WO2013143287A1 - 薄膜封装件、光电子器件及其封装方法 - Google Patents

薄膜封装件、光电子器件及其封装方法 Download PDF

Info

Publication number
WO2013143287A1
WO2013143287A1 PCT/CN2012/084243 CN2012084243W WO2013143287A1 WO 2013143287 A1 WO2013143287 A1 WO 2013143287A1 CN 2012084243 W CN2012084243 W CN 2012084243W WO 2013143287 A1 WO2013143287 A1 WO 2013143287A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet curable
thin film
curable material
layer
material layer
Prior art date
Application number
PCT/CN2012/084243
Other languages
English (en)
French (fr)
Inventor
陈珉
于军胜
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013143287A1 publication Critical patent/WO2013143287A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of optoelectronic technologies, and in particular, to a thin film package, an optoelectronic device, and a packaging method thereof.
  • Photoelectron technology uses the characteristics of photons and electrons to realize the transformation, transmission and processing of information and energy through a certain medium. It has a wide range of applications and has penetrated into all fields of modern technology and life.
  • the core of optoelectronic technology is optoelectronic devices, which are devices that can perform signal and energy conversion between optoelectronics, between electro-electrics and between electro-optic.
  • Optoelectronic devices especially organic electroluminescent devices (OLEDs), whose organic functional layers are very sensitive to water, oxygen, etc., easily react with water or oxygen to form non-luminescent black spots. Therefore, packaging technology is required to protect optoelectronic devices.
  • OLEDs organic electroluminescent devices
  • a commonly used packaging method is to seal the optoelectronic device in a dry inert gas environment.
  • the packaging method seals the display in a nitrogen-filled dry box having a glass lid or a metal lid that is fixed and sealed to the cartridge by an ultraviolet-curable epoxy.
  • Glass or metal is a good barrier to moisture and air, but a small amount of water vapor or air may penetrate into the dry box through the glass or metal cover and the sealed edge of the box.
  • OLEDs have very high barrier requirements for water and oxygen.
  • epoxy sealing technology cannot meet the required requirements, which limits the life of OLEDs.
  • this epoxy sealing technology cannot be used on flexible flat panel displays. Summary of the invention
  • Embodiments of the present disclosure provide a thin film package, an optoelectronic device, and a packaging method thereof, which can effectively block water and oxygen and prolong the service life of the optoelectronic device.
  • an embodiment of the present disclosure provides a thin film encapsulation, comprising: a thin film encapsulation layer; the thin film encapsulation layer includes a UV curable material layer; the ultraviolet curable material layer is formed of an ultraviolet curable material,
  • the ultraviolet curable material comprises an epoxy soybean oil acrylate having a mass percentage of 25 to 95% and an ultraviolet photoinitiator having a mass percentage of 5 to 75%.
  • Embodiments of the present disclosure also provide an optoelectronic device, including: an optoelectronic device body; The film package provided by the embodiment of the present disclosure; wherein the film package is disposed on a component to be packaged of the optoelectronic device body.
  • An embodiment of the present disclosure further provides a method for packaging an optoelectronic device, comprising: using an epoxy epoxide acrylate having a mass percentage of 25 to 95% and an ultraviolet photoinitiator having a mass percentage of 5 to 75%. Configuring a UV curable material; forming a UV curable material layer on the component to be packaged on the main body of the optoelectronic device by using the UV curable material, the UV curable material layer forming a thin film encapsulation layer, and the thin film encapsulation layer constitutes a thin film encapsulation .
  • the thin film package, the optoelectronic device and the packaging method thereof provided by the embodiments of the present disclosure can be effectively disposed by disposing a layer of the ultraviolet light curing material formed of the epoxy soybean oil acrylate and the ultraviolet light initiator on the component to be packaged in the main body of the optoelectronic device.
  • the barrier to water and oxygen damages optoelectronic devices and extends the life of optoelectronic devices.
  • the epoxidized soybean oil acrylate in the embodiment of the present disclosure can be made of a vegetable oil epoxidized soybean oil unique to our country, which can reduce the packaging cost of the optoelectronic device.
  • FIG. 1 is a schematic diagram of a thin film package provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic diagram of a photonic device packaged by using the thin film package of FIG.
  • FIG. 2 is a flow chart of a method for packaging an optoelectronic device according to an embodiment of the present disclosure
  • FIG. 3a is a flow chart of a packaging method of an organic electroluminescent device according to Embodiment 1 of the present disclosure
  • FIG. 3b is a flow chart of a packaging method of an organic solar cell device according to Embodiment 2 of the present disclosure
  • FIG. 3c is an organic thin film of Embodiment 3 of the present disclosure
  • FIG. 4 is a schematic diagram of an organic electroluminescent device according to Embodiment 1 of the present disclosure
  • Figure 5 is a schematic view of an organic solar cell device of Embodiment 2 of the present disclosure.
  • FIG. 6 is a schematic view of an organic thin film transistor device of Embodiment 3 of the present disclosure
  • Figure 2 is a schematic view of the main body of the organic electroluminescent device of Comparative Example 1. detailed description
  • the present disclosure provides a thin film package, as shown in FIG.
  • the thin film encapsulation layer 2 includes a layer 22 of an ultraviolet curable material.
  • the ultraviolet curable material layer 22 is formed of an ultraviolet curable material.
  • the UV curable material comprises an epoxy epoxidized acrylate having a mass percentage of 25 to 95% and an ultraviolet photoinitiator having a mass percentage of 5 to 75%, that is, the ultraviolet curable material is an epoxidized soybean oil acrylate.
  • Made with UV photoinitiator epoxidized soybean oil acrylate can be purchased or synthesized by itself. When it is synthesized by itself, it can be synthesized by using the unique vegetable oil epoxy soybean oil as the raw material and acrylic acid.
  • the ultraviolet photoinitiator is preferably one or more selected from the group consisting of 2-hydroxy-2-nonyl benzophenone, benzophenone and benzoin.
  • the ultraviolet photoinitiator are not limited in the embodiments of the present disclosure, and those skilled in the art can select a suitable ultraviolet photoinitiator according to common knowledge or common technical means in the art. It is to be understood that in the ultraviolet curable material, other auxiliary agents such as a reactive diluent, a polymerization inhibitor and the like may be included.
  • the thin film encapsulation layer in the thin film encapsulation provided by the embodiment of the present disclosure may further include other functional material layers, which is not specifically limited in this embodiment, and those skilled in the art may choose according to common knowledge or common technical means.
  • the ultraviolet light curing material comprises an epoxy epoxide acrylate having a mass percentage of 25 to 95% and an ultraviolet photoinitiator having a mass percentage of 5 to 75%, which is effective. Blocks damage to the device by water and oxygen, extending the life of the optoelectronic device.
  • the epoxidized soybean oil acrylate in the embodiment of the present disclosure can be made of a vegetable oil epoxidized soybean oil unique to China, which can reduce the packaging cost of the optoelectronic device.
  • the ultraviolet light curing material further includes at least one of a reactive diluent and a polymerization inhibitor.
  • the reactive diluent has good compatibility with epoxidized soybean oil acrylate, which is used to reduce the viscosity of the epoxidized soybean oil acrylate, and can improve the process performance of the epoxidized soybean oil acrylate.
  • the polymerization inhibitor prevents the ultraviolet curable material from forming before the layer of the ultraviolet curable material Aggregate.
  • the polymerization inhibitor may be added before the addition of the ultraviolet photoinitiator, for example: when using epoxidized soybean oil and acrylic acid to synthesize epoxidized soybean oil acrylate, or after the epoxidized soybean oil acrylate is mixed with the reactive diluent, A polymerization inhibitor is added before the photoinitiator.
  • the reactive diluent is selected from the group consisting of trishydroxypropyl propane triacrylate, tripropylene glycol diacrylate, and styrene. kind or several.
  • the polymerization inhibitor is selected from one or more of hydroquinone, tris(N-nitroso-Nphenylhydroxylamine)aluminum salt, 4-nonyloxyphenol and p-hydroxyphenyl hydrazine ether.
  • both the reactive diluent and the polymerization inhibitor are included, and the mass percentage of the epoxidized soybean oil acrylate is 25 ⁇ 60%, the reactive diluent has a mass percentage of 30 to 60%, the ultraviolet photoinitiator has a mass percentage of 5 to 15%, and the polymerization inhibitor has a mass percentage of 0.01 to 2 %.
  • the epoxidized soybean oil acrylate has a mass percentage of 40-50%, and the mass percentage of the reactive diluent 1 ⁇ 1% ⁇ The content of the mass percentage of the polymerization inhibitor is 0. 1 ⁇ 1%.
  • the mass percentage of each component of the ultraviolet curable material is not limited to the numerical values of the above embodiments, and may be values within a reasonable range of each.
  • the epoxidized soybean oil acrylate mass percentage may preferably be 95%, 75%, 60%, 50%, 46.25%, 36%, 32%, 30%, 25%;
  • the reactive diluent mass percentage may be Preferably, it is 70%, 63%, 60%, 50%, 46.25%, 40%, 30%, 10%;
  • the mass percentage of the ultraviolet photoinitiator may preferably be 75%, 60%, 40%, 30%, 15%, 10%, 7.5%, 5%;
  • the mass percentage of the polymerization inhibitor may preferably be 5%, 2%, 1%, 0.5%, 0.1%, 0.05%, 0.01%.
