WO2013146261A1 - Led用光学素子及びled照明装置 - Google Patents

Led用光学素子及びled照明装置 Download PDF

Info

Publication number
WO2013146261A1
WO2013146261A1 PCT/JP2013/056983 JP2013056983W WO2013146261A1 WO 2013146261 A1 WO2013146261 A1 WO 2013146261A1 JP 2013056983 W JP2013056983 W JP 2013056983W WO 2013146261 A1 WO2013146261 A1 WO 2013146261A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
optical element
light
light source
color
Prior art date
Application number
PCT/JP2013/056983
Other languages
English (en)
French (fr)
Inventor
小野雄樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013146261A1 publication Critical patent/WO2013146261A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an LED optical element and an LED illumination device that are installed on the back side of a relatively large area surface member and perform illumination so that light passes through the surface member.
  • a conventional large-sized liquid crystal display device In a conventional large-sized liquid crystal display device, light from a number of cold-cathode tubes arranged on the back side of the liquid crystal panel is guided to the back side of the liquid crystal panel via a diffusion plate, a reflector, etc., and is uniformly used as a backlight. By illuminating, the image was clearly visible.
  • an LED light source has been used as a light source of a backlight from the viewpoint of energy saving. Further, from the viewpoint that brightness and darkness can be controlled according to the image displayed on the liquid crystal display device, the LED light source is easy to use, thereby further reducing the power consumption of the liquid crystal display device.
  • Patent Documents 1 and 2 disclose an optical element for a backlight for liquid crystal that can convert light from an LED light source into illumination light with as uniform illuminance as possible.
  • Patent Documents 1 and 2 disclose a thin optical element.
  • an LED light source that emits white light is used to develop an image displayed on the liquid crystal panel with a natural color.
  • the LED light source that emits white light in this manner at present, a combination of a blue LED chip that emits blue light and a phosphor that emits yellow light by blue light emitted from the blue LED chip is widely used. It has been.
  • the optical element for LED according to claim 1 is disposed on the light emission side of the LED light source, and has a concave incident surface on which light emitted from the LED light source is incident and an emission surface on which the emitted light is emitted to the outside.
  • An LED optical element comprising: The LED light source includes an LED chip that emits light of a first color, and a phosphor that emits light in a second color different from the first color by the light of the first color emitted from the LED chip.
  • the light emission surface is flat
  • the concave incident surface of the LED optical element includes a spherical or aspherical refracting surface through which a normal line at the center of the light emitting surface passes, and the LED light source side with respect to the refracting surface and an optical axis orthogonal direction And a diffusion surface provided on the outside and having a light diffusing action.
  • the light intensity of the emitted light in the direction orthogonal to the light emission surface is the highest, so that the back surface of the panel is uniformly illuminated with such an LED light source.
  • an optical element that gives an optimum light distribution angle to the emitted light is separately required.
  • yellow rings that cause color unevenness are likely to occur in light emitted from the periphery of the LED chip. There is a characteristic.
  • Such color unevenness can be suppressed to some extent by providing a diffusing surface over the entire incident surface of the optical element. However, this does not provide a desired light distribution angle for uniformly illuminating the back surface of the panel. There is also a problem that the light efficiency is lowered.
  • a spherical or aspherical refracting surface is provided at a position where a normal line at the center of the light emitting surface passes through the concave incident surface of the LED optical element, whereby the light emitting surface is provided.
  • the outgoing light emitted in the direction orthogonal to the direction is distributed to the peripheral side, thereby widening the irradiation range, and for example, uniform illumination can be easily obtained when illuminating the back side of the panel.
  • the yellow ring is less likely to be generated in the emitted light emitted in the direction orthogonal to the light emitting surface, so that the effect of suppressing the color unevenness can be achieved without providing a diffusion surface on the center side of the concave incident surface.
  • the diffusion since light unevenness is likely to occur in the light emitted from the peripheral side of the LED light source, the diffusion has a light diffusing action on the LED light source side and on the outer side perpendicular to the optical axis from the refractive surface. By providing a surface, light rays emitted from the peripheral side of the LED light source are incident on the diffusion surface, and the color unevenness is eliminated by giving a diffusion action.
  • the intensity of the light emitted from the peripheral side of the light emitting surface is relatively low with respect to the light emitted from the center side of the light emitting surface of the LED light source. Even if it is incident on the diffusing surface, the influence on the light transmittance of the entire optical element is small.
  • the LED optical element according to claim 2 is characterized in that, in the invention according to claim 1, the first color is blue and the second color is yellow. Thereby, the fault of the LED light source which is comparatively cheap and easy to obtain can be eliminated. However, other color combinations may be used.
  • the LED optical element according to claim 3 is the invention according to claim 1 or 2, wherein the light beam that has been emitted from the LED light source and passed through the LED optical element is at a position of 75 to 85 degrees. It has a light distribution angle peak. Thereby, an optical element having a light distribution angle suitable for illuminating the back side of the panel can be provided.
  • the LED optical element according to any one of the first to third aspects, wherein the diffusing surface has a dimension in the direction perpendicular to the optical axis as the distance from the light emitting surface of the LED light source increases. It has a taper shape which becomes smaller. Thereby, the diffusion effect of the diffusion surface can be enhanced.
  • the LED optical element according to claim 5 is the invention according to any one of claims 1 to 4, wherein the LED optical element has a bottom surface facing a substrate on which the LED light source is mounted. Is characterized by having a light diffusing action.
  • a part of the light beam emitted from the peripheral side of the LED light source may be totally reflected inside the optical element and reflected from the bottom surface of the optical element to reach the irradiation surface. It may appear as a bright line on the irradiated surface. Therefore, by providing the bottom surface with a light diffusing action, color unevenness and bright lines can be suppressed.
  • the LED optical element according to claim 6 is the invention according to any one of claims 1 to 5, wherein when the LED optical element is attached to the LED light source, the bottom surface emits light from the LED light source. It is characterized by being disposed on the opposite side of the light emission direction from the surface. Thereby, the light emitted from the peripheral side of the LED light source can be incident on the diffusion surface as much as possible, and the diffusion effect can be enhanced.
  • the optical element for LED according to claim 7 is the invention according to any one of claims 1 to 6, wherein the optical element for LED has a leg portion that comes into contact with a substrate provided with the LED light source, The height of the leg is lower than the height of the LED light source. Accordingly, for example, the bottom surface of the optical element can be easily disposed on the opposite side of the light emission surface of the LED light source with respect to the light emission direction only by bringing the leg portion into contact with the substrate on which the LED light source is attached. .
  • the optical element for LED according to claim 8 is characterized in that, in the invention according to claim 7, the legs are formed discontinuously in the circumferential direction. Thereby, it becomes possible to draw out the wiring etc. which lead to the said LED light source through the discontinuous part of the said leg part, and air permeability is also excellent.
  • the LED optical element according to claim 9 is the positioning device according to any one of claims 1 to 8, wherein the LED optical element can be positioned in a direction orthogonal to the optical axis by contacting the LED light source. It has the part. Thereby, the center of the LED light source and the optical axis of the optical element can be easily matched.
