal. Outputs a pulse with the width of
  • the outputs of the mono multis 45-1, 45-2 and 45-3 are logically ORed by the OR gate 46 and output from the single terminal 100 as the signal ALM. Since the output of the OR gate 46 is applied to the reset R terminal of the RSFF 42, the RSFF 42 is reset by the output of the OR gate 46. Thereby, the output from the inversion Q terminal of RSFF42 returns to the original state.
  • the output from the inverted Q terminal of the RSFF 42 is one input of each of the two-input AND gates 43-1, 43-2, and 43-3. Therefore, when the output of the alarm type-specific pulse generation circuit 41 is input to the set S terminal of the RSFF 42, the output state of the RSFF 42 is changed regardless of the other input of the AND gates 43-1, 43-2, 43-3. Maintained. That is, among the alarm signals OC, OH, and UV, the one that rises early is prioritized, and the RSFF 42 is not set to a set state by another signal. For this reason, even if a plurality of alarms rise at the same time, non-priority ones are not accepted and the alarm signals do not overlap. For this reason, it is possible to reliably determine the type of failure by the pulse width and the phase in which the failure has occurred.
  • the selector 44 in FIG. 9 is configured as shown in FIG. 10, for example.
  • the selector 44 in this example includes a MOS transistor 44-1 to which the signal x is applied to the gate terminal, a MOS transistor 44-2 to which the signal y is applied to the gate terminal, and a signal z to the gate terminal.
  • MOS transistor 44-3 The output from the Q terminal of the RSFF 42 is applied to the source terminals of the MOS transistors 44-1, 44-2, 44-3. Since the selector 44 has such a configuration, a signal having a pulse width corresponding to each phase is input to the corresponding monomulties 45-1 to 45-3.
  • signals including the pulse width Px of the signal x corresponding to the x phase, the pulse width Py of the signal y corresponding to the y phase, and the pulse width Pz of the signal z corresponding to the z phase are monomulti 45-1, 45-. 2 and 45-3.
  • the alarm signal ALM derived by the present embodiment will be described with reference to FIG.
  • nine types of alarm signals SS1 to SS9 may be generated as shown in FIG.
  • the pulse width of the alarm signal indicating OC failure is Po
  • the pulse width of the alarm signal indicating OH failure is Ph
  • the pulse width of the alarm signal indicating UV failure is Pu
  • the magnitude of the pulse width is Po ⁇ Ph. ⁇ Pu relationship. Therefore, the failure type can be determined by the pulse width of the first rising portion of the alarm signal waveform.
  • the pulse width of the alarm signal indicating the x-phase failure is Px
  • the pulse width of the alarm signal indicating the y-phase failure is Py
  • the pulse width of the alarm signal indicating the z-phase failure is Pz.
  • the magnitude of the pulse width is in a relationship of Px ⁇ Py ⁇ Pz. Therefore, the type of failure can be determined based on the pulse width during the low level after the first falling portion of the waveform of the alarm signal.
  • the repetition period is longer than that of each signal described with reference to FIGS. 5, 6, and 11. This can be determined by sampling each signal using a sufficiently short clock. As a result, the type of failure and the phase in which the failure has occurred can be determined.
  • the type of failure and the phase in which the failure has occurred are determined by the alarm signal derived from a single terminal. Can be determined.
  • the following alarm signal generation method is realized. That is, for a device that performs a multi-phase operation, the determination unit determines the failure type or the failed phase, and the alarm signal generation unit determines the failure type or the above according to the determination result in the first step. A second step of generating an alarm signal including a pulse corresponding to a failed phase among a plurality of phases, and the failure content and the failed phase can be determined by the alarm signal generated in the second step. An alarm signal generation method is realized.
  • the type of the failure that has occurred can be determined by the number of pulses and the pulse width.
  • the failure detection target is an IPM having a three-phase output
  • the present invention is not limited to three phases, and it is apparent that the present invention can be applied to a plurality of phases (two or more phases). Also, not only when the driver IC of the IGBT or MOS gate power element is provided in the IPM module, but also when the driver IC is provided outside the module and an alarm signal is output from a single terminal. It is clear that the present invention can be applied.
  • a failure has occurred due to a configuration that generates an alarm signal having a pulse number corresponding to the phase in which the failure has occurred or a configuration that generates an alarm signal having a pulse width corresponding to the phase in which the failure has occurred.
  • the phase can be determined by the number of pulses and the pulse width. For this reason, in a device or circuit that receives an alarm signal derived from a single terminal, the type of failure and the phase in which the failure has occurred can be determined.
  • Alarm signal generator 21 OC alarm output circuits 21-1 to 21-3, 22-1 to 22-3 Delay circuit 21-4, 21-5, 21-6 Counters 22-7 to 22-10, 31-1 to 31-6, 46 OR gate 30
  • Alarm type determination unit 40 Alarm signal generation unit 41 Pulse generation circuit 42 for each alarm type RS flip-flop 43- 1 to 43-3 AND gate 44 selector 44-1 to 44-3 MOS transistor 100 terminal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Manipulation Of Pulses (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Power Conversion In General (AREA)

