WO2013145813A1 - Film-forming apparatus - Google Patents
Film-forming apparatus Download PDFInfo
- Publication number
- WO2013145813A1 WO2013145813A1 PCT/JP2013/050608 JP2013050608W WO2013145813A1 WO 2013145813 A1 WO2013145813 A1 WO 2013145813A1 JP 2013050608 W JP2013050608 W JP 2013050608W WO 2013145813 A1 WO2013145813 A1 WO 2013145813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller
- base material
- film
- film forming
- substrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
Definitions
- the present invention relates to a film forming apparatus for forming a thin film on a surface of a base material, and in particular, a roll-to-roll type film forming apparatus for forming a film on a base material surface by performing a predetermined treatment on a long thin base material.
- the present invention relates to a membrane device.
- a solar cell module As a solar cell module, a solar cell module in which a plurality of strip-shaped solar cells are arranged in series and joined (hereinafter referred to as “slat structure type”) is known (for example, Japanese Patent Application No. 2011-270465).
- a solar battery cell used in such a solar battery module has a lower conductive film (Ag, ZnO, etc.), a photoelectric conversion film (amorphous silicon, etc.) and an upper conductive film (ITO, etc.) on a base material made of a metal material. A laminate of thin films is used.
- the lower conductive film, the photoelectric conversion film, and the upper conductive film are formed by sputtering, a CVD (Chemical Vapor Deposition) method, a vapor deposition method, or the like in each chamber of the film forming apparatus.
- CVD Chemical Vapor Deposition
- the solar battery cell used in the slat structure type solar battery module has a relatively thin and narrow strip shape. Therefore, the manufacture of this type of solar cell includes a feed roll for feeding the substrate to the film forming material supply unit side and a take-up roll for winding the film forming substrate after the film forming process is completed. It is advantageous to use a roll-to-roll type film forming apparatus.
- first to third chambers are provided between a delivery roll and a take-up roll, and a film forming material for forming a lower conductive film, a photoelectric conversion film, and an upper conductive film in the first to third chambers, respectively.
- a supply unit shall be provided.
- a tape-shaped base material made of a conductive material is housed in the delivery roll in a wound state. The base material delivered from the delivery roll is introduced into the first chamber, and a lower conductive film is formed on the surface by sputtering, vapor deposition or the like.
- the base material having the lower conductive film formed on the surface is further introduced into the second chamber, and a photoelectric conversion film such as amorphous silicon is formed on the lower conductive film by a CVD method, a vapor deposition method, or the like.
- the base material having the lower conductive film and the photoelectric conversion film formed on the surface is introduced into the third chamber, and the upper conductive film is formed on the surface by sputtering.
- the base material after the film forming treatment is wound up by a winding roll.
- the base material after the film forming process wound on the winding roll becomes a slat structure type solar cell module through a cutting process and a joining process.
- the film forming apparatus described above stops the base material at a predetermined position in the chamber, executes the film forming process, and sets the base material so that the base material position after the film formation becomes a predetermined position in the next chamber. Transport. Then, the film forming apparatus stops the base material at a predetermined position in the next chamber and performs the next film forming process.
- a portion where the film is not formed is generated by the gap between the chambers, and a base material portion where the film is not formed is wasted. Further, in order to reduce such a portion where the film is not formed, it is necessary to enlarge the chamber.
- a film with a slow film formation rate or a film that is thickly stacked generally has many chambers for forming the same film, resulting in an increase in apparatus cost. It was.
- a Nelson roller in which two rollers whose rotation axes are inclined with respect to each other is provided in the chamber, and a substrate is wound a plurality of times between the Nelson rollers, and a film forming process is performed.
- a film forming apparatus in which a film forming process is continuously executed to obtain a predetermined film thickness (for example, Japanese Patent Application No. 2011-270465).
- FIG. 13 is an explanatory diagram showing the overall configuration of a roll-to-roll type film forming apparatus.
- FIG. 14 is an explanatory diagram showing the main configuration of the film forming process section.
- the film forming apparatus A includes a base material feed roll B, a base material winding roll C, and a film forming processing unit D.
- a conductive thin plate-like base material E that becomes a base material of the solar battery cell is accommodated in a wound state.
- the substrate E delivered from the substrate delivery roll B passes through a plurality of film-forming treatment units D, whereby a predetermined process for configuring solar cells on the substrate E is continuously executed, It is wound on a substrate winding roll C.
- the base material E wound up by the base material winding roll C is obtained by rolling a solar cell base material in which a thin film necessary for the solar battery cell is laminated on the surface thereof.
- the film formation processing part D is composed of a film formation apparatus by sputtering, CVD, vapor deposition or the like. As shown in FIG. 14, the chamber F, the roller part G accommodated in the chamber F, and the production process are performed. And a film material supply unit H.
- the chamber F is for maintaining the inside in a vacuum environment.
- a predetermined raw material gas is supplied from the film forming material supply unit H into the chamber F maintained in a vacuum environment, whereby a predetermined thin film is formed on the substrate E.
- the roller part G includes a first roller I and a second roller J.
- the first roller I is rotatable about an axis and travels the substrate E along the outer peripheral surface.
- the second roller J is disposed at a predetermined distance from the first roller I, and the substrate E is wound a plurality of times between the first roller I and the second roller J is placed on the outer peripheral surface of the first roller I.
- a plurality of rows of the base materials E are arranged at predetermined intervals.
- the 1st roller I and the 2nd roller J comprise the Nelson roller in which each rotating shaft inclines at a predetermined angle.
- FIG. 15 is an explanatory view of the first roller I and the second roller J as viewed from the outer peripheral side.
- the substrate E supplied from outside the chamber F is wound around the outer peripheral surfaces of the first roller I and the second roller J a plurality of times.
- the rotation shafts of the first roller I and the second roller J are inclined, the outer peripheral surfaces of the first roller I and the second roller J are aligned in a plurality of rows of base materials E at predetermined intervals. Wound around.
- the distance between the first roller I and the second roller J is small at the center portion and increases toward the end portion.
- the plurality of rows of base materials E wound between the first roller I and the second roller J are conveyed at the same speed over different distances.
- the base material E moves while sliding on the outer peripheral surfaces of the first roller I and the second roller J, and the base material E may be damaged.
- the difference in the conveyance speed at the arrangement position of the base material E becomes large, the first roller I and the second roller J may not rotate normally.
- the base material E, the first roller I, and the second roller When the coefficient of friction with J is large, there is a possibility that the apparatus may fail and the base material E may be broken.
- An object of the present invention is to facilitate the transport of a substrate by a Nelson roller in a film-forming apparatus that performs a predetermined treatment on a long thin plate substrate of a roll-to-roll type and forms a film on the substrate surface. It is to prevent material damage and equipment failure.
- a film-forming apparatus is a film-forming apparatus that forms a thin film on a surface of a substrate by performing predetermined processing in a chamber on a thin plate-like substrate being conveyed in a chamber.
- a material supply unit, a first roller, and a second roller are provided.
- the film forming material supply unit is disposed in the chamber and executes a predetermined film forming process on the substrate to be conveyed.
- the first roller sends a base material supplied from outside the chamber to the film forming material supply unit, and discharges the base material after the film forming process out of the chamber.
- the second roller has a rotation axis inclined at a predetermined angle with the rotation axis of the first roller, and the base material is wound a plurality of times between the first roller and the base material is aligned in a plurality of rows at a predetermined interval.
- at least one of the first roller and the second roller is divided into a plurality of individual rollers that freely rotate.
- the first roller and the second roller constitute a so-called Nelson roller whose rotation axis is inclined, and are wound in a state where a plurality of thin plate-like base materials having a predetermined width are aligned in a plurality of rows. Accordingly, the plurality of rows of base materials wound around the first roller and the second roller have different conveyance speeds depending on their positions. Since at least one of the first roller and the second roller is composed of a plurality of individual rollers that freely rotate, the difference in the conveyance speed of the base material is absorbed by the free rotation of the individual rollers.
- the base material is prevented from being rubbed and damaged by the outer peripheral surface of the first roller or the second roller due to the difference in the conveyance speed of the base material aligned in a plurality of rows between the first roller and the second roller.
- the plurality of individual rollers can be arranged in the same number as the row of base materials aligned in the roller portion. Further, the first roller can be divided into a plurality of individual rollers, and in this case, the second roller can be configured to be rotationally driven to transport the substrate. Furthermore, the second roller can be divided into a plurality of individual rollers.
- the substrate is smoothly conveyed by the Nelson roller, and damage to the substrate and failure of the apparatus are prevented. it can.
- FIG. 1 is an explanatory view showing the overall configuration of the film forming apparatus of the present invention.
- FIG. 2 is an explanatory diagram showing the main configuration of the film forming process section.
- FIG. 3 is a perspective view showing the roller unit 5 of the first embodiment.
- FIG. 4 is an explanatory view of the first roller 51 and the second roller 52 of the first embodiment viewed from above.
- FIG. 5 is an explanatory view of the first roller 51 and the second roller 52 of the second embodiment viewed from above.
- FIG. 6 is an explanatory view of the first roller 51 and the second roller 52 of the third embodiment as viewed from above.
- FIG. 7 is an explanatory view of the first roller 51 and the second roller 52 of the fourth embodiment as viewed from above.
- FIG. 8 is an explanatory diagram of a main part of the roller unit 5 according to the first embodiment.
- FIG. 9 is an explanatory diagram of a main part of the roller portion of the first comparative example.
- FIG. 10 is an explanatory diagram of a main part of the roller unit of the second comparative example.
- FIG. 11 is an explanatory view schematically showing an example of the base material after the film forming process.
- FIG. 12 is an explanatory diagram of a solar cell module having a slat structure.
- FIG. 13 is an explanatory diagram showing an overall configuration of a roll-to-roll type film forming apparatus according to a conventional example.
- FIG. 14 is an explanatory diagram showing a main configuration of a film forming processing unit according to a conventional example.
- FIG. 15 is an explanatory view of the first roller I and the second roller J according to the conventional example as viewed from the side of the outer peripheral surface.
- FIG. 1 is an explanatory diagram showing the overall configuration of the film forming apparatus of the present invention.
- FIG. 2 is an explanatory diagram showing the main configuration of the film forming processing unit 30.
- the film forming apparatus 1 includes a substrate sending roll 10, a substrate winding roll 20, and a film forming processing unit 30.
- the base material delivery roll 10 stores a conductive thin plate-like base material 2 serving as a base material of a solar battery cell in a wound state.
- the base material 2 sent out from the base material feed roll 10 passes through a plurality of film-forming treatment units 30, whereby a predetermined process for configuring solar cells on the base material 2 is continuously executed, It is wound up on the substrate winding roll 20.
- the base material 2 wound up by the base material winding roll 20 is obtained by rolling a solar cell base material in which a thin film necessary for a solar battery cell is laminated on the surface thereof.
- the base material feed roll 10 side will be described as upstream, and the base material take-up roll 20 side will be described as downstream.
- the base material feed roll 10 is for supplying the base material 2 to the downstream side.
- a control device not shown
- the amount of the feed of the base material 2 is controlled.
- make adjustments For example, the base material 2 is sent downstream by rotating the base material delivery roll 10 in a state where the base material 2 receives a tensile force from the downstream side.
- the base material 2 can be sent at a constant speed without being bent by appropriately applying a brake to the base material feed roll 10.
- the base material 2 has a thickness of 0.01 mm to 0.2 mm, a width of 5 mm to 50 mm, and a thin conductive plate such as stainless steel or copper can be used.
- a thin conductive plate such as stainless steel or copper can be used.
- the thickness, width, and material are not limited to those described here.
- the base material take-up roll 20 is configured to increase or decrease the take-up amount of the base material 2 by being driven and controlled by a control device (not shown). For example, it is configured to be wound so as to prevent the substrate 2 from being tensioned more than necessary, while suppressing the warped substrate 2 from being bent.
- drive control is performed so that the substrate 2 delivered from the substrate delivery roll 10 is conveyed at a constant speed and taken up by the substrate take-up roll 20.
- the base material feed roll 10 and the base material take-up roll 20 are disposed in chambers 11a and 11b that form a vacuum environment, respectively.
- the film forming unit 30 is for forming a thin film necessary for the solar cell on the substrate 2.
- a plurality of film forming processing units 30 are provided. Specifically, a plurality of film forming units 30 are linearly arranged between the base material feed roll 10 and the base material take-up roll 20. A thin film is sequentially formed on the base material 2 when the base material 2 sent from the base material feed roll 10 travels and passes through each film forming processing unit 30.
- the film forming processing unit 30 is formed by a film forming apparatus by sputtering, CVD method, vapor deposition method or the like. As shown in FIG. 2, the chamber 3, the roller unit 5 accommodated in the chamber 3, and the manufacturing process are performed. And a film material supply unit 6.
- the chamber 3 maintains its inside in a vacuum environment. By supplying a specific film forming material from the film forming material supply unit 6 into the chamber 3 maintained in a vacuum environment, a predetermined thin film is formed on the substrate 2.
- the chamber 3 is maintained in a vacuum environment.
- the chamber 3 may be maintained in an environment (for example, an atmospheric pressure environment) according to a film forming target, not in a vacuum environment.
- the chamber 3 is provided with a base material inlet 3a for receiving the base material 2 transported from the upstream side, and a base material outlet 3b for sending the base material 2 after film formation processing to the downstream side. ing.
- each chamber 3 is suitable for forming a thin film. Configured to maintain a high degree of vacuum.
- the roller unit 5 includes a first roller 51 and a second roller 52.
- the first roller 51 is rotatable about an axis and causes the base material 2 to travel along the outer peripheral surface.
- the second roller 52 is arranged at a predetermined distance from the first roller 51, and the base material 2 is wound a plurality of times between the first roller 51, so that the second roller 52 is placed on the outer peripheral surface of the first roller 51.
- the substrate 2 positioned is aligned in a plurality of rows at a predetermined interval.
- the first roller 51 and the second roller 52 constitute a Nelson roller whose respective rotation axes are inclined at a predetermined angle.
- the Nelson roller indicates that the rotational axes of the two rollers are in a twisted positional relationship (a positional relationship in which the rotational axes are not parallel and the rotational axes and their extension lines do not intersect).
- FIG. 3 is a perspective view showing the roller unit 5 of the first embodiment
- FIG. 4 shows the first roller 51 and the second roller 52 of the first embodiment from above.
- Both the first roller 51 and the second roller 52 are formed in a cylindrical shape, and are supported so as to be rotatable around their axes.
- the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
- the second roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance.
- the arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
- the rotation axes of the first roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
- the base material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
- the film forming material supply unit 6 is disposed to face the outer peripheral surface of the first roller 51.
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b,... 51n at least equal to or greater than the number of alignment of the base material 2 arranged in the roller portion. Yes.
- Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
- the second roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2.
- the distance between the first roller 51 and the second roller 52 varies depending on the position through which the base material 2 passes. Accordingly, the speed of the base material 2 passing through the individual rollers 51a to 51n is different.
- each of the individual rollers 51a to 51n corresponds to the conveyance speed of the base material 2 contacting the outer peripheral surface. Rotates at the specified rotation speed. Therefore, the base material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
- FIG. 5 is an explanatory view of the first roller 51 and the second roller 52 of the second embodiment as viewed from above. Similar to the first embodiment, the first roller 51 and the second roller 52 are both formed in a cylindrical shape, and are supported so as to be rotatable about their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
- the second roller 52 is disposed below the first roller 51 with a predetermined distance.
- the arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
- the rotation axes of the first roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
- the base material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction.
- the second roller 52 is divided into a plurality of individual rollers 52 a, 52 b,... 52 n that are at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion.
- Each of the individual rollers 52a to 52n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the substrate 2 in contact with the outer peripheral surface.