  • the LED optical element according to claim 10 is characterized in that, in the invention according to any one of claims 1 to 9, a step is provided between the diffusion surface and the refracting surface.
  • a step is provided between the diffusing surface and the refracting surface, when the optical element is molded with a mold, the refracting surface is formed when roughening the transfer surface of the diffusing surface. It is suitable for masking so as not to hurt.
  • An LED optical element according to an eleventh aspect is the invention according to any one of the first to tenth aspects, wherein the emission surface is a discontinuous surface in the radial direction (for example, an optical axis having a step at the boundary). A plurality of annular surfaces). Thereby, more excellent emission characteristics can be realized.
  • the LED optical element according to claim 12 is the invention according to any one of claims 1 to 11, wherein an outer diameter D1 of the LED optical element is 15 to 20 mm, and the LED optical element is the LED.
  • a distance h1 from the light emitting surface of the LED light source to the apex of the emitting surface of the LED optical element is 6 mm or less. Thereby, the optical element can be thinned.
  • the optical element for LED according to claim 13 is the invention according to any one of claims 1 to 12, wherein the diameter of the minimum inscribed circle on the light emission surface of the LED light source is L (mm), When the distance from the light emitting surface to the boundary between the diffusing surface and the refracting surface is h2 (mm), the following equation is satisfied. 1.72 ⁇ L / h2 ⁇ 3.57 (1)
  • the diffusion surface When the value of the expression (1) is below the upper limit, the diffusion surface is not too high, and the amount of light incident on the refracting surface is increased, so that the transmittance can be increased. On the other hand, when the value of the expression (1) exceeds the lower limit, the diffusion surface does not become too low, and a sufficient diffusion effect can be secured and color unevenness can be suppressed.
  • the LED lighting device wherein an LED chip that emits a light beam of a first color and a second color different from the first color by the light beam of the first color emitted from the LED chip.
  • An LED light source comprising a combination of phosphors emitting light in colors and having a flat light emission surface, and the optical element for LED according to any one of claims 1 to 12.
  • the LED (Light Emitting Diode) illumination device includes an LED light source and an optical element.
  • LED light sources can be used, but it is preferable to use a white LED having a flat light emission surface and emitting white light.
  • the white LED a combination of a blue LED chip and a phosphor such as a YAG phosphor that emits yellow light by blue light emitted from the blue LED chip is preferably used.
  • a white LED for example, one described in Japanese Patent Application Laid-Open No. 2008-231218 can be used, but is not limited thereto.
  • the white LED is composed of an LED chip and a phosphor layer formed on the LED chip so as to cover the LED chip.
  • the LED chip emits light of a first predetermined wavelength (light of the first color), and emits blue light in the present embodiment.
  • the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
  • an LED chip a known blue LED chip can be used.
  • the blue LED chip any existing one including InxGa1-xN can be used.
  • the emission peak wavelength of the blue LED chip is preferably 440 to 480 nm.
  • the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
  • the phosphor layer has a phosphor that converts light having a first predetermined wavelength emitted from the LED chip into light having a second predetermined wavelength (light of a second color). In an embodiment described later, blue light emitted from the LED chip is converted into yellow light.
  • the phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount.
  • the raw material is obtained by thoroughly mixing in a theoretical ratio.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material.
  • the compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the LED light source is preferably a high-power LED light source.
  • the high-power LED light source can be constituted by an LED having an output of 0.5 watts or more.
  • the LED optical element is disposed on the light emission side of the LED light source, and has a concave incident surface on which light emitted from the LED light source is incident, and a generally convex shape that emits light emitted from the LED light source to the outside. Has an exit surface.
  • the concave incident surface of the optical element for LED is a spherical or aspherical refractive surface through which the normal line at the center of the light emitting surface passes, and on the LED light source side from the refractive surface and on the outer side in the optical axis orthogonal direction.
  • a diffusing surface having a light diffusing action.
  • the entrance surface of the lens and the light emission surface of the LED light source are preferably not in contact with each other, and the space between the entrance surface and the LED light source is preferably filled with air.
  • Diffusion surface need not be a mirror surface, and includes a surface that has been textured or roughened.
  • the surface roughness is Ra 0.2 or more.
  • the diffusion surface can be obtained, for example, by subjecting a part of the transfer surface of the mold to roughing processing such as shot peening to roughen the surface roughness and then transfer-molding a resin or the like. For this reason, if a step is provided between the diffusing surface and the refracting surface, it is preferable to perform masking or the like during roughing.
  • the diffusion surface has a tapered shape in which the dimension in the direction perpendicular to the optical axis decreases as the distance from the light emission surface of the LED light source increases.
  • the optical element for LED has a leg portion that comes into contact with the substrate provided with the LED light source, and the height of the leg portion is preferably lower than the height of the LED light source.
  • This leg is preferably formed discontinuously in the circumferential direction.
  • the optical element for LED has a positioning portion that can perform positioning in the direction perpendicular to the optical axis by contacting the LED light source.
  • the positioning part may be a diffusing surface having a cylindrical shape or a conical shape.
  • the center of the LED light source and the optical axis of the optical element can be matched by bringing the inner peripheral surface of the diffusion surface into contact with, for example, the four corners of a rectangular LED light source.
  • the positioning portion may be a diffusion surface having a rectangular tube shape or a pyramid shape in accordance with the rectangular LED light source.
  • the outer diameter D1 of the LED optical element is 15 to 20 mm, and when the LED optical element is attached to the LED light source, the distance h1 from the light emission surface of the LED light source to the apex of the emission surface of the LED optical element is 6 mm or less. Is preferable.
  • the diameter of the minimum inscribed circle on the light emission surface of the LED light source (diagonal length if the light emission surface is rectangular) is L (mm), and the distance from the light emission surface of the LED light source to the boundary between the diffusion surface and the refracting surface is When h2 (mm) is satisfied, it is preferable that the following expression is satisfied. 1.72 ⁇ L / h2 ⁇ 3.57 (1)
  • the optical element is preferably made of plastic.
  • a plastic constituting the optical element for example, polycarbonate or acrylic can be used. By using polycarbonate or acrylic, it can be manufactured by injection molding, and the manufacturing cost can be greatly reduced.
  • an optical element for LED that is suitable for illuminating from behind the panel and can suppress color unevenness of white light while being relatively thin, and a low-profile LED illumination device using the same. can do.
  • FIG. 3A is a view seen from the light exit surface side
  • FIG. 3B is a cross-sectional view along the optical axis direction IIIB-IIIB
  • 4A and 4B are diagrams showing Example 2, where FIG. 5A is a view seen from the exit surface side, FIG. 4B is a cross-sectional view along the IVB-IVB optical axis direction, FIG.
  • the perspective view seen from the surface side, (e) is the perspective view seen from the bottom side.