  • the number of the thin film encapsulation layers 2 is 1 to 20 to ensure that the thin film encapsulation layer forms a dense and thick package structure to better protect the optoelectronic device from water and oxygen. .
  • the thin film encapsulation layer 2 may further include other functional material layers to achieve a better packaging effect.
  • the thin film encapsulation layer 2 may further include a layer 21 of an inorganic insulating material.
  • the inorganic insulating material layer 21 is located below the ultraviolet curable material layer 22.
  • the inorganic insulating material layer 21 is formed of an inorganic insulating material, such as an inorganic insulating material such as a metal oxide, a metal nitride or a metal sulfide.
  • the inorganic insulating material comprises A1203, that is, made of A1203.
  • A1203 that is, made of A1203.
  • the embodiment of the present disclosure is described in conjunction with the device package 1 to be packaged, and the device body 1 to be packaged in this embodiment Taking the main body of the optoelectronic device as an example, it is obvious that the device to be packaged is not limited thereto.
  • the inorganic insulating material layer 21 is located on a side closer to the optoelectronic device body 1 with respect to the optoelectronic device body 1, and the ultraviolet curable material layer 22 is located at a distance The far side of the main body of the optoelectronic device.
  • the inorganic insulating material layer 21 and the ultraviolet light curing material layer 22 have a certain thickness, usually on the order of nanometers or micrometers. It should be noted that the inorganic insulating material layer 21 and the ultraviolet light curing material layer 22 shown in Fig. la are only schematic and do not represent the actual thickness of the two. For example, preferably, the inorganic insulating material layer 21 has a thickness of 200 nm, and the ultraviolet curable material layer 22 has a thickness of 5 ⁇ m. Of course, the embodiments of the present disclosure do not limit this, and those skilled in the art can determine the appropriate thickness of the inorganic insulating material layer 21 and the ultraviolet curable material layer 22 according to common knowledge or common technical means in the art.
  • the number of the thin film encapsulation layers is at least one, as shown in FIGS. la and lb, and the number of the thin film encapsulation layers is denoted as n.
  • the technical field can determine the specific number of thin film encapsulation layers in the optoelectronic device according to common knowledge in the art or common technical means, such as 15 layers, 22 layers, etc., to obtain the desired encapsulation effect.
  • the embodiment of the present disclosure further provides an optoelectronic device, as shown in FIG. 1b, the optoelectronic device includes: the optoelectronic device body 1; and the thin film package 3 provided by the embodiment of the present disclosure; The film package 3 is disposed on the component 10 to be packaged of the optoelectronic device body 1.
  • An optoelectronic device is a device that converts signals and energy between optoelectronics, between electrical and electrical, and between electro-optic.
  • the optoelectronic device comprises: an organic electroluminescent diode, an inorganic light emitting diode, an organic solar cell, an inorganic solar cell, an organic thin film transistor, an inorganic thin film transistor, and a photodetector.
  • the optoelectronic device main body 1 refers to a core component in the optoelectronic device, and is an optoelectronic device that is not packaged.
  • the optoelectronic device can include a plurality of components, as shown in Figure lb, 10 being the component to be packaged on the optoelectronic device body 1.
  • the position of the illustrated component to be packaged 10 on the optoelectronic device body 1 is merely an example, and does not limit the structure of the optoelectronic device provided by the present disclosure.
  • the illustrated thin film package 3 has n thin film encapsulation layers, preferably, n is between 1 and 20.
  • the n thin film encapsulation layers are disposed on the component to be packaged 10 of the optoelectronic device body 1 layer by layer.
  • a component of the device to be packaged 10 adjacent to the optoelectronic device body 1 is provided with a thin film encapsulation layer 2, and then, in the film A further thin film encapsulation layer 2 is provided on the encapsulation layer 2, and so on, so that the n thin film encapsulation layers 2 are arranged layer by layer on the component 10 to be packaged of the optoelectronic device body 1.
  • the horizontally placed optoelectronic device shown in FIG. 1 is taken as an example:
  • the inorganic insulating material layer 21 is on the lower side, that is, located at a distance from the optoelectronic device body 1.
  • the UV curable material layer 22 is on the upper side, that is, on the far side from the main body of the optoelectronic device.
  • the inorganic insulating material layer 21 is on the lower side, and the ultraviolet curable material layer 22 is on the upper side.
  • the layer-by-layer arrangement of the prescribed number of thin film encapsulation layers 2 can be regarded as a monolithic package structure.
  • the inorganic insulating material layer 21 and the ultraviolet curable material layer 22 are periodically arranged alternately. .
  • the optoelectronic device provided by the embodiment of the present disclosure provides the ultraviolet curable material layer on the component to be packaged in the optoelectronic device body, which can effectively block the damage of the optoelectronic device by water and oxygen, and prolong the service life of the optoelectronic device.
  • the ultraviolet curable material in the embodiment of the present disclosure is composed of an epoxy soybean oil acrylate and an ultraviolet photoinitiator, and the epoxidized soybean oil of the epoxidized soybean oil acrylate is a vegetable oil unique to the country, and the cost is low, so that the Reduce the packaging cost of optoelectronic devices.
  • the embodiment of the present disclosure further provides a method for packaging the above optoelectronic device, comprising: Step 101: using an epoxy epoxide acrylate having a mass percentage of 25 to 95% and a mass percentage of 5 to 75
  • the UV photoinitiator is configured with a UV curable material.
  • the epoxidized soybean oil acrylate in this step can be purchased or synthesized by itself.
  • the epoxidized soybean oil acrylate can be obtained by using the unique vegetable oil epoxidized soybean oil as the raw material and synthesizing with acrylic acid under heating.
  • a catalyst may be added during the synthesis to accelerate the reaction, and a polymerization inhibitor may be added to prevent polymerization and solidification of the epoxidized soybean oil acrylate.
  • the ultraviolet curable material may form a layer of an ultraviolet curable material by various means such as vacuum evaporation, direct current sputter coating, ion beam deposition, or the like.
  • the inorganic insulating material layer and the ultraviolet curable material layer sequentially formed constitute a thin film encapsulation layer.
  • Step 102 Form a layer of ultraviolet light curing material on the component to be packaged on the main body of the optoelectronic device by using the ultraviolet curing material.
  • an optoelectronic device body is first provided, and the optoelectronic device body refers to a core component in the optoelectronic device, which is an optoelectronic device ready for packaging.
  • the optoelectronic device has been described in detail and will not be described herein.
  • the optoelectronic device body in this step can be purchased or manufactured by itself.
  • the ultraviolet curable material layer constitutes a thin film encapsulation layer
  • the thin film encapsulation layer constitutes a thin film encapsulant.
  • the encapsulation method of the optoelectronic device configures the ultraviolet curing material by using an epoxy epoxide acrylate having a mass percentage of 25 to 95% and an ultraviolet photoinitiator having a mass percentage of 5 to 75%.
  • the material is formed on the component to be packaged on the main body of the optoelectronic device to form a layer of ultraviolet curing material, which can effectively block the damage of the device by water and oxygen, and prolong the service life of the optoelectronic device.
  • the epoxidized soybean oil acrylate in the embodiment of the present disclosure can be made of the unique vegetable oil epoxidized soybean oil, which can reduce the packaging cost of the optoelectronic device.
  • the packaging method of the optoelectronic device may further include:
  • An inorganic insulating material layer is formed on the main body of the optoelectronic device using an inorganic insulating material.
  • the inorganic insulating material layer and the ultraviolet curable material layer constitute a thin film encapsulating layer, and the thin film encapsulating layer constitutes a thin film encapsulant.
  • the inorganic insulating material can be formed into a layer of an inorganic insulating material by various means such as vacuum evaporation, direct current sputtering, ion beam deposition, or the like.
  • step 102 is specifically:
  • a layer of the ultraviolet curable material is formed on the inorganic insulating material layer using an ultraviolet curable material.
  • the method may further include:
  • An inorganic insulating material layer and an ultraviolet curable material layer are alternately formed in a prescribed number on the optoelectronic device body on which the ultraviolet curable material layer is formed.
  • the specified number depends on the number of thin film encapsulation layers that are desired to be provided. For example, if three thin film encapsulation layers are to be provided for the optoelectronic device, inorganic insulation may be alternately formed on the optoelectronic device body on which a thin film encapsulation layer has been formed.
  • the material layer and the ultraviolet curable material layer are secondarily deposited, that is, an inorganic insulating material layer, an ultraviolet curable material layer, an inorganic insulating material layer, and an ultraviolet curable material layer are sequentially deposited on the optoelectronic device main body on which the thin film encapsulating layer has been formed, thereby An additional two thin film encapsulation layers are formed.
  • the barrier properties of optoelectronic devices to water and oxygen can be increased.
