WO2013149429A1 - Procédé d'optimisation de conception pour une structure de robot en série - Google Patents

Procédé d'optimisation de conception pour une structure de robot en série Download PDF

Info

Publication number
WO2013149429A1
WO2013149429A1 PCT/CN2012/076205 CN2012076205W WO2013149429A1 WO 2013149429 A1 WO2013149429 A1 WO 2013149429A1 CN 2012076205 W CN2012076205 W CN 2012076205W WO 2013149429 A1 WO2013149429 A1 WO 2013149429A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
design
finite element
analysis
frequency
Prior art date
Application number
PCT/CN2012/076205
Other languages
English (en)
Chinese (zh)
Inventor
王太勇
王润
刘振忠
丁彦玉
邵明堃
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2013149429A1 publication Critical patent/WO2013149429A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Definitions

  • the invention relates to a structural design of a robot.
  • it relates to a structural optimization design method for tandem robots using finite element and modal analysis robot structures.
  • the current robot structure optimization mainly has the following problems:
  • the technical problem to be solved by the present invention is to provide an efficient and feasible serial structure design optimization method combining finite element analysis and modal analysis.
  • a serial robot structure design optimization method comprising the following steps: (1) dividing the structure of the robot into a plurality of modules according to the degree of freedom and the transmission structure;
  • step (3) determine whether the respective modules of the robot structure satisfy the requirement of rigidity, if the direct entry step (6) is satisfied, if not, proceed to step (5) for redesign;
  • step (3) if there is a place where only partial modification is needed, the design is returned to step (3) and then analyzed again using the finite element software simulation; if there is a need for the overall modification, return to step (2);
  • step (7) Analyze the array and frequency. If there is a requirement that does not meet the frequency and formation requirements, return to step (5) for redesign. If it is satisfied, the design is completed.
  • the plurality of modules in the step (1) include: a base, a base, a turntable, a swing arm, an arm and a joint top.
  • step (3) includes the following three steps:
  • step b) Introduce the angular velocity change value obtained in step a) into the simulation software motion, and set the constraints, contact and gravity in the simulation software motion to simulate the realistic environment, thereby generating the force of each component during the working process;
  • the modal analysis is performed.
  • the frequency example is generated in the finite element software simulation, and the natural frequency and formation of the robot are obtained, and the robot structure is obtained from the formation and the natural frequency. Requires the need for improvement and redesign.
  • the serial robot structural design optimization method of the invention replaces the traditional empirical method and the simple strength checking method by using the finite element and modal analysis robot structure, thereby greatly improving the analysis accuracy.
  • the invention first optimizes the various components of the robot to achieve the strength requirement at a minimum cost, and then performs modal analysis on the whole machine, and the rigidity of each transmission joint of the robot can be seen through the formation. This not only achieves the strength of the various components of the robot structure, but also meets the stiffness requirements of the transmission joints, so that the robot structure is optimized.
  • the invention achieves the strength and rigidity requirements of the robot by finite element and modal analysis of the robot structure, minimum consumption of raw materials and costs.
  • FIG. 1 is a schematic diagram and a flow chart for optimizing a structural design of a serial robot according to the present invention
  • Figure 2 is an effect diagram of analyzing the stress results by the method of the present invention
  • 3 is an effect diagram of analyzing a robot's first six-order modal array obtained by the method of the present invention, wherein (a), (b), (c), (d), (e), (f) respectively correspond to the robot front 6th-order formation.
  • the method for optimizing the structural design of the serial robot of the present invention comprises the following steps:
  • the structure of the robot is divided into multiple modules according to the degree of freedom and the transmission structure, including six modules: base, base, turntable, swing arm, arm and joint top;
  • step (3) Perform a finite element analysis on the robot structure of the first design in step (2), and optimize the structure by the requirements of the strength, rigidity and natural frequency of the robot; the finite element analysis described above includes the following three steps:
  • step b) Introduce the angular velocity change value obtained in step a) into the simulation software motion, and set the constraints, contact and gravity in the simulation software motion to simulate the real environment, so as to generate the force of each component during the working process;
  • step (3) determine whether the respective modules of the robot structure satisfy the requirement of rigidity, if the direct entry step (6) is satisfied, if not, proceed to step (5) for redesign;
  • step (3) is returned again using the finite element software simulation; if there is a need for the overall modification, return to step (2);
  • the frequency example is generated in the finite element software simulation, and the natural frequency and formation of the robot are obtained. From the formation and the natural frequency, the robot structure needs to be improved. Part of the redesign.
  • step (7) Analyze the array and frequency. If there is a requirement that does not meet the frequency and formation requirements, return to step (5) for redesign. If it is satisfied, the design is completed.
  • the robot structure is divided into six modules: base, base, turntable, swing arm, arm and joint top. Perform the initial design of the module structure, initially determine the shape, thickness and transmission of each module Way of moving.
  • the motion simulation software after selecting the motion example, add six motors of the six-degree-of-freedom series robot, set the rotation direction, and use the interpolation method to import the angular velocity values planned by matlab using the interpolation method to set the gravitational value of the whole environment. And direction to simulate the gravity field in the real environment, adding contact constraints to avoid the collision of robot parts during the movement.
  • the force of each component can be listed as a chart. Table 1 below shows the force of the main components of the robot measured by simulation.
  • the finite element analysis is performed on the six main components. Taking the turntable as an example, the constraints and the direction of the added force are defined according to the actual situation. Draw a grid to add mesh constraints in local areas.
  • Figure 2 is an effect diagram of the analysis of the stress results. From the figure, it can be seen that the stress at the upper edge of the ear is the maximum (605800. 4N/M ⁇ 2). Exceeding the material strength, it can be increased by thickening and reinforcement. Strength, while reducing the thickness at a safer place to save material. The other components are optimized in the same way.
  • Table 2 Grid parameters Since the actual analysis object is infinite dimensional, its mode has infinite order, but only the first few modes are dominant for the motion, so the first few modes are calculated according to the needs.
  • the results of the frequency analysis are shown in Table 3 below, and the arrays of the first 6 stages of the robot correspond to the a to f diagrams in Fig. 3, respectively.
  • Table 3 The first 6 natural frequencies of the robot