Abstract

 発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できるようにする。複数相動作を行う機器について、故障種類または故障した相とを判別し、その判別結果に応じて、故障種類または複数相のうち故障した相に対応するパルスを含むアラーム信号をアラーム信号生成部(20)によって生成する。生成されるアラーム信号によって故障内容および故障した相を判別できるようにすれば、故障が発生した相に対応したパルス数を有するアラーム信号を生成する構成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成する構成によって、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できる。

Description

アラーム信号生成回路、アラーム信号生成方法
 本発明はアラーム信号生成回路、アラーム信号生成方法に関し、特にIPM(Intelligent Power Module)から出力されるアラームについて、故障した相および故障種類を判別するためのアラーム信号を生成する回路、アラーム信号生成方法に関する。
 IPMは、IGBT(Insulated Gate Bipolar Transistor)チップやFWD(Free Wheeling Diode)チップを搭載したモジュールに、さらに駆動および保護機能を内蔵したドライバICを組み込んだインテリジェント型パワーデバイスである。IPMに組み込まれたドライバICは、IGBTチップの温度やIGBTチップに流れる電流を検出する機能を有している。ドライバICは、IGBTチップの温度検出値が所定の値を超えた場合、過熱として検出する。また、ドライバICは、IGBTチップに流れる電流が所定の値を超えた場合、過電流として検出する。ドライバICは、これら過熱や過電流を検出した場合、アラームを出力する。
 例えば、特許文献1には、故障の種類により、故障の軽重が分かるようにそれぞれ異なる信号を制御回路へ伝達する技術が記載されている。すなわち、特許文献1に記載の技術では、重故障を示す信号として1ms幅のパルスを発生するパルス発生器と、軽故障を示す信号として2ms幅のパルスを発生するパルス発生器を設け、故障の種類により、故障の軽重が分かるようにそれぞれ異なる信号を制御回路へ伝達している。
 また、特許文献2には、過電流検出後、各スイッチング素子に診断信号を順次追加し、過電流を検出した時と同じアームの対になるスイッチング素子の破壊と判断し、そのスイッチング素子とそのスイッチング素子が接続されている逆の電圧母線に接続されている他のアームのスイッチング素子とに直流制動電流を流すための駆動信号を印加し、直流制動を行うことが記載されている。
 さらに、特許文献3には、過電流を検出する過電流検出回路、故障相を検出する故障相検出回路、故障相と健全相とを識別すること、健全相のアームをオン・オフ制御して、電動機に直流電流を供給し、電動機に直流電流をかけて停止することが記載されている。
特開2003-88093号公報 特開平5-30771号公報 特開平8-149868号公報
 ところで、IGBTやMOSゲートパワー素子のドライバICが、IPMのモジュール内に設けられている場合、チップサイズの増大に伴うコスト高を防止するために、アラーム信号を出力するためのパッドを1つだけ設けることがある。そのような場合、アラーム信号を出力することにより、故障が発生したことを判別することができる。しかしながら、故障が発生したことを判別することはできても、どの相において故障が発生したか判別することはできない。
 どの相において故障が発生したか判別するために、各相について個別にパッドを設けることも考えられる。しかしながら、その場合、チップサイズが増大し、コスト高を招く、という問題がある。
 このチップサイズに関する問題は、特許文献1、特許文献2および特許文献3に記載の技術によって解決することはできない。
 本発明は上述した問題を解決するためになされたものであり、その目的は、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できるアラーム信号生成回路、アラーム信号生成方法を提供することである。
 本発明の一態様によるアラーム信号生成回路は、複数相動作を行う機器について、故障種類または故障した相とを判別する判別部と、前記判別部による判別結果に応じて、故障種類または前記複数相のうち故障した相に対応するパルスを含むアラーム信号を生成するアラーム信号生成部と、を含み、前記アラーム信号生成部によって生成されるアラーム信号によって前記故障内容および故障した相を判別できるようにしたことを特徴とする。このような構成によれば、故障が発生した相に対応したパルス数を有するアラーム信号を生成する構成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成する構成によって、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できる。
 また、前記パルス生成部によって生成されるアラーム信号を導出するための単一の端子をさらに含み、前記単一の端子から導出されるアラーム信号によって前記故障内容および故障した相を判別できることが望ましい。このような構成によれば、単一の端子から導出したアラーム信号を入力とする装置や回路において、故障の種類および故障が発生した相を判別できる。
 さらに、前記判別部は、前記機器から出力される信号を入力とするラッチ回路と、前記ラッチ回路の出力の遷移タイミングから故障種類に対応する幅のパルスを出力する単安定マルチバイブレータとを含むことが望ましい。この構成によれば、故障した相に対応する幅のパルスを生成でき、故障した相を判別することができる。
 なお、前記アラーム信号生成部は、前記複数相のうち故障した相に対応する数のパルスを出力するカウンタを含んでいてもよい。このカウンタにより、故障した相に対応する数のパルスを生成でき、故障した相を判別することができる。
