WO2013144473A1 - Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires - Google Patents

Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires Download PDF

Info

Publication number
WO2013144473A1
WO2013144473A1 PCT/FR2013/050473 FR2013050473W WO2013144473A1 WO 2013144473 A1 WO2013144473 A1 WO 2013144473A1 FR 2013050473 W FR2013050473 W FR 2013050473W WO 2013144473 A1 WO2013144473 A1 WO 2013144473A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
loop
thermal energy
site
mutualization
Prior art date
Application number
PCT/FR2013/050473
Other languages
English (en)
Inventor
Fabrice Giroudiere
Eric Lemaire
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to US14/389,135 priority Critical patent/US20150060016A1/en
Priority to KR1020147029766A priority patent/KR20140146623A/ko
Priority to CN201380016949.4A priority patent/CN104220814A/zh
Priority to JP2015502400A priority patent/JP2015517079A/ja
Priority to EP13715269.0A priority patent/EP2831511A1/fr
Publication of WO2013144473A1 publication Critical patent/WO2013144473A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • F24D10/003Domestic delivery stations having a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/001Central heating systems using heat accumulated in storage masses district heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/10Heat storage materials, e.g. phase change materials or static water enclosed in a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D7/00Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to the technical field of heat exchange, and heat networks.
  • the subject of the invention is a method for pooling thermal energy (heat) at the scale of the territory in which a heat exchange loop is implemented which links at least one thermal energy consumer site and at least one site producing thermal energy.
  • the invention also relates to a heat pooling system for implementing said method.
  • Air coolers that are exchangers between process fluids and air, intended to dissipate heat in the air, these devices are usually equipped with electric fans to force air circulation; - And / or cooling towers, kind of natural draft chimneys, in which water is sprayed to help cooling. Here again the heat goes into the atmosphere.
  • cooling water in general the cold water being obtained either by heat exchange in a heat exchanger with sea water, river ... or by cold groups .
  • the heat is lost in the environment.
  • Thermal integrations between factories and / or residential or office premises are rare, because when a thermal integration is retained, the two parts become dependent on the operation of the other.
  • Such an example of energy integration is for example described for the heating of agricultural greenhouses in http://www.innovagro.net/pdf/agro- industries.pdf.
  • the invention relates to a heat-sharing method at the scale of the territory in which a heat exchange loop is implemented linking at least one thermal energy consumer site and at least one thermal energy generating site, said loop comprising a heat transfer fluid whose flow rate is adjusted so that at any point of the loop the temperature differences are less than 20 ° C, or the said site (s) consumer (s) taking in a point of the loop the energy required by heat exchange and the site or these site (s) producer (s) rejecting by heat exchange the energy produced in excess.
  • the temperature of the loop is kept constant by means of a booster heater.
  • thermobattery-type heat buffer storage is used to store excess thermal energy within the loop.
  • a Rankin Organic Cycle can be introduced into the loop to valorise excess thermal energy in electrical form.
  • the heat transfer fluid is chosen from water, aqueous mixtures, alcohols, hydrocarbons or ionic liquids.
  • the heat transfer fluid may comprise particles of phase change material.
  • the invention also relates to a territory-wide heat pooling system comprising:
  • a heat exchange loop which interconnects said thermal energy consuming sites and said thermal energy generating sites, and which comprises heat exchangers and a heat transfer fluid whose flow rate is adjusted by means of a pump.
  • the loop may comprise a booster heater.
  • Figure 1 illustrates a known system of the prior art consisting of an industrial boiler C to provide a hot fluid (1) generally water at a temperature around 100 ° C and to recovering the cooled fluid (2) back by the user, for example buildings placed in parallel B1, B2, ... Bn.
  • Figures 2 to 5 illustrate the invention without limitation.
  • Figure 2 shows the system according to the invention for the implementation of a heat exchange loop between transmitters (eg factories) and energy consumers (eg buildings).