- the first roller 51 is rotationally driven by a drive unit (not shown) in order to convey the base material 2. Since the rotation axes of the first roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. Therefore, the speed of the base material 2 passing through the individual rollers 52a to 52n is different.
- each of the individual rollers 52a to 52n corresponds to the conveyance speed of the base material 2 in contact with the outer peripheral surface. Rotates at the specified rotation speed.
- the base material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
- FIG. 6 is an explanatory view of the first roller 51 and the second roller 52 of the third embodiment as viewed from above. Similar to the first embodiment, the first roller 51 and the second roller 52 are both formed in a cylindrical shape, and are supported so as to be rotatable about their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
- the second roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance.
- the arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
- the rotation axes of the first roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
- the base material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b,... 51n at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion.
- Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
- the second roller 52 is divided into a plurality of individual rollers 52a, 52b,... 52n that are at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion.
- Each of the individual rollers 52a to 52n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the substrate 2 in contact with the outer peripheral surface. Since the rotation axes of the first roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. Accordingly, the speed of the base material 2 passing through the individual rollers 51a to 51n and 52a to 52n is different.
- the individual rollers 51a to 51n and 52a to 52n are supported by the rotation shaft so as to freely rotate, the individual rollers 51a to 51n and 52a to 52n are in contact with the outer peripheral surface.
- the substrate 2 rotates at a rotation speed corresponding to the conveyance speed. Therefore, the base material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
- the driving force can be transmitted to the substrate 2 by drivingly controlling one or both of the individual rollers 51 a and 51 n positioned at both ends of the first roller 51.
- the driving force can be transmitted to the base material 2 by drivingly controlling one or both of the individual rollers 52 a and 52 n positioned at both ends of the second roller 52.
- FIG. 7 is an explanatory view of the first roller 51 and the second roller 52 of the fourth embodiment as viewed from above.
- Both the first roller 51 and the second roller 52 are formed in a cylindrical shape, and are supported so as to be rotatable around their axes.
- the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
- the second roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance.
- the arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
- the rotation axes of the first roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
- the base material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction.
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b,.
- Each of the individual rollers 51a to 51n is formed by winding a predetermined number of rows of the base material 2 arranged on the roller unit 5.
- FIG. 51a to 51n are provided.
- Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
- the second roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2. Since the rotation axes of the first roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. However, the distance between the first roller 51 and the second roller 52 corresponding to adjacent rows in the base material 2 aligned with the roller portion 5 is greatly different from that at the both ends and the central portion of the roller. It is not considered.
- the degree to which the base material 2 rubs against the outer peripheral surface of the first roller 51 or the second roller 52 by providing one individual roller 51a to 51n for every several base materials 2 arranged. Is reduced. As a result, damage to the substrate 2 and device failure are prevented.
- one or both of the individual rollers 51a and 51n positioned at both ends of the first roller 51 are driven and controlled, and a driving force is applied to the base material 2.
- one or both of the individual rollers 52a and 52n positioned at both ends of the second roller 52 can be controlled to transmit the driving force to the base material 2.
- the second roller 52 can be divided into a plurality of rows of the base material 2.
- FIG. 8 is an explanatory diagram of a main part of the roller unit 5 according to the first embodiment.
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c... And freely rotates around the axis of one rotation shaft (not shown).
- the second roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2.
- the first roller 51 and the second roller 52 constitute a Nelson roller whose rotational shaft is in a twisted positional relationship. Since the base material 2 is wound around the first roller 51 and the second roller 52 in a spiral state, the length direction of the base material 2 is a direction orthogonal to the rotation axes of the first roller 51 and the second roller 52. With a predetermined angle. Therefore, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c... Of the first roller 51 is mainly pulled in a direction orthogonal to the rotation axis of the first roller 51 and parallel to the rotation axis. It is also pulled in any direction. As a result, a force that causes the base material 2 to slide sideways in a direction parallel to the rotation axis on the outer peripheral surface of the first roller 51 is applied to the base material 2.
- the conveyance direction of the base material 2 that passes from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is an arrow A direction.
- the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51 a, 51 b, 51 c... Of the first roller 51 receives the driving force in the transport direction and is parallel to the rotation axis of the first roller 51.
- it receives a force that causes the base material 2 to slide sideways in the left direction (arrow B direction) in FIG.
- the substrate 2 in contact with the outer peripheral surface of the first roller 51 has a direction parallel to the rotational axis of the first roller 51.
- a force that causes the base material 2 to slide sideways in the right direction in FIG. 8 (the direction opposite to the arrow B direction) is applied.
- the force that causes the base material 2 to slide sideways and the force that causes the base material 2 to slip sideways by the Nelson roller cancel each other, and the base material 2 appears to be at the same position on the outer peripheral surface of the first roller 51.
- the interval between the rotation axes of the first roller 51 and the second roller 52, the inclination angle with respect to the rotation axis when the substrate 2 is wound between the first roller 51 and the second roller 52, and the conveyance speed of the substrate 2 In accordance with the above, the inclination angles of the rotation axes of the first roller 51 and the second roller are determined so that the force that causes the base material 2 to slide on the outer peripheral surface of the first roller 51 is offset.
- the second roller 52 is divided into individual rollers 52 a, 52 b, 52 c..., So that the force that causes the base material 2 to slide sideways is canceled out.
- the inclination angle of the rotation axis of the second roller 2 is determined.
- FIG. 9 is an explanatory diagram of a main part of the roller unit 5 according to the first comparative example.
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c... As in the first embodiment of the present invention.
- the first roller 51 and the second roller 52 do not constitute a Nelson roller, but the center line of the first roller 51 connecting the rotation centers of the individual rollers 51a, 51b, 51c,.
- the rotation axes are parallel to each other.
- the rotation axes of the individual rollers 51a, 51b, 51c,... Are predetermined with respect to the center line of the first roller 51 in a plane including the center line of the first roller 51 and the rotation axis of the second roller 52, respectively. Is inclined at an angle of Thereby, the base material 2 conveyed between the outer peripheral surface of the first roller 51 and the outer peripheral surface of the second roller 52 is shifted by one pitch.
- the conveyance direction of the base material 2 passing from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is the arrow A direction.
- the conveying direction of the base material 2 from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is relative to the rotation axis of each individual roller 51a, 51b, 51c.
- the base material 2 is conveyed while rotating the individual rollers 51a, 51b, 51c,... Without sliding on the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,. Will be.
- the conveyance direction of the base material 2 passing from the outer peripheral surface of the first roller 51 toward the outer peripheral surface of the second roller 52 is relative to the direction perpendicular to the rotation axis of the individual rollers 51a, 51b, 51c. Is inclined. Accordingly, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,... Receives the driving force in the transport direction and is parallel to the rotation axis of the first roller 51, and is shown in FIG. A force that causes the base material 2 to skid in the left direction (arrow B direction) is received.
- FIG. 10 is an explanatory diagram of a main part of the roller unit 5 according to the second comparative example.
- the first roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c...
- the second roller 52 is divided into a plurality of individual rollers 52a, as in the third embodiment of the present invention.
- the first roller 51 and the second roller 52 do not constitute a Nelson roller, but the center line of the first roller 51 connecting the rotation centers of the individual rollers 51a, 51b, 51c,... And the individual rollers 52a, 52b, 52c. Are parallel to each other with the center line of the second roller 52 connecting the rotation centers of. Further, the rotation shafts of the individual rollers 51a, 51b, 51c...
- the individual rollers 52a, 52b, 52c... are respectively in a plane including the center line of the first roller 51 and the center line of the second roller 52.
- the substrate 2 is inclined at a predetermined angle with respect to the center line of the first roller 51 and the second roller 52 so that the substrate 2 conveyed between the outer peripheral surfaces of the first roller 51 and the second roller 52 is shifted by one pitch. It has become.
- the conveyance direction of the base material 2 passing from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is assumed to be an arrow A direction.
- the conveying direction of the base material 2 from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is the individual rollers 51 a, 51 b, 51 c.
- the direction of the rotation of the individual rollers 52 a, 52 b, 52 c... Is perpendicular to the rotation axis of the individual rollers 52 a, 52 b, 52 c, and the individual rollers 51 a, 51 b, 51 c. It will be conveyed, rotating each individual roller, without sliding on the outer peripheral surface of 52a, 52b, 52c ....
- the conveying direction of the base material 2 passing from the outer peripheral surface of the first roller 51 toward the outer peripheral surface of the second roller 52 is the individual rollers 51a, 51b, 51c,... And the individual rollers 52a, 52b, 52c,. .. Inclined with respect to the direction perpendicular to the rotation axis. Therefore, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,... Receives the driving force in the transport direction, and is in a direction parallel to the rotation axis of the first roller 51. A force that causes the base material 2 to skid in the left direction (arrow B direction) is received. The base material 2 that is in contact with the outer peripheral surfaces of the individual rollers 52a, 52b, 52c,.
- the base material 2 may be damaged or the rotation of the first roller 51 and the second roller 52 may be hindered by the strong tension, as described above, and conveyance may become impossible. is there. On the second roller 52 side, the base material 2 may fall off from the individual rollers 52a, 52b, 52c,.
- the rotation axes of the first roller 51 and the second roller 52 are parallel to each other as in the comparative example, the rotation axes of the individual rollers are inclined by dividing the rollers into individual rollers so as not to cause a side slip accompanying the conveyance. Even if it is made, it is necessary to keep the tension of the base material 2 high, which may cause problems such as damage to the base material 2 and poor rotation of the roller. There is a risk of falling off.
- the first roller 51 and the second roller 52 constitute a Nelson roller whose rotational axis is in a torsional positional relationship. There is a difference in the transport speed of the base material 2 due to the difference in tension applied to the base material 2 depending on the transport position.
- Such a difference in tension of the base material 2 is absorbed by the freely rotating individual rollers 51a to 51n and / or 52a to 52n to prevent damage to the base material 2 or failure of the apparatus. Therefore, it is possible to prevent the substrate 2 from being damaged by excessive tension.
- the force that causes the base material 2 to slide sideways during conveyance is offset by the force applied by the base material 2 by the Nelson roller whose rotational axis is twisted, so that excessive tension can be prevented. The material 2 can be prevented from falling off the roller.
- FIG. 11 is an explanatory view schematically showing an example of a base material after film formation
- FIG. 12 is an explanatory view of a solar cell module having a slat structure.
- Each of the film forming units 30 described above forms a thin film on the substrate 2 by sputtering, CVD, vapor deposition or the like in the chamber 3.
- a lower conductive film 4 a, a photoelectric conversion film 4 b, an upper conductive film 4 c, and the like are stacked on the substrate 2 on which a predetermined film forming process has been performed, as shown in FIG.
- a scale-shaped solar cell base material is formed.
- the solar cell base material in which the lower conductive film 4a, the photoelectric conversion film 4b, and the upper conductive film 4c are formed on the substrate 2 is cut into solar cells 21 having a predetermined length in a cutting process.
- a plurality of strip-shaped solar cells 21 cut to a predetermined length are arranged between two electrodes 24 and 25, and both side portions in the width direction are joined, and a back surface side cover member 22 and a light receiving surface side cover member 23 are joined. It is integrally formed by EVA 26 filled between the two.
- the film forming apparatus 1 (an example of a film forming apparatus) includes a film forming material supply unit 6 (an example of a film forming material supply unit), a first roller 51 (an example of a first roller), And a second roller 52 (an example of a second roller).
- the film-forming material supply unit 6 is disposed in the chamber 3 (an example of a chamber) and executes a predetermined film-forming process on the substrate 2 (an example of a substrate) to be conveyed.
- the first roller 51 sends the substrate 2 supplied from outside the chamber 3 to the film forming material supply unit 6, and discharges the substrate 2 after the film forming process out of the chamber 3.
- the second roller 52 has a rotation axis that is inclined at a predetermined angle with the rotation axis of the first roller 51, and the base material 2 is wound a plurality of times between the first roller 51 and the base material 2 is turned to a predetermined value. Align multiple columns at intervals.
- at least one of the first roller 51 and the second roller 52 is divided into a plurality of individual rollers 51a to 51n and / or 52a to 52n (an example of individual rollers) that freely rotate.
- the film forming material is supplied from the film forming material supply unit 6 while conveying the base material 2 wound a plurality of times between the first roller 51 and the second roller 52, and a predetermined amount is obtained.
- the film forming process can be executed.
- At this time, at least one of the first roller 51 and the second roller 52 is divided into individual rollers 51 a to 51 n and / or 52 a to 52 n that freely rotate, and is arranged between the first roller 51 and the second roller 52. It is possible to absorb the difference in the conveyance speed of the plurality of rows of base materials 2 (the base material 2 slides on the rollers and the individual rollers rotate independently), thereby preventing the base material 2 from being damaged and the apparatus from being broken.
- the present invention can be widely applied to a film forming apparatus that performs a film forming process by roll-to-roll.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
A film-forming apparatus for performing a predetermined process on a roll-to-roll elongated thin-film substrate to form a film on the substrate surface, wherein the base material is transported smoothly using a Nelson roller and damage to the base material or failure of the apparatus are prevented. Specifically, the film-forming apparatus (1) is provided with a film-forming material supply unit (6), a first roller (51), and a second roller (52). The film-forming material supply unit (6) is disposed inside a chamber (3) and a predetermined film-forming process is performed on the transported base material (2). The first roller (51) transmits the base material (2) supplied from outside the chamber (3) to the film-forming material supply unit (6), and discharges the base material (2) outside the chamber (3) after the film-forming process. The second roller (52) has a rotation axis inclined at a predetermined angle from the rotation axis of the first roller (51), and arrays the base material (2), which is wrapped multiple times in the space between the first roller (51) and the second roller (52), at a predetermined interval in multiple rows. Here, the first roller (51) and/or the second roller (52) is divided into a plurality of freely rotating independent rollers (51a-51n and/or 52a-52n).
Description
本発明は、基材の表面に薄膜を形成するための製膜装置に関し、特に、ロールツーロールタイプで長尺状の薄板基材上に所定の処理を行って基材表面に製膜する製膜装置に関する。
The present invention relates to a film forming apparatus for forming a thin film on a surface of a base material, and in particular, a roll-to-roll type film forming apparatus for forming a film on a base material surface by performing a predetermined treatment on a long thin base material. The present invention relates to a membrane device.
太陽電池モジュールとして、複数枚の短冊状の太陽電池セルを直列に並べて接合したもの(以下、”スラット構造型”と称する)が知られている(例えば、特願2011-270465)。このような太陽電池モジュールに用いられる太陽電池セルは、金属材料からなる基材上に、下部導電膜(Ag、ZnO等)、光電変換膜(アモルファスシリコン等)及び上部導電膜(ITO等)の薄膜を積層したものが用いられる。下部導電膜、光電変換膜、上部導電膜は、それぞれ製膜装置の各チャンバ内において、スパッタリングやCVD(Chemical Vapor Deposition)法、蒸着法等によって形成される。
As a solar cell module, a solar cell module in which a plurality of strip-shaped solar cells are arranged in series and joined (hereinafter referred to as “slat structure type”) is known (for example, Japanese Patent Application No. 2011-270465). A solar battery cell used in such a solar battery module has a lower conductive film (Ag, ZnO, etc.), a photoelectric conversion film (amorphous silicon, etc.) and an upper conductive film (ITO, etc.) on a base material made of a metal material. A laminate of thin films is used. The lower conductive film, the photoelectric conversion film, and the upper conductive film are formed by sputtering, a CVD (Chemical Vapor Deposition) method, a vapor deposition method, or the like in each chamber of the film forming apparatus.