 前記アラーム信号生成部は、前記複数相のうち故障した相に対応する幅のパルスを出力する単安定マルチバイブレータを含んでいてもよい。この単安定マルチバイブレータにより、故障した相に対応する幅のパルスを生成でき、故障した相を判別することができる。
 本発明の一態様によるアラーム信号生成方法は、複数相動作を行う機器について、判別部が、故障種類または故障した相とを判別する第1ステップと、前記第1ステップによる判別結果に応じて、アラーム信号生成部が、故障種類または前記複数相のうち故障した相に対応するパルスを含むアラーム信号を生成する第2ステップと、を含み、前記第2ステップにおいて生成されるアラーム信号によって前記故障内容および故障した相を判別できるようにしたことを特徴とする。この方法によれば、故障が発生した相に対応したパルス数を有するアラーム信号を生成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成することによって、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できる。
 故障が発生した相に対応したパルス数を有するアラーム信号を生成する構成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成する構成によって、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できる。このため、単一の端子から導出したアラーム信号を入力とする装置や回路において、故障の種類および故障が発生した相を判別できる。
本発明の第1実施形態によるアラーム信号生成回路の構成例を示す図である。 図1中の相判別部の構成例を示す図である。 図1中のOCアラーム出力回路の構成例を示す図である。 図1中のOHアラーム出力回路の構成例を示す図である。 第1実施形態によるアラーム信号の例を示す図である。 第1実施形態によるアラーム信号の他の例を示す図である。 本発明の第2実施形態によるアラーム信号生成回路の構成例を示す図である 図7中のアラーム種類判別部の構成例を示す図である。 図7中のアラーム信号生成部の構成例を示す図である。 図9中のセレクタの構成例を示す図である。 第2実施形態によるアラーム信号の例を示す図である。
 以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。
 (故障の種類)
 ここでは、監視対象の機器が、IPMである場合について説明する。IPMにおいて発生する故障の種類として、過熱(Over Heat:以下、OHと呼ぶことがある)故障、過電流(Over Current:以下、OCと呼ぶことがある)故障、低電圧(Under Voltage:以下、UVと呼ぶことがある)故障等がある。そして、これらの故障が発生した場合に、単一の端子からアラーム信号が出力される。
 (発明の概要)
 本発明では、故障が発生した相を、アラーム信号に含まれるパルス数やパルス幅によって判別できるようにしている。すなわち、故障が発生した相に対応したパルス数を有するアラーム信号を生成する構成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成する構成によって、上述した問題を解決する。
 なお、本明細書において「故障」とはなんらかの不具合が生じ、正常な動作を行うことのできない状態を指す。その状態が継続している場合の他、断続的にその状態になる場合も含む。
 (第1実施形態)
 第1実施形態では、故障の種類に対応するパルス幅を含み、かつ、故障が発生した相に対応するパルス数を含むアラーム信号を生成する。このアラーム信号を単一の端子から導出し、そのアラーム信号を入力とする装置や回路において、故障の種類および故障が発生した相を判別する。
 図1は、本発明の第1実施形態によるアラーム信号生成回路の構成例を示す図である。図1において、本実施形態によるアラーム信号生成回路は、アラーム信号OCx、OCy、OCz、OHx、OHy、OHzを入力とし、故障が発生した相を判別する相判別部10と、この相判別部10による判別信号を入力とし、アラーム信号を生成するアラーム信号生成部20とを備えている。アラーム信号生成部20の出力は単一の端子100から導出される。
 アラーム信号OCxは、過電流(OC)故障がx相に発生したことを示す信号である。アラーム信号OCyは、同じく、OC故障がy相に発生したことを示す信号である。アラーム信号OCzは、同じく、OC故障がz相に発生したことを示す信号である。
 アラーム信号OHxは、過熱(OH)故障がx相に発生したことを示す信号である。アラーム信号OHyは、同じく、OH故障がy相に発生したことを示す信号である。アラーム信号OHzは、同じく、OH故障がz相に発生したことを示す信号である。
 これらのアラーム信号を入力とする相判別部10は、例えば、図2のように構成される。図2において、相判別部10は、各アラーム信号OCx、OCy、OCz、OHx、OHy、OHz、に対応して設けられたラッチ回路11-1、11-2、11-3、11-4、11-5、11-6と、これら各ラッチ回路に対応して設けられた単安定マルチバイブレータ(monostable multivibrator、図中「MM」と表記)12-1、12-2、12-3、12-4、12-5、12-6と、を備えている。
 ラッチ回路11-1~11-6は、対応するアラーム信号が入力された場合に、そのアラーム信号の論理レベルを保持する機能を有している。
 単安定マルチバイブレータ12-1~12-6は、故障種類ごとに異なる時定数を有し、ラッチ回路11-1~11-6の出力の遷移タイミングから、故障種類に対応し故障種類ごとに異なる幅のパルスを出力する。本例では、OC故障を示すアラーム信号OCx、OCyおよびOCzに対応する単安定マルチバイブレータ(monostable multivibrator、以下、適宜、モノマルチ mono multivibratorと略称する)12-1、12-2および12-3と、OH故障を示すアラーム信号OHx、OHyおよびOHzに対応するモノマルチ12-4、12-5および12-6と、は互いに異なるパルス幅のパルスを出力する。本例では、OC故障を示すアラーム信号OCx、OCyおよびOCzのパルス幅をPo、OH故障を示すアラーム信号OHx、OHyおよびOHzのパルス幅をPhとすると、パルス幅の大小はPo<Phの関係にある。単安定マルチバイブレータ12-1~12-6の出力は、アラーム信号生成部に入力される。