  • Figure 3 illustrates the embodiment according to the invention in which pooled heat buffer storage is implemented.
  • Figure 4 illustrates the embodiment of the invention, wherein the system comprises an organic Rankin cycle.
  • Figure 5 illustrates the embodiment of the invention, wherein the heat transfer fluid (s) of the chemical loop comprises or comprise a phase change material in the form of capsules.
  • the system according to the invention (FIG. 2) consists in setting up between a set of consumers and energy emitters a common loop of a coolant.
  • energy emitters By means of heat exchangers located on the pipe of the loop, according to their needs, consumers take the energy they need by heat exchange and the emitters reject by heat exchange the energy they produce in excess.
  • a coolant circulates in the loop connecting energy consumers (buildings B1, B2, B3, Bn) and energy emitters (factories U1, U2).
  • the flow rate of the coolant is chosen so that at any point of the loop the temperature differences are small, preferably between 5 and 20 ° C (for example, the maximum temperature difference may be 20 ° C that is, a higher temperature of 80 ° C and a lower temperature of 60 ° C).
  • the coolant is any fluid for exchanging heat in the various heat exchange equipment and is preferably selected from fluids in the liquid state at pressures between 1 and 20 bar relative, so that the price of pipe of the loop does not become too high.
  • An example of a coolant can be cited water or aqueous mixtures or alcohols or hydrocarbons or ionic liquids.
  • Examples of consumers include domestic or industrial buildings to be heated, or factories that use industrial processes that require heat, such as for drying operations, for example in the food industry.
  • factories to dissipate heat that was lost to the atmosphere according to the prior art.
  • the temperature of the loop is advantageously maintained, for example if the energy balance of the contributors to the loop (here the factories Ul and U2) is deficient, using a booster heater C whose size is strongly reduced compared to the industrial boiler of the prior art which was the only source of heat.
  • the overall energy consumption according to the invention is greatly reduced, since the heat is pooled within the loop, and the auxiliary boiler is dimensioned in order to smooth temperature differences within the loop. of the loop.
  • the system (FIG. 3) can be equipped with one or more Q pooled heat buffer storages, called “thermobatteries” by the companies that manufacture them (ex: German company H. M. Schukôrper).
  • the storage system uses, for example, sodium acetate.
  • the heat storage allows to smooth the temperature of the loop over time (for example days / nights or summer / winter) or also to ensure the heating of buildings when a heat supplier plant is in maintenance operation.
  • the system can also (FIG. 4) be equipped with an organic Rankin cycle (COR) which makes it possible to recover the excess thermal energy (instead of sending it to a cooler such as an air cooler) in electrical energy when needed, such as in summer, where the heating requirements are reduced.
  • COR organic Rankin cycle
  • This electrical energy can advantageously be used for the operation of air conditioners.
  • one of the users may need a thermal level higher than the temperature level of the hot loop (for example, a thermal level of 120 ° C. is required for industrial food cooking with a loop maintained at a temperature of temperature close to 70 ° C): in this case, the user can install a booster heat pump that can raise the temperature with an additional electricity consumption.
  • a thermal level higher than the temperature level of the hot loop for example, a thermal level of 120 ° C. is required for industrial food cooking with a loop maintained at a temperature of temperature close to 70 ° C
  • the heat transfer fluid may contain solid particles encapsulating a phase-change material (for example sodium acetate) and making it possible to increase the recoverable energy with a small variation in temperature.
  • a phase-change material for example sodium acetate
  • phase change state
  • energy content enthalpy
  • Said phase-change material is preferably chosen from the compounds below, for which the melting temperature is mentioned in parentheses: Tri-hydrated sodium acetate (58 ° C.), partially hydrated zinc chloride (76) ° C).
  • FIG. 5 represents the channel (Can) of the chemical loop transporting the coolant F with the transported capsules containing the phase-change material (liquid phase (L), solid phase (S)).
  • the envelope E encapsulating the phase change material may be plastic such as polyethylene or polypropylene.