  • FIG. 4A and 4B are diagrams showing Example 3, where FIG. 5A is a view seen from the exit surface side, FIG. 5B is a cross-sectional view in the VB-VB optical axis direction, FIG. It is the perspective view seen from the side. 4A and 4B are diagrams showing Example 4, where FIG. 5A is a view seen from the exit surface side, FIG. 6B is a sectional view taken along the VIB-VIB optical axis direction, FIG. It is the perspective view seen from the side. 7A and 5B are views showing Example 5, where FIG. 5A is a view as seen from the exit surface side, FIG. 9B is a sectional view along the optical axis direction of VIIB-VIIB, FIG. It is the perspective view seen from the surface side.
  • FIG. 7 is a diagram illustrating Example 6, where (a) is a view seen from the exit surface side, (b) is a sectional view in the optical axis direction of VIIIB-VIIIB, (c) is a view seen from the bottom side, and (d) is an exit view. It is the perspective view seen from the surface side. 8A and 7B are views showing Example 7, where FIG. 7A is a view seen from the exit surface side, FIG. 9B is a cross-sectional view along the IXB-IXB optical axis direction, FIG. It is the perspective view seen from the surface side. It is a figure which shows the dimension position of each Example of Table 1, (a) is the figure which looked at the optical element for LED of each Example from the output surface side, (b) is BB optical axis direction sectional drawing.
  • FIG. 1 is a sectional view in the optical axis direction of the LED illumination device according to the present embodiment.
  • FIG. 2 is a view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow.
  • the LED illumination device according to the present embodiment includes an LED optical element 1 and an LED light source 2 formed on a circuit board 3.
  • the LED light source 2 is formed by laminating an LED chip that emits blue light and a yellow phosphor provided on the light emitting side, and has a square plate shape as a whole, and emits light.
  • the surface 2a is flat.
  • the LED optical element 1 uses polycarbonate or acrylic as plastic. Further, the LED optical element 1 is disposed on the light emission side of the LED light source 2, and emits the light incident from the incident surface 1a and the concave incident surface 1a on which the light emitted from the LED light source 2 is incident. And a bottom surface 1d facing the substrate 3, and an outer peripheral surface 1f which is a cylindrical surface or a conical surface provided on the outer periphery of the output surface 1b. The outer peripheral surface 1f is a portion where a gate is provided when the LED optical element 1 is injection-molded.
  • the concave incident surface 1a includes a spherical or aspherical refracting surface 1g through which the normal line at the center of the light emitting surface 2a of the LED light source 2 passes, and the LED light source 2 side with respect to the refracting surface 1g and outside the optical axis orthogonal direction. And a diffusion surface 1h having a light diffusing action.
  • the diffusion surface 1h has a tapered shape in which the dimension in the direction orthogonal to the optical axis decreases as the distance from the light emission surface 2a of the LED light source 2 increases, and the corresponding transfer surface of the mold for molding the LED optical element 1 By increasing the roughness, the surface can be roughened. At this time, by providing a step 1i that faces the LED light source 2 between the diffusion surface side end of the incident surface 1a and the incident surface side end of the diffusion surface 1h, for example, a transfer corresponding to the diffusion surface 1h. When performing shot peening processing or the like to increase the roughness of the surface, it becomes easier to mask the incident surface 1a.
  • the exit surface 1b is a flat surface in the vicinity of the optical axis.
  • the bottom surface 1d can be a rough surface having a diffusing action by increasing the roughness of the corresponding transfer surface of the mold in the same manner as the diffusion surface 1h.
  • the outer peripheral surface 1f can also be a roughened surface having a diffusion action by increasing the roughness of the corresponding transfer surface of the mold.
  • the bottom surface 1d has three leg portions 1j at equal intervals in the circumferential direction, and is attached with the leg portions 1j in contact with the surface of the substrate 3.
  • the entire leg 1j can be a roughened surface having a diffusing action by increasing the roughness of the corresponding transfer surface of the mold, like the diffusing surface 1h.
  • the height of the leg 1j is lower than the height of the LED light source 2, so that when the LED optical element 1 is attached to the LED light source 2, the bottom surface 1d is lighter than the light emitting surface 2a of the LED light source 2. Arranged on the opposite side to the discharge direction. Thereby, it can suppress that the light discharge
  • a tapered positioning portion 1k having a larger diameter than the diffusion surface 1h is provided on the LED light source 2 side from the diffusion surface 1h.
  • the positioning portion 1 k has a size in which the four corners of the LED light source 2 come into contact when assembled, that is, the center of the LED light source 2 and the optical axis of the LED optical element 1 are It has a function of centering (positioning in the direction perpendicular to the optical axis).
  • the light emission surface 2a of the LED light source 2 is desirably closer to the substrate 3 than the boundary between the diffusion surface 1h and the positioning portion 1k.
  • the positioning portion 1k is preferably a rough surface having a diffusing action by increasing the roughness of the corresponding transfer surface of the mold.
  • the LED optical element 1 When the LED optical element 1 has an outer diameter of 15 to 20 mm, and the LED optical element 1 is attached to the LED light source 2, the LED light source 2 emits light from the light emitting surface 2a to the LED optical element 1 emitting surface 1b.
  • the distance to the apex is preferably 6 mm or less.
  • the diagonal length of the light emission surface 2a of the LED light source 2 is preferably 2.5 mm.
  • mixed light in the vicinity of the center of the light emitted from the light emitting surface 2a of the LED light source 2 is incident from the incident surface 1a, while the peripheral light is diffused surface 1h or positioning portion 1k. Incident from.
  • the light incident on the LED optical element 1 is emitted from the emission surface 1b with a peak of the light distribution angle at a position of 75 to 85 degrees.
  • ambient light which often contains a yellow component
  • the diffusing surface 1h having a diffusing action and the positioning portion 1k a diffusion effect occurs, and the yellow component disappears. Thereby, high-quality white light can be emitted.
  • FIG. 3 shows an optical element for LED according to Example 1.
  • the exit surface is convex shape in a present Example,
  • step difference between a refractive surface and a diffusion surface, and a leg part are not provided.
  • the numbers in the figure are dimensions (mm).
  • the light distribution peak angle of Example 1 is 80 degrees.
  • FIG. 4 shows an optical element for LED according to the second embodiment.
  • the exit surface has a convex shape and corresponds to the embodiment of FIGS.
  • the light distribution peak angle of Example 2 is 80 degrees.
  • FIG. 5 shows an optical element for LED according to Example 3.
  • the exit surface has a planar shape near the optical axis.
  • Each part is denoted by the same reference numeral as in the above-described embodiment.
  • the diffusion surface 1h has a tapered aspherical shape, and from FIG. As is apparent, a wide groove 1v extending in the diameter direction is formed in the center of the bottom surface 1d. A thin substrate 3 can be fitted into the groove 1v.
  • the light distribution peak angle of Example 3 is 78 degrees.
  • FIG. 6 shows an optical element for LED according to Example 4.
  • the exit surface has a concave shape near the optical axis.
  • the leg part 1j is a short cylindrical pin shape in a present Example.
  • the light distribution peak angle of Example 4 is 76 degrees.
  • FIG. 7 shows an optical element for LED according to Example 5.
  • symbol as embodiment mentioned above is attached
  • the exit surface 1b is not continuous and is constituted by a surface that is discontinuous in the radial direction, that is, an annular groove 1w centering on the optical axis is formed, and the radial boundary of the groove 1w is formed.