 図1に戻り、故障種類に対応するパルス幅を有するアラーム信号OCx’、OCy’およびOCz’は、アラーム信号生成部20内のOCアラーム出力回路21に入力される。また、故障種類に対応するパルス幅を有するアラーム信号OHx’、OHy’およびOHz’は、アラーム信号生成部20内のOHアラーム出力回路22に入力される。
 OCアラーム出力回路21は、例えば、図3のように構成される。図3において、本例のOCアラーム出力回路21は、故障種類ごとに異なるパルス幅を有するアラーム信号OCx’、OCy’、OCz’それぞれに対応して設けられたディレイ回路21-1、21-2、21-3と、これらアラーム信号OCx’、OCy’、OCz’それぞれに対応して設けられたカウンタ21-4、21-5、21-6と、これらカウンタ21-4、21-5、21-6からそれぞれ出力されるパルスを、対応するアラーム信号OCx’、OCy’、OCz’と論理和して出力するORゲート21-7、21-8、21-9と、これらORゲート21-7、21-8、21-9の出力を論理和して出力するORゲート21-10と、を備えている。
 ディレイ回路21-1、21-2、21-3は、それぞれに対応するアラーム信号OCx’、OCy’、OCz’を予め定められた時間だけ遅延させて出力する。これらディレイ回路21-1、21-2、21-3によって遅延させる時間は同一とし、後述する、故障種類ごとに異なるパルス幅の最大幅に相当する時間より大なる時間とする。
 カウンタ21-4、21-5、21-6は、それぞれに対応するアラーム信号OCx’、OCy’、OCz’が入力された場合に、互いに異なる数のパルスを出力する。つまり、相に対応する数のパルスを出力する。本例では、アラーム信号OCx’に対応するパルス数が「1」、アラーム信号OCy’に対応するパルス数が「2」、アラーム信号OCz’に対応するパルス数が「3」、とする。これらカウンタ21-4、21-5、21-6からそれぞれ出力されるパルスは、ORゲート21-7、21-8、21-9、21-10によって、対応するアラーム信号OCx’、OCy’、OCz’と論理和され、出力される。
 また、OHアラーム出力回路22は、例えば、図4のように構成される。図4において、本例のOHアラーム出力回路22は、故障種類ごとに異なるパルス幅を有するアラーム信号OHx’、OHy’、OHz’それぞれに対応して設けられたディレイ回路22-1、22-2、22-3と、これらアラーム信号OHx’、OHy’、OHz’それぞれに対応して設けられたカウンタ22-4、22-5、22-6と、これらカウンタ22-4、22-5、22-6からそれぞれ出力されるパルスを、対応するアラーム信号OHx’、OHy’、OHz’と論理和して出力するORゲート22-7、22-8、22-9と、これらORゲート22-7、22-8、22-9の出力を論理和して出力するORゲート22-10と、を備えている。
 ディレイ回路22-1、22-2、22-3は、それぞれに対応するアラーム信号OHx’、OHy’、OHz’を予め定められた時間だけ遅延させて出力する。これらディレイ回路22-1、22-2、22-3によって遅延させる時間は同一とし、後述する、故障種類ごとに異なるパルス幅の最大幅に相当する時間より大なる時間とする。
 カウンタ22-4、22-5、22-6は、それぞれに対応するアラーム信号OHx’、OHy’、OHz’が入力された場合に、互いに異なる数のパルス(つまり故障した相に対応する数のパルス)を出力する。本例では、アラーム信号OHx’に対応するパルス数が「1」、アラーム信号OHy’に対応するパルス数が「2」、アラーム信号OHz’に対応するパルス数が「3」、とする。これらカウンタ22-4、22-5、22-6からそれぞれ出力されるパルスは、ORゲート22-7、22-8、22-9、22-10によって、対応するアラーム信号OHx’、OHy’、OHz’と論理和され、出力される。
 図1に戻り、OCアラーム出力回路21の出力およびOHアラーム出力回路22の出力は、ORゲート23によって論理和され、アラーム信号ALMとなる。
 ここで、本実施形態によって導出されるアラーム信号ALMの例について、図5を参照して説明する。本例では、OH故障およびOC故障について、故障種類および故障した相(3相のうちのいずれであるか)を判別できる必要があるため、アラーム信号ALMについて、図5に示す6種類の波形S1~S6を生成する。ここでは、OC故障を示すアラーム信号のパルス幅Po、OH故障を示すアラーム信号のパルス幅Phとの関係は、Po<Phである。したがって、アラーム信号の波形の最初の部分のパルス幅によって、故障種類を判別できる。
 さらに、図5中に表記したように、故障した相がx相である場合はパルス数「1」、故障した相がy相である場合はパルス数「2」、故障した相がz相である場合はパルス数「3」がアラーム信号の波形に含まれている。したがって、このパルス数によって、故障した相を判別できる。
 以上のように、故障種類および故障した相に対応する波形を有するアラーム信号を生成するため、単一の端子100から出力されるアラーム信号について、パルス幅によって故障の種類を判別でき、パルス数によって故障が発生した相を判別できる。