スラット構造型の太陽電池モジュールに用いられる太陽電池セルは、比較的厚みが薄く幅の狭い短冊状である。したがって、この種の太陽電池セルの製造には、製膜材料供給部側に基材を送出する送出ロールと、製膜処理が終了した後の製膜基材を巻き取る巻取ロールとを備えるロールツーロールタイプの製膜装置を用いることが有利である。
The solar battery cell used in the slat structure type solar battery module has a relatively thin and narrow strip shape. Therefore, the manufacture of this type of solar cell includes a feed roll for feeding the substrate to the film forming material supply unit side and a take-up roll for winding the film forming substrate after the film forming process is completed. It is advantageous to use a roll-to-roll type film forming apparatus.
例えば、送出ロールと巻取ロールとの間に、第1~第3チャンバを設け、第1~第3チャンバにそれぞれ下部導電膜、光電変換膜、上部導電膜を製膜するための製膜材料供給部を設けるものとする。
送出ロールには、導電性材料からなるテープ状の基材が巻回状態で収納されている。送出ロールから送出される基材は、第1チャンバに導入されて、スパッタリング、蒸着法等により表面に下部導電膜が形成される。 For example, first to third chambers are provided between a delivery roll and a take-up roll, and a film forming material for forming a lower conductive film, a photoelectric conversion film, and an upper conductive film in the first to third chambers, respectively. A supply unit shall be provided.
A tape-shaped base material made of a conductive material is housed in the delivery roll in a wound state. The base material delivered from the delivery roll is introduced into the first chamber, and a lower conductive film is formed on the surface by sputtering, vapor deposition or the like.
送出ロールには、導電性材料からなるテープ状の基材が巻回状態で収納されている。送出ロールから送出される基材は、第1チャンバに導入されて、スパッタリング、蒸着法等により表面に下部導電膜が形成される。 For example, first to third chambers are provided between a delivery roll and a take-up roll, and a film forming material for forming a lower conductive film, a photoelectric conversion film, and an upper conductive film in the first to third chambers, respectively. A supply unit shall be provided.
A tape-shaped base material made of a conductive material is housed in the delivery roll in a wound state. The base material delivered from the delivery roll is introduced into the first chamber, and a lower conductive film is formed on the surface by sputtering, vapor deposition or the like.
表面に下部導電膜が形成された基材は、さらに、第2チャンバに導入されて、CVD法、蒸着法等により、下部導電膜上にアモルファスシリコンなどの光電変換膜が形成される。
表面に下部導電膜及び光電変換膜が形成された基材は、第3チャンバに導入されて、スパッタリングにより、表面に上部導電膜が形成される。
製膜処理後の基材は、巻取ロールによって巻き取られる。 The base material having the lower conductive film formed on the surface is further introduced into the second chamber, and a photoelectric conversion film such as amorphous silicon is formed on the lower conductive film by a CVD method, a vapor deposition method, or the like.
The base material having the lower conductive film and the photoelectric conversion film formed on the surface is introduced into the third chamber, and the upper conductive film is formed on the surface by sputtering.
The base material after the film forming treatment is wound up by a winding roll.
表面に下部導電膜及び光電変換膜が形成された基材は、第3チャンバに導入されて、スパッタリングにより、表面に上部導電膜が形成される。
製膜処理後の基材は、巻取ロールによって巻き取られる。 The base material having the lower conductive film formed on the surface is further introduced into the second chamber, and a photoelectric conversion film such as amorphous silicon is formed on the lower conductive film by a CVD method, a vapor deposition method, or the like.
The base material having the lower conductive film and the photoelectric conversion film formed on the surface is introduced into the third chamber, and the upper conductive film is formed on the surface by sputtering.
The base material after the film forming treatment is wound up by a winding roll.
巻取ロールに巻き取られた製膜処理後の基材は、切断工程、接合工程を経て、スラット構造型の太陽電池モジュールとなる。
The base material after the film forming process wound on the winding roll becomes a slat structure type solar cell module through a cutting process and a joining process.
上述した製膜装置は、チャンバ内の所定の位置において基材を停止して製膜処理を実行し、製膜後の基材位置が次のチャンバ内の所定の位置になるように基材を搬送する。そして、製膜装置は、次のチャンバ内の所定の位置に基材を停止させ、次の製膜処理を行う。 このような製膜装置では、チャンバ間の間隙の分だけ製膜されない部分が生じることとなり、製膜されない基材部分が無駄になるという問題がある。また、このような製膜されない部分を少なくするためにはチャンバを大型化する必要がある。
また、このような製膜装置では、それぞれの膜の製膜レートに偏りがあると、その膜の製膜時間に、全体の製膜処理時間が律速されてしまうという問題がある。これを解決するために、一般に製膜レートが遅い膜、若しくは厚く積層する膜については、同じ膜を製膜するチャンバをいくつも並べることが多く、その結果、装置コストが増大するという問題があった。
このような問題点を解決するために、チャンバ内に回転軸が互いに傾斜した2つのローラを配置したネルソンローラを設け、このネルソンローラの間に基材を複数回巻回して、製膜処理による製膜処理が連続的に実行されて、所定の膜厚になるような製膜装置が提案されている(例えば、特願2011-270465)。 The film forming apparatus described above stops the base material at a predetermined position in the chamber, executes the film forming process, and sets the base material so that the base material position after the film formation becomes a predetermined position in the next chamber. Transport. Then, the film forming apparatus stops the base material at a predetermined position in the next chamber and performs the next film forming process. In such a film forming apparatus, there is a problem that a portion where the film is not formed is generated by the gap between the chambers, and a base material portion where the film is not formed is wasted. Further, in order to reduce such a portion where the film is not formed, it is necessary to enlarge the chamber.
Further, in such a film forming apparatus, if the film forming rate of each film is biased, there is a problem that the entire film forming process time is limited by the film forming time of the film. In order to solve this problem, a film with a slow film formation rate or a film that is thickly stacked generally has many chambers for forming the same film, resulting in an increase in apparatus cost. It was.
In order to solve such a problem, a Nelson roller in which two rollers whose rotation axes are inclined with respect to each other is provided in the chamber, and a substrate is wound a plurality of times between the Nelson rollers, and a film forming process is performed. There has been proposed a film forming apparatus in which a film forming process is continuously executed to obtain a predetermined film thickness (for example, Japanese Patent Application No. 2011-270465).
また、このような製膜装置では、それぞれの膜の製膜レートに偏りがあると、その膜の製膜時間に、全体の製膜処理時間が律速されてしまうという問題がある。これを解決するために、一般に製膜レートが遅い膜、若しくは厚く積層する膜については、同じ膜を製膜するチャンバをいくつも並べることが多く、その結果、装置コストが増大するという問題があった。
このような問題点を解決するために、チャンバ内に回転軸が互いに傾斜した2つのローラを配置したネルソンローラを設け、このネルソンローラの間に基材を複数回巻回して、製膜処理による製膜処理が連続的に実行されて、所定の膜厚になるような製膜装置が提案されている(例えば、特願2011-270465)。 The film forming apparatus described above stops the base material at a predetermined position in the chamber, executes the film forming process, and sets the base material so that the base material position after the film formation becomes a predetermined position in the next chamber. Transport. Then, the film forming apparatus stops the base material at a predetermined position in the next chamber and performs the next film forming process. In such a film forming apparatus, there is a problem that a portion where the film is not formed is generated by the gap between the chambers, and a base material portion where the film is not formed is wasted. Further, in order to reduce such a portion where the film is not formed, it is necessary to enlarge the chamber.
Further, in such a film forming apparatus, if the film forming rate of each film is biased, there is a problem that the entire film forming process time is limited by the film forming time of the film. In order to solve this problem, a film with a slow film formation rate or a film that is thickly stacked generally has many chambers for forming the same film, resulting in an increase in apparatus cost. It was.
In order to solve such a problem, a Nelson roller in which two rollers whose rotation axes are inclined with respect to each other is provided in the chamber, and a substrate is wound a plurality of times between the Nelson rollers, and a film forming process is performed. There has been proposed a film forming apparatus in which a film forming process is continuously executed to obtain a predetermined film thickness (for example, Japanese Patent Application No. 2011-270465).
図13は、ロールツーロールタイプの製膜装置の全体構成を示す説明図である。図14は、製膜処理部の主要構成を示す説明図である。
製膜装置Aは、基材送出ロールBと、基材巻取ロールCと、製膜処理部Dとを備えている。 FIG. 13 is an explanatory diagram showing the overall configuration of a roll-to-roll type film forming apparatus. FIG. 14 is an explanatory diagram showing the main configuration of the film forming process section.
The film forming apparatus A includes a base material feed roll B, a base material winding roll C, and a film forming processing unit D.
製膜装置Aは、基材送出ロールBと、基材巻取ロールCと、製膜処理部Dとを備えている。 FIG. 13 is an explanatory diagram showing the overall configuration of a roll-to-roll type film forming apparatus. FIG. 14 is an explanatory diagram showing the main configuration of the film forming process section.
The film forming apparatus A includes a base material feed roll B, a base material winding roll C, and a film forming processing unit D.
基材送出ロールBには、太陽電池セルの基材となる導電性の薄板長尺状の基材Eが巻回状態で収納されている。
基材送出ロールBから送出される基材Eは、複数の製膜処理部Dを通過することにより、基材E上に太陽電池セルを構成するための所定の処理が連続的に実行され、基材巻取ロールCに巻き取られる。基材巻取ロールCに巻き取られた基材Eは、その表面に太陽電池セルに必要な薄膜が積層された太陽電池セル母材がロール状になったものである。 In the base material delivery roll B, a conductive thin plate-like base material E that becomes a base material of the solar battery cell is accommodated in a wound state.
The substrate E delivered from the substrate delivery roll B passes through a plurality of film-forming treatment units D, whereby a predetermined process for configuring solar cells on the substrate E is continuously executed, It is wound on a substrate winding roll C. The base material E wound up by the base material winding roll C is obtained by rolling a solar cell base material in which a thin film necessary for the solar battery cell is laminated on the surface thereof.
基材送出ロールBから送出される基材Eは、複数の製膜処理部Dを通過することにより、基材E上に太陽電池セルを構成するための所定の処理が連続的に実行され、基材巻取ロールCに巻き取られる。基材巻取ロールCに巻き取られた基材Eは、その表面に太陽電池セルに必要な薄膜が積層された太陽電池セル母材がロール状になったものである。 In the base material delivery roll B, a conductive thin plate-like base material E that becomes a base material of the solar battery cell is accommodated in a wound state.
The substrate E delivered from the substrate delivery roll B passes through a plurality of film-forming treatment units D, whereby a predetermined process for configuring solar cells on the substrate E is continuously executed, It is wound on a substrate winding roll C. The base material E wound up by the base material winding roll C is obtained by rolling a solar cell base material in which a thin film necessary for the solar battery cell is laminated on the surface thereof.
基材送出ロールBから基材巻取ロールCに向けて基材Eを搬送しながら、中間に位置する複数の製膜処理部Dにおいて基材Eに対する所定の処理を実行する。
製膜処理部Dは、それぞれスパッタリング又はCVD法、蒸着法等による製膜装置で構成されており、図14に示すように、チャンバFと、このチャンバF内に収容されるローラ部G及び製膜材料供給部Hとを備えている。 While the base material E is transported from the base material feed roll B to the base material take-up roll C, predetermined processing is performed on the base material E in a plurality of film forming processing units D positioned in the middle.
The film formation processing part D is composed of a film formation apparatus by sputtering, CVD, vapor deposition or the like. As shown in FIG. 14, the chamber F, the roller part G accommodated in the chamber F, and the production process are performed. And a film material supply unit H.
製膜処理部Dは、それぞれスパッタリング又はCVD法、蒸着法等による製膜装置で構成されており、図14に示すように、チャンバFと、このチャンバF内に収容されるローラ部G及び製膜材料供給部Hとを備えている。 While the base material E is transported from the base material feed roll B to the base material take-up roll C, predetermined processing is performed on the base material E in a plurality of film forming processing units D positioned in the middle.
The film formation processing part D is composed of a film formation apparatus by sputtering, CVD, vapor deposition or the like. As shown in FIG. 14, the chamber F, the roller part G accommodated in the chamber F, and the production process are performed. And a film material supply unit H.
チャンバFは、その内部を真空環境に維持するものである。真空環境に維持されたチャンバF内に製膜材料供給部Hから特定の原料ガスが供給されることにより、基材E上に所定の薄膜が形成される。
The chamber F is for maintaining the inside in a vacuum environment. A predetermined raw material gas is supplied from the film forming material supply unit H into the chamber F maintained in a vacuum environment, whereby a predetermined thin film is formed on the substrate E.
ローラ部Gは、第1ローラI、第2ローラJを備えている。
第1ローラIは、軸回りに回転可能であって、外周面に沿って基材Eを走行させる。第2ローラJは、第1ローラIと所定距離離間して配置されており、第1ローラIとの間で基材Eが複数回巻回されることにより、第1ローラIの外周面に位置する基材Eを所定の間隔で複数列整列させる。
第1ローラIと第2ローラJとは、それぞれの回転軸が所定の角度で傾斜しているネルソンローラを構成している。 The roller part G includes a first roller I and a second roller J.
The first roller I is rotatable about an axis and travels the substrate E along the outer peripheral surface. The second roller J is disposed at a predetermined distance from the first roller I, and the substrate E is wound a plurality of times between the first roller I and the second roller J is placed on the outer peripheral surface of the first roller I. A plurality of rows of the base materials E are arranged at predetermined intervals.
The 1st roller I and the 2nd roller J comprise the Nelson roller in which each rotating shaft inclines at a predetermined angle.
第1ローラIは、軸回りに回転可能であって、外周面に沿って基材Eを走行させる。第2ローラJは、第1ローラIと所定距離離間して配置されており、第1ローラIとの間で基材Eが複数回巻回されることにより、第1ローラIの外周面に位置する基材Eを所定の間隔で複数列整列させる。
第1ローラIと第2ローラJとは、それぞれの回転軸が所定の角度で傾斜しているネルソンローラを構成している。 The roller part G includes a first roller I and a second roller J.
The first roller I is rotatable about an axis and travels the substrate E along the outer peripheral surface. The second roller J is disposed at a predetermined distance from the first roller I, and the substrate E is wound a plurality of times between the first roller I and the second roller J is placed on the outer peripheral surface of the first roller I. A plurality of rows of the base materials E are arranged at predetermined intervals.
The 1st roller I and the 2nd roller J comprise the Nelson roller in which each rotating shaft inclines at a predetermined angle.
図15は、第1ローラIと第2ローラJとを外周面側方から見た説明図である。
図示した例では、第1ローラIと第2ローラJとの外径がほぼ同一の場合について考察している。
図15に示すように、チャンバFの外から供給される基材Eが、第1ローラIと第2ローラJの外周面に複数回巻回される。このとき、第1ローラIと第2ローラJの回転軸が傾斜していることから、所定の間隔で複数列の基材Eが整列状態で、第1ローラIと第2ローラJの外周面に巻回される。
第1ローラIと第2ローラJとの距離は、中央部では小さく、端部に行くに従って大きくなる。 FIG. 15 is an explanatory view of the first roller I and the second roller J as viewed from the outer peripheral side.
In the illustrated example, the case where the outer diameters of the first roller I and the second roller J are substantially the same is considered.
As shown in FIG. 15, the substrate E supplied from outside the chamber F is wound around the outer peripheral surfaces of the first roller I and the second roller J a plurality of times. At this time, since the rotation shafts of the first roller I and the second roller J are inclined, the outer peripheral surfaces of the first roller I and the second roller J are aligned in a plurality of rows of base materials E at predetermined intervals. Wound around.
The distance between the first roller I and the second roller J is small at the center portion and increases toward the end portion.