  • the numbers in the figure are dimensions (mm).
  • the light distribution peak angle of Example 5 is 77 degrees. In Table 1 described later, three types of examples with different dimensions were used (Examples 5-1, 5-2, and 5-3).
  • FIG. 8 shows an optical element for LED according to Example 6.
  • symbol as embodiment mentioned above is attached
  • the exit surface 1b is not continuous and is constituted by a surface that is discontinuous in the radial direction, that is, an annular groove 1w centering on the optical axis is formed, and the radial boundary of the groove 1w is formed.
  • the light distribution peak angle of Example 6 is 77 degrees.
  • FIG. 9 shows an optical element for LED according to Example 7.
  • symbol as embodiment mentioned above is attached
  • the emission surface 1b is not continuous but is constituted by a surface that is discontinuous in the radial direction, that is, an annular outward step 1w centered on the optical axis is formed. Therefore, the exit surface 1b is divided into two regions, and the vicinity of the optical axis is a concave surface.
  • the light distribution peak angle of Example 7 is 80 degrees.
  • Table 1 shows the dimensions of each part (mm, dimension positions corresponding to the symbols are shown in FIGS. 10A and 10B) and values of the expression (1).
  • D1 LED optical element outer diameter
  • D2 emitting surface outer diameter d1: diagonal length of light emitting surface of LED light source
  • d2 refractive surface maximum diameter
  • h1 distance from light emitting surface of LED light source to refracting surface vertex
  • h2 LED Distance from the light emitting surface of the light source to the boundary between the refracting surface and the diffusing surface
  • H Height of the optical element for LED sag: Height in the optical axis direction of the emitting surface
  • the present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications based on the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art.
  • the present invention can be used not only for illumination of a liquid crystal panel but also as an illumination device for signboard illumination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

 パネルの背後から照明するのに好適であり、比較的薄形でありながら白色光の色ムラを抑制できるLED用光学素子及びそれを用いた低背のLED照明装置を提供する。LED光源2から出射した光のうち中心付近の混色された光は、入射面1aから入射する一方で、周辺の光は、拡散面1hや位置決め部1kから入射する。入射した光は、75~85度の位置に配光角のピークを持った状態で出射面1bより出射する。ここで、黄色成分を含むことが多い周辺の光を、拡散作用を備えた拡散面1hや位置決め部1kを介して入射させることで拡散効果が生じ、黄色成分が消失する。これにより、高品質な白色光を出射できる。

Description

LED用光学素子及びLED照明装置
 本発明は、比較的大面積の面部材の背面側に設置され、前記面部材を介して光が通過するように照明を行うLED用光学素子及びLED照明装置に関する。
 従来の大型の液晶ディスプレイ装置では、液晶パネル背面に配置された多数の冷陰極管からの光を拡散板や反射板等を介して、液晶パネルの背面側に導光し、バックライトとして均一に照明することで明瞭に画像が視認できるようにしていた。これに対し近年では、省エネの観点から、バックライトの光源としてLED光源が使用されるようになってきた。また、液晶ディスプレイ装置に表示される画像に応じて明暗を制御することができるという観点からも、LED光源は使いやすく、これにより更に液晶ディスプレイ装置の消費電力を下げることができる。
 このように液晶ディスプレイ装置のバックライトとしてLED光源を用いる場合、LED光源のチップ自体が小さいため、かかるチップを液晶パネルの背面側に直接配置しようとすると、均一な照度を確保するためには、無数のチップが必要になって現実的でない。
そこで、LEDチップから放出された光を均一照度の照明光に変換する光学素子が必要になる。特許文献1,2には、LED光源からの光を入射してなるべく均一照度な照明光に変換することができる、液晶用バックライト用の光学素子が開示されている。
特開2010-211246号公報 特開2009-43628号公報
 ところで、一般的な液晶ディスプレイ装置は、大画面の割には薄形であることを長所とするので、そのバックライトも薄形(低背)であることが要求される。このため、光学素子も光軸方向の厚みを極力薄くすることが好ましく、従って特許文献1,2でも薄型の光学素子を開示している。
 一方で、液晶パネルで表示される画像を自然な色で発色させるために、白色光を発光させるLED光源が用いられる。このように白色光を発光させるLED光源としては、現在のところ、青色光線を放出する青色LEDチップと、青色LEDチップから発せられた青色光線によって黄色に発光する蛍光体を組み合わせたものが広く用いられている。
 しかるに、青色LEDチップと蛍光体とを用いた白色LED光源の特性として、蛍光体を通過した白色光において光軸を中心としたイエローリングと呼ばれる色ムラが生じる恐れがあり、このような色ムラが生じた白色光を液晶パネルの背面に照射すると、液晶パネルに表示される画像の自然な発色を損なう恐れがある。但し、このようなLED光源からの白色光であっても、光軸方向の厚みが比較的厚い光学素子に入射させた場合には、拡散効果により或る程度の混色が生じて色ムラが目立たなくなる場合もあるが、特に薄形の光学素子では、光学素子内の光路長が短いため、そのような拡散効果を本来的に期待できない。しかしながら特許文献1,2のいずれも、配光角を広げ輝度ムラを低減するものであって、白色光における色ムラをどのようにして解消するか、全く言及していない。