  • the forming the inorganic insulating material layer comprises: forming a layer of the inorganic insulating material by a plasma enhanced chemical vapor deposition (PECVD) method.
  • the forming the ultraviolet curable material layer comprises:
  • the ultraviolet curable material is spin-coated or spray coated on the inorganic insulating material layer, and then irradiated with an ultraviolet lamp to form a layer of the ultraviolet curable material.
  • Embodiment 1 Packaging method of organic electroluminescent device and organic electroluminescent device after packaging FIG. 3 is a flow chart showing a packaging method of the organic electroluminescent device, and FIG. 4 shows that the package is Electroluminescent device.
  • the packaging method includes:
  • Step 201 synthesizing epoxy soybean oil acrylate:
  • Epoxy soybean oil, hydroquinone as a polymerization inhibitor was added to the reaction vessel in proportion, and the reaction was heated, and acrylic acid and hydrazine, decyl-diphenylaniline as a catalyst were added at 120 ° C to react to the system acid.
  • the value was lowered to 8 m g KOH/g, the reaction was stopped to obtain an epoxidized soybean oil acrylate.
  • the molar ratio of the epoxidized soybean oil to the acrylic acid is 1.2:1
  • the catalyst accounts for 1% of the total mass of the total reactants
  • the polymerization inhibitor accounts for 0.1% of the total mass of the total reactants.
  • Step 202 Configuring the ultraviolet curing material:
  • the synthesized epoxy soybean oil acrylate is mixed with the reactive diluent trihydroxymercaptopropane triacrylate at a mass ratio of 1:2, and then mixed with 2-hydroxy-2-mercaptopropiophenone as an ultraviolet photoinitiator. Hook, that is, obtain a UV-curable material. Wherein, the ultraviolet photoinitiator is added in 5% of the total mass of the ultraviolet light curing material.
  • Step 203 preparing a main body of the organic electroluminescent device:
  • the substrate was ultrasonically washed with a detergent, an acetone solution, an ethanol solution, and deionized water and dried with nitrogen to obtain a clean substrate 11;
  • the substrate 11 is transferred to a high vacuum evaporation chamber, and the pressure of the organic cavity and the metal cavity is respectively maintained at 3.0 10" 4 Pa ⁇ 3.0 x lO - 3 Pa ⁇ , and the anode layer 12 and the hole transport layer are separately prepared by a high vacuum evaporation method. 13. Electron transport layer 14 and cathode layer 15.
  • the substrate 11 is a glass substrate
  • the anode layer 12 is ITO
  • the hole transport layer 13 is NPB (4,4'-di-(N-naphthyl-N-phenylamino)biphenyl)
  • an electron transport layer 14 is TPBi (1,3,5-tris(N-phenyl-2-benzimidazole-2)benzene)
  • the cathode layer 15 is a Mg:Ag alloy.
  • the main structure of the organic electroluminescent device is: glass substrate / ITO / NPB / TPBi / Mg: Ag.
  • Step 204 Form an inorganic insulating material layer:
  • the inorganic thin film encapsulating material A1 2 0 3 is prepared by the PECVD method on the component 10 to be packaged on the main body 1 of the organic electroluminescent device, and the deposited thickness is 200 nm, that is, the inorganic insulating material layer 21 is formed; Step 205, forming an ultraviolet curable material Floor:
  • the prepared ultraviolet curing resin is spin-coated or spray-coated on the inorganic insulating material layer 21, the film thickness is about 5 ⁇ , and then irradiated with an ultraviolet lamp, the main wavelength is 420 nm, and the light intensity is 120 w/cm.
  • the irradiation distance was 10 cm and the time was 60 sec, that is, the ultraviolet curable material layer 22 was formed.
  • the ultraviolet curable material layer 22 in this step and the inorganic insulating material layer 21 in the step 205 constitute a thin film encapsulation layer 2.
  • the structure of the organic electroluminescent device which has been encapsulated with a thin film encapsulation layer is: glass substrate / ITO / NPB / TPBi / Mg: Ag / Al 2 0 3 inorganic insulating material layer / ultraviolet curable material layer.
  • Steps 204 and 205 are repeated 0 to 19 times to form more thin film encapsulation layers on the existing thin film encapsulation layer 2.
  • the total number of thin film encapsulation layers formed is 1 to 20 layers, which is denoted as n. .
  • the n thin film encapsulating layers 2 constitute the thin film encapsulant 3 of the present embodiment.
  • Embodiment 2 Packaging method of organic solar cell device and packaged organic solar cell device,
  • Figure 5 shows the packaged organic solar cell device.
  • the packaging method includes:
  • Step 301 Synthetic epoxy soybean oil acrylate:
  • Epoxidized soybean oil, p-hydroxybenzoic acid as a polymerization inhibitor is added to the reaction vessel in proportion, the reaction is heated, acrylic acid and triphenylphosphine as a catalyst are added at 100 ° C, and the reaction is carried out to the body.
  • the acid value was lowered to 8m g KOH/g, the reaction was stopped to obtain epoxidized soybean oil acrylate, wherein the molar ratio of epoxidized soybean oil to acrylic acid was 1.12:1, and the catalyst accounted for 1.2% of the total mass of the total reactant.
  • the polymerization inhibitor accounted for 0.12% of the total mass of the total reactants.
  • Step 302 Configuring the ultraviolet curing material:
  • the synthetic epoxy soybean oil acrylate and the reactive diluent tripropylene glycol diacrylate are mixed at a mass ratio of 1:1, and then the ultraviolet light initiator diphenyl fluorenone is uniformly mixed to obtain an ultraviolet light curing material.
  • the ultraviolet photoinitiator is added in an amount of 7.5% of the total mass of the ultraviolet light curing material.
  • Step 303 preparing a main body of the organic solar cell device:
  • the substrate was ultrasonically washed with a detergent, an acetone solution, an ethanol solution, and deionized water and dried with nitrogen to obtain a clean substrate 11;
  • the substrate 11 is transferred to a high vacuum evaporation chamber, and the pressure of the organic cavity and the metal cavity is respectively maintained at 3.0 10" 4 Pa ⁇ 3.0 x lO- 3 Pa ⁇ , and the anode layer 12 and the electron donor layer are separately prepared by a high vacuum evaporation method. 16. Electron acceptor layer 17 and cathode layer 15.
  • the substrate 11 is a glass substrate
  • the anode layer 12 is ITO
  • the electron donor layer 16 is CuPc
  • the electron acceptor layer 17 is C 6Q
  • the cathode layer 15 is Ag.
  • the main structure of the organic solar cell device is: glass substrate / ITO / CuPc / C 60 / Ag.
  • Step 304 forming an inorganic insulating material layer:
  • the inorganic insulating material layer 21 was formed in the same manner as in Example 1.
  • the ultraviolet curable material layer 22 was formed in the same manner as in Example 1.
  • the ultraviolet curable material layer 22 in this step and the inorganic insulating material layer 21 in the step 205 constitute a film encapsulating layer 2.
  • the structure of the organic solar cell device in which a thin film encapsulation layer has been packaged is: glass substrate / ITO / CuPc / C 6Q / Ag / Al 2 0 3 inorganic insulating material layer / ultraviolet curable material layer.
  • Steps 304 and 305 are repeated 0 to 19 times to form more thin film encapsulation layers on the existing thin film encapsulation layer 2.
  • the total number of thin film encapsulation layers formed is 1 to 20 layers, which is denoted as n. .
  • the n thin film encapsulating layers 2 constitute the thin film encapsulant 3 of the present embodiment.
  • Embodiment 3 Packaging method of organic thin film transistor device and packaged organic thin film transistor device
  • Fig. 6 shows the packaged organic thin film transistor device.
  • the method includes: Step 401, synthesizing epoxy soybean oil acrylate:
  • Epoxy soybean oil, tris(N-nitroso-N-phenylhydroxylamine) aluminum salt as a polymerization inhibitor is added to the reactor sub-proportionate, the reaction is heated, and acrylic acid and catalyst are added at 120 ° C.
  • the reaction was carried out until the acid value of the system was lowered to 8 mgKOH/g, the reaction was stopped to obtain an epoxy soybean oil acrylate.
  • the molar ratio of the epoxidized soybean oil to the acrylic acid is 1.2:1
  • the catalyst accounts for 2% of the total mass of the total reactants
  • the polymerization inhibitor accounts for 0.5% of the total mass of the total reactants.
  • Step 402 Configuring the ultraviolet curing material:
  • the synthetic epoxy soybean oil acrylate and styrene as a reactive diluent are mixed at a mass ratio of 4:6, and then the ultraviolet light initiator diphenyl fluorenone is uniformly mixed to obtain an ultraviolet light curing material.
  • the ultraviolet photoinitiator is added at 10% of the total mass of the ultraviolet light curing material.
  • Step 403 preparing a body of the organic thin film transistor device:
  • Ultrasonic cleaning of the substrate for example, ultrasonic cleaning of the substrate by detergent, acetone solution, ethanol solution and deionized water, and drying with nitrogen to obtain a clean substrate 11;
  • the substrate 11 is a Si substrate
  • the bottom electrode 18 is ITO
  • the insulating layer 19 is PMMA (polydecyl acrylate)
  • the carrier transport layer 20 is pentacene
  • the top electrode 23 is Au.