図示した例では、第1ローラIと第2ローラJとの外径がほぼ同一の場合について考察している。
図15に示すように、チャンバFの外から供給される基材Eが、第1ローラIと第2ローラJの外周面に複数回巻回される。このとき、第1ローラIと第2ローラJの回転軸が傾斜していることから、所定の間隔で複数列の基材Eが整列状態で、第1ローラIと第2ローラJの外周面に巻回される。
第1ローラIと第2ローラJとの距離は、中央部では小さく、端部に行くに従って大きくなる。 FIG. 15 is an explanatory view of the first roller I and the second roller J as viewed from the outer peripheral side.
In the illustrated example, the case where the outer diameters of the first roller I and the second roller J are substantially the same is considered.
As shown in FIG. 15, the substrate E supplied from outside the chamber F is wound around the outer peripheral surfaces of the first roller I and the second roller J a plurality of times. At this time, since the rotation shafts of the first roller I and the second roller J are inclined, the outer peripheral surfaces of the first roller I and the second roller J are aligned in a plurality of rows of base materials E at predetermined intervals. Wound around.
The distance between the first roller I and the second roller J is small at the center portion and increases toward the end portion.
したがって、第1ローラIと第2ローラJの間に巻回される複数列の基材Eは、それぞれ異なる距離を同一速度で搬送されることになる。
この場合、基材Eは、第1ローラI及び第2ローラJの外周面を摺動しながら移動することとなり、基材Eに損傷を発生するおそれがある。また、基材Eの配列位置における搬送速度の差が大きくなると、第1ローラI、第2ローラJが正常に回転しなくなるおそれがあり、特に、基材Eと第1ローラI、第2ローラJとの摩擦係数が大きい場合には、装置の故障及び基材Eの破断を招くおそれもある。 Accordingly, the plurality of rows of base materials E wound between the first roller I and the second roller J are conveyed at the same speed over different distances.
In this case, the base material E moves while sliding on the outer peripheral surfaces of the first roller I and the second roller J, and the base material E may be damaged. In addition, if the difference in the conveyance speed at the arrangement position of the base material E becomes large, the first roller I and the second roller J may not rotate normally. In particular, the base material E, the first roller I, and the second roller When the coefficient of friction with J is large, there is a possibility that the apparatus may fail and the base material E may be broken.
この場合、基材Eは、第1ローラI及び第2ローラJの外周面を摺動しながら移動することとなり、基材Eに損傷を発生するおそれがある。また、基材Eの配列位置における搬送速度の差が大きくなると、第1ローラI、第2ローラJが正常に回転しなくなるおそれがあり、特に、基材Eと第1ローラI、第2ローラJとの摩擦係数が大きい場合には、装置の故障及び基材Eの破断を招くおそれもある。 Accordingly, the plurality of rows of base materials E wound between the first roller I and the second roller J are conveyed at the same speed over different distances.
In this case, the base material E moves while sliding on the outer peripheral surfaces of the first roller I and the second roller J, and the base material E may be damaged. In addition, if the difference in the conveyance speed at the arrangement position of the base material E becomes large, the first roller I and the second roller J may not rotate normally. In particular, the base material E, the first roller I, and the second roller When the coefficient of friction with J is large, there is a possibility that the apparatus may fail and the base material E may be broken.
本発明の課題は、ロールツーロールタイプで長尺状の薄板基材上に所定の処理を行って基材表面に製膜する製膜装置において、ネルソンローラによる基材の搬送を円滑にし、基材の損傷や装置の故障を防止することにある。
An object of the present invention is to facilitate the transport of a substrate by a Nelson roller in a film-forming apparatus that performs a predetermined treatment on a long thin plate substrate of a roll-to-roll type and forms a film on the substrate surface. It is to prevent material damage and equipment failure.
以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
Hereinafter, a plurality of modes will be described as means for solving the problem. These aspects can be arbitrarily combined as necessary.
本発明の一見地による製膜装置は、搬送中の薄板長尺状の基材にチャンバ内において所定の処理を行って、基材の表面に薄膜を形成する製膜装置であって、製膜材料供給部と、第1ローラと、第2ローラとを備える。製膜材料供給部は、チャンバ内に配置され、搬送される基材に対して所定の製膜処理を実行する。第1ローラは、チャンバの外から供給される基材を製膜材料供給部に送出し、製膜処理後の基材をチャンバの外に排出する。第2ローラは、第1ローラの回転軸と所定の角度で傾斜する回転軸を有し、第1ローラとの間で基材が複数回巻回されて基材を所定の間隔で複数列整列させる。ここで、第1ローラと第2ローラのうち少なくとも一方が、自由回転する複数の個別ローラに分割されている。
A film-forming apparatus according to an aspect of the present invention is a film-forming apparatus that forms a thin film on a surface of a substrate by performing predetermined processing in a chamber on a thin plate-like substrate being conveyed in a chamber. A material supply unit, a first roller, and a second roller are provided. The film forming material supply unit is disposed in the chamber and executes a predetermined film forming process on the substrate to be conveyed. The first roller sends a base material supplied from outside the chamber to the film forming material supply unit, and discharges the base material after the film forming process out of the chamber. The second roller has a rotation axis inclined at a predetermined angle with the rotation axis of the first roller, and the base material is wound a plurality of times between the first roller and the base material is aligned in a plurality of rows at a predetermined interval. Let Here, at least one of the first roller and the second roller is divided into a plurality of individual rollers that freely rotate.
第1ローラと第2ローラとは、回転軸が傾斜した、いわゆるネルソンローラを構成するものであり、所定の幅を有する薄板長尺状の基材を複数列整列した状態で巻回される。したがって、第1ローラ及び第2ローラに巻回される複数列の基材は、その位置に応じて搬送速度が異なる。第1ローラと第2ローラのうち、少なくとも一方は自由回転する複数の個別ローラで構成されていることから、基材の搬送速度の差分が、個別ローラの自由回転により吸収される。
The first roller and the second roller constitute a so-called Nelson roller whose rotation axis is inclined, and are wound in a state where a plurality of thin plate-like base materials having a predetermined width are aligned in a plurality of rows. Accordingly, the plurality of rows of base materials wound around the first roller and the second roller have different conveyance speeds depending on their positions. Since at least one of the first roller and the second roller is composed of a plurality of individual rollers that freely rotate, the difference in the conveyance speed of the base material is absorbed by the free rotation of the individual rollers.
よって、第1ローラと第2ローラ間に複数列整列される基材の搬送速度の差に起因して、基材が第1ローラ又は第2ローラの外周面に擦れて損傷することが防止される。
Therefore, the base material is prevented from being rubbed and damaged by the outer peripheral surface of the first roller or the second roller due to the difference in the conveyance speed of the base material aligned in a plurality of rows between the first roller and the second roller. The
複数の個別ローラは、ローラ部に整列された基材の列と同数配列することができる。
また、第1ローラを複数の個別ローラに分割することができ、この場合、第2ローラが基材を搬送するために回転駆動されるように構成できる。
さらに、第2ローラを複数の個別ローラに分割することができる。 The plurality of individual rollers can be arranged in the same number as the row of base materials aligned in the roller portion.
Further, the first roller can be divided into a plurality of individual rollers, and in this case, the second roller can be configured to be rotationally driven to transport the substrate.
Furthermore, the second roller can be divided into a plurality of individual rollers.
また、第1ローラを複数の個別ローラに分割することができ、この場合、第2ローラが基材を搬送するために回転駆動されるように構成できる。
さらに、第2ローラを複数の個別ローラに分割することができる。 The plurality of individual rollers can be arranged in the same number as the row of base materials aligned in the roller portion.
Further, the first roller can be divided into a plurality of individual rollers, and in this case, the second roller can be configured to be rotationally driven to transport the substrate.
Furthermore, the second roller can be divided into a plurality of individual rollers.
本発明によれば、ネルソンローラを用いてロールツーロールの製膜処理を連続的に実行する製膜装置において、ネルソンローラによる基材の搬送を円滑にし、基材の損傷や装置の故障を防止できる。
According to the present invention, in a film forming apparatus that continuously performs a roll-to-roll film forming process using a Nelson roller, the substrate is smoothly conveyed by the Nelson roller, and damage to the substrate and failure of the apparatus are prevented. it can.
本発明の製膜装置の実施形態について、図に基づいて説明する。
(1)概要構成
図1は、本発明の製膜装置の全体構成を示す説明図である。図2は製膜処理部30の主要構成を示す説明図である。
製膜装置1は、基材送出ロール10と、基材巻取ロール20と、製膜処理部30とを備えている。 An embodiment of a film forming apparatus of the present invention will be described with reference to the drawings.
(1) Outline Configuration FIG. 1 is an explanatory diagram showing the overall configuration of the film forming apparatus of the present invention. FIG. 2 is an explanatory diagram showing the main configuration of the film formingprocessing unit 30.
Thefilm forming apparatus 1 includes a substrate sending roll 10, a substrate winding roll 20, and a film forming processing unit 30.
(1)概要構成
図1は、本発明の製膜装置の全体構成を示す説明図である。図2は製膜処理部30の主要構成を示す説明図である。
製膜装置1は、基材送出ロール10と、基材巻取ロール20と、製膜処理部30とを備えている。 An embodiment of a film forming apparatus of the present invention will be described with reference to the drawings.
(1) Outline Configuration FIG. 1 is an explanatory diagram showing the overall configuration of the film forming apparatus of the present invention. FIG. 2 is an explanatory diagram showing the main configuration of the film forming
The
基材送出ロール10には、太陽電池セルの基材となる導電性の薄板長尺状の基材2が巻回状態で収納されている。
The base material delivery roll 10 stores a conductive thin plate-like base material 2 serving as a base material of a solar battery cell in a wound state.
基材送出ロール10から送出される基材2は、複数の製膜処理部30を通過することにより、基材2上に太陽電池セルを構成するための所定の処理が連続的に実行され、基材巻取ロール20に巻き取られる。基材巻取ロール20に巻き取られた基材2は、その表面に太陽電池セルに必要な薄膜が積層された太陽電池セル母材がロール状になったものである。
The base material 2 sent out from the base material feed roll 10 passes through a plurality of film-forming treatment units 30, whereby a predetermined process for configuring solar cells on the base material 2 is continuously executed, It is wound up on the substrate winding roll 20. The base material 2 wound up by the base material winding roll 20 is obtained by rolling a solar cell base material in which a thin film necessary for a solar battery cell is laminated on the surface thereof.
以上に述べたように、基材送出ロール10から基材巻取ロール20に向けて基材2を搬送しながら、中間に位置する複数の製膜処理部30において基材2に対する所定の処理を実行する。したがって、以後、基材送出ロール10側を上流とし、基材巻取ロール20側を下流として説明する。
As described above, while the base material 2 is transported from the base material feed roll 10 toward the base material take-up roll 20, predetermined processing on the base material 2 is performed in the plurality of film forming processing units 30 located in the middle. Execute. Therefore, hereinafter, the base material feed roll 10 side will be described as upstream, and the base material take-up roll 20 side will be described as downstream.
基材送出ロール10は、基材2を下流側に供給するためのものであり、この基材送出ロール10を制御装置(図示せず)によって回転制御することにより、基材2の送出量の調整を行う。例えば、基材2が下流側から引張力を受けた状態で基材送出ロール10を回転させることにより、基材2が下流側に送出される。また、基材送出ロール10に適宜ブレーキをかけることによって、基材2が撓むことなく一定速度で送出できる。
The base material feed roll 10 is for supplying the base material 2 to the downstream side. By rotating the base material feed roll 10 with a control device (not shown), the amount of the feed of the base material 2 is controlled. Make adjustments. For example, the base material 2 is sent downstream by rotating the base material delivery roll 10 in a state where the base material 2 receives a tensile force from the downstream side. Moreover, the base material 2 can be sent at a constant speed without being bent by appropriately applying a brake to the base material feed roll 10.
基材2は、厚み0.01mm~0.2mm、幅5mm~50mmであり、ステンレス、銅などの導電性材料を薄板長尺状にしたものを用いることができる。ただし、厚さ、幅、材質については、ここに記載したものに限定されるものではない。
The base material 2 has a thickness of 0.01 mm to 0.2 mm, a width of 5 mm to 50 mm, and a thin conductive plate such as stainless steel or copper can be used. However, the thickness, width, and material are not limited to those described here.
基材巻取ロール20は、制御装置(図示せず)により駆動制御されることにより、基材2の巻取量を増減することができるようになっている。例えば、送出された基材2が撓むのを抑えながら、逆に基材2に必要以上の張力がかからないように、巻き取られるように構成される。本実施形態では、基材送出ロール10から送出された基材2が一定速度で搬送され、基材巻取ロール20に巻き取られるように駆動制御されている。
The base material take-up roll 20 is configured to increase or decrease the take-up amount of the base material 2 by being driven and controlled by a control device (not shown). For example, it is configured to be wound so as to prevent the substrate 2 from being tensioned more than necessary, while suppressing the warped substrate 2 from being bent. In the present embodiment, drive control is performed so that the substrate 2 delivered from the substrate delivery roll 10 is conveyed at a constant speed and taken up by the substrate take-up roll 20.
なお、これら基材送出ロール10と基材巻取ロール20は、それぞれ真空環境を形成するチャンバ11a、11b内に配置される。
The base material feed roll 10 and the base material take-up roll 20 are disposed in chambers 11a and 11b that form a vacuum environment, respectively.
(2)製膜処理部30
製膜処理部30は、基材2上に太陽電池に必要な薄膜を形成するためのものである。本実施形態では、複数の製膜処理部30が設けられている。具体的には、基材送出ロール10と基材巻取ロール20との間に、複数の製膜処理部30が直線状に配置されている。基材送出ロール10から送出された基材2が各製膜処理部30を走行して通過する際に、基材2上に順次薄膜が形成される。 (2)Film forming unit 30
Thefilm forming unit 30 is for forming a thin film necessary for the solar cell on the substrate 2. In the present embodiment, a plurality of film forming processing units 30 are provided. Specifically, a plurality of film forming units 30 are linearly arranged between the base material feed roll 10 and the base material take-up roll 20. A thin film is sequentially formed on the base material 2 when the base material 2 sent from the base material feed roll 10 travels and passes through each film forming processing unit 30.
製膜処理部30は、基材2上に太陽電池に必要な薄膜を形成するためのものである。本実施形態では、複数の製膜処理部30が設けられている。具体的には、基材送出ロール10と基材巻取ロール20との間に、複数の製膜処理部30が直線状に配置されている。基材送出ロール10から送出された基材2が各製膜処理部30を走行して通過する際に、基材2上に順次薄膜が形成される。 (2)
The
製膜処理部30は、それぞれスパッタリング又はCVD法、蒸着法等による製膜装置で構成されており、図2に示すように、チャンバ3と、このチャンバ3内に収容されるローラ部5及び製膜材料供給部6とを備えている。
The film forming processing unit 30 is formed by a film forming apparatus by sputtering, CVD method, vapor deposition method or the like. As shown in FIG. 2, the chamber 3, the roller unit 5 accommodated in the chamber 3, and the manufacturing process are performed. And a film material supply unit 6.
チャンバ3は、その内部を真空環境に維持するものである。真空環境に維持されたチャンバ3内に製膜材料供給部6から特定の製膜材料が供給されることにより、基材2上に所定の薄膜が形成される。なお、本実施形態では、チャンバ3を真空環境に維持しているが、真空環境でなくても製膜対象に応じた環境(例えば、大気圧環境)に維持することものであってもよい。
チャンバ3には、上流側から搬送される基材2を受け入れるための基材導入口3aと、製膜処理後の基材2を下流側に送出するための基材導出口3bとが設けられている。 Thechamber 3 maintains its inside in a vacuum environment. By supplying a specific film forming material from the film forming material supply unit 6 into the chamber 3 maintained in a vacuum environment, a predetermined thin film is formed on the substrate 2. In the present embodiment, the chamber 3 is maintained in a vacuum environment. However, the chamber 3 may be maintained in an environment (for example, an atmospheric pressure environment) according to a film forming target, not in a vacuum environment.