Abstract

L'invention concerne un système qui permet l'échange de chaleur au moyen d'une boucle dans laquelle circule un fluide caloporteur, entre plusieurs sites industriels et tertiaires, chaque site pouvant être producteur et/ou consommateur dans le but de réduire la facture énergétique à l'échelle d'un territoire. L'invention concerne également une méthode de mutualisation de l'énergie thermique à l'échelle du territoire au moyen d'une boucle reliant au moins un site consommateur d'énergie thermique et au moins un site producteur d'énergie thermique, dans laquelle circule un fluide caloporteur.

Description

METHODE DE MUTUALISATION DE L'ENERGIE THERMIQUE ET SYSTEME DE BOUCLE D'ECHANGE THERMIQUE ENTRE SITES INDUSTRIELS ET TERTIAIRES
Domaine technique
L'invention concerne le domaine technique de l'échange de chaleur, et des réseaux de chaleur.
L'invention a pour objet une méthode de mutualisation de l'énergie thermique (chaleur) à l'échelle du territoire dans laquelle on met en œuvre une boucle d'échange thermique reliant au moins un site consommateur d'énergie thermique et au moins un site producteur d'énergie thermique.
L'invention a également pour objet un système de mutualisation de chaleur permettant la mise en œuvre de ladite méthode.
Art antérieur
Sur un même territoire, par exemple à l'échelle du canton, on peut trouver des usines qui ont souvent des difficultés à valoriser l'énergie produite sous forme de chaleur à bas niveau thermique (les calories transportées typiquement par des fluides à des températures inférieures à 150°C) et des locaux à usage d'habitation, de bureaux ou industriels qui ont des besoins d'énergie sous forme de chaleur à basse tem pérature (chauffage habitat ou tertiaire, opérations de séchage, chauffage de serres...). Les usines qui n'utilisent pas leur excès de chaleur à bas niveau thermique, comme les raffineries ou les centrales nucléaires, ont généralement recours à :
- des aéro-réfrigérants qui sont des échangeurs entre les fluides de procédé et l'air, ayant pour but de dissiper la chaleur dans l'air, ces appareils sont généralement équipés de ventilateurs électriques pour forcer la circulation d'air ; - et/ou des tours de refroidissement, sorte de cheminées à tirage naturel, dans lesquelles de l'eau est pulvérisée pour aider au refroidissement. Ici encore la chaleur part dans l'atmosphère.
- et/ou des circuits d'eau de refroidissement (eau glycolée en général), l'eau froide étant obtenue soit par échange de chaleur dans un échangeur avec de l'eau de mer, de fleuve... ou par des groupes froids. Ici encore la chaleur est perdue dans l'environnement.
De leur côté, les habitations, bureaux ou locaux à usage industriel qui ont besoin de chaleur à basse température:
- génèrent eux-mêmes cette chaleur par des moyens de combustion ou électriques.
Dans les deux cas, des combustibles sont consommés et des émissions de C02 sont engendrées.
- et/ou importent de la vapeur en provenance d'un industriel voisin ou d'un réseau de chauffage urbain, l'un comme l'autre consommant des combustibles pour cette production de chaleur.
Les intégrations thermiques entre usines et/ou locaux d'habitation ou de bureau sont rares, car lorsqu'une intégration thermique est retenue, les deux parties deviennent dépendantes du fonctionnement de l'autre. Un tel exemple d'intégration énergétique est par exemple décrit pour le chauffage de serres agricoles dans http://www.innovagro.net/pdf/agro- industries.pdf.
Les contraintes d'obligation de fourniture, de pénalités pendant les phases d'arrêt, bref, de criticité en cas de défaillance d'une des parties est un verrou qui décourage généralement les investisseurs. Comme décrit dans l'exemple précédent, le fait de pouvoir disposer de l'énergie excédentaire d'un industriel voisin, quand il est unique, ne dispense pas le bénéficiaire de devoir investir dans une chaudière propre pour assurer les défaillances éventuelles de l'industriel voisin. Les systèmes existants consistent à partir d'une chaufferie industrielle à fournir un fluide chaud généralement de l'eau à une température autour de 100°C et à récupérer en retour de le fluide refroidi par l'utilisateur. Ce dispositif oblige à fortement paralléliser le réseau (ramifications) afin que chaque utilisateur dispose d'une température suffisante. Cette parallélisation des lignes d'alimentation et l'obligation d'utiliser des tuyaux (1 pour le l'aller et 1 pour le retour) entraînent des pertes thermiques importantes. On retrouve ce problème par exemple sur le site internet de la Compagnie Parisienne de Chauffage Urbain http://www.cpcu.fr/La-chaleur-urbaine/FONCTIONNEMENT. Description de l'invention