  • the main structure of the organic thin film transistor device is: Si substrate /ITO / PMMA / Pentacene / Au.
  • Step 404 forming a layer of inorganic insulating material:
  • the inorganic thin film encapsulating material Si3N4 is prepared by the PECVD method on the part 10 to be packaged on the main body 1 of the organic electroluminescent device, and the deposited thickness is 200 nm, that is, the inorganic insulating material layer 21 is formed; Step 405, the ultraviolet curable material layer is formed:
  • the ultraviolet curable material layer 22 was formed in the same manner as in Example 1.
  • the ultraviolet curable material layer 22 in this step and the inorganic insulating material layer 21 in the step 205 constitute a thin film encapsulation layer 2.
  • the structure of the organic thin film transistor device which has been packaged with a thin film encapsulation layer 2 is: Si substrate / ITO / PMMA / Pentacene / Au / Si3N4 inorganic insulating material layer / UV curable material layer.
  • Step 404 and step 405 0 to 19 are repeated to form more thin film encapsulation layers on the existing thin film encapsulation layer 2.
  • the total number of thin film encapsulation layers formed is 1 to 20 layers, which is denoted as n. .
  • the n thin film encapsulation layers 2 constitute the thin film encapsulation member 3 of the present embodiment. Comparative Example 1 Preparation of a body of an unencapsulated organic electroluminescent device and preparation of a body of the organic electroluminescent device after preparation
  • Fig. 7 shows the main body of the prepared organic electroluminescence device.
  • the main body of the organic electroluminescent device was prepared in the same manner as in Example 1.
  • the main structure of the prepared electroluminescent device was: glass substrate /ITO/NPB/TPBi/Mg: Ag. Performance Testing
  • the lifetime of the organic electroluminescent device encapsulated by the thin film encapsulation layer provided in Example 1 was significantly improved as compared with the main body of the organic electroluminescent device which was not encapsulated in Comparative Example 1.
  • the lifetime of the optoelectronic device encapsulated by the inorganic insulating material layer and the ultraviolet curable material layer is on the order of 10 3 hours, indicating that the optoelectronic device provided by the present disclosure has a long lifetime.
  • the mass percentage of any one component is a fixed value, it does not mean that the non-other components can only be fixed, but can be reasonably selected.
  • the mass percentage components are combined to obtain; For example: the epoxy soy oil acrylate content is 36% by mass, not limited to the mass percentage of the reactive diluent being fixed at 54%, and the mass percentage of the ultraviolet photoinitiator is fixed at 10%.
  • the epoxy soy oil acrylate content is 36% by mass, not limited to the mass percentage of the reactive diluent being fixed at 54%
  • the mass percentage of the ultraviolet photoinitiator is fixed at 10%.
  • One way; however, those skilled in the art can select a reasonable mass percentage of reactive diluent and ultraviolet photoinitiator to obtain an ultraviolet curable material.
  • Epoxy soybean oil acrylate content of 36% the reasonable percentage of reactive diluent can be selected from 30 to 60%, the UV light
  • the mass percentage of the hair agent is 5 to 15%, and the mass percentage of the polymerization inhibitor is 0.01 to 2%.
  • the ultraviolet curable material when configured, when the mass percentage of any one component is a fixed value, it does not mean that the component can be configured to obtain the ultraviolet curable material only at a fixed value, but The component is in a relatively reasonable range and can be combined with other proportions of components to obtain an ultraviolet curable material.
  • epoxidized soybean oil acrylate has a mass percentage of 36%, which means that the epoxidized soybean oil acrylate content is in the range of 36% to 60%, and a reasonable proportion of reactive diluent quality can also be selected.
  • the percentage is 30 ⁇ 60%
  • the mass percentage of the ultraviolet photoinitiator is 5 ⁇ 15%
  • the mass percentage of the polymerization inhibitor is 0.01 ⁇ 2%.
  • Example 3 epoxidized soybean oil acrylate and reactive diluent styrene by mass ratio of 4:6, not only means that the epoxy soybean oil acrylate and styrene mass ratio of 4:6, but also means that epoxy can be selected
  • the mass ratio of soybean oil acrylate to other reactive diluents is 4:6, for example:
  • the reactive diluent is tripropylene glycol diacrylate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种薄膜封装件,光电子器件及其封装方法。薄膜封装件包括薄膜封装层,薄膜封装层包括紫外光固化材料层,紫外光固化材料层由紫外光固化材料形成,紫外光固化材料包括质量百分含量为25-95%的环氧大豆油丙烯酸酯和质量百分含量为5-75%的紫外光引发剂。所述薄膜封装件用于光电子器件的封装,能够有效阻隔水和氧气,延长光电子器件的使用寿命。

Description

薄膜封装件、 光电子器件及其封装方法 技术领域
本公开涉及光电子技术领域, 尤其涉及一种薄膜封装件、 光电子器件及 其封装方法。 背景技术
光电子技术运用光子和电子的特性通过一定媒介实现信息与能量的转 换、 传递及处理, 具有广泛的应用, 已深入到现代科技和生活的各个领域。 光电子技术的核心为光电子器件, 光电子器件是一种光电之间、 电电之间和 电光之间可以进行信号和能量转换的器件。 光电子器件, 尤其是有机电致发 光器件(OLED ), 其组成部分中的有机功能层对水、 氧气等非常敏感, 容易 与水或氧气发生反应而形成不发光的黑点。 因此需要封装技术保护光电子器 件。
目前常用的封装方法是将光电子器件密封在干燥的惰性气体环境中。 仍 以 OLED为例, 该封装方法将显示器密封在有玻璃盖或金属盖的充有氮气的 干燥盒内,该玻璃或金属盖通过紫外光固化的环氧树脂固定和密封在盒体上。 玻璃或金属能够很好的隔绝水汽和空气, 然而少量水汽或空气却可能通过玻 璃或金属盖与盒体的密封边缘渗入干燥盒内。 OLED对水和氧气的阻隔要求 非常高, 目前环氧树脂密封技术无法满足所需要求, 限制了 OLED的使用寿 命。 此外, 由于玻璃或金属的硬度, 这种环氧树脂密封技术也无法用在柔软 性平面显示器上。 发明内容
本公开的实施例提供一种薄膜封装件、 光电子器件及其封装方法, 能够 有效阻隔水和氧气, 延长光电子器件的使用寿命。
为达到上述目的, 本公开的实施例提供了一种薄膜封装件, 包括: 薄膜 封装层; 所述薄膜封装层包括紫外光固化材料层; 所述紫外光固化材料层由 紫外光固化材料形成, 所述紫外光固化材料包括质量百分含量为 25~95%的 环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫外光引发剂。
本公开的实施例还提供了一种光电子器件, 包括: 光电子器件主体; 及 本公开实施例提供的薄膜封装件; 其中, 所述薄膜封装件设置于所述光电子 器件主体的待封装部件上。
本公开的实施例还提供了一种光电子器件的封装方法, 包括: 使用质量 百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫外 光引发剂配置紫外光固化材料; 利用所述紫外光固化材料在光电子器件主体 的待封装部件上形成紫外光固化材料层, 所述紫外光固化材料层构成薄膜封 装层, 所述薄膜封装层构成薄膜封装件。
本公开实施例提供的薄膜封装件、 光电子器件及其封装方法, 通过将由 环氧大豆油丙烯酸酯和紫外光引发剂形成的紫外光固化材料层设置于光电子 器件主体的待封装部件上, 能够有效的阻隔水和氧气对光电子器件的损害, 延长光电子器件的使用寿命。 本公开实施例中的环氧大豆油丙烯酸酯可由我 国特有的植物油环氧大豆油制成, 能够降低光电子器件的封装成本。 附图说明
为了更清楚地说明本公开或现有技术中的技术方案, 下面将对本公开提 供的技术方案或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本公开的技术方案的部分具体实施方式图示说 明, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 la为本公开实施例提供的薄膜封装件示意图;
图 lb为本公开实施例提供的釆用图 la中的薄膜封装件进行封装的光电 子器件示意图;
图 2为本公开实施例提供的光电子器件的封装方法流程图;
图 3a为本公开实施例 1的有机电致发光器件的封装方法流程图; 图 3b为本公开实施例 2的有机太阳能电池器件的封装方法流程图; 图 3c为本公开实施例 3的有机薄膜晶体管器件的封装方法流程图; 图 4为本公开实施例 1的有机电致发光器件的示意图;
图 5为本公开实施例 2的有机太阳能电池器件的示意图;
图 6为本公开实施例 3的有机薄膜晶体管器件的示意图; 图 Ί为本公开对比例 1的有机电致发光器件主体的示意图。 具体实施方式
下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本公开一部分实施例, 而 不是全部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
本公开提供了一种薄膜封装件, 如图 la所示, 包括:
薄膜封装层 2, 薄膜封装层 2包括紫外光固化材料层 22。
紫外光固化材料层 22 由紫外光固化材料形成。 紫外光固化材料包括质 量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫 外光引发剂, 即紫外光固化材料是使用环氧大豆油丙烯酸酯和紫外光引发剂 进行配置而制成的。 其中, 环氧大豆油丙烯酸酯可以购买也可以自行合成得 到。 自行合成时, 可釆用我国特有的植物油环氧大豆油为原料, 和丙烯酸共 同合成得到。 所述紫外光引发剂优选自 2-羟基 -2曱基苯曱酮、 二苯曱酮和安 息香乙醚中的一种或几种。 本公开实施例对紫外光引发剂的具体种类不作限 定, 本领域技术人员可根据本领域公知常识或常用技术手段选择适宜的紫外 光引发剂。 可以理解的是, 在紫外光固化材料中, 还可包括有其他起到辅助 作用的助剂, 诸如活性稀释剂、 阻聚剂等。
可以理解的是, 为了达到更好的封装的效果, 本公开实施例提供的薄膜 封装件中的薄膜封装层还可以包括其他功能材料层, 本实施例对此不作具体 限定, 本领域技术人员可根据公知常识或常用技术手段选择。
本公开实施例提供的薄膜封装件, 紫外光固化材料包括质量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫外光引发剂,能 够有效的阻隔水和氧气对器件的损害, 延长光电子器件的使用寿命。 本公开 实施例中的环氧大豆油丙烯酸酯可由我国特有的植物油环氧大豆油制成, 能 够降低光电子器件的封装成本。
进一步的, 在本公开的一个实施例中, 紫外光固化材料还包括活性稀释 剂和阻聚剂中的至少一种。 活性稀释剂与环氧大豆油丙烯酸酯具有良好的相 容性, 用来降低环氧大豆油丙烯酸酯的粘度, 能够改善环氧大豆油丙烯酸酯 的工艺性能。 阻聚剂能够防止紫外光固化材料在形成紫外光固化材料层前的 聚合。 阻聚剂可以在加入紫外光引发剂前加入, 例如: 在利用环氧大豆油和 丙烯酸合成环氧大豆油丙烯酸酯时加入, 或者在环氧大豆油丙烯酸酯与活性 稀释剂混合后, 加入紫外光引发剂之前加入阻聚剂。 优选的, 在本公开的一 个实施例中, 在所述紫外光固化材料中, 所述活性稀释剂选自三羟曱基丙烷 三丙烯酸酯、 二缩三丙二醇二丙烯酸酯和苯乙烯中的一种或几种。 所述阻聚 剂选自对苯二酚、 三(N-亚硝基 -N苯基羟胺)铝盐、 4-曱氧基苯酚和对羟基 苯曱醚中的一种或几种。
进一步优选的, 在本公开的一个实施例中, 在所述紫外光固化材料中, 同时包括活性稀释剂和阻聚剂两者, 所述环氧大豆油丙烯酸酯的质量百分含 量为 25~60%, 所述活性稀释剂的质量百分含量为 30~60%, 所述紫外光引发 剂的质量百分含量为 5~15%, 所述阻聚剂的质量百分含量为 0.01~2%。
进一步优选的, 在本公开的一个实施例中, 在所述紫外光固化材料中, 所述环氧大豆油丙烯酸酯的质量百分含量为 40~50%, 所述活性稀释剂的质 量百分含量为 40~50%, 所述紫外光引发剂的质量百分含量为 5~10%, 所述 阻聚剂的质量百分含量为 0. 1~1%。
需要说明的是, 在所述紫外光固化材料各组分的质量百分含量不局限于 上述实施例的数值, 可以是在各自合理范围内的数值。 例如, 环氧大豆油丙 烯酸酯质量百分含量可以优选为 95%、 75%、 60%、 50%、 46.25%、 36%、 32%、 30%、 25%; 活性稀释剂质量百分含量可以优选为 70%、 63%、 60%、 50%、 46.25%、 40%、 30%、 10%; 紫外光引发剂的质量百分含量可以优选为 75%、 60%、 40%、 30%、 15%、 10%、 7.5%、 5%; 阻聚剂的质量百分含量可以优 选为 5%、 2%、 1%、 0.5%、 0.1%、 0.05%, 0.01%。
在本公开的一个优选实施例中, 所述薄膜封装层 2的数量为 1到 20, 以 保证薄膜封装层形成致密且具有一定厚度的封装结构, 以使光电子器件隔绝 水和氧气的效果更佳。
为了达到更好的封装效果, 在本公开提供的一个实施例中, 薄膜封装层 2还可包括其他功能材料层以达到更好的封装效果。 例如, 优选的, 如图 la 所示, 薄膜封装层 2还可包括无机绝缘材料层 21。 在薄膜封装层 2中, 所述 无机绝缘材料层 21位于所述紫外光固化材料层 22的下方。 其中, 无机绝缘 材料层 21由无机绝缘材料形成,例如金属氧化物、金属氮化物或金属硫化物 等无机绝缘材料。 优选的, 无机绝缘材料包括 A1203 , 即由 A1203制成。 可 以理解的是, 本公开实施例对此不作限定, 本领域技术人员可根据本领域公 知常识或常用技术手段确定适宜的无机绝缘材料。
为了更清楚的说明薄膜封装件的结构及其用于封装时的排布方式, 本公 开实施例结合薄膜封装件与待封装的器件主体 1一起进行说明, 本实施例中 的待封装器件主体 1以光电子器件主体为例进行说明, 显然待封装器件不限 于此。 具体的, 如图 lb所示, 相对于光电子器件主体 1而言, 无机绝缘材料 层 21位于距离所述光电子器件主体 1的较近的一侧,而所述紫外光固化材料 层 22位于距离所述光电子器件主体的较远的一侧。 无机绝缘材料层 21和紫 外光固化材料层 22具有一定的厚度,通常在纳米或微米级别。需要说明的是, 图 la所示的无机绝缘材料层 21和紫外光固化材料层 22仅为示意,并不代表 二者的实际厚度。 例如, 优选的, 无机绝缘材料层 21的厚度为 200nm, 紫外 光固化材料层 22的厚度为 5 μ πι。 当然, 本公开实施例对此不作限定, 本领 域技术人员可根据本领域公知常识或常用技术手段确定无机绝缘材料层 21 和紫外光固化材料层 22适宜的厚度。