Thechamber 3 is provided with a base material inlet 3a for receiving the base material 2 transported from the upstream side, and a base material outlet 3b for sending the base material 2 after film formation processing to the downstream side. ing.
チャンバ3には、上流側から搬送される基材2を受け入れるための基材導入口3aと、製膜処理後の基材2を下流側に送出するための基材導出口3bとが設けられている。 The
The
これら基材導入口3aと基材導出口3bとは、基材2が通過可能にシールされており、基材2が搬送により走行した場合でも、各チャンバ3内は薄膜を形成するために適切な真空度を維持するように構成される。
The base material introduction port 3a and the base material outlet port 3b are sealed so that the base material 2 can pass therethrough, and even when the base material 2 travels by conveyance, each chamber 3 is suitable for forming a thin film. Configured to maintain a high degree of vacuum.
ローラ部5は、第1ローラ51、第2ローラ52を備えている。
第1ローラ51は、軸回りに回転可能であって、外周面に沿って基材2を走行させる。第2ローラ52は、第1ローラ51と所定距離離間して配置されており、第1ローラ51との間で基材2が複数回巻回されることにより、第1ローラ51の外周面に位置する基材2を所定の間隔で複数列整列させる。 Theroller unit 5 includes a first roller 51 and a second roller 52.
Thefirst roller 51 is rotatable about an axis and causes the base material 2 to travel along the outer peripheral surface. The second roller 52 is arranged at a predetermined distance from the first roller 51, and the base material 2 is wound a plurality of times between the first roller 51, so that the second roller 52 is placed on the outer peripheral surface of the first roller 51. The substrate 2 positioned is aligned in a plurality of rows at a predetermined interval.
第1ローラ51は、軸回りに回転可能であって、外周面に沿って基材2を走行させる。第2ローラ52は、第1ローラ51と所定距離離間して配置されており、第1ローラ51との間で基材2が複数回巻回されることにより、第1ローラ51の外周面に位置する基材2を所定の間隔で複数列整列させる。 The
The
第1ローラ51と第2ローラ52とは、それぞれの回転軸が所定の角度で傾斜しているネルソンローラを構成している。ここで、ネルソンローラは、2つのローラの回転軸が捩れの位置関係(回転軸が平行ではなく、かつ回転軸及びその延長線が交差しない位置関係)にあるものを指すこととする。
The first roller 51 and the second roller 52 constitute a Nelson roller whose respective rotation axes are inclined at a predetermined angle. Here, the Nelson roller indicates that the rotational axes of the two rollers are in a twisted positional relationship (a positional relationship in which the rotational axes are not parallel and the rotational axes and their extension lines do not intersect).
(3)ローラ部5
(3-1)第1実施形態
図3は、第1実施形態のローラ部5を示す斜視図であり、図4は、第1実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3)Roller part 5
(3-1) First Embodiment FIG. 3 is a perspective view showing theroller unit 5 of the first embodiment, and FIG. 4 shows the first roller 51 and the second roller 52 of the first embodiment from above. FIG.
Both thefirst roller 51 and the second roller 52 are formed in a cylindrical shape, and are supported so as to be rotatable around their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
(3-1)第1実施形態
図3は、第1実施形態のローラ部5を示す斜視図であり、図4は、第1実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3)
(3-1) First Embodiment FIG. 3 is a perspective view showing the
Both the
また、第2ローラ52は、第1ローラ51の下方に(より具体的には、真下に)所定距離離間して配置されている。第2ローラ52の配置についても、第1ローラ51の斜め下方、水平方向側方などに配置することが可能であり、特に限定されるものではない。
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, thesecond roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance. The arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
The rotation axes of thefirst roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, the
The rotation axes of the
第1ローラ51及び第2ローラ52の外周面には、上流側から供給された基材2が複数回巻回されることにより、複数列の基材2が軸方向に所定間隔で整列される。
図2に示すように、第1ローラ51の外周面に対向して製膜材料供給部6が配置されている。第1ローラ51の外周面に複数列で整列した基材2に対して、製膜材料供給部6から製膜材料を供給することにより、基材2を走行状態で連続的に製膜処理を実行することができる。 Thebase material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
As shown in FIG. 2, the film formingmaterial supply unit 6 is disposed to face the outer peripheral surface of the first roller 51. By supplying the film forming material from the film forming material supply unit 6 to the base material 2 arranged in a plurality of rows on the outer peripheral surface of the first roller 51, the film forming process is continuously performed while the base material 2 is running. Can be executed.
図2に示すように、第1ローラ51の外周面に対向して製膜材料供給部6が配置されている。第1ローラ51の外周面に複数列で整列した基材2に対して、製膜材料供給部6から製膜材料を供給することにより、基材2を走行状態で連続的に製膜処理を実行することができる。 The
As shown in FIG. 2, the film forming
図3,4に示すように、第1ローラ51は、少なくともローラ部に配列される基材2の整列数と同数又はそれ以上の複数の個別ローラ51a、51b、・・・51nに分割されている。各個別ローラ51a~51nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。
第2ローラ52は、基材2を搬送するために、図示しない駆動部により回転駆動される。 As shown in FIGS. 3 and 4, thefirst roller 51 is divided into a plurality of individual rollers 51a, 51b,... 51n at least equal to or greater than the number of alignment of the base material 2 arranged in the roller portion. Yes. Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
Thesecond roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2.
第2ローラ52は、基材2を搬送するために、図示しない駆動部により回転駆動される。 As shown in FIGS. 3 and 4, the
The
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。したがって、各個別ローラ51a~51nを通過する基材2の速度はそれぞれ異なる。
Since the rotation axes of the first roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the base material 2 passes. Accordingly, the speed of the base material 2 passing through the individual rollers 51a to 51n is different.
この実施形態では、複数の個別ローラ51a~51nがそれぞれ自由回転するように回転軸に支持されていることから、各個別ローラ51a~51nが、外周面に接触する基材2の搬送速度に応じた回転速度で回転する。
したがって、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合ってストレスを生じることがなくなる。その結果、基材2の損傷や装置の故障が防止される。 In this embodiment, since the plurality ofindividual rollers 51a to 51n are supported on the rotation shaft so as to freely rotate, each of the individual rollers 51a to 51n corresponds to the conveyance speed of the base material 2 contacting the outer peripheral surface. Rotates at the specified rotation speed.
Therefore, thebase material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
したがって、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合ってストレスを生じることがなくなる。その結果、基材2の損傷や装置の故障が防止される。 In this embodiment, since the plurality of
Therefore, the
(3-2)第2実施形態
図5は、第2実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1実施形態と同様に、第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-2) Second Embodiment FIG. 5 is an explanatory view of thefirst roller 51 and the second roller 52 of the second embodiment as viewed from above.
Similar to the first embodiment, thefirst roller 51 and the second roller 52 are both formed in a cylindrical shape, and are supported so as to be rotatable about their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
図5は、第2実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1実施形態と同様に、第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-2) Second Embodiment FIG. 5 is an explanatory view of the
Similar to the first embodiment, the
また、第2ローラ52は、第1ローラ51の下方に所定距離離間して配置されている。第2ローラ52の配置についても、第1ローラ51の斜め下方、水平方向側方などに配置することが可能であり、特に限定されるものではない。
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, thesecond roller 52 is disposed below the first roller 51 with a predetermined distance. The arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
The rotation axes of thefirst roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, the
The rotation axes of the
第1ローラ51及び第2ローラ52の外周面には、上流側から供給された基材2が複数回巻回されることにより、複数列の基材2が軸方向に所定間隔で整列される。
図5に示すように、第2ローラ52は、少なくともローラ部に配列される基材2の整列数と同数又はそれ以上の複数の個別ローラ52a、52b、・・・52nに分割されている。各個別ローラ52a~52nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。 Thebase material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
As shown in FIG. 5, thesecond roller 52 is divided into a plurality of individual rollers 52 a, 52 b,... 52 n that are at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion. Each of the individual rollers 52a to 52n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the substrate 2 in contact with the outer peripheral surface.
図5に示すように、第2ローラ52は、少なくともローラ部に配列される基材2の整列数と同数又はそれ以上の複数の個別ローラ52a、52b、・・・52nに分割されている。各個別ローラ52a~52nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。 The
As shown in FIG. 5, the
第1ローラ51は、基材2を搬送するために、図示しない駆動部により回転駆動される。
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。したがって、各個別ローラ52a~52nを通過する基材2の速度はそれぞれ異なる。 Thefirst roller 51 is rotationally driven by a drive unit (not shown) in order to convey the base material 2.
Since the rotation axes of thefirst roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. Therefore, the speed of the base material 2 passing through the individual rollers 52a to 52n is different.
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。したがって、各個別ローラ52a~52nを通過する基材2の速度はそれぞれ異なる。 The
Since the rotation axes of the
この実施形態では、複数の個別ローラ52a~52nがそれぞれ自由回転するように回転軸に支持されていることから、各個別ローラ52a~52nが、外周面に接触する基材2の搬送速度に応じた回転速度で回転する。
In this embodiment, since the plurality of individual rollers 52a to 52n are supported by the rotation shaft so as to freely rotate, each of the individual rollers 52a to 52n corresponds to the conveyance speed of the base material 2 in contact with the outer peripheral surface. Rotates at the specified rotation speed.
したがって、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合って、ストレスを生じることがなくなる。その結果、基材2の損傷や装置の故障が防止される。
Therefore, the base material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
(3-3)第3実施形態
図6は、第3実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1実施形態と同様に、第1ローラ51と第2ローラ52は、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-3) Third Embodiment FIG. 6 is an explanatory view of thefirst roller 51 and the second roller 52 of the third embodiment as viewed from above.
Similar to the first embodiment, thefirst roller 51 and the second roller 52 are both formed in a cylindrical shape, and are supported so as to be rotatable about their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
図6は、第3実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1実施形態と同様に、第1ローラ51と第2ローラ52は、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-3) Third Embodiment FIG. 6 is an explanatory view of the
Similar to the first embodiment, the
また、第2ローラ52は、第1ローラ51の下方に(より具体的には、真下に)所定距離離間して配置されている。第2ローラ52の配置についても、第1ローラ51の斜め下方、水平方向側方などに配置することが可能であり、特に限定されるものではない。
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, thesecond roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance. The arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
The rotation axes of thefirst roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, the
The rotation axes of the
第1ローラ51及び第2ローラ52の外周面には、上流側から供給された基材2が複数回巻回されることにより、複数列の基材2が軸方向に所定間隔で整列される。
The base material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
図6に示すように、第1ローラ51は、少なくともローラ部に配列される基材2の整列数と同数又はそれ以上の複数の個別ローラ51a、51b、・・・51nに分割されている。各個別ローラ51a~51nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。
As shown in FIG. 6, the first roller 51 is divided into a plurality of individual rollers 51a, 51b,... 51n at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion. Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
また、第2ローラ52は、少なくともローラ部に配列される基材2の整列数と同数又はそれ以上の複数の個別ローラ52a、52b、・・・52nに分割されている。各個別ローラ52a~52nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。したがって、各個別ローラ51a~51n及び52a~52nを通過する基材2の速度はそれぞれ異なる。 Further, thesecond roller 52 is divided into a plurality of individual rollers 52a, 52b,... 52n that are at least equal to or more than the number of alignment of the base material 2 arranged in the roller portion. Each of the individual rollers 52a to 52n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the substrate 2 in contact with the outer peripheral surface.
Since the rotation axes of thefirst roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. Accordingly, the speed of the base material 2 passing through the individual rollers 51a to 51n and 52a to 52n is different.
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。したがって、各個別ローラ51a~51n及び52a~52nを通過する基材2の速度はそれぞれ異なる。 Further, the
Since the rotation axes of the
この実施形態では、複数の個別ローラ51a~51n、52a~52nがそれぞれ自由回転するように回転軸に支持されていることから、各個別ローラ51a~51n、52a~52nが、外周面に接触する基材2の搬送速度に応じた回転速度で回転する。
したがって、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合って、ストレスを生じることがなくなる。その結果、基材2の損傷や装置の故障が防止される。 In this embodiment, since the plurality ofindividual rollers 51a to 51n and 52a to 52n are supported by the rotation shaft so as to freely rotate, the individual rollers 51a to 51n and 52a to 52n are in contact with the outer peripheral surface. The substrate 2 rotates at a rotation speed corresponding to the conveyance speed.
Therefore, thebase material 2 does not rub against the outer peripheral surface of the first roller 51 or the second roller 52 to cause stress. As a result, damage to the substrate 2 and device failure are prevented.
したがって、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合って、ストレスを生じることがなくなる。その結果、基材2の損傷や装置の故障が防止される。 In this embodiment, since the plurality of
Therefore, the
第3実施形態では、第1ローラ51及び第2ローラ52のいずれも駆動力を備えない構成を示している。したがって、チャンバ3内又はチャンバ3外に、基材2を搬送するための駆動力を伝達する駆動用ローラを設けることが好ましい。
又は、第1ローラ51の両端に位置する個別ローラ51a、51nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
さらに、第2ローラ52の両端に位置する個別ローラ52a、52nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。 In the third embodiment, a configuration in which neither thefirst roller 51 nor the second roller 52 has a driving force is shown. Therefore, it is preferable to provide a driving roller for transmitting a driving force for transporting the base material 2 inside or outside the chamber 3.
Alternatively, the driving force can be transmitted to thesubstrate 2 by drivingly controlling one or both of the individual rollers 51 a and 51 n positioned at both ends of the first roller 51.
Further, the driving force can be transmitted to thebase material 2 by drivingly controlling one or both of the individual rollers 52 a and 52 n positioned at both ends of the second roller 52.
又は、第1ローラ51の両端に位置する個別ローラ51a、51nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
さらに、第2ローラ52の両端に位置する個別ローラ52a、52nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。 In the third embodiment, a configuration in which neither the
Alternatively, the driving force can be transmitted to the
Further, the driving force can be transmitted to the
(3-4)第4実施形態
図7は、第4実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-4) Fourth Embodiment FIG. 7 is an explanatory view of thefirst roller 51 and the second roller 52 of the fourth embodiment as viewed from above.
Both thefirst roller 51 and the second roller 52 are formed in a cylindrical shape, and are supported so as to be rotatable around their axes. In the illustrated example, for convenience of explanation, the first roller 51 and the second roller 52 are illustrated as having substantially the same outer diameter, but are not particularly limited thereto.
図7は、第4実施形態の第1ローラ51と第2ローラ52とを上方から見た説明図である。
第1ローラ51と第2ローラ52とは、ともに円筒形状で形成されており、それぞれ軸回りに回転可能に支持されている。図示した例では、説明の便宜上、第1ローラ51と第2ローラ52とが、ほぼ同一の外径を有するものを例示しているが、特にこれに限定されるものではない。 (3-4) Fourth Embodiment FIG. 7 is an explanatory view of the
Both the
また、第2ローラ52は、第1ローラ51の下方に(より具体的には、真下に)所定距離離間して配置されている。第2ローラ52の配置についても、第1ローラ51の斜め下方、水平方向側方などに配置することが可能であり、特に限定されるものではない。
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, thesecond roller 52 is disposed below the first roller 51 (more specifically, directly below) at a predetermined distance. The arrangement of the second roller 52 can also be arranged obliquely below the first roller 51, laterally in the horizontal direction, etc., and is not particularly limited.
The rotation axes of thefirst roller 51 and the second roller 52 are arranged in a state where they are inclined at a predetermined angle.