Résumé de l'invention
L'invention concerne une méthode de mutualisation de chaleur à l'échelle du territoire dans laquelle on met en œuvre une boucle d'échange thermique reliant au moins un site consommateur d'énergie thermique et au moins un site producteur d'énergie thermique, ladite boucle comprenant un fluide caloporteur dont le débit est ajusté de manière à ce qu'en tout point de la boucle les écarts de température soient inférieurs à 20°C, le ou lesdit(s) site(s) consommateur(s) prenant en un point de la boucle l'énergie nécessaire par échange thermique et le ou lesdit(s) site(s) producteur(s) rejetant par échange thermique l'énergie produite en excédent.
Avantageusement, la température de la boucle est maintenue constante au moyen d'une chaufferie d'appoint.
Dans un mode de réalisation, on met en œuvre un stockage tampon de chaleur de type thermobatterie pour stocker au sein de la boucle de l'énergie thermique excédentaire.
On peut introduire dans la boucle un Cycle organique de Rankin pour valoriser sous forme électrique de l'énergie thermique excédentaire. De préférence, le fluide caloporteur est choisi parmi l'eau, les mélanges aqueux, les alcools, les hydrocarbures ou les liquides ioniques. Le fluide caloporteur peut comprendre des particules de matériau à changement de phase.
L'invention concerne également un système de mutualisation de chaleur à l'échelle du territoire comprenant :
- au moins un site consommateur d'énergie thermique ;
- au moins un site producteur d'énergie thermique ;
- une boucle d'échange thermique qui relie entre eux lesdits sites consommateurs d'énergie thermique et lesdits sites producteurs d'énergie thermique, et qui comprend des échangeurs thermiques et un fluide caloporteur dont le débit est ajusté au moyen d'une pompe.
Dans le système selon l'invention, la boucle peut comprendre une chaufferie d'appoint. Description des figures Figure 1 : La figure 1 illustre un système connu de l'art antérieur consistant à partir d'une chaufferie industrielle C à fournir un fluide chaud (1) généralement de l'eau à une température autour de 100°C et à récupérer en retour le fluide refroidi (2) par l'utilisateur, par exemple des bâtiments placés en parallèle Bl, B2, ... Bn. Les figures 2 à 5 illustrent l'invention à titre non limitatif.
Figure 2 : la figure 2 représente le système selon l'invention permettant la mise en œuvre d'une boucle d'échange de chaleur entre des émetteurs (ex : usines) et des consommateurs d'énergie (ex : bâtiments). Figure 3 : La figure 3 illustre le mode de réalisation selon l'invention dans lequel des stockages tampon de chaleur mutualisée sont mis en œuvre.
Figure 4 : La figure 4 illustre le mode de réalisation de l'invention, dans lequel le système comprend un cycle organique de Rankin.
Figure 5 : La figure 5 illustre le mode de réalisation de l'invention, dans lequel le ou les fluide(s) caloporteur(s) de la boucle chimique comprend ou comprennent un matériau à changement de phase sous forme de capsules.
Plus particulièrement, le système selon l'invention (figure 2) consiste à mettre en place entre un ensemble de consommateurs et d'émetteurs d'énergie une boucle commune d'un fluide caloporteur. Au moyen d'échangeurs thermiques situés sur la canalisation de la boucle, en fonction de leurs besoins, des consommateurs prennent l'énergie dont ils ont besoin par échange thermique et les émetteurs rejettent par échange thermique l'énergie qu'ils produisent en excédent.
Au moyen d'une pompe P, un fluide caloporteur circule dans la boucle reliant des consommateurs d'énergie (bâtiments Bl, B2, B3, Bn) et des émetteurs d'énergie (usines Ul, U2).
Le débit du fluide caloporteur est choisi de manière à ce qu'en tout point de la boucle les écarts de température soient faibles, de préférence entre 5 et 20°C (par exemple, l'écart de température maximal peut être de 20°C, c'est-à-dire une température la plus élevée égale à 80°C et une température la plus faible égale à 60°C).