Abstract

L'invention concerne un procédé d'optimisation de conception pour une structure robotique en série, comprenant les étapes suivantes : division de la structure d'un robot en une pluralité de modules selon le nombre de degrés de liberté et une structure de transmission ; conception initiale de chacun des modules, c'est-à-dire principalement déterminer la forme, l'épaisseur et le mode de transmission du module ; réalisation d'une analyse par éléments finis de la structure de robot initialement conçue et optimisation de la structure à travers les exigences de résistance, de rigidité et de fréquence naturelle du robot ; détermination si chaque module de la structure du robot satisfait l'exigence de rigidité, et si c'est le cas, continuation, sinon nouvelle conception de celle-ci ; après la mise en oeuvre d'une simplification complète de la machine pour le robot, mise en oeuvre d'une analyse modale ; et analyse de la formation et de la fréquence, s'il existe un endroit ne satisfaisant pas les exigences de fréquence et de formation, nouvelle conception de celle-ci, et, si tel est le cas, terminer la conception. La présente invention adopte une analyse par éléments finis et une analyse modale pour une structure de robot pour remplacer la méthode empirique conventionnelle et la méthode de simple vérification de la résistance, de façon à améliorer nettement la précision d'analyse. Par l'analyse modale et par éléments finis de la structure du robot pour la structure du robot, les exigences de résistance et de rigidité du robot peuvent être satisfaites avec une consommation minimale de matières premières et une réduction des coûts.
PCT/CN2012/076205 2012-04-05 2012-05-29 Procédé d'optimisation de conception pour une structure de robot en série WO2013149429A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100983422A CN102637228A (zh) 2012-04-05 2012-04-05 串联机器人结构设计优化方法
CN201210098342.2 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013149429A1 true WO2013149429A1 (fr) 2013-10-10

Family

ID=46621622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076205 WO2013149429A1 (fr) 2012-04-05 2012-05-29 Procédé d'optimisation de conception pour une structure de robot en série

Country Status (2)