第1ローラ51と第2ローラ52の回転軸はそれぞれ所定角度傾斜した状態で配置される。 Further, the
The rotation axes of the
第1ローラ51及び第2ローラ52の外周面には、上流側から供給された基材2が複数回巻回されることにより、複数列の基材2が軸方向に所定間隔で整列される。
図7に示すように、第1ローラ51は、複数の個別ローラ51a、51b、・・・51nに分割されている。各個別ローラ51a~51nは、ローラ部5に配列される基材2の所定数の列が巻回されるものであって、図7に示す例では、3本の配列ごとに独立した個別ローラ51a~51nが設けられる。各個別ローラ51a~51nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。 Thebase material 2 supplied from the upstream side is wound a plurality of times on the outer peripheral surfaces of the first roller 51 and the second roller 52, so that a plurality of rows of the base materials 2 are aligned at predetermined intervals in the axial direction. .
As shown in FIG. 7, thefirst roller 51 is divided into a plurality of individual rollers 51a, 51b,. Each of the individual rollers 51a to 51n is formed by winding a predetermined number of rows of the base material 2 arranged on the roller unit 5. In the example shown in FIG. 51a to 51n are provided. Each of the individual rollers 51a to 51n is free to rotate around the axis of one rotating shaft (not shown), and rotates with the movement of the base material 2 in contact with the outer peripheral surface.
図7に示すように、第1ローラ51は、複数の個別ローラ51a、51b、・・・51nに分割されている。各個別ローラ51a~51nは、ローラ部5に配列される基材2の所定数の列が巻回されるものであって、図7に示す例では、3本の配列ごとに独立した個別ローラ51a~51nが設けられる。各個別ローラ51a~51nは、1つの回転軸(図示せず)の軸回りに自由回転するものであり、外周面に当接する基材2の移動に伴って回転する。 The
As shown in FIG. 7, the
第2ローラ52は、基材2を搬送するために、図示しない駆動部により回転駆動される。
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。ただし、ローラ部5に整列される基材2のうち、隣接する列に対応する第1ローラ51と第2ローラ52の距離は、ローラの両端と中央部の際に比して、大きく異なることはないと考えられる。 Thesecond roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2.
Since the rotation axes of thefirst roller 51 and the second roller 52 are inclined, the distance between the first roller 51 and the second roller 52 varies depending on the position through which the substrate 2 passes. However, the distance between the first roller 51 and the second roller 52 corresponding to adjacent rows in the base material 2 aligned with the roller portion 5 is greatly different from that at the both ends and the central portion of the roller. It is not considered.
第1ローラ51と第2ローラ52の回転軸が傾斜していることから、基材2の通過する位置によって、第1ローラ51と第2ローラ52の距離が異なる。ただし、ローラ部5に整列される基材2のうち、隣接する列に対応する第1ローラ51と第2ローラ52の距離は、ローラの両端と中央部の際に比して、大きく異なることはないと考えられる。 The
Since the rotation axes of the
したがって、配列された基材2の数本ごとに対して、1つの個別ローラ51a~51nを設けることで、基材2が第1ローラ51又は第2ローラ52の外周面との間で擦れ合う度合いを少なくしている。その結果、基材2の損傷や装置の故障が防止される。
Therefore, the degree to which the base material 2 rubs against the outer peripheral surface of the first roller 51 or the second roller 52 by providing one individual roller 51a to 51n for every several base materials 2 arranged. Is reduced. As a result, damage to the substrate 2 and device failure are prevented.
(3-5)他の実施形態
第1実施形態において、第1ローラ51の両端に位置する個別ローラ51a、51nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
同様に、第2実施形態において、第2ローラ52の両端に位置する個別ローラ52a、52nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
第4実施形態の第1ローラ51と同様に、第2ローラ52を、基材2の複数列ごとに分割することができる。 (3-5) Other Embodiments In the first embodiment, one or both of the individual rollers 51a and 51n positioned at both ends of the first roller 51 are driven and controlled, and a driving force is applied to the base material 2. Can be configured to communicate.
Similarly, in the second embodiment, one or both of the individual rollers 52a and 52n positioned at both ends of the second roller 52 can be controlled to transmit the driving force to the base material 2. .
Similar to thefirst roller 51 of the fourth embodiment, the second roller 52 can be divided into a plurality of rows of the base material 2.
第1実施形態において、第1ローラ51の両端に位置する個別ローラ51a、51nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
同様に、第2実施形態において、第2ローラ52の両端に位置する個別ローラ52a、52nのいずれか一方又は両方を駆動制御して、基材2に対して駆動力を伝達するように構成できる。
第4実施形態の第1ローラ51と同様に、第2ローラ52を、基材2の複数列ごとに分割することができる。 (3-5) Other Embodiments In the first embodiment, one or both of the
Similarly, in the second embodiment, one or both of the
Similar to the
(3-6)ローラ部5における基材2の搬送状態に関する考察
ローラ部5における基材2の搬送状態について以下に説明する。
図8は、第1実施形態のローラ部5の要部説明図である。
図示したように、第1ローラ51は、複数の個別ローラ51a、51b、51c・・・に分割されており、1つの回転軸(図示せず)の軸回りに自由回転する。
第2ローラ52は、基材2を搬送するために、図示しない駆動部により回転駆動される。 (3-6) Consideration regarding the conveyance state of thebase material 2 in the roller unit 5 The conveyance state of the base material 2 in the roller unit 5 will be described below.
FIG. 8 is an explanatory diagram of a main part of theroller unit 5 according to the first embodiment.
As shown in the figure, thefirst roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c... And freely rotates around the axis of one rotation shaft (not shown).
Thesecond roller 52 is rotationally driven by a driving unit (not shown) in order to convey the base material 2.
ローラ部5における基材2の搬送状態について以下に説明する。
図8は、第1実施形態のローラ部5の要部説明図である。
図示したように、第1ローラ51は、複数の個別ローラ51a、51b、51c・・・に分割されており、1つの回転軸(図示せず)の軸回りに自由回転する。
第2ローラ52は、基材2を搬送するために、図示しない駆動部により回転駆動される。 (3-6) Consideration regarding the conveyance state of the
FIG. 8 is an explanatory diagram of a main part of the
As shown in the figure, the
The
第1ローラ51と第2ローラ52は、その回転軸が捩れの位置関係にあるネルソンローラを構成している。基材2は第1ローラ51と第2ローラ52に螺旋状態で巻回されていることから、基材2の長さ方向は、第1ローラ51と第2ローラ52の回転軸に直交する方向に対して所定の角度で傾斜している。したがって、第1ローラ51の個別ローラ51a、51b、51c・・・の外周面上に接する基材2は、主に第1ローラ51の回転軸に直交する方向に引っ張られるとともに、回転軸に平行な方向に対しても引っ張られている。このことにより、基材2には、第1ローラ51の外周面上において回転軸と平行な方向に基材2を横滑りさせる力が加わっている。
The first roller 51 and the second roller 52 constitute a Nelson roller whose rotational shaft is in a twisted positional relationship. Since the base material 2 is wound around the first roller 51 and the second roller 52 in a spiral state, the length direction of the base material 2 is a direction orthogonal to the rotation axes of the first roller 51 and the second roller 52. With a predetermined angle. Therefore, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c... Of the first roller 51 is mainly pulled in a direction orthogonal to the rotation axis of the first roller 51 and parallel to the rotation axis. It is also pulled in any direction. As a result, a force that causes the base material 2 to slide sideways in a direction parallel to the rotation axis on the outer peripheral surface of the first roller 51 is applied to the base material 2.
たとえば、図示したように、第2ローラ52の外周面から第1ローラ51の外周面に向けて通過する基材2の搬送方向を矢印A方向であるとする。このとき、第1ローラ51の個別ローラ51a、51b,51c・・・の外周面に接する基材2は、それぞれ搬送方向の駆動力を受けるとともに、第1ローラ51の回転軸に平行な方向であって、図8の左方向(矢印B方向)に基材2を横滑りさせる力を受ける。
第1ローラ51と第2ローラ52の回転軸が捩れの位置関係にあることから、第1ローラ51の外周面に接する基材2には、第1ローラ51の回転軸に平行な方向であって、図8の右方向(矢印B方向と逆方向)に基材2を横滑りさせる力が働くこととなる。このことより、搬送に伴う基材2を横滑りさせる力と、ネルソンローラにより基材2を横滑りさせる力とが相殺されて、基材2は、見かけ上第1ローラ51の外周面上の同一位置を走行する。 For example, as illustrated, it is assumed that the conveyance direction of thebase material 2 that passes from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is an arrow A direction. At this time, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51 a, 51 b, 51 c... Of the first roller 51 receives the driving force in the transport direction and is parallel to the rotation axis of the first roller 51. Thus, it receives a force that causes the base material 2 to slide sideways in the left direction (arrow B direction) in FIG.
Since the rotational axes of thefirst roller 51 and the second roller 52 are in a torsional positional relationship, the substrate 2 in contact with the outer peripheral surface of the first roller 51 has a direction parallel to the rotational axis of the first roller 51. Thus, a force that causes the base material 2 to slide sideways in the right direction in FIG. 8 (the direction opposite to the arrow B direction) is applied. Accordingly, the force that causes the base material 2 to slide sideways and the force that causes the base material 2 to slip sideways by the Nelson roller cancel each other, and the base material 2 appears to be at the same position on the outer peripheral surface of the first roller 51. Drive on.
第1ローラ51と第2ローラ52の回転軸が捩れの位置関係にあることから、第1ローラ51の外周面に接する基材2には、第1ローラ51の回転軸に平行な方向であって、図8の右方向(矢印B方向と逆方向)に基材2を横滑りさせる力が働くこととなる。このことより、搬送に伴う基材2を横滑りさせる力と、ネルソンローラにより基材2を横滑りさせる力とが相殺されて、基材2は、見かけ上第1ローラ51の外周面上の同一位置を走行する。 For example, as illustrated, it is assumed that the conveyance direction of the
Since the rotational axes of the
したがって、第1ローラ51と第2ローラ52の回転軸の間隔、基材2を第1ローラ51及び第2ローラ52間に巻回する際の回転軸に対する傾斜角度、及び基材2の搬送速度などに応じて、第1ローラ51の外周面上において基材2を横滑りさせる力が相殺されるように、第1ローラ51と第2ローラの回転軸の傾斜角度を決定する。
第2ローラ52を個別ローラ52a、52b、52c・・・に分割するようにした第2実施形態の場合も同様であり、基材2を横滑りさせる力が相殺されるように、第1ローラ51と第2ローラ2の回転軸の傾斜角度を決定する。 Accordingly, the interval between the rotation axes of thefirst roller 51 and the second roller 52, the inclination angle with respect to the rotation axis when the substrate 2 is wound between the first roller 51 and the second roller 52, and the conveyance speed of the substrate 2 In accordance with the above, the inclination angles of the rotation axes of the first roller 51 and the second roller are determined so that the force that causes the base material 2 to slide on the outer peripheral surface of the first roller 51 is offset.
The same applies to the second embodiment in which thesecond roller 52 is divided into individual rollers 52 a, 52 b, 52 c..., So that the force that causes the base material 2 to slide sideways is canceled out. And the inclination angle of the rotation axis of the second roller 2 is determined.
第2ローラ52を個別ローラ52a、52b、52c・・・に分割するようにした第2実施形態の場合も同様であり、基材2を横滑りさせる力が相殺されるように、第1ローラ51と第2ローラ2の回転軸の傾斜角度を決定する。 Accordingly, the interval between the rotation axes of the
The same applies to the second embodiment in which the
図9は、比較例1によるローラ部5の要部説明図である。
図9に示すものは、本発明の第1実施形態と同様に、第1ローラ51を複数の個別ローラ51a、51b、51c・・・に分割している。ただし、第1ローラ51と第2ローラ52はネルソンローラを構成するものではなく、個別ローラ51a、51b、51c・・・の回転中心を結ぶ第1ローラ51の中心線と、第2ローラ52の回転軸とは、互いに平行である。また、個別ローラ51a、51b、51c・・・の回転軸は、それぞれ第1ローラ51の中心線及び第2ローラ52の回転軸を含む面内において、第1ローラ51の中心線に対して所定の角度で傾斜している。このことにより、第1ローラ51の外周面と第2ローラ52の外周面間を搬送される基材2が1ピッチずつずれるようなっている。 FIG. 9 is an explanatory diagram of a main part of theroller unit 5 according to the first comparative example.
9, thefirst roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c... As in the first embodiment of the present invention. However, the first roller 51 and the second roller 52 do not constitute a Nelson roller, but the center line of the first roller 51 connecting the rotation centers of the individual rollers 51a, 51b, 51c,. The rotation axes are parallel to each other. Further, the rotation axes of the individual rollers 51a, 51b, 51c,... Are predetermined with respect to the center line of the first roller 51 in a plane including the center line of the first roller 51 and the rotation axis of the second roller 52, respectively. Is inclined at an angle of Thereby, the base material 2 conveyed between the outer peripheral surface of the first roller 51 and the outer peripheral surface of the second roller 52 is shifted by one pitch.
図9に示すものは、本発明の第1実施形態と同様に、第1ローラ51を複数の個別ローラ51a、51b、51c・・・に分割している。ただし、第1ローラ51と第2ローラ52はネルソンローラを構成するものではなく、個別ローラ51a、51b、51c・・・の回転中心を結ぶ第1ローラ51の中心線と、第2ローラ52の回転軸とは、互いに平行である。また、個別ローラ51a、51b、51c・・・の回転軸は、それぞれ第1ローラ51の中心線及び第2ローラ52の回転軸を含む面内において、第1ローラ51の中心線に対して所定の角度で傾斜している。このことにより、第1ローラ51の外周面と第2ローラ52の外周面間を搬送される基材2が1ピッチずつずれるようなっている。 FIG. 9 is an explanatory diagram of a main part of the
9, the
図9に示す例において、第2ローラ52の外周面から第1ローラ51の外周面に向けて通過する基材2の搬送方向を矢印A方向であるとする。このとき、第2ローラ52の外周面から第1ローラ51の外周面に向かう基材2の搬送方向は、第1ローラ51の各個別ローラ51a、51b、51c・・・の回転軸に対して直交方向となり、基材2は第1ローラ51の各個別ローラ51a、51b、51c・・・の外周面上を滑ることなく、各個別ローラ51a、51b、51c・・・を回転させながら、搬送されることとなる。
In the example shown in FIG. 9, it is assumed that the conveyance direction of the base material 2 passing from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is the arrow A direction. At this time, the conveying direction of the base material 2 from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is relative to the rotation axis of each individual roller 51a, 51b, 51c. The base material 2 is conveyed while rotating the individual rollers 51a, 51b, 51c,... Without sliding on the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,. Will be.
ここで、第1ローラ51の外周面から第2ローラ52の外周面に向けて通過する基材2の搬送方向は、個別ローラ51a、51b、51c・・・の回転軸に垂直な方向に対して傾斜している。したがって、個別ローラ51a、51b,51c・・・の外周面に接する基材2は、それぞれ搬送方向の駆動力を受けるとともに、第1ローラ51の回転軸に平行な方向であって、図9の左方向(矢印B方向)に基材2を横滑りさせる力を受ける。
この比較例1では、基材2に対して働く矢印B方向の力を相殺する力が働かないことから、基材2として摩擦係数の高い材料を用いるか、あるいは基材2のテンションを高く維持することによって、基材2の搬送と一体的に個別ローラ51a、51b、51c・・・を回転させる必要がある。 Here, the conveyance direction of thebase material 2 passing from the outer peripheral surface of the first roller 51 toward the outer peripheral surface of the second roller 52 is relative to the direction perpendicular to the rotation axis of the individual rollers 51a, 51b, 51c. Is inclined. Accordingly, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,... Receives the driving force in the transport direction and is parallel to the rotation axis of the first roller 51, and is shown in FIG. A force that causes the base material 2 to skid in the left direction (arrow B direction) is received.