 ところで、上記は、OH故障およびOC故障について、故障種類および故障した相(3相のうちのいずれであるか)を判別する場合について説明したが、これらに加えて低電圧(Under Voltage:以下、UVと呼ぶことがある)故障についても故障した相を判別する場合、図3及び図4を参照して説明したアラーム出力回路をUV故障に対応して追加し、他の故障とは異なるパルス幅を有するアラーム信号を生成すればよい。OH故障、OC故障およびUV故障について故障種類および故障した相を判別するには、図6に示すように、9種類のアラーム信号S1~S9を生成すればよい。ここで、OC故障を示すアラーム信号のパルス幅をPo、OH故障を示すアラーム信号のパルス幅をPh、UV故障を示すアラーム信号のパルス幅をPu、とすると、パルス幅の大小はPo<Ph<Puの関係にある。したがって、アラーム信号の波形の最初の部分のパルス幅によって、故障種類を判別できる。
 さらに、図6中に表記したように、故障した相がx相である場合はパルス数「1」、故障した相がy相である場合はパルス数「2」、故障した相がz相である場合はパルス数「3」がアラーム信号の波形に含まれている。したがって、このパルス数によって、故障した相を判別できる。
 (第2実施形態)
 第2実施形態では、故障の種類に対応するパルス幅を含み、かつ、故障が発生した相に対応するパルス幅を含むアラーム信号を生成する。このアラーム信号を単一の端子から導出し、そのアラーム信号を入力とする装置や回路において、故障の種類および故障が発生した相を識別する。
 図7は、本発明の第2実施形態によるアラーム信号生成回路の構成例を示す図である。図7において、本実施形態によるアラーム信号生成回路は、アラーム信号OCx、OCy、OCz、OHx、OHy、OHz、UVx、UVy、UVzを入力とし、故障種類を判別するアラーム種類判別部30と、このアラーム種類判別部30による判別信号を入力とし、アラーム信号を生成するアラーム信号生成部40とを備えている。
 アラーム信号OCxは、過電流(OC)故障がx相に発生したことを示す信号である。アラーム信号OCyは、同じく、OC故障がy相に発生したことを示す信号である。アラーム信号OCzは、同じく、OC故障がz相に発生したことを示す信号である。
 アラーム信号OHxは、過熱(OH)故障がx相に発生したことを示す信号である。アラーム信号OHyは、同じく、OH故障がy相に発生したことを示す信号である。アラーム信号OHzは、同じく、OH故障がz相に発生したことを示す信号である。
 アラーム信号UVxは、低電圧(UV)故障がx相に発生したことを示す信号である。アラーム信号UVyは、同じく、UV故障がy相に発生したことを示す信号である。アラーム信号UVzは、同じく、UV故障がz相に発生したことを示す信号である。
 これらのアラーム信号を入力とするアラーム種類判別部30は、例えば、図8のように構成される。図8において、アラーム種類判別部30は、アラーム信号について、各相ごとに論理和して出力するORゲート31-1、31-2、31-3と、各相に対応して設けられたモノマルチ32-1、32-2および32-3と、アラーム信号について、各故障種類ごとに論理和して出力するORゲート31-4、31-5、31-6と、を備えている。
 モノマルチ32-1、32-2および32-3は、各相に対応して設けられ対応するORゲートの出力の遷移タイミングから、各相に対応するパルス幅のパルスを有する信号x、yおよびzを出力する。本例では、x相に対応する信号xのパルス幅をPx、y相に対応する信号yのパルス幅をPy、z相に対応する信号zのパルス幅をPz、とすると、本例では、パルス幅の大小はPx<Py<Pzの関係にある。つまり、信号x、信号y、信号zは、各相に対応するパルス幅を有する信号である。
 モノマルチ32-1、32-2および32-3の出力である信号x、信号yおよび信号z、ならびに、ORゲート31-4、31-5、31-6の出力である、OC故障を示すアラーム信号OC、OH故障を示すアラーム信号OH、UV故障を示すアラーム信号UVは、アラーム信号生成部に入力される。
 図7中のアラーム信号生成部40は、例えば、図9のように構成される。図9を参照すると、アラーム信号生成部40は、OC故障を示すアラーム信号OC、OH故障を示すアラーム信号OH、UV故障を示すアラーム信号UVが、ANDゲート43-1、43-2、43-3を介して入力されるアラーム種類別パルス生成回路41とを有している。また、アラーム信号生成部40は、このアラーム種類別パルス生成回路41の出力がセット端子(S端子)に入力されるリセット・セットフリップフロップ(以下、RSFFと略称する)42と、RSFF42のQ端子からの出力を入力とするセレクタ44と、セレクタ44の出力を入力とするモノマルチ45-1、45-2および45-3と、これらモノマルチ5-1、45-2および45-3の出力を論理和して出力するORゲート46と、を有している。
 アラーム種類別パルス生成回路41は、モノマルチ41-1、41-2および41-3と、これらモノマルチ41-1、41-2および41-3の出力を論理和して出力するORゲート41-4と、を有している。モノマルチ41-1、41-2および41-3は、故障種類に対応するパルス幅の信号を出力する。本例では、モノマルチ41-1はOC故障に対応するパルス幅を有する信号OC、モノマルチ41-2はOH故障に対応するパルス幅を有する信号OH、モノマルチ41-3はUV故障に対応するパルス幅を有する信号UV、をそれぞれ出力する。
 このような構成において、RSFF42は、モノマルチ41-1、41-2および41-3から出力される、故障種類に対応するパルス幅を有する信号によってセットされる。このRSFF42の出力はセレクタ44によって、モノマルチ45-1、45-2、45-3のいずれかに入力される。モノマルチ45-1、45-2、45-3は、それぞれ、信号x、信号y、信号zに対応して設けられており、本例では、対応する信号の立下りタイミングから各相に対応する幅のパルスを出力する。
 モノマルチ45-1、45-2および45-3の出力は、ORゲート46によって論理和され、信号ALMとして単一の端子100から出力される。
 また、ORゲート46の出力が、RSFF42のリセットR端子に印加されているため、ORゲート46の出力によってRSFF42がリセット状態になる。これにより、RSFF42の反転Q端子からの出力は元の状態に戻る。