Le fluide caloporteur est tout fluide permettant d'échanger la chaleur dans les différents équipements d'échanges thermiques et est de préférence choisi parmi les fluides à l'état liquide à des pressions comprises entre 1 et 20 bar relatifs, afin que le prix de canalisation de la boucle ne devienne pas trop élevé. On peut citer comme exemple de fluide caloporteur l'eau ou les mélanges aqueux ou les alcools ou encore les hydrocarbures ou encore les liquides ioniques.
Parmi les consommateurs, on peut citer comme exemple des bâtiments domestiques ou industriels à chauffer ou bien des usines mettant en œuvre des procédés industriels qui nécessitent de la chaleur, comme pour réaliser des opérations de séchage, par exemple dans l'industrie agro-alimentaire. Parmi les émetteurs, on trouve des usines devant dissiper de la chaleur qui était perdue dans l'atmosphère selon l'art antérieur. La température de la boucle est avantageusement maintenue, par exemple si le bilan d'énergie des contributeurs à la boucle (ici les usines Ul et U2) est déficitaire, à l'aide d'une chaufferie d'appoint C dont la taille est fortement réduite par rapport à la chaufferie industrielle de l'art antérieur qui était la seule source de chaleur. Il en résulte que la consommation globale d'énergie selon l'invention est fortement réduite, puisque la chaleur est mutualisée au sein de la boucle, et que la chaufferie d'appoint est dimensionnée dans l'objectif de lisser les écarts de température au sein de la boucle.
Dans un mode de réalisation de l'invention, le système (figure 3) peut être équipé d'un ou plusieurs stockages tampon de chaleur mutualisée Q, appelés "thermobatterie" par les sociétés qui les fabriquent (ex: société allemande H. M. Heizkôrper). Le système de stockage utilise par exemple de l'acétate de sodium. Le stockage de chaleur permet de lisser la température de la boucle dans le temps (par exemple jours/nuits ou été/hiver) ou également permettre d'assurer le chauffage des bâtiments lorsqu'une usine fournisseur de chaleur est en opération de maintenance.
Dans un autre mode de réalisation de l'invention, le système peut également (figure 4) être équipé d'un cycle organique de Rankin (COR) qui permet de valoriser l'énergie thermique excédentaire (au lieu de l'envoyer dans un refroidisseur tel qu'un aéroréfrigérant) en énergie électrique en cas de besoin, comme par exemple en été, où les besoins en chauffage sont réduits. Cette énergie électrique pourra avantageusement être utilisée pour le fonctionnement de climatiseurs.
Selon l'invention, un des utilisateurs peut avoir besoin d'un niveau thermique supérieur au niveau de température de la boucle chaude (par exemple besoin d'un niveau thermique de 120°C pour de la cuisson industrielle agroalimentaire avec une boucle maintenue à une température proche de 70°C) : dans ce cas, l'utilisateur peut installer une pompe à chaleur d'appoint qui permet de remonter la température moyennant une consommation d'électricité d'appoint.
Selon l'invention, le fluide caloporteur peut contenir des particules solides encapsulant un matériau à changement de phase (par exemple de l'acétate de sodium) et permettant d'accroître l'énergie restituable avec une faible variation de température. En effet, lorsqu'il y a changement de phase (état) d'un corps pur, il y a variation du contenu énergétique (enthalpie) sans variation de température. L'exemple bien connu est celui de l'eau qui passe de l'état solide à l'état liquide à 0°C à pression atmosphérique, mais dans notre cas le changement de phase est souhaité à une température typiquement entre 50 et 100°C. Ledit matériau à changement de phase est préférentiellement choisi parmi les composés ci- dessous, pour lesquels la température de fusion est mentionnée entre parenthèses : L'acétate de sodium tri-hydraté (58°C), le chlorure de zinc partiellement hydraté = (76°C). Quelques exemples de liquides ioniques avec un point de fusion dans cette gamme:
l-butyl-3-methylimidazolium tosylate: mp = (67°C)
l-éthyl-3-méthylimidazolium hexafluorophosphate: mp = (59°C)
1-butyl-l-méthylpyrrolidinium hexafluorophosphate: mp = (85 °C)
l-butyl-3-méthylimidazolium chloride: mp= (73 °C)
l-ethyl-3-méthylimidazoliul chloride: mp = (77-79°C)
La figure 5 représente la canalisation (Can) de la boucle chimique transportant le fluide caloporteur F avec les capsules transportées contenant le matériau à changement de phase (phase liquide (L) ; phase solide (S)). L'enveloppe E encapsulant le matériau à changement de phase peut être en plastique tel que du polyéthylène ou du polypropylène.