需要说明的是, 在本实施例中, 所述薄膜封装层的数量为至少一个, 如 图 la和 lb所示, 将薄膜封装层的数量记为 n。 本领域技术可根据本领域公 知常识或常用技术手段确定光电子器件中薄膜封装层的具体数量, 例如 15 层、 22层等, 以获得所需的封装效果。
相应的, 本公开实施例还提供了一种光电子器件, 如图 lb所示, 该光 电子器件包括: 光电子器件主体 1 ; 及本公开实施例提供的所述的薄膜封装 件 3; 其中, 所述薄膜封装件 3设置于所述光电子器件主体 1的待封装部件 10上。
光电子器件是一种光电之间、 电电之间和电光之间可以进行信号和能量 转换的器件。 优选的, 所述光电子器件包括: 有机电致发光二极管、 无机发 光二极管、 有机太阳能电池、 无机太阳能电池、 有机薄膜晶体管、 无机薄膜 晶体管和光探测器。 当然本公开实施例对此不作限定。 其中, 光电子器件主 体 1是指光电子器件中的核心部件, 为未进行封装的光电子器件。 光电子器 件可包括多个部件, 如图 lb所示, 10为光电子器件主体 1上的待封装部件。 图示的待封装部件 10在光电子器件主体 1上的位置仅为示例,并不限定本公 开实施例提供的光电子器件的结构。
如图 la和 lb所示, 所示薄膜封装件 3具有 n个薄膜封装层, 优选的, n介于 1到 20之间。所述 n个薄膜封装层是这样逐层设置于光电子器件主体 1的待封装部件 10上的: 首先, 紧邻光电子器件主体 1的待封装部件 10设 置有一个薄膜封装层 2, 然后, 在该薄膜封装层 2上又设置有另一个薄膜封 装层 2, 依此类推, n个薄膜封装层 2就这样逐层的设置在光电子器件主体 1 的待封装部件 10上。具体的, 以图 1中所示的水平放置的光电子器件为例进 行说明: 在紧邻光电子器件主体 1 的薄膜封装层 2 中, 无机绝缘材料层 21 在下侧, 也即位于距离光电子器件主体 1的较近的一侧, 而紫外光固化材料 层 22在上侧, 也即位于距离所述光电子器件主体的较远的一侧。 同样, 对于 其他的、 非紧邻光电子器件主体 1的每个薄膜封装层 2, 无机绝缘材料层 21 在下侧, 而紫外光固化材料层 22在上侧。 可以将逐层排布的、规定数量的薄 膜封装层 2视为一个整体的封装结构, 在这个整体的封装结构中, 无机绝缘 材料层 21和紫外光固化材料层 22是周期性交替排布的。
所述光电子器件的其他具体结构和组成可参照上述本公开实施例提供 的薄膜封装件的结构, 此处不再赘述。
本公开实施例提供的光电子器件, 将紫外光固化材料层设置于光电子器 件主体的待封装部件上, 能够有效的阻隔水和氧气对光电子器件的损害, 延 长光电子器件的使用寿命。 本公开实施例中的紫外光固化材料由环氧大豆油 丙烯酸酯和紫外光引发剂配置而成, 合成环氧大豆油丙烯酸酯的环氧大豆油 为我国特有的植物油, 成本低, 因此能够进而降低光电子器件的封装成本。 相应的,本公开实施例还提供了一种上述光电子器件的封装方法,包括: 步骤 101、使用质量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含 量为 5~75%的紫外光引发剂配置紫外光固化材料。
本步骤中的环氧大豆油丙烯酸酯可以购买也可以自行合成得到。 自行合 成时, 可釆用我国特有的植物油环氧大豆油为原料, 与丙烯酸在加热的条件 下进行合成反应, 得到环氧大豆油丙烯酸酯。 优选的, 在合成的过程中, 可 加入催化剂以加速反应进行, 还可加入阻聚剂, 防止环氧大豆油丙烯酸酯的 聚合和固化。
配置所述紫外光固化材料时, 还可加入其他起到辅助作用的助剂, 如活 性稀释剂和阻聚剂等, 使紫外光固化材料具有良好的工艺性能。 上述的实施 例给出了活性稀释剂和阻聚剂的具体成分和含量的示例, 这里就不再赘述。 所述紫外光固化材料可通过多种方式形成紫外光固化材料层, 例如真空 蒸镀、 直流溅射镀膜、 离子团束沉积等。 依次形成的所述无机绝缘材料层和 所述紫外光固化材料层就构成一个薄膜封装层。
步骤 102、 利用所述紫外光固化材料在光电子器件主体的待封装部件上 形成紫外光固化材料层。
在本步骤中, 首先提供光电子器件主体, 光电子器件主体指光电子器件 中的核心部件, 为准备进行封装的光电子器件。 在前述实施例中, 已经对光 电子器件做了详细说明, 在此不在赘述。 本步骤中的光电子器件主体可以通 过购买也可以通过自行制造得到。
所述紫外光固化材料层构成薄膜封装层, 所述薄膜封装层构成薄膜封装 件。
本公开实施例提供的光电子器件的封装方法, 使用质量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫外光引发剂配 置紫外光固化材料, 并将该材料在光电子器件主体的待封装部件上形成紫外 光固化材料层, 该方法能够有效的阻隔水和氧气对器件的损害, 延长光电子 器件的使用寿命。 本公开实施例中的环氧大豆油丙烯酸酯可由我国特有的植 物油环氧大豆油制成, 能够降低光电子器件的封装成本。
在本公开提供的一个实施例中, 光电子器件的封装方法在步骤 102之前 还可以包括:
利用无机绝缘材料在光电子器件主体上形成无机绝缘材料层。
所述无机绝缘材料层和所述紫外光固化材料层构成薄膜封装层, 所述薄 膜封装层构成薄膜封装件。
无机绝缘材料的详细说明也可参照前述实施例。 所述无机绝缘材料可通 过多种方式形成无机绝缘材料层, 例如真空蒸镀、 直流溅射镀膜、 离子团束 沉积等。
此时, 步骤 102具体为:
利用紫外光固化材料在所述无机绝缘材料层上形成紫外光固化材料层。 为了给光电子器件设置多个薄膜封装层, 在本公开提供的一个实施例 中, 在步骤 102后还可以包括:
在所述形成了紫外光固化材料层的光电子器件主体上以规定数量交替 形成无机绝缘材料层和紫外光固化材料层。 所述规定数量取决于所想要设置的薄膜封装层的个数, 例如, 想要为光 电子器件设置三个薄膜封装层, 可在已经形成有一个薄膜封装层的光电子器 件主体上交替形成无机绝缘材料层和紫外光固化材料层二次, 即在已经形成 有一个薄膜封装层的光电子器件主体上依次沉积无机绝缘材料层、 紫外光固 化材料层、 无机绝缘材料层、 紫外光固化材料层, 从而形成额外的两个薄膜 封装层。
通过增加薄膜封装层的个数, 能够增加光电子器件对水和氧气的阻隔能 力。
具体的,在本公开提供的一个实施例中,所述形成无机绝缘材料层包括: 通过等离子增强型化学气相沉积(PECVD )方法形成无机绝缘材料层。 具体的, 在本公开提供的另一个实施例中, 所述形成紫外光固化材料层 包括:
将所述紫外光固化材料旋转涂覆或喷射涂覆于所述无机绝缘材料层上, 再以紫外灯照射, 形成紫外光固化材料层。
为了更好的说明本公开实施例提供的薄膜封装件、 光电子器件及其封装 方法, 下面以具体实施例和对比例进行说明。
实施例 1 有机电致发光器件的封装方法及封装后的有机电致发光器件 图 3示出了所述有机电致发光器件的封装方法的流程图, 图 4示出了所 述封装后的有机电致发光器件。
所述封装方法包括:
步骤 201、 合成环氧大豆油丙烯酸酯:
将环氧大豆油、 作为阻聚剂的对苯二酚按比例加入到反应器皿中, 加热 反应, 在 120°C下加入丙烯酸以及作为催化剂的 Ν,Ν-二曱基苯胺 , 反应至 体系酸值降到 8mgKOH/g时, 停止反应, 得到环氧大豆油丙烯酸酯。 其中, 环氧大豆油与丙烯酸的摩尔比为 1.2:1 , 催化剂占全部反应物总质量的 1%, 阻聚剂占全部反应物总质量的 0.1%。
步骤 202、 配置紫外光固化材料:
将合成的环氧大豆油丙烯酸酯与活性稀释剂三羟曱基丙烷三丙烯酸酯 按质量比 1:2混合后, 再加入作为紫外光引发剂的 2-羟基 -2-曱基苯丙酮混合 均勾, 即得到紫外光固化材料。 其中, 所述紫外光引发剂按紫外光固化材料 总质量的 5%加入。 步骤 203、 制备有机电致发光器件的主体:
利用洗涤剂、 丙酮溶液、 乙醇溶液和去离子水超声清洗基片并用氮气吹 干, 得到干净的衬底 11 ;
将衬底 11传至高真空蒸发室, 分别保持有机腔和金属腔的压强为 3.0 10"4 Pa ^ 3.0 x lO-3 Pa ^ , 利用高真空蒸镀方法分别制备阳极层 12、 空穴 传输层 13、 电子传输层 14和阴极层 15。
其中, 衬底 11为玻璃衬底, 阳极层 12为 ITO, 空穴传输层 13为 NPB ( 4,4'-二- ( N-萘基 -N-苯基氨基 )联苯), 电子传输层 14为 TPBi ( 1,3,5-三 ( N- 苯基 -2-苯并咪唑 -2 )苯), 阴极层 15为 Mg:Ag合金。 则有机电致发光器件的 主体结构为: 玻璃衬底 /ITO/NPB/TPBi/Mg:Ag。
步骤 204、 形成无机绝缘材料层:
在有机电致发光器件的主体 1的待封装部件 10上利用 PECVD方法制备 无机薄膜封装材料 A1203, 沉积的厚度为 200nm, 即形成无机绝缘材料层 21 ; 步骤 205、 形成紫外光固化材料层:
将调配完成的紫外光硬化树脂旋转涂覆或者喷射涂覆于无机绝缘材料 层 21上, 膜层厚度约为 5 μ πι, 再以紫外灯照射, 主要波长为 420nm, 光强 度为 120w/cm, 照射距离为 10cm, 时间为 60sec, 即形成紫外光固化材料层 22。 本步骤中的紫外光固化材料层 22与步骤 205中的无机绝缘材料层 21构 成一个薄膜封装层 2。
此时, 已封装有一个薄膜封装层的有机电致发光器件的结构为: 玻璃衬 底 /ITO/NPB/TPBi/Mg: Ag/Al203无机绝缘材料层 /紫外光固化材料层。
重复步骤 204和步骤 205 0到 19次,以在已有薄膜封装层 2上形成更多 的薄膜封装层,如图 4所示,形成的薄膜封装层的总数为 1到 20层,记为 n。 则 n个薄膜封装层 2构成了本实施例的薄膜封装件 3。
实施例 2 有机太阳能电池器件的封装方法及封装后的有机太阳能电池 器件,
图 5示出了所述封装后的有机太阳能电池器件。
所述封装方法包括:
步骤 301、 合成环氧大豆油丙烯酸酯:
将环氧大豆油、 作为阻聚剂的对羟基苯曱酸按比例加入到反应器皿中, 加热反应, 在 100 °c下加入丙烯酸和作为催化剂的三苯基膦以及, 反应至体 系酸值降到 8mgKOH/g时, 停止反应, 得到环氧大豆油丙烯酸酯, 其中, 环 氧大豆油与丙烯酸的摩尔比为 1.12:1 , 催化剂占全部反应物总质量的 1.2%, 阻聚剂占全部反应物总质量的 0.12%。
步骤 302、 配置紫外光固化材料:
将合成的环氧大豆油丙烯酸酯与活性稀释剂二缩三丙二醇二丙烯酸酯 按质量比 1:1 混合后, 再加入紫外光引发剂二苯曱酮混合均匀, 即得到紫外 光固化材料。其中,所述紫外光引发剂按紫外光固化材料总质量的 7.5%加入。