 なお、RSFF42の反転Q端子からの出力は、2入力のANDゲート43-1、43-2、43-3それぞれの一方の入力になっている。このため、アラーム種類別パルス生成回路41の出力がRSFF42のセットS端子に入力されると、ANDゲート43-1、43-2、43-3の他方の入力いかんにかかわらずRSFF42の出力状態が維持される。つまり、アラーム信号OC、OH、UVのうち、立上りが早いものが優先され、他の信号によってRSFF42がセット状態になることはない。このため、複数のアラームが同時期に立上っても非優先のものは受付けられず、アラーム信号同士が重なることはない。このため、パルス幅による障害種類および障害が発生した相を確実に判別することができる。
 ここで、図9中のセレクタ44は、例えば、図10のように構成される。図10において、本例のセレクタ44は、信号xがゲート端子に印加されるMOSトランジスタ44-1と、信号yがゲート端子に印加されるMOSトランジスタ44-2と、信号zがゲート端子に印加されるMOSトランジスタ44-3と、を備えている。これらMOSトランジスタ44-1、44-2、44-3のソース端子にはRSFF42のQ端子からの出力が印加される。セレクタ44がこのような構成になっているため、各相に対応するパルス幅の信号が対応するモノマルチ45-1~45-3に入力される。つまり、x相に対応する信号xのパルス幅Px、y相に対応する信号yのパルス幅Py、z相に対応する信号zのパルス幅Pz、を含む信号がモノマルチ45-1、45-2、45-3に入力される。
 ここで、本実施形態によって導出されるアラーム信号ALMの例について、図11を参照して説明する。
 OH故障、OC故障およびUV故障について故障種類および故障した相を判別するには、図11に示すように、9種類のアラーム信号SS1~SS9を生成すればよい。ここで、OC故障を示すアラーム信号のパルス幅をPo、OH故障を示すアラーム信号のパルス幅をPh、UV故障を示すアラーム信号のパルス幅をPu、とすると、パルス幅の大小はPo<Ph<Puの関係にある。したがって、アラーム信号の波形の最初の立上り部分のパルス幅によって、故障種類を判別できる。
 さらに、本例では、x相の故障を示すアラーム信号のパルス幅をPx、y相の故障を示すアラーム信号のパルス幅をPy、z相の故障を示すアラーム信号のパルス幅をPz、とすると、パルス幅の大小はPx<Py<Pzの関係にある。したがって、アラーム信号の波形の最初の立下り部分以後のローレベルになっている期間のパルス幅によって、故障種類を判別できる。
 (パルス幅またはパルス数の判別)
 上述した第1実施形態におけるパルス幅およびパルス数、ならびに、上述した第2実施形態におけるパルス幅については、例えば、図5および図6ならびに図11を参照して説明した各信号よりも繰返し周期が十分に短いクロックを用いて各信号をサンプリングすることにより、判別することができる。これにより、故障種類および故障が発生した相を判別することができる。
 (ICチップ化)
 上述した第1実施形態のアラーム信号生成回路および第2実施形態のアラーム信号生成回路については、いずれもICチップに搭載することにより、顕著な効果が得られる。すなわち、ICチップはコスト軽減のためにピン数の増加を抑える必要があり、上述したアラーム信号生成回路によれば、単一の端子から導出されるアラーム信号によって故障種類および故障が発生した相を判別することができる。
 (アラーム信号生成方法)
 上述した第1実施形態のアラーム信号生成回路および第2実施形態のアラーム信号生成回路においては、以下のようなアラーム信号生成方法が実現されている。すなわち、複数相動作を行う機器について、判別部が、故障種類または故障した相とを判別する第1ステップと、上記第1ステップによる判別結果に応じて、アラーム信号生成部が、故障種類または上記複数相のうち故障した相に対応するパルスを含むアラーム信号を生成する第2ステップと、を含み、上記第2ステップにおいて生成されるアラーム信号によって上記故障内容および故障した相を判別できるようにしたアラーム信号生成方法が実現されている。
 この方法によれば、故障が発生した相に対応したパルス数を有するアラーム信号を生成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成することによって、発生した故障の種類および故障が発生した相を、パルス数やパルス幅によって判別できる。
 (変形例)
 上記は、故障検出対象が3相出力を有するIPMの場合について説明したが、3相には限定されず、複数相(2以上の相)であれば本発明を適用できることは明らかである。また、IGBTやMOSゲートパワー素子のドライバICが、IPMのモジュール内に設けられている場合に限らず、ドライバICがモジュールの外側に設けられ単一の端子からアラーム信号が出力される場合についても、本発明を適用できることは明らかである。
 (まとめ)
 以上のように、故障が発生した相に対応したパルス数を有するアラーム信号を生成する構成、または、故障が発生した相に対応したパルス幅を有するアラーム信号を生成する構成によって、故障が発生した相を、パルス数やパルス幅によって判別できる。このため、単一の端子から導出したアラーム信号を入力とする装置や回路において、故障の種類および故障が発生した相を判別できる。
 なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
10 相判別部
11-1~11-6 ラッチ回路
12-1~12-6
32-1~32-3、45-1~45-3 単安定マルチバイブレータ
20 アラーム信号生成部
21 OCアラーム出力回路
21-1~21-3、22-1~22-3 ディレイ回路
21-4、21-5、21-6 カウンタ
22-7~22-10、31-1~31-6、46 ORゲート
30 アラーム種類判別部
40 アラーム信号生成部
41 アラーム種類別パルス生成回路
42 RSフリップフロップ
43-1~43-3 ANDゲート
44 セレクタ
44-1~44-3 MOSトランジスタ
100 端子