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、パネルの背後から照明するのに好適であり、比較的薄形でありながら白色光の色ムラを抑制できるLED用光学素子及びそれを用いた低背のLED照明装置を提供することを目的とする。
 請求項1に記載のLED用光学素子は、LED光源の光放出側に配置され、前記LED光源からの発光光が入射する凹状の入射面と、前記発光光を外部に放出する出射面とを備えたLED用光学素子であって、
 前記LED光源は、第1の色の光線を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光線によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなり、その光放出面がフラットであり、
 前記LED用光学素子の前記凹状の入射面は、前記光放出面の中心における法線が通過する球面もしくは非球面の屈折面と、前記屈折面よりも前記LED光源側であって光軸直交方向外側に設けられ、光の拡散作用を持つ拡散面と、を有することを特徴とする。
 光放出面がフラットな一般的なLED光源においては、光放出面に対して直交する方向における出射光の光強度が最も高くなるので、このようなLED光源を、パネルの背面を均一に照明する用途に使用する場合、その光放出面に対してより浅い角度で光線を出射させるために、出射光に最適な配光角を与える光学素子が別に必要となる。一方、例えば青色LEDチップから出射される青色光線を、黄色蛍光体に透過させて白色光を得るLED光源等において、色ムラとなるイエローリングが、LEDチップの周辺から出射された光線において生じ易いという特性がある。かかる色ムラは、光学素子の入射面全体に拡散面を設けることで或る程度抑制できるが、これではパネルの背面を均一に照明する為の所望の配光角を得られないし、光学素子の光効率の低下を招くという問題もある。
 そこで本発明においては、前記LED用光学素子の前記凹状の入射面において、前記光放出面の中心における法線が通過する位置に、球面もしくは非球面の屈折面を設けることで、前記光放出面に対して直交する方向に出射された出射光を周辺側に振り分け、それにより照射範囲を広げて、例えばパネルの背面側を照明する際に均一な照度を得やすくできる。又、イエローリングは前記光放出面に対して直交する方向に出射された出射光には生じにくいので、前記凹状の入射面の中央側に拡散面を設けなくても、色ムラ抑制効果の影響は少ない。これに対し、前記LED光源の周辺側から出射される光線には色ムラが生じやすいから、前記屈折面よりも前記LED光源側であって光軸直交方向外側に、光の拡散作用を持つ拡散面を設けることで、前記拡散面に、前記LED光源の周辺側から出射される光線を入射させ、拡散作用を与えることにより色ムラを解消するようにしているのである。又、前記LED光源の光放出面の中心側から出射される光線に対して、前記光放出面の周辺側から出射される光線の強度は比較的低いので、周辺側から出射される光線を前記拡散面に入射させても、前記光学素子全体の光透過率に与える影響は小さい。
 請求項2に記載のLED用光学素子は、請求項1に記載の発明において、前記第1の色は青色であり、前記第2の色は黄色であることを特徴とする。これにより、比較的安価で入手しやすいLED光源の欠点を解消できる。但し、他の色の組み合わせを用いても良い 
 請求項3に記載のLED用光学素子は、請求項1又は2に記載の発明において、前記LED光源から出射された後、前記LED用光学素子を通過した光線は、75~85度の位置に配光角のピークを持つことを特徴とする。これにより、パネルの背面側を照明するのに好適な配光角を持つ光学素子を提供できる。
 請求項4に記載のLED用光学素子は、請求項1~3のいずれかに記載の発明において、前記拡散面は、前記LED光源の光放出面から遠ざかるに連れて光軸直交方向の寸法が小さくなるテーパ形状を有していることを特徴とする。これにより、前記拡散面の拡散効果を高めることができる。
 請求項5に記載のLED用光学素子は、請求項1~4のいずれかに記載の発明において、前記LED用光学素子は、前記LED光源を取り付けた基板に対向する底面を有し、前記底面に光の拡散作用を持たせたことを特徴とする。
 前記LED光源の周辺側から出射された光線の一部が、光学素子内部で全反射し、光学素子の底面で反射し照射面に到達する場合があるが、この光線によって色ムラが生じたり、照射面に輝線として現れる場合がある。そこで、前記底面に光の拡散作用を持たせることで、その色ムラと輝線を抑制できる。
 請求項6に記載のLED用光学素子は、請求項1~5のいずれかに記載の発明において、前記LED用光学素子を前記LED光源に取り付けたとき、前記底面は、前記LED光源の光放出面よりも光放出方向と逆側に配置されていることを特徴とする。これにより、前記LED光源の周辺側から出射された光線をなるべく前記拡散面に入射させることが出来、拡散効果を高めることができる。
 請求項7に記載のLED用光学素子は、請求項1~6のいずれかに記載の発明において、前記LED用光学素子は、前記LED光源を設けた基板に当接する脚部を有し、前記脚部の高さは前記LED光源の高さより低いことを特徴とする。これにより、例えば前記脚部を前記LED光源が取り付けられた基板に当接させるのみで、前記光学素子の底面を、前記LED光源の光放出面よりも光放出方向と逆側に容易に配置できる。
 請求項8に記載のLED用光学素子は、請求項7に記載の発明において、前記脚部は、周方向に不連続に形成されていることを特徴とする。これにより、前記脚部の不連続な部分を通して、前記LED光源につながる配線等を外部に引き出すことが可能となり、また通気性も優れる。
 請求項9に記載のLED用光学素子は、請求項1~8のいずれかに記載の発明において、前記LED用光学素子は、前記LED光源に当接することで光軸直交方向の位置決めを行える位置決め部を有することを特徴とする。これにより、前記LED光源の中心と前記光学素子の光軸とを容易に合致させることができる。
 請求項10に記載のLED用光学素子は、請求項1~9のいずれかに記載の発明において、前記拡散面と前記屈折面との間には段差が設けられていることを特徴とする。記拡散面と前記屈折面との間には段差が設けられていると、前記光学素子を金型により成形する場合、前記拡散面の転写面に粗し加工を施すときに、前記屈折面が痛まないようにマスキング等をするのに好適である。
 請求項11に記載のLED用光学素子は、請求項1~10のいずれかに記載の発明において、前記出射面は、径方向に不連続な面(例えば境界に段差を有する光軸を中心とした複数の環状面)から構成されていることを特徴とする。これにより、より優れた出射特性を実現できる。
 請求項12に記載のLED用光学素子は、請求項1~11のいずれかに記載の発明において、前記LED用光学素子の外径D1がφ15~20mmであり、前記LED用光学素子を前記LED光源に取り付けたとき、前記LED光源の光放出面から前記LED用光学素子の前記出射面の頂点までの距離h1が6mm以下であることを特徴とする。これにより、前記光学素子の薄形化を図れる。
 請求項13に記載のLED用光学素子は、請求項1~12のいずれかに記載の発明において、前記LED光源の光放出面における最小内接円の径をL(mm)、前記LED光源の光放出面から前記拡散面と前記屈折面との境界までの距離をh2(mm)としたときに、以下の式を満たすことを特徴とする。
 1.72<L/h2<3.57   (1)
 (1)式の値が上限を下回ることで、前記拡散面が高くなりすぎず、前記屈折面に入射する光の量が増大するので、透過率を高めることが出来る。一方、(1)式の値が下限を上回ることで、前記拡散面が低くなりすぎず、十分な拡散効果を確保して色ムラを抑えることができる。
 請求項14に記載のLED照明装置は、第1の色の光線を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光線によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなり、その光放出面がフラットであるLED光源と、請求項1~12のいずれかに記載のLED用光学素子と、を有することを特徴とする。
 本発明に係るLED(Light Emitting Diode)照明装置は、LED光源と、光学素子と、を有するものである。
 LED光源としては、様々なものを用いることが出来るが、光放出面がフラットな形状を有し、更に白色光を出射する白色LEDを用いることが好ましい。