步骤 303、 制备有机太阳能电池器件的主体:
利用洗涤剂、 丙酮溶液、 乙醇溶液和去离子水超声清洗基片并用氮气吹 干, 得到干净的衬底 11 ;
将衬底 11传至高真空蒸发室, 分别保持有机腔和金属腔的压强为 3.0 10"4 Pa ^ 3.0 x lO-3 Pa ^ , 利用高真空蒸镀方法分别制备阳极层 12、 电子 给体层 16、 电子受体层 17和阴极层 15。
其中, 衬底 11为玻璃衬底, 阳极层 12为 ITO, 电子给体层 16为 CuPc, 电子受体层 17为 C6Q, 阴极层 15为 Ag。 则有机太阳能电池器件的主体结构 为: 玻璃衬底 /ITO/CuPc/C60/Ag。
步骤 304、 形成无机绝缘材料层:
釆用与实施例 1相同的步骤形成无机绝缘材料层 21。
305、 形成紫外光固化材料层:
釆用与实施例 1相同的步骤形成紫外光固化材料层 22。其中, 本步骤中 的紫外光固化材料层 22与步骤 205中的无机绝缘材料层 21构成一个薄膜封 装层 2。
此时, 已封装有一个薄膜封装层的有机太阳能电池器件的结构为: 玻璃 衬底 /ITO/CuPc/C6Q/Ag/Al203无机绝缘材料层 /紫外光固化材料层。
重复步骤 304和步骤 305 0到 19次,以在已有薄膜封装层 2上形成更多 的薄膜封装层,如图 5所示,形成的薄膜封装层的总数为 1到 20层,记为 n。 则 n个薄膜封装层 2构成了本实施例的薄膜封装件 3。
实施例 3 有机薄膜晶体管器件的封装方法及封装后的有机薄膜晶体管 器件
图 6示出所述封装后的有机薄膜晶体管器件。
所述方法包括: 步骤 401、 合成环氧大豆油丙烯酸酯:
将环氧大豆油、 作为阻聚剂的三 (N-亚硝基 -N-苯基羟胺)铝盐按比例 加入到反应器亚中, 加热反应, 在 120°C下加入丙烯酸和作为催化剂的对曱 氧基苯曱酚, 以及, 反应至体系酸值降到 8mgKOH/g时, 停止反应, 得到环 氧大豆油丙烯酸酯。 其中, 环氧大豆油与丙烯酸的摩尔比为 1.2:1 , 催化剂占 全部反应物总质量的 2%, 阻聚剂占全部反应物总质量的 0.5%。
步骤 402、 配置紫外光固化材料:
将合成的环氧大豆油丙烯酸酯与作为活性稀释剂的苯乙烯按质量比 4 :6 加以混合后, 再加入紫外光引发剂二苯曱酮混合均匀, 即得到紫外光固化材 料。 其中, 所述紫外光引发剂按紫外光固化材料总质量的 10%加入。
步骤 403、 制备有机薄膜晶体管器件的主体:
对基片进行超声清洗, 例如利用洗涤剂、 丙酮溶液、 乙醇溶液和去离子 水顺序超声 清洗基片并用氮气吹干, 得到干净的衬底 11 ;
将衬底 11传至高真空蒸发室, 分别保持有机腔和金属腔的压强为 3.0 10"4 Pa ^ 3.0 x lO-3 Pa ^ , 利用高真空蒸镀方法分别制备底电极 18、 绝缘 层 19、 载流子传输层 20和顶电极 23。
其中, 衬底 11为 Si衬底, 底电极 18为 ITO, 绝缘层 19为 PMMA (聚 曱基丙烯酸曱酯 ),载流子传输层 20为并五苯( Pentacene ) ,顶电极 23为 Au。 则有机薄膜晶体管器件的主体结构为: Si衬底 /ITO/PMMA/Pentacene/Au。
步骤 404、 形成无机绝缘材料层:
在有机电致发光器件的主体 1的待封装部件 10上利用 PECVD方法制备 无机薄膜封装材料 Si3N4,沉积的厚度为 200nm, 即形成无机绝缘材料层 21 ; 步骤 405、 形成紫外光固化材料层:
釆用与实施例 1相同的步骤形成紫外光固化材料层 22。本步骤中的紫外 光固化材料层 22与步骤 205中的无机绝缘材料层 21构成一个薄膜封装层 2。
此时, 已封装有一个薄膜封装层 2的有机薄膜晶体管器件的结构为: Si 衬底/ITO/PMMA/Pentacene/Au / Si3N4无机绝缘材料层 /紫外光固化材料层。
重复步骤 404和步骤 405 0到 19次,以在已有薄膜封装层 2上形成更多 的薄膜封装层,如图 6所示,形成的薄膜封装层的总数为 1到 20层,记为 n。 则 n个薄膜封装层 2构成了本实施例的薄膜封装件 3。 对比例 1 未封装的有机电致发光器件的主体的制备及制备后的有机电 致发光器件的主体
图 7示出所述制备后的有机电致发光器件的主体。
釆用与实施例 1相同的步骤制备有机电致发光器件的主体, 制备后的有 机电致发光器件的主体结构为: 玻璃衬底 /ITO/NPB/TPBi/Mg: Ag。 性能测试
对实施例 1、 2、 3及对比例 1进行寿命测试,得出的测试结构表 1所示: 表 1 光电子器件的寿命
Figure imgf000013_0001
由表 1可以看出, 通过实施例 1提供的薄膜封装层封装后的有机电致发 光器件与对比例 1中没有进行封装的有机电致发光器件的主体相比, 寿命有 大幅度的提高。 经无机绝缘材料层和紫外光固化材料层封装后的光电子器件 的寿命在 103小时的数量级上, 说明本公开提供的光电子器件具有较长的寿 命。
可以理解的是, 在配置紫外光固化材料时, 当任其一组分的质量百分含 量为固定数值时, 并不代表非其余组分就只能是固定不变的, 而是可以选择 合理质量百分含量的组分进行组合而得到;。例如: 环氧大豆油丙烯酸酯质量 百分含量为 36%, 并不局限于活性稀释剂的质量百分含量为固定为 54%, 所 述紫外光引发剂的质量百分含量固定为 10%的一种方式; 而是, 本领域技术 人员可以选择合理的质量百分含量的活性稀释剂和紫外光引发剂等, 都可以 得到紫外光固化材料。 例如: 环氧大豆油丙烯酸酯质量百分含量 36%, 可以 选择合理的活性稀释剂质量百分含量为 30~60%, 所述紫外光引发剂的质量 百分含量为 5~15%; 或者另一种方式: 环氧大豆油丙烯酸酯质量百分含量为 36%, 可以选择合理的活性稀释剂的质量百分含量为 30~60%, 所述紫外光引 发剂的质量百分含量为 5~15%, 阻聚剂的质量百分含量为 0.01~2%。
此外, 在配置紫外光固化材料时, 当任其一组分的质量百分含量为固定 数值时, 也不代表该组分只能在固定数值的情况下才能配置得到紫外光固化 材料, 而是该组分在一个相对合理范围内, 都是可以配合其他比例的组分而 得到紫外光固化材料。 例如, 环氧大豆油丙烯酸酯质量百分含量为 36%, 也 意味着环氧大豆油丙烯酸酯质量百分含量在 36%~60%范围内 ,也同样可以选 择合理的比 例的活性稀释剂质量百分含量为 30~60%, 紫外光引发剂的质量 百分含量为 5~15%, 阻聚剂的质量百分含量为 0.01~2%。
需要说明的是, 当具体实施例中仅列举同一类性质组分的一种物质与其 他组分配合时, 意味着实施例中该物质所选取的质量百分比的数值范围同样 适用于该类性质的组分的数值范围。 例如, 实施例 3 , 环氧大豆油丙烯酸酯 与活性稀释剂苯乙烯按质量比 4:6,不仅意味着环氧大豆油丙烯酸酯与苯乙烯 质量比 4:6,还意味着可以选择环氧大豆油丙烯酸酯与其它活性稀释剂质量比 4:6, 例如: 活性稀释剂为二缩三丙二醇二丙烯酸酯。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种薄膜封装件, 其特征在于, 包括:
薄膜封装层;
所述薄膜封装层包括紫外光固化材料层;
所述紫外光固化材料层由紫外光固化材料形成, 所述紫外光固化材料包 括质量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75% 的紫外光引发剂。
2、根据权利要求 1所述的薄膜封装件, 其特征在于, 所述紫外光引发剂 选自 2-羟基 -2曱基苯曱酮、 二苯曱酮和安息香乙醚中的一种或几种。
3、根据权利要求 1或 2所述的薄膜封装件, 其特征在于, 所述紫外光固 化材料还包括活性稀释剂和阻聚剂中的至少一种;
其中, 所述活性稀释剂选自三羟曱基丙烷三丙烯酸酯、 二缩三丙二醇二 丙烯酸酯和苯乙烯中的一种或几种;
所述阻聚剂选自对苯二酚、 三(N-亚硝基 -N苯基羟胺)铝盐、 4-曱氧基 苯酚和对羟基苯曱醚中的一种或几种。
4、根据权利要求 3所述的薄膜封装件, 其特征在于, 所述紫外光固化材 料还包括活性稀释剂和阻聚剂的两者;
在所述紫外光固化材料中, 所述环氧大豆油丙烯酸酯的质量百分含量为 25-60%, 所述活性稀释剂的质量百分含量为 30~60%, 所述紫外光引发剂的 质量百分含量为 5~15%, 所述阻聚剂的质量百分含量为 0.01~2%。
5、根据权利要求 1所述的薄膜封装件, 其特征在于, 所述薄膜封装层还 包括:
无机绝缘材料层;
在所述薄膜封装层中, 所述无机绝缘材料层位于所述紫外光固化材料层 的下方。
6、根据权利要求 5所述的薄膜封装件, 其特征在于, 所述无机绝缘材料 包括 A1203。
7、 一种光电子器件, 其特征在于, 包括:
光电子器件主体; 及
权利要求 1-6任一项所述的薄膜封装件; 其中, 所述薄膜封装件设置于所述光电子器件主体的待封装部件上。
8、根据权利要求 7所述的光电子器件, 其特征在于, 所述光电子器件包 括:
有机电致发光二极管、 无机发光二极管、 有机太阳能电池、 无机太阳能 电池、 有机薄膜晶体管、 无机薄膜晶体管和光探测器。
9、 一种光电子器件的封装方法, 其特征在于, 包括:
使用质量百分含量为 25~95%的环氧大豆油丙烯酸酯和质量百分含量为 5~75%的紫外光引发剂配置紫外光固化材料;
利用所述紫外光固化材料在光电子器件主体的待封装部件上形成紫外 光固化材料层, 所述紫外光固化材料层构成薄膜封装层, 所述薄膜封装层构 成薄膜封装件。
10、 根据权利要求 9所述的光电子器件的封装方法, 其特征在于, 在所 述利用紫外光固化材料在光电子器件主体的待封装部件上形成紫外光固化材 料层之前包括:
利用无机绝缘材料在光电子器件主体的待封装部件上形成无机绝缘材 料层;
则利用紫外光固化材料在光电子器件主体的待封装部件上形成紫外光 固化材料层包括:
利用紫外光固化材料在所述无机绝缘材料层上形成紫外光固化材料层, 所述无机绝缘材料层和所述紫外光固化材料层构成薄膜封装层, 所述薄膜封 装层构成薄膜封装件。
11、根据权利要求 10所述的光电子器件的封装方法, 其特征在于, 在所 述利用紫外光固化材料在所述无机绝缘材料层上形成紫外光固化材料层后, 还包括:
在所述形成了紫外光固化材料层的光电子器件主体的待封装部件上以 规定的数量交替形成无机绝缘材料层和紫外光固化材料层。
12、根据权利要求 10或 11所述的光电子器件的封装方法,其特征在于, 所述形成无机绝缘材料层包括:
通过等离子增强型化学气相沉积方法形成无机绝缘材料层;
所述形成紫外光固化材料层包括:
将所述紫外光固化材料旋转涂覆或喷射涂覆于所述无机绝缘材料层上, 再以紫外灯照射, 形成紫外光固化材料层-
PCT/CN2012/084243 2012-03-27 2012-11-07 薄膜封装件、光电子器件及其封装方法 WO2013143287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210084745.1 2012-03-27
CN201210084745.1A CN102651456B (zh) 2012-03-27 2012-03-27 薄膜封装件、光电子器件及其封装方法

Publications (1)

Publication Number Publication Date
WO2013143287A1 true WO2013143287A1 (zh) 2013-10-03

Family

ID=46693398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084243 WO2013143287A1 (zh) 2012-03-27 2012-11-07 薄膜封装件、光电子器件及其封装方法

Country Status (2)

Country Link
CN (1) CN102651456B (zh)
WO (1) WO2013143287A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934547A (zh) * 2015-04-29 2015-09-23 电子科技大学 一种光电子器件的封装结构及封装方法
CN107768524A (zh) * 2017-12-04 2018-03-06 湖南师范大学 一种高效稳定的钙钛矿太阳能电池及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651456B (zh) * 2012-03-27 2015-06-24 京东方科技集团股份有限公司 薄膜封装件、光电子器件及其封装方法
CN104377314A (zh) * 2014-09-26 2015-02-25 京东方科技集团股份有限公司 一种封装层、电子封装器件及显示装置
CN107915811B (zh) * 2017-11-21 2019-06-25 福建农林大学 基于甲基丙烯酸酯交联大豆油基树脂的植物纤维增强复合材料及其制备方法
CN111384223B (zh) * 2018-12-29 2021-07-23 Tcl科技集团股份有限公司 封装薄膜和发光器件的封装方法以及发光装置
CN111785856B (zh) * 2019-04-04 2024-01-26 上海和辉光电股份有限公司 薄膜封装材料及其制造方法、薄膜封装结构和电子器件
CN114551754A (zh) * 2022-02-07 2022-05-27 深圳市华星光电半导体显示技术有限公司 显示面板
CN115449297B (zh) * 2022-09-30 2023-09-01 深圳歌德新创科技有限公司 一种涂料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878077A (en) * 1971-01-04 1975-04-15 Union Carbide Corp Radiation curable compositions of acrylated epoxidized soybean oil amine compounds useful as inks and coatings and methods of curing same
CN102299123A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
CN102651456A (zh) * 2012-03-27 2012-08-29 京东方科技集团股份有限公司 薄膜封装件、光电子器件及其封装方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307119B2 (en) * 2002-08-01 2007-12-11 Electronics And Telecommunications Research Institute Thin film material using pentaerythritol acrylate for encapsulation of organic or polymeric light emitting device, and encapsulation method for LED using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878077A (en) * 1971-01-04 1975-04-15 Union Carbide Corp Radiation curable compositions of acrylated epoxidized soybean oil amine compounds useful as inks and coatings and methods of curing same
CN102299123A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
CN102651456A (zh) * 2012-03-27 2012-08-29 京东方科技集团股份有限公司 薄膜封装件、光电子器件及其封装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, XIUYUN ET AL.: "Synthesis of UV curing epoxidized soybean oil acrylate", CHINA OILS AND FATS, vol. 36, no. 1, January 2011 (2011-01-01), pages 45 - 48 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934547A (zh) * 2015-04-29 2015-09-23 电子科技大学 一种光电子器件的封装结构及封装方法
CN107768524A (zh) * 2017-12-04 2018-03-06 湖南师范大学 一种高效稳定的钙钛矿太阳能电池及其制备方法
CN107768524B (zh) * 2017-12-04 2024-02-09 湖南师范大学 一种高效稳定的钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN102651456B (zh) 2015-06-24
CN102651456A (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2013143287A1 (zh) 薄膜封装件、光电子器件及其封装方法
CN105981188B (zh) 有机电子器件及其制造方法
TW515223B (en) Light emitting device
Thirion et al. Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design
US9257675B2 (en) Substrate for an organic electronic device and an organic electronic device comprising the same
JP6438678B2 (ja) 凹凸構造を有するフィルム部材
CN102437288A (zh) 有机电致发光器件的封装结构
Feng et al. A comparison study of the organic small molecular thin films prepared by solution process and vacuum deposition: roughness, hydrophilicity, absorption, photoluminescence, density, mobility, and electroluminescence
JP4717670B2 (ja) 乾燥剤及びこれを用いた電界発光素子。
CN104769149A (zh) 用于在表面上沉积导电覆层的方法
TWI680178B (zh) 量子點材料及其製備方法
TWI534151B (zh) 捕水劑及使用該捕水劑之有機電子裝置
CN106029817A (zh) 电子设备密封用树脂组合物及电子设备
WO2015018163A1 (zh) 一种有机电致发光显示面板、其制造方法及显示装置
CN103718324B (zh) 用于光电子器件的封装结构和用于封装光电子器件的方法
CN108598278A (zh) 有机发光二极管的封装结构及其制备方法
Geng et al. High luminance and stability of perovskite quantum dot light-emitting diodes via ZnBr2 passivation and an ultrathin Al2O3 barrier with improved carrier balance and ion diffusive inhibition
WO2019071703A1 (zh) Qled器件的封装方法及封装结构
JP2013251191A (ja) 有機エレクトロルミネッセンス素子
KR20110029027A (ko) 유기 전계 발광 표시장치 및 이의 밀봉용 충전재
CN102090142B (zh) 有机el器件
CN107768534A (zh) 一种柔性oled的薄膜封装结构及其制备方法
WO2012063445A1 (ja) 有機el表示装置およびその製造方法
TWI232696B (en) Water-scavenging agent for an organic electroluminescent device and organic electroluminescent device comprising same
CN103915126A (zh) 导电材料、制造电极的方法和具有其的显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.12.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12873223

Country of ref document: EP

Kind code of ref document: A1