Country Link
CN (1) CN102637228A (fr)
WO (1) WO2013149429A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484511A (zh) * 2014-12-02 2015-04-01 深圳控石智能系统有限公司 一种基于仿真分析的机器人结构动态特性设计方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049621A (zh) * 2013-01-14 2013-04-17 合肥工业大学 基于triz的可拆卸联接结构的设计方法
CN109800443B (zh) * 2017-11-16 2023-08-22 常州市武进区半导体照明应用技术研究院 一种基于有限元仿真优化的结果提取与可视化修改方法
CN108393928B (zh) * 2018-01-26 2020-06-30 南京理工大学 柔性机器人机械臂接触碰撞的多刚体-有限元混合分析方法
CN110580363B (zh) * 2018-06-07 2022-11-22 中国科学院沈阳自动化研究所 一种搅拌摩擦焊机器人底座结构的拓扑优化设计方法
CN112949104B (zh) * 2019-11-26 2023-07-25 中国科学院沈阳自动化研究所 一种协作机器人实时模态分析方法
CN113204222A (zh) * 2021-05-12 2021-08-03 珠海格力智能装备有限公司 工业机器人的性能参数获取方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439492A (zh) * 2003-03-06 2003-09-03 天津大学 四自由度混联机器人
CN101791803A (zh) * 2010-03-17 2010-08-04 上海大学 高刚度可拆式机器人手臂关节连接装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100488735C (zh) * 2007-08-16 2009-05-20 上海交通大学 二自由度平面并联机器人机构
CN101758131A (zh) * 2009-07-23 2010-06-30 缪建成 一种新型数控滚压包边机
CN101973030B (zh) * 2010-09-25 2012-05-16 天津大学 可实现整周回转的高速抓放式并联机器人机构
CN102063548B (zh) * 2011-01-07 2012-07-18 西安交通大学 一种机床整机动态性能优化设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439492A (zh) * 2003-03-06 2003-09-03 天津大学 四自由度混联机器人
CN101791803A (zh) * 2010-03-17 2010-08-04 上海大学 高刚度可拆式机器人手臂关节连接装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484511A (zh) * 2014-12-02 2015-04-01 深圳控石智能系统有限公司 一种基于仿真分析的机器人结构动态特性设计方法

Also Published As

Publication number Publication date
CN102637228A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
WO2013149429A1 (fr) Procédé d'optimisation de conception pour une structure de robot en série
CN103984813B (zh) 一种离心压缩机裂纹叶轮结构的振动建模与分析方法
CN105808828B (zh) 一种动力总成悬置解耦快速设计优化方法
CN109255188B (zh) 基于有限元的六轴工业机器人动态性能优化方法
CN107832527B (zh) 一种车身等效简化模型建立方法及系统
CN111310380B (zh) 一种电动车动力总成悬置橡胶衬套结构的设计开发方法
CN105184031B (zh) 一种装配机器人臂部结构的轻量化设计方法
CN104077434A (zh) 基于cae分析的产品结构优化方法和系统
CN103699719A (zh) 车辆动力总成悬置系统区间优化设计方法
CN106919763A (zh) 一种产品结构尺寸优化方法
CN106570255A (zh) 一种基于行人保护的负泊松比吸能结构的优化方法
CN113569359B (zh) 一种基于惯性释放法的双足机器人结构拓扑优化方法
CN108520119A (zh) 汽车副车架安装点强度的分析方法
CN103528779A (zh) 一种电机整体机座振动特性的试验系统及试验方法
CN110188417A (zh) 一种基于多级超单元的复杂结构有限元模型修正方法
CN104484511A (zh) 一种基于仿真分析的机器人结构动态特性设计方法
Qin et al. Constructing digital twin for smart manufacturing
CN109255141B (zh) 一种汽车车身正向概念设计截面形状优化方法
Pupăză et al. Computer aided engineering of industrial robots
Lam et al. Coupled aerostructural design optimization using the kriging model and integrated multiobjective optimization algorithm
He et al. Multicriteria optimization design for end effector mounting bracket of a high speed and heavy load palletizing robot
CN112487673B (zh) 基于机床工作状态的关键主机组件结构优化设计方法
CN109388833A (zh) 一种基于疲劳寿命的弹性元件结构优化设计方法
CN115982859A (zh) 用于可温控的车用动力电池箱轻量化模拟分析系统及方法
CN112861388A (zh) 一种基于正交设计的协作机器人全域结构优化设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873855

Country of ref document: EP

Kind code of ref document: A1