 白色LEDとしては、青色LEDチップと青色LEDチップから発せられた青色光線によって黄色に発光するYAG蛍光体等の蛍光体を組み合わせたものが好ましく用いられる。白色LEDとしては、例えば特開2008-231218号公報に記載されたものを用いることができるが、これに限られない。
 白色LEDは、具体的には、LEDチップと、LEDチップを覆うようにしてその上に形成された蛍光体層から構成されている。LEDチップは、第1の所定波長の光(第1の色の光)を出射するものであり、本実施の形態においては青色光を出射するようになっている。但し、本発明のLEDチップの波長及び蛍光体の出射光の波長は限定されず、LEDチップによる出射光の波長と、蛍光体による出射光の波長とが補色関係にあり合成された光が白色光となる組合せであればものであれば、使用可能である。
 なお、このようなLEDチップとしては、公知の青色LEDチップを用いることができる。青色LEDチップとしては、InxGa1-xN系をはじめ既存のあらゆるものを使用することができる。青色LEDチップの発光ピーク波長は440~480nmのものが好ましい。また、LEDチップの形態としては、基板上にLEDチップを実装し、そのまま上方または側方に放射させるタイプ、又は、サファイア基板などの透明基板上に青色LEDチップを実装し、その表面にバンプを形成した後、裏返して基板上の電極と接続する、いわゆるフリップチップ接続タイプなど、どのような形態のLEDチップでも適用することが可能である。
 蛍光体層は、LEDチップから出射される第1の所定波長の光を第2の所定波長の光(第2の色の光)に変換する蛍光体を有している。後述する実施の形態では、LEDチップから出射される青色光を黄色光に変換するようになっている。
 このような蛍光体層に用いられる蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し成形体を得る。成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して、蛍光体の発光特性を持った焼結体を得ることができる。
 LED光源は、高出力LED光源であることが好ましい。ここで、高出力LED光源としては、出力が0.5ワット以上のLEDにより構成することができる。
 LED用光学素子は、LED光源の光放出側に配置されており、LED光源からの発光光が入射する凹状の入射面と、LED光源からの発光光を外部に出射する全体的に凸状の出射面を有する。また、LED用光学素子の凹状の入射面は、光放出面の中心における法線が通過する球面もしくは非球面の屈折面と、この屈折面よりもLED光源側であって光軸直交方向外側に設けられ、光の拡散作用を持つ拡散面と、を有する。レンズの入射面とLED光源の光放出面は非接触となっていると好ましく、また入射面とLED光源との間は空気により充填されていることが好ましい。
 拡散面としては、鏡面でなければよく、シボ加工や粗し加工を施した面も含む。好ましくは表面粗さがRa0.2以上のものをいう。表面粗さRaを光束の波長の1/2以上の値とすることで拡散効果を有することが可能となる。また、一般的に鏡面はRa0.025以下をいう。拡散面は、例えば金型の転写面の一部にショットピーニングなどの粗し加工を施して面粗度を荒くした上で、樹脂等を転写成形することで得ることができる。このため、拡散面と屈折面との間には段差が設けられていると、粗し加工時にマスキング等をすることが好ましい。又、拡散面は、LED光源の光放出面から遠ざかるに連れて光軸直交方向の寸法が小さくなるテーパ形状を有していると好ましい。
 LED用光学素子は、LED光源を設けた基板に当接する脚部を有し、この脚部の高さは前記LED光源の高さより低いと好ましい。この脚部は、周方向に不連続に形成されていると好ましい。
 LED用光学素子は、LED光源に当接することで光軸直交方向の位置決めを行える位置決め部を有すると好ましい。位置決め部は、円筒形又は円錐形状を有する拡散面とすることができる。かかる場合、拡散面の内周面を、例えば矩形状のLED光源の四隅に当接させることで、LED光源の中心と光学素子の光軸とを合致させることができる。但し、位置決め部を、矩形状のLED光源に合わせて、角筒形又は角錐形状を有する拡散面としても良い。
 LED用光学素子の外径D1がφ15~20mmであり、LED用光学素子をLED光源に取り付けたとき、LED光源の光放出面からLED用光学素子の出射面の頂点までの距離h1が6mm以下であると好ましい。
 前記LED光源の光放出面における最小内接円の径(光放出面が矩形なら対角長)をL(mm)、LED光源の光放出面から拡散面と屈折面との境界までの距離をh2(mm)としたときに、以下の式を満たすと好ましい。
 1.72<L/h2<3.57   (1)
 光学素子は、プラスチックで構成されていると好ましい。光学素子を構成するプラスチックとしては、例えばポリカーボネートやアクリルを用いることができる。ポリカーボネートやアクリルを用いることで、射出成形により製造でき、製造コストを大幅に低減させることができる。
 本発明によれば、パネルの背後から照明するのに好適であり、比較的薄形でありながら白色光の色ムラを抑制できるLED用光学素子及びそれを用いた低背のLED照明装置を提供することができる。
本実施の形態にかかるLED照明装置の光軸方向断面図である。 図1の構成をII-II線で切断して矢印方向に見た図である。 実施例1を示す図であり、(a)は出射面側から見た図、(b)は光軸方向IIIB-IIIB断面図である。 実施例2を示す図であり、(a)は出射面側から見た図、(b)はIVB-IVB光軸方向断面図、(c)は底面側から見た図、(d)は出射面側から見た斜視図、(e)は底面側から見た斜視図である。 実施例3を示す図であり、(a)は出射面側から見た図、(b)はVB-VB光軸方向断面図、(c)は底面側から見た図、(d)は底面側から見た斜視図である。 実施例4を示す図であり、(a)は出射面側から見た図、(b)はVIB-VIB光軸方向断面図、(c)は底面側から見た図、(d)は底面側から見た斜視図である。 実施例5を示す図であり、(a)は出射面側から見た図、(b)はVIIB-VIIB光軸方向断面図、(c)は底面側から見た図、(d)は出射面側から見た斜視図である。 実施例6を示す図であり、(a)は出射面側から見た図、(b)はVIIIB-VIIIB光軸方向断面図、(c)は底面側から見た図、(d)は出射面側から見た斜視図である。 実施例7を示す図であり、(a)は出射面側から見た図、(b)はIXB-IXB光軸方向断面図、(c)は底面側から見た図、(d)は出射面側から見た斜視図である。 表1の各実施例の寸法位置を示す図であり、(a)は各実施例のLED用光学素子を出射面側から見た図、(b)はB-B光軸方向断面図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図1は、本実施の形態にかかるLED照明装置の光軸方向断面図である。図2は、図1の構成をII-II線で切断して矢印方向に見た図である。本実施の形態にかかるLED照明装置は、LED用光学素子1と、回路基板3上に形成されたLED光源2を有している。図示していないが、LED光源2は、青色光を放出するLEDチップと、その光放出側に設けられた黄色蛍光体とを積層してなり、全体的に正方形板状を有し、光放出面2aはフラットになっている。
 LED用光学素子1は、プラスチックとしてポリカーボネート又はアクリルを用いている。さらに、LED用光学素子1は、LED光源2の光放出側に配置されており、LED光源2からの発光光が入射する凹状の入射面1aと、入射面1aから入射した光を外部に放出する全体的に凸状の出射面1bと、基板3に対向する底面1dと、出射面1bの外周に設けられた円筒面もしくは円錐面である外周面1fとを有する。外周面1fは、LED用光学素子1を射出成形する際に、ゲートが設けられる部位である。
 凹状の入射面1aは、LED光源2の光放出面2aの中心における法線が通過する球面もしくは非球面の屈折面1gと、屈折面1gよりもLED光源2側であって光軸直交方向外側に設けられ、光の拡散作用を持つ拡散面1hとを有する。
 拡散面1hは、LED光源2の光放出面2aから遠ざかるに連れて光軸直交方向の寸法が小さくなるテーパ形状を有しており、LED用光学素子1を成形する金型の対応する転写面の粗度を高めることで、粗し面とできる。このとき、入射面1aの拡散面側端部と、拡散面1hの入射面側端部との間に、LED光源2を向くような段差1iを設けることで、例えば拡散面1hに対応する転写面の粗度を高めるべくショットピーニング処理などを行う際に、入射面1aを覆うマスキングなどをし易くなる。
 出射面1bは、本実施の形態では光軸近傍がフラットな面となっている。