Claims

REVENDICATIONS
Méthode de mutualisation de chaleur à l'échelle du territoire dans laquelle on met en œuvre une boucle d'échange thermique reliant au moins un site consommateur d'énergie thermique et au moins un site producteur d'énergie thermique, ladite boucle comprenant un fluide caloporteur dont le débit est ajusté de manière à ce qu'en tout point de la boucle les écarts de température soient inférieurs à 20°C, le ou lesdit(s) site(s) consommateur(s) prenant en un point de la boucle l'énergie nécessaire par échange thermique et le ou lesdit(s) site(s) producteur(s) rejetant par échange thermique l'énergie produite en excédent.
2. Méthode de mutualisation de chaleur selon la revendication 1 dans laquelle la température de la boucle est maintenue constante au moyen d'une chaufferie d'appoint.
3. Méthode de mutualisation de chaleur selon la revendication 1 ou 2 dans laquelle on met en œuvre un stockage tampon de chaleur de type thermobatterie pour stocker au sein de la boucle de l'énergie thermique excédentaire.
4. Méthode de mutualisation de chaleur selon la revendication 1 à 3 dans laquelle on introduit dans la boucle un Cycle organique de Rankin pour valoriser sous forme électrique de l'énergie thermique excédentaire.
5. Méthode de mutualisation de chaleur selon l'une des revendications précédentes dans lequel le fluide caloporteur est choisi parmi l'eau, les mélanges aqueux, les alcools, les hydrocarbures ou les liquides ioniques.
6. Méthode de mutualisation de chaleur selon l'une des revendications 1 à 5 dans lequel le fluide caloporteur comprend des particules de matériau à changement de phase. Système de mutualisation de chaleur à l'échelle du territoire comprenant :
- au moins un site consommateur d'énergie thermique ;
- au moins un site producteur d'énergie thermique ;
- une boucle d'échange thermique qui relie entre eux lesdits sites consommateurs d'énergie thermique et lesdits sites producteurs d'énergie thermique, et qui comprend des échangeurs thermiques et un fluide caloporteur dont le débit est ajusté au moyen d'une pompe.
Système de mutualisation de chaleur à l'échelle du territoire selon la revendication 7 dans lequel la boucle comprend une chaufferie d'appoint.
PCT/FR2013/050473 2012-03-28 2013-03-06 Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires WO2013144473A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/389,135 US20150060016A1 (en) 2012-03-28 2013-03-06 Method for pooling thermal energy, and heat exchange loop system between industrial and tertiary sites
KR1020147029766A KR20140146623A (ko) 2012-03-28 2013-03-06 열에너지를 풀링하는 방법, 산업 사이트와 상업 사이트 사이를 열교환시키는 루프 시스템
CN201380016949.4A CN104220814A (zh) 2012-03-28 2013-03-06 用于热能循环的方法和用于工业与商业点之间的热交换的环路系统
JP2015502400A JP2015517079A (ja) 2012-03-28 2013-03-06 熱を蓄積する方法およびシステム
EP13715269.0A EP2831511A1 (fr) 2012-03-28 2013-03-06 Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1200929 2012-03-28
FR1200929A FR2988814B1 (fr) 2012-03-28 2012-03-28 Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires

Publications (1)

Publication Number Publication Date
WO2013144473A1 true WO2013144473A1 (fr) 2013-10-03

Family

ID=48083453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050473 WO2013144473A1 (fr) 2012-03-28 2013-03-06 Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires

Country Status (7)