In Comparative Example 1, since a force that cancels the force in the direction of arrow B acting on thebase material 2 does not work, a material having a high friction coefficient is used as the base material 2 or the tension of the base material 2 is kept high. Thus, it is necessary to rotate the individual rollers 51a, 51b, 51c,.
この比較例1では、基材2に対して働く矢印B方向の力を相殺する力が働かないことから、基材2として摩擦係数の高い材料を用いるか、あるいは基材2のテンションを高く維持することによって、基材2の搬送と一体的に個別ローラ51a、51b、51c・・・を回転させる必要がある。 Here, the conveyance direction of the
In Comparative Example 1, since a force that cancels the force in the direction of arrow B acting on the
この場合、第1ローラ51及び第2ローラ52間を搬送される基材2のテンションをある程度高く維持する必要があり、基材2にかかるテンションが過大になると、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。
また、基材2のテンションを低くすると、搬送に伴う基材2を横滑りさせる力により、基材2が個別ローラ51a、51b、51c・・・の外周面から横滑りして抜け落ちるおそれがある。この場合には、基材2の少なくとも裏面側の摩擦係数を高くする必要があり、基材2として用いることができる材料が限定される。
さらに、基材2の搬送方向を矢印A方向と逆方向とした場合、個別ローラ51a、51b、51c・・・の外周面において矢印Bと逆方向に基材2を横滑りさせる力が働き、基材2のテンションが大きくなる。基材2にかかるテンションが過大になると、前述と同様に、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。 In this case, it is necessary to maintain the tension of thebase material 2 conveyed between the first roller 51 and the second roller 52 to a certain level, and if the tension applied to the base material 2 becomes excessive, the base material 2 is damaged, or Due to the strong tension, the rotation of the first roller 51 and the second roller 52 is hindered, and there is a possibility that the conveyance becomes impossible.
When the tension of thebase material 2 is lowered, the base material 2 may slip off from the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,. In this case, it is necessary to increase the friction coefficient of at least the back surface side of the base material 2, and the materials that can be used as the base material 2 are limited.
Furthermore, when the conveyance direction of thebase material 2 is the direction opposite to the arrow A direction, a force that causes the base material 2 to slide sideways in the direction opposite to the arrow B acts on the outer peripheral surfaces of the individual rollers 51a, 51b, 51c. The tension of the material 2 is increased. If the tension applied to the base material 2 becomes excessive, the base material 2 may be damaged or the rotation of the first roller 51 and the second roller 52 may be hindered by the strong tension, as described above, and conveyance may become impossible. is there.
また、基材2のテンションを低くすると、搬送に伴う基材2を横滑りさせる力により、基材2が個別ローラ51a、51b、51c・・・の外周面から横滑りして抜け落ちるおそれがある。この場合には、基材2の少なくとも裏面側の摩擦係数を高くする必要があり、基材2として用いることができる材料が限定される。
さらに、基材2の搬送方向を矢印A方向と逆方向とした場合、個別ローラ51a、51b、51c・・・の外周面において矢印Bと逆方向に基材2を横滑りさせる力が働き、基材2のテンションが大きくなる。基材2にかかるテンションが過大になると、前述と同様に、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。 In this case, it is necessary to maintain the tension of the
When the tension of the
Furthermore, when the conveyance direction of the
図10は、比較例2によるローラ部5の要部説明図である。
図10に示すものは、本発明の第3実施形態と同様に、第1ローラ51を複数の個別ローラ51a、51b、51c・・・に分割し、第2ローラ52を複数の個別ローラ52a、52b、52c・・・に分割している。第1ローラ51と第2ローラ52はネルソンローラを構成するものではなく、個別ローラ51a、51b、51c・・・の回転中心を結ぶ第1ローラ51の中心線と、個別ローラ52a、52b、52c・・・の回転中心を結ぶ第2ローラ52の中心線とは、互いに平行である。また、個別ローラ51a、51b、51c・・・の回転軸及び個別ローラ52a、52b、52c・・・は、第1ローラ51の中心線及び第2ローラ52の中心線を含む面内において、それぞれ第1ローラ51及び第2ローラ52の中心線に対して所定の角度で傾斜しており、第1ローラ51及び第2ローラ52の外周面間を搬送される基材2が1ピッチずつずれるようになっている。 FIG. 10 is an explanatory diagram of a main part of theroller unit 5 according to the second comparative example.
10, thefirst roller 51 is divided into a plurality of individual rollers 51a, 51b, 51c... And the second roller 52 is divided into a plurality of individual rollers 52a, as in the third embodiment of the present invention. 52b, 52c... The first roller 51 and the second roller 52 do not constitute a Nelson roller, but the center line of the first roller 51 connecting the rotation centers of the individual rollers 51a, 51b, 51c,... And the individual rollers 52a, 52b, 52c. Are parallel to each other with the center line of the second roller 52 connecting the rotation centers of. Further, the rotation shafts of the individual rollers 51a, 51b, 51c... And the individual rollers 52a, 52b, 52c... Are respectively in a plane including the center line of the first roller 51 and the center line of the second roller 52. The substrate 2 is inclined at a predetermined angle with respect to the center line of the first roller 51 and the second roller 52 so that the substrate 2 conveyed between the outer peripheral surfaces of the first roller 51 and the second roller 52 is shifted by one pitch. It has become.
図10に示すものは、本発明の第3実施形態と同様に、第1ローラ51を複数の個別ローラ51a、51b、51c・・・に分割し、第2ローラ52を複数の個別ローラ52a、52b、52c・・・に分割している。第1ローラ51と第2ローラ52はネルソンローラを構成するものではなく、個別ローラ51a、51b、51c・・・の回転中心を結ぶ第1ローラ51の中心線と、個別ローラ52a、52b、52c・・・の回転中心を結ぶ第2ローラ52の中心線とは、互いに平行である。また、個別ローラ51a、51b、51c・・・の回転軸及び個別ローラ52a、52b、52c・・・は、第1ローラ51の中心線及び第2ローラ52の中心線を含む面内において、それぞれ第1ローラ51及び第2ローラ52の中心線に対して所定の角度で傾斜しており、第1ローラ51及び第2ローラ52の外周面間を搬送される基材2が1ピッチずつずれるようになっている。 FIG. 10 is an explanatory diagram of a main part of the
10, the
図10に示す例において、第2ローラ52の外周面から第1ローラ51の外周面に向けて通過する基材2の搬送方向を矢印A方向であるとする。このとき、第2ローラ52の外周面から第1ローラ51の外周面に向かう基材2の搬送方向は、第1ローラ51の各個別ローラ51a、51b、51c・・・及び第2ローラ52の各個別ローラ52a、52b、52c・・・の回転軸に対して直交方向となり、基材2は第1ローラ51の各個別ローラ51a、51b、51c・・・及び第2ローラ52の各個別ローラ52a、52b、52c・・・の外周面上を滑ることなく、各個別ローラを回転させながら搬送されることとなる。
In the example shown in FIG. 10, the conveyance direction of the base material 2 passing from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is assumed to be an arrow A direction. At this time, the conveying direction of the base material 2 from the outer peripheral surface of the second roller 52 toward the outer peripheral surface of the first roller 51 is the individual rollers 51 a, 51 b, 51 c. The direction of the rotation of the individual rollers 52 a, 52 b, 52 c... Is perpendicular to the rotation axis of the individual rollers 52 a, 52 b, 52 c, and the individual rollers 51 a, 51 b, 51 c. It will be conveyed, rotating each individual roller, without sliding on the outer peripheral surface of 52a, 52b, 52c ....
ここで、第1ローラ51の外周面から第2ローラ52の外周面に向けて通過する基材2の搬送方向は、個別ローラ51a、51b、51c・・・及び個別ローラ52a、52b、52c・・・の回転軸に垂直な方向に対して傾斜している。したがって、個別ローラ51a、51b,51c・・・の外周面に接する基材2は、それぞれ搬送方向の駆動力を受けるとともに、第1ローラ51の回転軸に平行な方向であって、図10の左方向(矢印B方向)に基材2を横滑りさせる力を受ける。個別ローラ52a、52b、52c・・・の外周面に接する基材2についても、同様の横滑りさせる力を受ける。
比較例2においても、基材2に対して働く矢印B方向の力を相殺する力が働かないことから、基材2として摩擦係数の高い材料を用いるか、あるいは基材2のテンションを高く維持することによって、基材2の搬送と一体的に個別ローラ51a、51b、51c・・・及び/又は個別ローラ52a、52b、52c・・・を回転させる必要がある。 Here, the conveying direction of thebase material 2 passing from the outer peripheral surface of the first roller 51 toward the outer peripheral surface of the second roller 52 is the individual rollers 51a, 51b, 51c,... And the individual rollers 52a, 52b, 52c,. .. Inclined with respect to the direction perpendicular to the rotation axis. Therefore, the base material 2 in contact with the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,... Receives the driving force in the transport direction, and is in a direction parallel to the rotation axis of the first roller 51. A force that causes the base material 2 to skid in the left direction (arrow B direction) is received. The base material 2 that is in contact with the outer peripheral surfaces of the individual rollers 52a, 52b, 52c,.
Also in Comparative Example 2, since the force that cancels the force in the direction of arrow B acting on thebase material 2 does not work, a material having a high friction coefficient is used as the base material 2 or the tension of the base material 2 is kept high. Accordingly, it is necessary to rotate the individual rollers 51a, 51b, 51c... And / or the individual rollers 52a, 52b, 52c.
比較例2においても、基材2に対して働く矢印B方向の力を相殺する力が働かないことから、基材2として摩擦係数の高い材料を用いるか、あるいは基材2のテンションを高く維持することによって、基材2の搬送と一体的に個別ローラ51a、51b、51c・・・及び/又は個別ローラ52a、52b、52c・・・を回転させる必要がある。 Here, the conveying direction of the
Also in Comparative Example 2, since the force that cancels the force in the direction of arrow B acting on the
この場合、第1ローラ51及び第2ローラ52間を搬送される基材2のテンションをある程度高く維持する必要があり、基材2にかかるテンションが過大になると、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。
また、基材2のテンションを低くすると、搬送に伴う基材2を横滑りさせる力により、基材2が個別ローラ51a、51b、51c・・・の外周面から横滑りして抜け落ちるおそれがある。この場合には、基材2の少なくとも裏面側の摩擦係数を高くする必要があり、基材2として用いることができる材料が限定される。 In this case, it is necessary to maintain the tension of thebase material 2 conveyed between the first roller 51 and the second roller 52 to a certain level, and if the tension applied to the base material 2 becomes excessive, the base material 2 is damaged, or Due to the strong tension, the rotation of the first roller 51 and the second roller 52 is hindered, and there is a possibility that the conveyance becomes impossible.
When the tension of thebase material 2 is lowered, the base material 2 may slip off from the outer peripheral surfaces of the individual rollers 51a, 51b, 51c,. In this case, it is necessary to increase the friction coefficient of at least the back surface side of the base material 2, and the materials that can be used as the base material 2 are limited.
また、基材2のテンションを低くすると、搬送に伴う基材2を横滑りさせる力により、基材2が個別ローラ51a、51b、51c・・・の外周面から横滑りして抜け落ちるおそれがある。この場合には、基材2の少なくとも裏面側の摩擦係数を高くする必要があり、基材2として用いることができる材料が限定される。 In this case, it is necessary to maintain the tension of the
When the tension of the
第2ローラ52側では、搬送に伴う基材2を横滑りさせる力により、基材2を第1ローラ51から遠ざける方向のテンションが高まるおそれがある。したがって、第2ローラ52側において、基材2のテンションが高くなり過ぎて、基材2の損傷または第1ローラ51及び第2ローラ52の回転が阻害されるおそれがある。
さらに、基材2の搬送方向を矢印A方向と逆方向とした場合、個別ローラ51a、51b、51c・・・の外周面において矢印Bと逆方向に基材2を横滑りさせる力が働き、基材2のテンションが大きくなる。基材2にかかるテンションが過大になると、前述と同様に、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。
また、第2ローラ52側では、搬送に伴う基材2を横滑りさせる力により、個別ローラ52a、52b、52c・・・から基材2が抜け落ちるおそれがある。 On thesecond roller 52 side, there is a possibility that the tension in the direction in which the base material 2 is moved away from the first roller 51 is increased by the force that causes the base material 2 to slide sideways accompanying the conveyance. Therefore, on the second roller 52 side, the tension of the base material 2 becomes too high, and there is a possibility that damage to the base material 2 or rotation of the first roller 51 and the second roller 52 is hindered.
Furthermore, when the conveyance direction of thebase material 2 is the direction opposite to the arrow A direction, a force that causes the base material 2 to slide sideways in the direction opposite to the arrow B acts on the outer peripheral surfaces of the individual rollers 51a, 51b, 51c. The tension of the material 2 is increased. If the tension applied to the base material 2 becomes excessive, the base material 2 may be damaged or the rotation of the first roller 51 and the second roller 52 may be hindered by the strong tension, as described above, and conveyance may become impossible. is there.
On thesecond roller 52 side, the base material 2 may fall off from the individual rollers 52a, 52b, 52c,.
さらに、基材2の搬送方向を矢印A方向と逆方向とした場合、個別ローラ51a、51b、51c・・・の外周面において矢印Bと逆方向に基材2を横滑りさせる力が働き、基材2のテンションが大きくなる。基材2にかかるテンションが過大になると、前述と同様に、基材2が損傷する、あるいは強いテンションにより第1ローラ51及び第2ローラ52の回転が阻害されて、搬送が不能になるおそれがある。
また、第2ローラ52側では、搬送に伴う基材2を横滑りさせる力により、個別ローラ52a、52b、52c・・・から基材2が抜け落ちるおそれがある。 On the
Furthermore, when the conveyance direction of the
On the
比較例のように、第1ローラ51と第2ローラ52の回転軸が互いに平行である場合には、搬送に伴う横滑りが生じないように個別ローラに分割して各個別ローラの回転軸を傾斜させたとしても、基材2のテンションを高く維持する必要があり、基材2の損傷やローラの回転不良などの問題が生じるおそれがあり、基材2のテンションが足りない場合にはローラから抜け落ちるおそれがある。
これに対して、本発明の各実施形態では、第1ローラ51と第2ローラ52は、その回転軸がねじれの位置関係にあるネルソンローラを構成していることから、ローラの長さ方向位置による基材2の搬送速度に差があり、搬送位置に応じて基材2にかかるテンションに差が生じる。このような基材2のテンションの差を、自由回転する個別ローラ51a~51n及び/又は52a~52nによって吸収し、基材2の損傷や装置の故障などを防止している。したがって、基材2に過度のテンションにより損傷することを防止できる。また、搬送に伴い基材2を横滑りさせる力は、回転軸が捩れの位置関係であるネルソンローラにより基材2の作用する力と相殺されて、過度のテンションがかかることが防止でき、また基材2がローラから脱落することを防止できる。 When the rotation axes of thefirst roller 51 and the second roller 52 are parallel to each other as in the comparative example, the rotation axes of the individual rollers are inclined by dividing the rollers into individual rollers so as not to cause a side slip accompanying the conveyance. Even if it is made, it is necessary to keep the tension of the base material 2 high, which may cause problems such as damage to the base material 2 and poor rotation of the roller. There is a risk of falling off.