 底面1dは、拡散面1hと同様に、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とできる。また、外周面1fも、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とできる。
 本実施の形態では、底面1dは、周方向に等間隔に3つの脚部1jを有しており、脚部1jを基板3の表面に当接させて取り付けられている。脚部1jを周方向に不連続に配置することで、LED光源2を密封することが抑制され、LED光源2の配線の引き出しや通気性の確保を行える。脚部1j全体は、拡散面1hと同様に、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とできる。
 脚部1jの高さはLED光源2の高さより低くなっており、よってLED用光学素子1をLED光源2に対して取り付けたとき、底面1dは、LED光源2の光放出面2aよりも光放出方向と逆側に配置される。これにより、光放出面2aから放出された光が、底面1d側に回り込むことを抑制できる。
 拡散面1hよりLED光源2側に、拡散面1hより大径のテーパ状の位置決め部1kが設けられている。図2を参照して、位置決め部1kは、組み付けた際にLED光源2の4つの角が当接する寸法となっており、即ちLED光源2の中心と、LED用光学素子1の光軸とがセンタリング(光軸直交方向の位置決め)する機能を有する。位置決め部1kにLED光源2の4つの角が当接した状態で、LED光源2の光放出面2aは、拡散面1hと位置決め部1kとの境界よりも基板3側になることが望ましい。又、位置決め部1kは、拡散面1hと同様に、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とすると好ましい。
 LED用光学素子1の外径がφ15~20mmであり、LED用光学素子1をLED光源2に対して取り付けたとき、LED光源2の光放出面2aからLED用光学素子1の出射面1bの頂点までの距離が6mm以下であると好ましい。又、LED光源2の光放出面2aの対角長は、2.5mmであると好ましい。
 本実施の形態では、LED光源2の光放出面2aから出射した光のうち中心付近の混色された光は、入射面1aから入射する一方で、周辺の光は、拡散面1hや位置決め部1kから入射する。LED用光学素子1に入射した光は、75~85度の位置に配光角のピークを持った状態で出射面1bより出射する。ここで、黄色成分を含むことが多い周辺の光を、拡散作用を備えた拡散面1hや位置決め部1kを介して入射させることで拡散効果が生じ、黄色成分が消失する。これにより、高品質な白色光を出射できる。
 次に、LED用光学素子の好適な実施例について説明する。
(実施例1)
 図3に、実施例1にかかるLED用光学素子を示す。各部については、上述した実施の形態と同じ符号を付すが、本実施例では出射面は凸形状であり、屈折面及び拡散面間の段差と、脚部とは設けられていない。図中の数字は、寸法(mm)である。実施例1の配光ピーク角は、80度である。
(実施例2)
 図4に、実施例2にかかるLED用光学素子を示す。本実施例は、出射面が凸形状であり、図1,2の実施の形態に対応している。各部については、上述した実施の形態と同じ符号を付す。実施例2の配光ピーク角は、80度である。
(実施例3)
 図5に、実施例3にかかるLED用光学素子を示す。本実施例は、出射面が光軸付近で平面形状である。各部については、上述した実施の形態と同じ符号を付すが、本実施例では、図5(b)に示すように、拡散面1hが先細の非球面形状であり、また図5(d)から明らかなように、底面1dの中央において直径方向に延在する幅広の溝1vを形成した形状となっている。溝1vには、細くした基板3を嵌合させることができる。実施例3の配光ピーク角は、78度である。
(実施例4)
 図6に、実施例4にかかるLED用光学素子を示す。本実施例は、出射面が光軸付近で凹面形状である。各部については、上述した実施の形態と同じ符号を付すが、本実施例では脚部1jが短円筒ピン状になっている。実施例4の配光ピーク角は、76度である。
(実施例5)
 図7に、実施例5にかかるLED用光学素子を示す。各部については、上述した実施の形態と同じ符号を付すが、本実施例では、脚部を有さず、拡散面1hが位置決め部を兼ねている。又、出射面1bが連続しておらず、径方向に不連続な面から構成されていて、即ち光軸を中心とした環状の溝1wが形成されており、溝1wの半径方向の境界には段差ができている。よって、出射面1bは3領域に分けられ、光軸近傍は凹面となっている。図中の数字は、寸法(mm)である。実施例5の配光ピーク角は、77度である。尚、後述する表1では、寸法を変えた3タイプの実施例とした(実施例5-1,5-2,5-3)。
(実施例6)
 図8に、実施例6にかかるLED用光学素子を示す。各部については、上述した実施の形態と同じ符号を付すが、本実施例では、脚部を有さず、拡散面1hが位置決め部を兼ねている。又、出射面1bが連続しておらず、径方向に不連続な面から構成されていて、即ち光軸を中心とした環状の溝1wが形成されており、溝1wの半径方向の境界には段差ができている。よって、出射面1bは3領域に分けられ、光軸近傍は凹面となっている。実施例6の配光ピーク角は、77度である。
(実施例7)
 図9に、実施例7にかかるLED用光学素子を示す。各部については、上述した実施の形態と同じ符号を付すが、本実施例では、脚部を有さず、拡散面1hが位置決め部を兼ねている。又、出射面1bが連続しておらず、径方向に不連続な面から構成されていて、即ち光軸を中心とした環状の外向き段差1wが形成されている。よって、出射面1bは2領域に分けられ、光軸近傍は凹面となっている。実施例7の配光ピーク角は、80度である。
 表1に、各実施例の各部寸法(mm、符号に対応する寸法位置を図10(a)(b)に図示する)と、(1)式の値を示す。
D1:LED用光学素子外径
D2:出射面外径
d1:LED光源の光放出面の対角長
d2:屈折面最大径
h1:LED光源の光放出面から屈折面頂点までの距離
h2:LED光源の光放出面から屈折面と拡散面との境界までの距離
H:LED用光学素子の高さ
sag:出射面の光軸方向高さ
Figure JPOXMLDOC01-appb-T000001
 本発明は、明細書に記載の実施形態、実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。例えば、本発明は液晶パネルの照明用だけでなく、看板照明用の照明装置としても用いることができる。
  1 LED用光学素子
  1a 入射面
  1b 出射面
  1d 底面
  1f 外周面
  1g 屈折面
  1h 拡散面
  1i 段差
  1j 脚部
  1k 位置決め部
  1v 底面側の溝
  1w 出射面側の溝(段差)
  2 LED光源
  2a 光放出面
  3 回路基板

Claims (14)

  1.  LED光源の光放出側に配置され、前記LED光源からの発光光が入射する凹状の入射面と、前記発光光を外部に放出する出射面とを備えたLED用光学素子であって、
     前記LED光源は、第1の色の光線を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光線によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなり、その光放出面がフラットであり、
     前記LED用光学素子の前記凹状の入射面は、前記光放出面の中心における法線が通過する球面もしくは非球面の屈折面と、前記屈折面よりも前記LED光源側であって光軸直交方向外側に設けられ、光の拡散作用を持つ拡散面と、を有することを特徴とするLED用光学素子。
  2.  前記第1の色は青色であり、前記第2の色は黄色であることを特徴とする請求項1に記載のLED用光学素子。
  3.  前記LED光源から出射された後、前記LED用光学素子を通過した光線は、75~85度の位置に配光角のピークを持つことを特徴とする請求項1又は2に記載のLED用光学素子。
  4.  前記拡散面は、前記LED光源の光放出面から遠ざかるに連れて光軸直交方向の寸法が小さくなるテーパ形状を有していることを特徴とする請求項1~3のいずれかに記載のLED用光学素子。
  5.  前記LED用光学素子は、前記LED光源を取り付けた基板に対向する底面を有し、前記底面に光の拡散作用を持たせたことを特徴とする請求項1~4のいずれかに記載のLED用光学素子。
  6.  前記LED用光学素子を前記LED光源に取り付けたとき、前記底面は、前記LED光源の光放出面よりも光放出方向と逆側に配置されていることを特徴とする請求項1~5のいずれかに記載のLED用光学素子。