Country Link
US (1) US20150060016A1 (fr)
EP (1) EP2831511A1 (fr)
JP (1) JP2015517079A (fr)
KR (1) KR20140146623A (fr)
CN (1) CN104220814A (fr)
FR (1) FR2988814B1 (fr)
WO (1) WO2013144473A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201197A1 (de) * 2017-01-25 2018-07-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wärmeverteilnetz und Verfahren zur Wärmeverteilung
CN109059097B (zh) * 2018-08-21 2020-07-21 成都市新明节能科技有限公司 一种基于分布式电锅炉补热的精确供暖系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475698A1 (fr) * 1980-02-08 1981-08-14 Acv France Sa Installation de chauffage urbain et cellule individuelle pour une telle installation
DE3132562A1 (de) * 1981-08-18 1983-03-03 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Verfahren zur gewinnung von heizwaerme aus dem brauchwasser
DE3240944A1 (de) * 1982-11-05 1984-05-10 Dallinga, Helmut, 4130 Moers Verfahren und anlage zur waermeversorgung von gebaeuden
DD270310A1 (de) * 1988-03-24 1989-07-26 Freiberg Bergakademie SPEICHERFUELLUNG MIT EINER SPEICHERTEMPERATUR VON > 100 GRAD CELSIUS FUER DYNAMISCHE LATENTWAERMESPEICHER
DE19504205A1 (de) * 1994-07-21 1996-01-25 Meyer Fa Rud Otto Blockheizkraftwerk sowie Verfahren zu dessen Betrieb
DE4433493A1 (de) * 1994-09-20 1996-03-21 Gottfried Dipl Ing Roessle Fernwärmenetz
DE19756006A1 (de) * 1997-12-17 1999-06-24 Koegler Stefan Dipl Ing Fh Verfahren zur Energiespeicherung in Phasenwechselmedien und Anordnung zur Durchführung des Verfahrens
DE10048536A1 (de) * 1999-11-23 2001-05-31 Schuemann Sasol Gmbh Dynamischer Latentwärmespeicher
WO2005119014A1 (fr) * 2004-06-03 2005-12-15 Agridea Patents Ltd. Installation de chauffage a distance pour des applications urbaines, civiles, industrielles et agricoles
DE102006002727A1 (de) * 2006-01-19 2007-07-26 Maximilian Remde Schichtenwärmespeichervorrichtung und Verfahren zur Warmwasserbereitung
US20100018668A1 (en) * 2007-02-19 2010-01-28 Daniel Favrat Co2 based district energy system
DE102009013320A1 (de) * 2009-03-18 2010-09-23 Stiebel Eltron Gmbh & Co. Kg Latentwärmespeicher
DE102009047908A1 (de) * 2009-09-23 2011-08-25 Jürgen 73655 Falliano Vorrichtung und Verfahren zur Versorgung eines kalten Nahwärmenetzes mit Wärme

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596713A (en) * 1969-01-27 1971-08-03 Astro Dynamics Inc Liquid-solid heat transport system
US3838813A (en) * 1973-03-15 1974-10-01 K Brosenius Heating system for one-family houses
US4911232A (en) * 1988-07-21 1990-03-27 Triangle Research And Development Corporation Method of using a PCM slurry to enhance heat transfer in liquids
US20040019123A1 (en) * 2002-07-24 2004-01-29 Sehoon Kwak Multi-phase suspension coolant
US20100168275A1 (en) * 2007-06-12 2010-07-01 Zhao Chun-Tian Microcapsules, their use and processes for their manufacture
WO2009045196A1 (fr) * 2007-10-04 2009-04-09 Utc Power Corporation Système de cycle de rankine organique (orc) en cascade utilisant de la chaleur résiduelle d'un moteur alternatif
US20100187320A1 (en) * 2009-01-29 2010-07-29 Southwick Kenneth J Methods and systems for recovering and redistributing heat
CN104456687A (zh) * 2009-06-16 2015-03-25 Dec设计机械顾问有限公司 区域能量共享系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475698A1 (fr) * 1980-02-08 1981-08-14 Acv France Sa Installation de chauffage urbain et cellule individuelle pour une telle installation
DE3132562A1 (de) * 1981-08-18 1983-03-03 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Verfahren zur gewinnung von heizwaerme aus dem brauchwasser
DE3240944A1 (de) * 1982-11-05 1984-05-10 Dallinga, Helmut, 4130 Moers Verfahren und anlage zur waermeversorgung von gebaeuden
DD270310A1 (de) * 1988-03-24 1989-07-26 Freiberg Bergakademie SPEICHERFUELLUNG MIT EINER SPEICHERTEMPERATUR VON > 100 GRAD CELSIUS FUER DYNAMISCHE LATENTWAERMESPEICHER
DE19504205A1 (de) * 1994-07-21 1996-01-25 Meyer Fa Rud Otto Blockheizkraftwerk sowie Verfahren zu dessen Betrieb
DE4433493A1 (de) * 1994-09-20 1996-03-21 Gottfried Dipl Ing Roessle Fernwärmenetz
DE19756006A1 (de) * 1997-12-17 1999-06-24 Koegler Stefan Dipl Ing Fh Verfahren zur Energiespeicherung in Phasenwechselmedien und Anordnung zur Durchführung des Verfahrens
DE10048536A1 (de) * 1999-11-23 2001-05-31 Schuemann Sasol Gmbh Dynamischer Latentwärmespeicher
WO2005119014A1 (fr) * 2004-06-03 2005-12-15 Agridea Patents Ltd. Installation de chauffage a distance pour des applications urbaines, civiles, industrielles et agricoles
DE102006002727A1 (de) * 2006-01-19 2007-07-26 Maximilian Remde Schichtenwärmespeichervorrichtung und Verfahren zur Warmwasserbereitung
US20100018668A1 (en) * 2007-02-19 2010-01-28 Daniel Favrat Co2 based district energy system
DE102009013320A1 (de) * 2009-03-18 2010-09-23 Stiebel Eltron Gmbh & Co. Kg Latentwärmespeicher
DE102009047908A1 (de) * 2009-09-23 2011-08-25 Jürgen 73655 Falliano Vorrichtung und Verfahren zur Versorgung eines kalten Nahwärmenetzes mit Wärme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2831511A1 *