On the other hand, in each embodiment of the present invention, thefirst roller 51 and the second roller 52 constitute a Nelson roller whose rotational axis is in a torsional positional relationship. There is a difference in the transport speed of the base material 2 due to the difference in tension applied to the base material 2 depending on the transport position. Such a difference in tension of the base material 2 is absorbed by the freely rotating individual rollers 51a to 51n and / or 52a to 52n to prevent damage to the base material 2 or failure of the apparatus. Therefore, it is possible to prevent the substrate 2 from being damaged by excessive tension. In addition, the force that causes the base material 2 to slide sideways during conveyance is offset by the force applied by the base material 2 by the Nelson roller whose rotational axis is twisted, so that excessive tension can be prevented. The material 2 can be prevented from falling off the roller.
これに対して、本発明の各実施形態では、第1ローラ51と第2ローラ52は、その回転軸がねじれの位置関係にあるネルソンローラを構成していることから、ローラの長さ方向位置による基材2の搬送速度に差があり、搬送位置に応じて基材2にかかるテンションに差が生じる。このような基材2のテンションの差を、自由回転する個別ローラ51a~51n及び/又は52a~52nによって吸収し、基材2の損傷や装置の故障などを防止している。したがって、基材2に過度のテンションにより損傷することを防止できる。また、搬送に伴い基材2を横滑りさせる力は、回転軸が捩れの位置関係であるネルソンローラにより基材2の作用する力と相殺されて、過度のテンションがかかることが防止でき、また基材2がローラから脱落することを防止できる。 When the rotation axes of the
On the other hand, in each embodiment of the present invention, the
(4)太陽電池モジュール
図11は、製膜処理後の基材の一例を模式的に示す説明図であり、図12は、スラット構造の太陽電池モジュールの説明図である。
前述したような製膜処理部30は、それぞれチャンバ3内においてスパッタリング又はCVD法、蒸着法等により、基材2上に薄膜を形成するものである。 (4) Solar Cell Module FIG. 11 is an explanatory view schematically showing an example of a base material after film formation, and FIG. 12 is an explanatory view of a solar cell module having a slat structure.
Each of thefilm forming units 30 described above forms a thin film on the substrate 2 by sputtering, CVD, vapor deposition or the like in the chamber 3.
図11は、製膜処理後の基材の一例を模式的に示す説明図であり、図12は、スラット構造の太陽電池モジュールの説明図である。
前述したような製膜処理部30は、それぞれチャンバ3内においてスパッタリング又はCVD法、蒸着法等により、基材2上に薄膜を形成するものである。 (4) Solar Cell Module FIG. 11 is an explanatory view schematically showing an example of a base material after film formation, and FIG. 12 is an explanatory view of a solar cell module having a slat structure.
Each of the
複数のチャンバ3内において、所定の製膜処理が実行された基材2上には、図11に示すように、下部導電膜4a、光電変換膜4b、上部導電膜4c等が積層された長尺状の太陽電池セル母材を構成している。
In the plurality of chambers 3, a lower conductive film 4 a, a photoelectric conversion film 4 b, an upper conductive film 4 c, and the like are stacked on the substrate 2 on which a predetermined film forming process has been performed, as shown in FIG. A scale-shaped solar cell base material is formed.
基材2上に下部導電膜4a、光電変換膜4b、上部導電膜4cが製膜された太陽電池セル母材は、切断工程において所定の長さの太陽電池セル21に切断される。所定の長さに切断された短冊状の太陽電池セル21は、2つの電極24、25の間に複数配列されて幅方向両側部が接合され、裏面側カバー部材22と受光面側カバー部材23の間に充填されるEVA26によって一体的に形成される。
The solar cell base material in which the lower conductive film 4a, the photoelectric conversion film 4b, and the upper conductive film 4c are formed on the substrate 2 is cut into solar cells 21 having a predetermined length in a cutting process. A plurality of strip-shaped solar cells 21 cut to a predetermined length are arranged between two electrodes 24 and 25, and both side portions in the width direction are joined, and a back surface side cover member 22 and a light receiving surface side cover member 23 are joined. It is integrally formed by EVA 26 filled between the two.
(5)実施形態の作用効果
製膜装置1(製膜装置の一例)は、製膜材料供給部6(製膜材料供給部の一例)と、第1ローラ51(第1ローラの一例)と、第2ローラ52(第2ローラの一例)とを備えている。製膜材料供給部6は、チャンバ3(チャンバの一例)内に配置され、搬送される基材2(基材の一例)に対して所定の製膜処理を実行する。第1ローラ51は、チャンバ3の外から供給される基材2を製膜材料供給部6に送出し、製膜処理後の基材2をチャンバ3の外に排出する。第2ローラ52は、第1ローラ51の回転軸と所定の角度で傾斜する回転軸を有し、第1ローラ51との間で基材2が複数回巻回されて基材2を所定の間隔で複数列整列させる。ここで、第1ローラ51と第2ローラ52のうち少なくとも一方が、自由回転する複数の個別ローラ51a~51n及び/又は52a~52n(個別ローラの一例)に分割されている。 (5) Effects of Embodiment The film forming apparatus 1 (an example of a film forming apparatus) includes a film forming material supply unit 6 (an example of a film forming material supply unit), a first roller 51 (an example of a first roller), And a second roller 52 (an example of a second roller). The film-formingmaterial supply unit 6 is disposed in the chamber 3 (an example of a chamber) and executes a predetermined film-forming process on the substrate 2 (an example of a substrate) to be conveyed. The first roller 51 sends the substrate 2 supplied from outside the chamber 3 to the film forming material supply unit 6, and discharges the substrate 2 after the film forming process out of the chamber 3. The second roller 52 has a rotation axis that is inclined at a predetermined angle with the rotation axis of the first roller 51, and the base material 2 is wound a plurality of times between the first roller 51 and the base material 2 is turned to a predetermined value. Align multiple columns at intervals. Here, at least one of the first roller 51 and the second roller 52 is divided into a plurality of individual rollers 51a to 51n and / or 52a to 52n (an example of individual rollers) that freely rotate.
製膜装置1(製膜装置の一例)は、製膜材料供給部6(製膜材料供給部の一例)と、第1ローラ51(第1ローラの一例)と、第2ローラ52(第2ローラの一例)とを備えている。製膜材料供給部6は、チャンバ3(チャンバの一例)内に配置され、搬送される基材2(基材の一例)に対して所定の製膜処理を実行する。第1ローラ51は、チャンバ3の外から供給される基材2を製膜材料供給部6に送出し、製膜処理後の基材2をチャンバ3の外に排出する。第2ローラ52は、第1ローラ51の回転軸と所定の角度で傾斜する回転軸を有し、第1ローラ51との間で基材2が複数回巻回されて基材2を所定の間隔で複数列整列させる。ここで、第1ローラ51と第2ローラ52のうち少なくとも一方が、自由回転する複数の個別ローラ51a~51n及び/又は52a~52n(個別ローラの一例)に分割されている。 (5) Effects of Embodiment The film forming apparatus 1 (an example of a film forming apparatus) includes a film forming material supply unit 6 (an example of a film forming material supply unit), a first roller 51 (an example of a first roller), And a second roller 52 (an example of a second roller). The film-forming
本実施形態によれば、第1ローラ51と第2ローラ52との間に複数回巻回される基材2を搬送しながら、製膜材料供給部6から製膜材料を供給して、所定の製膜処理を実行することができる。
According to the present embodiment, the film forming material is supplied from the film forming material supply unit 6 while conveying the base material 2 wound a plurality of times between the first roller 51 and the second roller 52, and a predetermined amount is obtained. The film forming process can be executed.
このとき、第1ローラ51、第2ローラ52のうち少なくとも一方が、自由回転する個別ローラ51a~51n及び/又は52a~52nに分割されており、第1ローラ51及び第2ローラ52間に配列された複数列の基材2の搬送速度の差分を吸収(ローラ上で基材2が滑る、及び個別ローラが独立して回転)して、基材2の損傷や装置の故障を防止できる。
At this time, at least one of the first roller 51 and the second roller 52 is divided into individual rollers 51 a to 51 n and / or 52 a to 52 n that freely rotate, and is arranged between the first roller 51 and the second roller 52. It is possible to absorb the difference in the conveyance speed of the plurality of rows of base materials 2 (the base material 2 slides on the rollers and the individual rollers rotate independently), thereby preventing the base material 2 from being damaged and the apparatus from being broken.
本発明は、ロールツーロールで製膜処理を実行する製膜装置に広く適用することができる。
The present invention can be widely applied to a film forming apparatus that performs a film forming process by roll-to-roll.
1 製膜装置
2 基材
3 チャンバ
5 ローラ部
6 製膜材料供給部
10 基材送出ロール
11a チャンバ
11b チャンバ
20 基材巻取ロール
21 太陽電池セル
30 製膜処理部
51 第1ローラ
51a~51n 個別ローラ
52 第2ローラ
52a~52n 個別ローラ DESCRIPTION OFSYMBOLS 1 Film forming apparatus 2 Base material 3 Chamber 5 Roller part 6 Film forming material supply part 10 Base material sending roll 11a Chamber 11b Chamber 20 Base material winding roll 21 Solar cell 30 Film forming process part 51 1st roller 51a-51n Individual Roller 52 Second roller 52a to 52n Individual roller
2 基材
3 チャンバ
5 ローラ部
6 製膜材料供給部
10 基材送出ロール
11a チャンバ
11b チャンバ
20 基材巻取ロール
21 太陽電池セル
30 製膜処理部
51 第1ローラ
51a~51n 個別ローラ
52 第2ローラ
52a~52n 個別ローラ DESCRIPTION OF
Claims (5)
- 搬送中の薄板長尺状の基材にチャンバ内において所定の処理を行って、前記基材の表面に薄膜を形成する製膜装置であって、
前記チャンバ内に配置され、前記搬送される基材に対して所定の製膜処理を実行する製膜材料供給部と、
前記チャンバの外から供給される基材を前記製膜材料供給部に送出し、製膜処理後の前記基材を前記チャンバの外に排出する第1ローラと、
前記第1ローラの回転軸と所定の角度で傾斜する回転軸を有し、前記第1ローラとの間で前記基材が複数回巻回されて前記基材を所定の間隔で複数列整列させる第2ローラと、を備え、前記第1ローラと前記第2ローラのうち少なくとも一方が、自由回転する複数の個別ローラに分割されている、製膜装置。 A thin film elongating base material being transported is subjected to predetermined processing in a chamber to form a thin film on the surface of the base material,
A film forming material supply unit that is disposed in the chamber and executes a predetermined film forming process on the substrate to be conveyed;
A first roller that sends a substrate supplied from outside the chamber to the film forming material supply unit, and discharges the substrate after the film forming process to the outside of the chamber;
A rotating shaft inclined at a predetermined angle with respect to the rotating shaft of the first roller, and the base material is wound a plurality of times between the first roller and the base material is aligned in a plurality of rows at a predetermined interval; A film forming apparatus, wherein at least one of the first roller and the second roller is divided into a plurality of individual rollers that freely rotate. - 前記複数の個別ローラは、前記ローラ部に整列された基材の列と同数配列される、請求項1に記載の製膜装置。 The film forming apparatus according to claim 1, wherein the plurality of individual rollers are arranged in the same number as a row of base materials aligned with the roller portion.
- 前記第1ローラが前記複数の個別ローラに分割されている、請求項1又は2に記載の製膜装置。 The film forming apparatus according to claim 1 or 2, wherein the first roller is divided into the plurality of individual rollers.
- 前記第2ローラが基材を搬送するために回転駆動される、請求項3に記載の製膜装置。 The film forming apparatus according to claim 3, wherein the second roller is rotationally driven to convey the substrate.
- 前記第2ローラが前記複数の個別ローラに分割されている、請求項1~4のいずれかに記載の製膜装置。 The film forming apparatus according to any one of claims 1 to 4, wherein the second roller is divided into the plurality of individual rollers.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-075092 | 2012-03-28 | ||
JP2012075092 | 2012-03-28 | ||
JP2012-160280 | 2012-07-19 | ||
JP2012160280A JP2013227643A (en) | 2012-03-28 | 2012-07-19 | Film-forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145813A1 true WO2013145813A1 (en) | 2013-10-03 |
Family
ID=49259099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/050608 WO2013145813A1 (en) | 2012-03-28 | 2013-01-16 | Film-forming apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013227643A (en) |
WO (1) | WO2013145813A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016008326A (en) * | 2014-06-25 | 2016-01-18 | 東レエンジニアリング株式会社 | Substrate transferring and processing apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016094629A (en) * | 2014-11-12 | 2016-05-26 | 東レエンジニアリング株式会社 | Substrate carrying and processing apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657415A (en) * | 1992-06-12 | 1994-03-01 | Minnesota Mining & Mfg Co <3M> | Method and apparatus for forming multilayer tissue thin film on web base material and multilayer tissue thin film formed on web base material |
JP2005113165A (en) * | 2003-10-02 | 2005-04-28 | Hirano Koon Kk | Surface treatment device |
JP2007224384A (en) * | 2006-02-24 | 2007-09-06 | Ulvac Japan Ltd | Surface treatment device |
WO2011043409A1 (en) * | 2009-10-07 | 2011-04-14 | 株式会社フジクラ | Underlying layer of alignment film for oxide superconductor, method of forming same, and device for forming same |
-
2012
- 2012-07-19 JP JP2012160280A patent/JP2013227643A/en active Pending
-
2013
- 2013-01-16 WO PCT/JP2013/050608 patent/WO2013145813A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657415A (en) * | 1992-06-12 | 1994-03-01 | Minnesota Mining & Mfg Co <3M> | Method and apparatus for forming multilayer tissue thin film on web base material and multilayer tissue thin film formed on web base material |
JP2005113165A (en) * | 2003-10-02 | 2005-04-28 | Hirano Koon Kk | Surface treatment device |
JP2007224384A (en) * | 2006-02-24 | 2007-09-06 | Ulvac Japan Ltd | Surface treatment device |
WO2011043409A1 (en) * | 2009-10-07 | 2011-04-14 | 株式会社フジクラ | Underlying layer of alignment film for oxide superconductor, method of forming same, and device for forming same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016008326A (en) * | 2014-06-25 | 2016-01-18 | 東レエンジニアリング株式会社 | Substrate transferring and processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2013227643A (en) | 2013-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102365046B (en) | Adhesive tape roll and method for manufacturing adhesive tape roll | |
KR20080111066A (en) | High throughput deposition apparatus with magnetic support | |
WO2013145813A1 (en) | Film-forming apparatus | |
KR20130064338A (en) | Guide device for substrate transport | |
WO2015170499A1 (en) | Thin-film forming device | |
JP2012043983A (en) | Multilayer film forming method and film forming apparatus using the same | |
US20120276397A1 (en) | Vacuum film formation method and laminate obtained by the method | |
CN113684462A (en) | Double-sided reciprocating film coating device | |
CN103958725A (en) | In-line deposition system and process for deposition of a thin film layer | |
JP2009057632A (en) | Apparatus for manufacturing thin-film laminated member | |
JP5823903B2 (en) | Film forming equipment | |
SE1250680A1 (en) | Continuous roll-to-roll device | |
JP6001975B2 (en) | Thin film forming equipment | |
JP2012219322A (en) | Winding type film deposition system and winding type film deposition method | |
JP2016094629A (en) | Substrate carrying and processing apparatus | |
JP6624981B2 (en) | Substrate transfer processing equipment | |
JP6045922B2 (en) | Conveying film forming equipment | |
WO2013084604A1 (en) | Film conveying and forming apparatus | |
JP6076144B2 (en) | Conveying film forming equipment | |
JP2013207113A (en) | Film formation apparatus | |
JP2016132794A (en) | Apparatus for substrate transportation process | |
EP1894863A1 (en) | Dosing apparatus | |
JP2015206576A (en) | Degasification device | |
JP6049187B2 (en) | Conveying film forming equipment | |
JP2014165265A (en) | Manufacturing apparatus of solar cell and solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13767958 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13767958 Country of ref document: EP Kind code of ref document: A1 |