  7.  前記LED用光学素子は、前記LED光源を設けた基板に当接する脚部を有し、前記脚部の高さは前記LED光源の高さより低いことを特徴とする請求項1~6のいずれかに記載のLED用光学素子。
  8.  前記脚部は、周方向に不連続に形成されていることを特徴とする請求項7に記載のLED用光学素子。
  9.  前記LED用光学素子は、前記LED光源に当接することで光軸直交方向の位置決めを行える位置決め部を有することを特徴とする請求項1~8のいずれかに記載のLED用光学素子。
  10.  前記拡散面と前記屈折面との間には段差が設けられていることを特徴とする請求項1~9のいずれかに記載のLED用光学素子。
  11.  前記出射面は、径方向に不連続な面から構成されていることを特徴とする請求項1~10のいずれかに記載のLED用光学素子。
  12.  前記LED用光学素子の外径D1がφ15~20mmであり、前記LED用光学素子を前記LED光源に取り付けたとき、前記LED光源の光放出面から前記LED用光学素子の前記出射面の頂点までの距離h1が6mm以下であることを特徴とする請求項1~11のいずれかに記載のLED用光学素子。
  13.  前記LED光源の光放出面における最小内接円の径をL(mm)、前記LED光源の光放出面から前記拡散面と前記屈折面との境界までの距離をh2(mm)としたときに、以下の式を満たすことを特徴とする請求項1~12のいずれかに記載のLED用光学素子。
     1.72<L/h2<3.57   (1)
  14.  前記LED光源は、第1の色の光線を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光線によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなり、その光放出面がフラットであるLED光源と、請求項1~13のいずれかに記載のLED用光学素子と、を有することを特徴とするLED照明装置。
PCT/JP2013/056983 2012-03-30 2013-03-13 Led用光学素子及びled照明装置 WO2013146261A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012080634 2012-03-30
JP2012-080634 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146261A1 true WO2013146261A1 (ja) 2013-10-03

Family

ID=49259525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056983 WO2013146261A1 (ja) 2012-03-30 2013-03-13 Led用光学素子及びled照明装置

Country Status (1)

Country Link
WO (1) WO2013146261A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118902A (ja) * 2013-12-19 2015-06-25 隆達電子股▲ふん▼有限公司 発光モジュール及びその光学レンズ
JP2015156265A (ja) * 2014-02-19 2015-08-27 東芝ライテック株式会社 照明器具
JP2020187152A (ja) * 2019-05-09 2020-11-19 コイズミ照明株式会社 拡散レンズ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034019A (ja) * 2008-07-28 2010-02-12 Samsung Electro Mechanics Co Ltd 両面照明用ledレンズ並びにledモジュール及びこれを用いたled両面照明装置
JP2010097138A (ja) * 2008-10-20 2010-04-30 Sumitomo Electric Ind Ltd レンズ
JP2010251073A (ja) * 2009-04-14 2010-11-04 Enplas Corp 照明用レンズおよびこれを備えた照明装置
JP2011091022A (ja) * 2009-04-27 2011-05-06 Enplas Corp 発光装置、面光源装置、及び表示装置
JP2012064654A (ja) * 2010-09-14 2012-03-29 Enplas Corp 発光装置、照明装置及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034019A (ja) * 2008-07-28 2010-02-12 Samsung Electro Mechanics Co Ltd 両面照明用ledレンズ並びにledモジュール及びこれを用いたled両面照明装置
JP2010097138A (ja) * 2008-10-20 2010-04-30 Sumitomo Electric Ind Ltd レンズ
JP2010251073A (ja) * 2009-04-14 2010-11-04 Enplas Corp 照明用レンズおよびこれを備えた照明装置
JP2011091022A (ja) * 2009-04-27 2011-05-06 Enplas Corp 発光装置、面光源装置、及び表示装置
JP2012064654A (ja) * 2010-09-14 2012-03-29 Enplas Corp 発光装置、照明装置及び表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118902A (ja) * 2013-12-19 2015-06-25 隆達電子股▲ふん▼有限公司 発光モジュール及びその光学レンズ
JP2015156265A (ja) * 2014-02-19 2015-08-27 東芝ライテック株式会社 照明器具
JP2020187152A (ja) * 2019-05-09 2020-11-19 コイズミ照明株式会社 拡散レンズ

Similar Documents

Publication Publication Date Title
JP5849193B2 (ja) 発光装置、面光源、液晶ディスプレイ装置、およびレンズ
JP5325639B2 (ja) 発光装置
US7670031B2 (en) Lighting device and display apparatus
TWI419361B (zh) 光電元件
US20100301353A1 (en) Led lighting device having a conversion reflector
US8702270B2 (en) Tube type LED lighting assembly
JP2014102485A (ja) Led用光学素子及びled照明装置
JP2006344409A (ja) 照明装置及びこれを備える表示装置
JP2011014434A (ja) 発光装置、面光源および液晶ディスプレイ装置
WO2019206329A1 (zh) 反射片及其制作方法、直下式背光模组以及显示装置
KR20070096368A (ko) 프레넬 렌즈 및 이를 이용한 led 조명 장치
CN109239976B (zh) 量子点背光模组与量子点液晶显示装置
JP2008053660A (ja) 発光モジュール
WO2013146261A1 (ja) Led用光学素子及びled照明装置
JP5849192B2 (ja) 面光源および液晶ディスプレイ装置
JP2007042938A (ja) 光学装置
WO2014024681A1 (ja) Led用光学素子及びled照明装置
JP2008034321A (ja) 照明装置および撮像装置
JP2014146530A (ja) 照明装置及びled用光学素子
KR101604667B1 (ko) 직하 백라이트유닛 확산 렌즈
KR20180039787A (ko) 렌즈 일체형 발광 모듈
JP2014002951A (ja) 照明装置
US20140233213A1 (en) Led light system with various luminescent materials
JP2007005015A (ja) 面状光源
WO2014038362A1 (ja) 光学素子及びled照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: DE