Claims (6)

  1.  複数相動作を行う機器について、故障種類または故障した相とを判別する判別部と、前記判別部による判別結果に応じて、故障種類または前記複数相のうち故障した相に対応するパルスを含むアラーム信号を生成するアラーム信号生成部と、を含み、前記アラーム信号生成部によって生成されるアラーム信号によって前記故障内容および故障した相を判別できるようにしたことを特徴とするアラーム信号生成回路。
  2.  前記パルス生成部によって生成されるアラーム信号を導出するための単一の端子をさらに含み、前記単一の端子から導出されるアラーム信号によって前記故障内容および故障した相を判別できるようにしたことを特徴とする請求項1に記載のアラーム信号生成回路。
  3.  前記判別部は、
     前記機器から出力される信号を入力とするラッチ回路と、前記ラッチ回路の出力の遷移タイミングから故障種類に対応する幅のパルスを出力する単安定マルチバイブレータとを含むことを特徴とする請求項1又は2に記載のアラーム信号生成回路。
  4.  前記アラーム信号生成部は、前記複数相のうち故障した相に対応する数のパルスを出力するカウンタを含むことを特徴とする請求項1から請求項3までのいずれか1項に記載のアラーム信号生成回路。
  5.  前記アラーム信号生成部は、前記複数相のうち故障した相に対応する幅のパルスを出力する単安定マルチバイブレータを含むことを特徴とする請求項1から請求項4までのいずれか1項に記載のアラーム信号生成回路。
  6.  複数相動作を行う機器について、判別部が、故障種類または故障した相とを判別する第1ステップと、前記第1ステップによる判別結果に応じて、アラーム信号生成部が、故障種類または前記複数相のうち故障した相に対応するパルスを含むアラーム信号を生成する第2ステップと、を含み、前記第2ステップにおいて生成されるアラーム信号によって前記故障内容および故障した相を判別できるようにしたことを特徴とするアラーム信号生成方法。
PCT/JP2013/000441 2012-04-04 2013-01-28 アラーム信号生成回路、アラーム信号生成方法 WO2013150697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13772550.3A EP2824814B1 (en) 2012-04-04 2013-01-28 Alarm signal generating circuit and alarm signal generating method
JP2014509005A JP5861773B2 (ja) 2012-04-04 2013-01-28 アラーム信号生成回路、アラーム信号生成方法
CN201380005364.2A CN104040855B (zh) 2012-04-04 2013-01-28 警报信号生成电路、警报信号生成方法
US14/329,024 US11333694B2 (en) 2012-04-04 2014-07-11 Alarm signal generator circuit and alarm signal generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012085378 2012-04-04
JP2012-085378 2012-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/329,024 Continuation US11333694B2 (en) 2012-04-04 2014-07-11 Alarm signal generator circuit and alarm signal generation method