Also Published As

Publication number Publication date
JP2015517079A (ja) 2015-06-18
EP2831511A1 (fr) 2015-02-04
KR20140146623A (ko) 2014-12-26
US20150060016A1 (en) 2015-03-05
FR2988814B1 (fr) 2017-12-01
CN104220814A (zh) 2014-12-17
FR2988814A1 (fr) 2013-10-04

Similar Documents

Publication Publication Date Title
Cardemil et al. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile
George et al. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications
Gnaifaid et al. Development and multiobjective optimization of an integrated flash-binary geothermal power plant with reverse osmosis desalination and absorption refrigeration for multi-generation
Demir et al. Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production
Al-Sulaiman et al. Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications
Bellos et al. The use of gas working fluids in parabolic trough collectors–An energetic and exergetic analysis
Ashouri et al. Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector
Oyekale et al. Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant
Demir et al. Development and analysis of a new integrated solar energy system with thermal storage for fresh water and power production
EP2326801B1 (fr) Dispositif de cogénération
Yargholi et al. Modeling and advanced exergy analysis of integrated reverse osmosis desalination with geothermal energy
FR2979423A1 (fr) Serre de sechage solaire a plancher chauffant chauffe grace a l'energie solaire
JP6133508B2 (ja) 地熱源を地域熱供給網へ熱技術的に接続する方法
Khanmohammadi et al. Thermodynamic modeling and analysis of a novel heat recovery system in a natural gas city gate station
Mahmood et al. Design and thermodynamic assessment of a solar powered energy–food–water nexus driven multigeneration system
Saini et al. Thermodynamic, economic and environmental analyses of a novel solar energy driven small-scale combined cooling, heating and power system
Norouzi et al. Optimal thermodynamic and economic volume of a heat recovery steam generator by constructal design
Fani et al. Energy, exergy, and exergoeconomic analysis of solar thermal power plant hybrid with designed PCM storage
Gnaifaid et al. Multi-objective optimization of a concentrated solar energy driven trigeneration plant with thermal energy storage: A case study for Turkey
Akimoto et al. Evaluation of a power generation system that integrates multiple Kalina cycles and absorption heat pumps
Khosravi et al. Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil
EP3626966B1 (fr) Système et procédé de production d'énergie électrique par cycle thermodynamique à partir d'énergie solaire et d'énergie nucléaire
Van Erdeweghe et al. Influence of the pinch-point-temperature difference on the performance of the Preheat-parallel configuration for a low-temperature geothermally-fed CHP
WO2013144473A1 (fr) Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires
Shafieian et al. Performance analysis of a solar-driven integrated direct-contact membrane distillation and humidification–dehumidification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13715269

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013715269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013715269

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015502400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389135

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147029766

Country of ref document: KR

Kind code of ref document: A