Publications (1)

Publication Number Publication Date
WO2013150697A1 true WO2013150697A1 (ja) 2013-10-10

Family

ID=49300207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000441 WO2013150697A1 (ja) 2012-04-04 2013-01-28 アラーム信号生成回路、アラーム信号生成方法

Country Status (5)

Country Link
US (1) US11333694B2 (ja)
EP (1) EP2824814B1 (ja)
JP (1) JP5861773B2 (ja)
CN (1) CN104040855B (ja)
WO (1) WO2013150697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389932A (zh) * 2014-08-29 2016-03-09 富士电机株式会社 警报处理电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208668A1 (ja) * 2016-06-03 2017-12-07 富士電機株式会社 半導体素子の駆動装置
CN108021052B (zh) * 2016-11-01 2021-10-08 和舰科技(苏州)有限公司 一种基于单片机的设备故障监控系统及方法
CN111157824B (zh) * 2020-01-06 2021-03-02 珠海格力电器股份有限公司 一种故障确定装置、智能功率模块及其故障确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331478A (ja) * 1986-07-24 1988-02-10 Toshiba Corp インバ−タの故障診断装置
JPH0530771A (ja) 1991-06-20 1993-02-05 Yaskawa Electric Corp インバータ駆動誘導電動機の直流制動方法
JPH08149868A (ja) 1994-11-15 1996-06-07 Meidensha Corp インバータ
JP2003088093A (ja) 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
JP2006262599A (ja) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp 電力変換装置
JP2012147573A (ja) * 2011-01-12 2012-08-02 Yaskawa Electric Corp インバータ装置および電動機ドライブシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837797B2 (ja) * 1978-01-06 1983-08-18 株式会社日立製作所 線形同期電動機の制御装置
JPH06303211A (ja) * 1993-04-14 1994-10-28 Mitsubishi Electric Corp 警報伝送装置
US5869996A (en) * 1994-09-20 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor composite element, and method of detecting abnormal conditions in an inverter device having the element
JPH1117508A (ja) * 1997-06-20 1999-01-22 Toshiba Corp パワーモジュール及び電力変換装置
US6934139B2 (en) * 2000-05-01 2005-08-23 Fuji Electric Device Technology Co., Ltd. Intelligent power module
US6473280B1 (en) * 2000-10-12 2002-10-29 Analog Devices, Inc. Switching voltage regulator failure detection circuit and method
JP4600226B2 (ja) * 2005-09-16 2010-12-15 株式会社日立製作所 電動機の駆動制御装置
JP2008216040A (ja) * 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The 課電式事故探査システム、課電式事故探査方法
ES2563280T3 (es) * 2008-09-24 2016-03-14 Telefonaktiebolaget L M Ericsson (Publ) Procedimiento y aparato de telecomunicaciones
CN102725949B (zh) * 2009-12-21 2016-06-08 西门子工业公司 进行pwm smps电流检测和系统验证的算法
JP5360002B2 (ja) * 2010-06-28 2013-12-04 富士電機株式会社 半導体素子の駆動装置
JP5852380B2 (ja) * 2011-09-21 2016-02-03 ルネサスエレクトロニクス株式会社 Dc/dcコンバータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331478A (ja) * 1986-07-24 1988-02-10 Toshiba Corp インバ−タの故障診断装置
JPH0530771A (ja) 1991-06-20 1993-02-05 Yaskawa Electric Corp インバータ駆動誘導電動機の直流制動方法
JPH08149868A (ja) 1994-11-15 1996-06-07 Meidensha Corp インバータ
JP2003088093A (ja) 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
JP2006262599A (ja) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp 電力変換装置
JP2012147573A (ja) * 2011-01-12 2012-08-02 Yaskawa Electric Corp インバータ装置および電動機ドライブシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389932A (zh) * 2014-08-29 2016-03-09 富士电机株式会社 警报处理电路

Also Published As

Publication number Publication date
CN104040855A (zh) 2014-09-10
US20140320297A1 (en) 2014-10-30
CN104040855B (zh) 2017-06-13
EP2824814A1 (en) 2015-01-14
JPWO2013150697A1 (ja) 2015-12-17
EP2824814B1 (en) 2018-08-08
US11333694B2 (en) 2022-05-17
JP5861773B2 (ja) 2016-02-16
EP2824814A4 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
US9209718B2 (en) Fail safe circuit
US9154059B2 (en) Multilevel inverter
JP5360002B2 (ja) 半導体素子の駆動装置
JP6201296B2 (ja) 電力変換装置の制御装置
CN109005673B (zh) 半导体元件的驱动装置
JP5861773B2 (ja) アラーム信号生成回路、アラーム信号生成方法
JP2012143125A (ja) 半導体素子の駆動装置
JP2007259533A (ja) 半導体素子の保護回路
US20190252970A1 (en) Power conversion apparatus and logic circuit
JP6275352B1 (ja) 電力変換装置
US20180269677A1 (en) Semiconductor element driving device
JPH1117508A (ja) パワーモジュール及び電力変換装置
JP2002027665A (ja) インテリジェントパワーモジュール
US10530147B2 (en) Control device with safety shutdown
JP2009136115A (ja) 信号伝達装置
US10097172B2 (en) Method for protecting a controllable semiconductor switch from overload and short-circuiting in a load circuit
US9588501B2 (en) Servomotor control device
US11211893B2 (en) Motor controller
JP2017112786A (ja) インバータの異常検出装置
EP4160899A1 (en) Fault detection device and method therefor
US9842480B2 (en) Alarm processing circuit
JP2018102088A (ja) インバータの異常判定装置
JP6778324B2 (ja) 電力変換装置、故障検知回路、駆動回路
JP6266451B2 (ja) 駆動回路装置
SK9076Y1 (sk) Zapojenie univerzálneho ochranného obvodu viacfázového meniča

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509005

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013772550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE