WO2013141756A2 - Способ изготовления изделий из композиционных материалов и устройство для его осуществления - Google Patents

Способ изготовления изделий из композиционных материалов и устройство для его осуществления Download PDF

Info

Publication number
WO2013141756A2
WO2013141756A2 PCT/RU2013/000184 RU2013000184W WO2013141756A2 WO 2013141756 A2 WO2013141756 A2 WO 2013141756A2 RU 2013000184 W RU2013000184 W RU 2013000184W WO 2013141756 A2 WO2013141756 A2 WO 2013141756A2
Authority
WO
WIPO (PCT)
Prior art keywords
retort
metal
temperature
crucibles
workpiece
Prior art date
Application number
PCT/RU2013/000184
Other languages
English (en)
French (fr)
Other versions
WO2013141756A3 (ru
Inventor
Вячеслав Максимович БУШУЕВ
Максим Вячеславович БУШУЕВ
Андрей Александрович КОКШАРОВ
Original Assignee
Bushuev Viacheslav Maksimovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bushuev Viacheslav Maksimovich filed Critical Bushuev Viacheslav Maksimovich
Publication of WO2013141756A2 publication Critical patent/WO2013141756A2/ru
Publication of WO2013141756A3 publication Critical patent/WO2013141756A3/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the invention relates to the production of products from KM with metal and carbide-metal matrices, as well as from cermets.
  • KM including cermets
  • cermets including the preparation of a mixture of heat-resistant material and metal, followed by pressing and sintering or hot pressing [L.I. Tuchinsky “Composite materials obtained by the impregnation method” M.: Metallurgy. 10 1986. p. 74, 174, 175].
  • the specified method due to the complex hardware design is applicable only to obtain small parts.
  • a known method of manufacturing KM including the manufacture of a workpiece from a porous heat-resistant material and its impregnation with a molten metal [L.I. 15 Tuchinsky “Composite materials obtained by impregnation” M:
  • this method only relates to the manufacture of products from carbon-carbide-silicon material using a siliconization process.
  • the method does not provide for the use of other metal agents.
  • this method considers the diffusion mechanism of metal delivery into the pores of the material a, and, as you know, its speed is very low, which leads to a low degree of metallization.
  • uneven metallization is observed, as well as poor reproducibility of the metallization results from process to process.
  • the objective of the invention is to increase the degree and uniformity of plating, as well as increasing the reproducibility of the results of plating products, including large ones, from process to process without significant degradation of the properties of the impregnated porous material.
  • the implementation at the stage of heating and / or cooling (raising and / or lowering the temperature) of the billet of heating the crucibles to a higher temperature than the temperature of the metallized billet provides the possibility of the occurrence of a supersaturated state of metal vapor in the vicinity of the billet, which leads to their condensation directly in the pores of the material and / or on the surface of the part.
  • the implementation of the exposure of the workpiece at a temperature not exceeding the temperature of re-evaporation (sweating) of the metal from the pores provides the most rapid completion of the process of filling pores with metal condensate; and either complete completion, or - to the extent that it is completely completed at the cooling stage. At the same time, time is not wasted for metallization, as if re-evaporation of the metal took place. In addition, the metallization process is carried out at a lower temperature, which means that the molten metal has a less negative effect on the degradation of the properties of the metallized material.
  • the workpiece is cooled in metal vapor, depending on whether it is carried out by heating crucibles with metal to a higher temperature than metallized the part, or in the absence of such heating, leads to a different degree of condensation of the metal vapor, and also to the completion of the metallization process as a whole.
  • the object of the invention has a new property: the ability to mass transfer metal into the pores of the material by the diffusion-condensation mechanism, the speed of which is significantly higher than by the diffusion mechanism; Moreover, the mass transfer rate of the metal into the pores of the material can be quite high even at temperatures on the workpiece less than or equal to the melting temperature of the metal, which completely eliminates the degradation of the workpiece material or at least significantly reduces it.
  • the new property allows to increase the degree and uniformity of metallization, as well as to increase the reproducibility of the results of metallization of products (including large-sized ones) from process to process and to obtain CM with sufficiently high strength characteristics.
  • the method is as follows.
  • One of the known methods of making a workpiece from a porous heat-resistant material is placed in a closed volume of the retort. After that, the billet and crucibles with metal are heated in metal vapor, and then - also in metal vapor - cooled. Moreover, at the stage of heating and / or cooling the billet, the crucibles with the metal are heated to a higher temperature than the temperature of the billet. If the heating of crucibles with metal to a higher temperature than the metallized workpiece is carried out at the stage of temperature rise, then in the vicinity of the workpiece a supersaturated state of the metal vapor occurs, which leads to their partial condensation. Moreover, depending on the temperature of the metal vapor and the temperature of the workpiece, the metal vapor condenses on the surface of the workpiece and / or in the volume of the material of the workpiece.
  • the preform is removed from the retort.
  • UT-900 brand carbon fabric was formed on a forming mandrel by winding a skeleton (a workpiece made of porous heat-resistant material — 0 160 x h 300 ⁇ 8 mm).
  • the frame and crucible with pieces of aluminum were placed in a retort; moreover, the crucible was placed at the bottom of the retort, and above it a frame.
  • the retort was covered with a lid, giving it a closed volume. Then the retort was installed in the heater 0 220 mm, having in the lower part a higher temperature zone of heating than in the area located opposite the aluminized billet (frame). Then the heater was covered with a lid.
  • the assembly was mounted in a vacuum installation.
  • the framework was heated to a temperature of 700 ° C and a pressure in the reactor of 12 mm. Hg. Art. in aluminum vapors that have already formed when the crucible reaches a temperature of ⁇ 600 ° C.
  • the preform was removed from the retort and removed from the forming mandrel. Then the workpiece was machined.
  • the resulting CM which is called carbon aluminum, had a density of 2.24 g / cm, which indicates a high degree of metallization of the porous preform.
  • a blank was made from carbonized carbon fiber reinforced plastic 0 180 ⁇ h 300 ⁇ ⁇ 5 mm, density 1.16 g / cm. Moreover, for impregnation with a phenol-formaldehyde binder, the same framework was used as in Example 1.
  • the billets were aluminized according to the same regime as in Example 1. As a result, a component from KM (carbon aluminum) with a density of 2.05 g / cm 3 was obtained. As a result of repeated repetition of the manufacturing process of the part in accordance with the technological parameters of this example, it was found that the spread in material density is within 15%.
  • a blank was made by partially sealing the frame with pyrocarbon using a vacuum isothermal method. After compaction with pyrocarbon of the same framework as in Example 1, the porous material had a density of 0.83 g / cm.
  • the billets were aluminized according to the same mode as in Example 1. As a result, a part from CM (carbon aluminum) with a density of 2.18 g / cm 3 was obtained. Scatter the density in the batch of parts of 10 pieces manufactured in accordance with the technological parameters of this example was 8.6%.
  • the resulting CM had a density of 2.64 g / cm 3 .
  • a frame of 160 160 x 300 x 8 mm was formed on a forming mandrel.
  • the framework was heated in silicon vapors to a temperature of 1400 ° C at a pressure in the reactor of 27 mm. Hg. Art. with a heating rate of 180 ° C / hour. After this, a 5-hour exposure was performed at 1400 ... 1450 ° C.
  • the temperature was set at 100 ... 120 ° C and 60 ... 90 ° C, respectively, than on the frame. Then the workpiece was cooled. During the cooling of the preform to 1100 ° C, a temperature of 20 ... 30 ° C was set on the crucible with silicon. At all stages (heating, isothermal drawing, cooling) In the vicinity of the siliconized preform, a supersaturated state of silicon vapors arose, which led to their condensation in the pores of the preform material.
  • porous preform used the same frame as in the example
  • a device for metallizing products by the vapor-liquid-phase method containing heaters located around a closed volume retort made of several parts for placing crucibles with carbide-forming metal and metal products in it, a water-cooled flow-type reactor, thermal insulation from porous carbon-graphite materials, and a pneumatic-gas-vacuum system (Pat. RU J ° 1834839, class C01B31 / 02, 1993).
  • the disadvantage of this device is the low degree and uniformity of metallization, as well as poor reproducibility of the results from process to process.
  • Another disadvantage of the device is the lack of reliability of its operation due to the compaction of the porous material of thermal insulation with condensate of metal vapors that escape through the joints of the retort into the reactor space, due to which the heat-insulating properties of the material are lost.
  • the closest to the proposed technical essence and the achieved effect is a metallization device containing a heater or a system of heaters located around the outer retort, an internal retort for volume metallization with metallized products and crucibles with metal placed inside it, a flow-type reactor, thermal insulation made of porous carbon-graphite pneumatic-gas-vacuum system materials; while the outer and inner retorts are made of several parts with a height and are located coaxially to each other with a gap, and the outer retort is equipped with nozzles for connecting the inter-clearance gap with a pneumatic-gas-vacuum system (US Pat. RU for utility model N ° 110089, 2011. )
  • Such a design of the device allows to increase the reliability of its operation by eliminating the access of metal vapor to porous carbon-graphite materials of thermal insulation.
  • the objective of the invention is to increase the degree and uniformity of metallization, as well as increasing the reproducibility of the results of metallization from process to process, carried out in this device.
  • This problem is solved due to the fact that the device for metallization containing a heater or a system of heaters located around the outer retort, an internal retort of a closed volume with metal parts and crucibles placed inside it, a flow reactor, thermal insulation from porous carbon-graphite materials and pneumatic gas -vacuum system in which the outer and inner retorts are made of several parts of height and are located coaxially to each other with a gap, and the outer retort is equipped with a pat
  • this device additionally contains a bottom heater or heaters located around the outer retort and have a higher-temperature zone in the lower part located opposite the lower parts of the outer and inner retorts, and crucibles with metal are consolidated at the bottom of the inner retort
  • the device contains a bottom heater and also has higher temperature zones in the lower part of the heaters located around the outer retort.
  • the bottom heater is equipped with an autonomous power source.
  • Providing the bottom heater with an autonomous power source allows you to adjust the power supplied to the heater, turn it on and off when necessary, i.e. create one or another temperature difference between metal vapors and metal products. So, if at the cooling stage the crucibles are not heated to a higher temperature than the temperature of the metal products, then in their vicinity there will not be an excessively supersaturated state of metal vapor, which will result in the exclusion of growths on the metal products, which are frozen drops or condensate deposits metal vapor.
  • the object of the invention has a new property: the ability to effectively influence the mass transfer of metal to metallized products at any stage of this process.
  • the new property will increase the degree and uniformity of metallization, as well as reproducibility of the results from the process to the process carried out in this device.
  • the inventive device for metallizing products contains heaters 1, an external retort 2, consisting of parts 2a, 26, 2b, 2g, an internal retort 3, consisting of parts Za, 36, Sv, Zg, flow type reactor 4, thermal insulation from porous carbon-graphite materials 5 and a pneumatic-gas-vacuum system (with a designation on the drawing of gas supply and vacuuming places).
  • the inner retort 3 has a closed volume and is located with a gap 6 coaxial to the outer retort 2.
  • the outer retort 2 is equipped with nozzles 9a and 96 for connecting the between-clearance gap 6 with a pneumatic-gas-vacuum system .
  • the device further comprises a bottom heater 10 or heaters 1 located around the outer retort and in the lower part have a higher temperature zone 16 located opposite the lower parts of the outer and inner retorts 2g and 3g, and crucibles with metal 8 are consolidated in the lower part of the inner retort 3g.
  • the device contains a bottom heater 10, and also has higher temperature zones 16 in the lower part of the heaters 1, located around the outer retort 2.
  • the bottom heater 10 of the inventive device is equipped with an autonomous power source.
  • the device operates as follows.
  • the retorts 2 and 3 When power is supplied to the heaters 1, the retorts 2 and 3, and then the metal products 7 and the crucibles with metal 8 are heated. As soon as the temperature on the crucibles with metal 8 reaches its evaporation temperature, the metal evaporates.
  • the evaporation of the metal contributes to the vacuum of the reactor 4. It also protects the product from oxidation.
  • the internal cavities of the retorts 2 and 3 are evacuated through the joints between their parts 2–2g, Za, Zg, and the inter-clearance gaps 6.
  • Metal vapors diffusely fill the closed volume of the inner retort 3 and through the joints between its parts Za-Zg exit into the inter-clearance gap 6. Due to the presence of the outer retort 2 and the supply of inert gas to the inter-clearance gap 6, they are entrained in the vacuum system, which prevents them exit into the reactor volume 2.
  • the device has a bottom heater and at the same time there is a heater of a higher temperature zone 16 located at the bottom of the outer retort, it is easier to create a higher temperature difference between the metal vapor and the metal products and thereby more effectively prevent the negative effect of the outflow of metal vapor into the permeable joints of the retort 3.
  • the bottom heater 10 When the bottom heater 10 is supplied with an autonomous power source, it becomes possible to regulate the power supplied to the heater, turn it on and off when it is necessary from the point of view of expediency of the process of condensation of metal vapor in a given temperature range, at one or another stage of the metallization process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Изобретение относится к производству изделий из КМ с металлической и карбидно-металлической матрицами, а также из керметов. Способ изготовления изделий из композиционных материалов включает изготовление заготовки из пористого термостойкого материала и ее объемное металлирование путем размещения заготовки и тиглей с металлом в замкнутом объеме реторты, нагрева, выдержки в вакууме и охлаждения в парах металла. На стадии нагрева и/или изотермической выдержки, и/или охлаждения тигли с металлом нагревают до более высокой температуры, чем температура заготовки, при этом выдержку заготовки производят при температуре, не превышающей температуру реиспарения металла из пор материала. Устройство для объемного металлирования, содержит нагреватели, расположенные вокруг наружной реторты, внутреннюю реторту замкнутого объема с размещенными внутри нее металлируемыми изделиями и тиглями с металлом, реактор проточного типа, теплоизоляцию из пористых углеграфитовых материалов и пневмо-газо-вакуумную систему, и в котором наружная и внутренняя реторты выполнены из нескольких по высоте частей и расположены коаксиально друг другу с зазором, а наружная реторта снабжена патрубками для соединения межретортного зазора с пневмо-газо-вакуумной системой. Оно дополнительно содержит донный нагреватель или расположенные вокруг наружной реторты нагреватели имеют в нижней части более высокотемпературную зону, расположенную напротив нижних частей наружной и внутренней реторты, а тигли сконсолидированы в нижней части внутренней реторты. Технический результат - повышение степени и равномерности металлирования.

Description

Способ изготовления изделий из композиционных материалов и устройство для его осуществления
Изобретение относится к производству изделий из КМ с металлической и карбидно-металлической матрицами, а также из керметов.
Известен способ изготовления КМ, в том числе керметов, включающий приготовление шихты из термостойкого материала и металла с последующим её прессованием и спеканием или горячим прессованием [Л.И. Тучинский «Композиционные материалы, получаемые методом пропитки» М.: Металлургия. 10 1986. с. 74, 174, 175].
Указанный способ из-за сложного аппаратурного оформления применим лишь для получения мелких деталей.
Известен способ изготовления КМ, включающий изготовление заготовки из пористого термостойкого материала и пропитку её расплавом металла [Л.И. 15 Тучинский «Композиционные материалы, получаемые методом пропитки» М.:
Металлургия. 1986. в частности с. 74, 100, 184, 198]. Способ требует менее сложного аппаратурного оформления и позволяет изготавливать более крупногабаритные детали.
Однако, из-за необходимости нагрева расплава металла до температуры выше 20 температуры его плавления, производимого с целью придания ему низкой вязкости, зачастую происходит частичная деградация пористого материала, несмотря на его термостойкость. В частности, это может быть вызвано тем, что из-за высокой температуры расплава металла между ним и термостойким материалом происходит химическое взаимодействие, в результате чего снижаются прочностные 25 характеристики материала. Ещё одним недостатком способа в ряде случаев является необходимость пропитки расплавом металла под давлением [смотри, в частности, статью В. А. Гулевского и др. «Исследование свойств медных сплавов, предназначенных для пропитки пористых графитовых каркасов с целью создания металло-углеродных композитов функционального назначения» в журнале 30 «Перспективные материалы», 2011 , N°2, с. 60-64].
Следует также отметить, что данный способ касается лишь получения изделий из углерод-карбидокремниевого материала с использованием процесса силицирования. Способ не предусматривает использования других металлирующих агентов. Кроме того, в данном способе рассматривается диффузионный механизм доставки металла в поры материала а, как известно, скорость его очень низкая, что приводит к низкой степени металлирования. Более того, кроме низкой степени металлирования наблюдается неравномерность металлирования, а также плохая воспроизводимость результатов металлирования от процесса к процессу.
Задачей изобретения является повышение степени и равномерности металлирования, а также повышение степени воспроизводимости результатов металлирования изделий, в том числе крупногабаритных, от процесса к процессу без существенной деградации свойств пропитываемого пористого материала.
Эта задача решается за счёт того, что в способе изготовления изделий из КМ, включающем изготовление заготовки из пористого термостойкого материала, её объёмное металлирование путём размещения заготовки и тиглей с металлом в замкнутом объёме реторты, нагрева, выдержки и охлаждения в вакууме в парах металла, в соответствии с заявленным техническим решением тигли с металлом на стадии нагрева и/или охлаждения заготовки нагревают до более высокой температуры, чем температура заготовки; при этом выдержку заготовки производят при температуре, не превышающей температуру реиспарения металла из пор материала.
Осуществление на стадии нагрева и/или охлаждения (подъёма и/или снижения температуры) заготовки нагрева тиглей до более высокой температуры, чем температура металлируемой заготовки, обеспечивает возможность возникновения в окрестности заготовки пересыщенного состояния паров металла, что приводит к их конденсации непосредственно в порах материала и/или на поверхности детали.
Осуществление выдержки заготовки при температуре, не превышающей температуру реиспарения (выпотевания) металла из пор, обеспечивает наиболее быстрое завершение процесса заполнения пор конденсатом металла; причём либо полное завершение, либо - в той мере, чтобы полностью его завершить на стадии охлаждения. При этом не тратится бесполезно время на металлирование как в случае, если бы происходило реиспарение металла. Кроме того, процесс металлирования осуществляется при более низкой температуре, а значит, расплав металла оказывает меньшее отрицательное влияние на деградацию свойств металлируемого материала.
Охлаждение заготовки в парах металла в зависимости от того проводится оно при нагреве тиглей с металлом до более высокой температуры, чем металлируемая деталь, или в отсутствии такого нагрева, приводит к разной степени конденсации паров металла, а также - к завершению в целом процесса металлирования.
В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность осуществить массоперенос металла в поры материала по диффузионно-конденсационному механизму, скорость которого существенно выше, чем по диффузионному механизму; причём скорость массопереноса металла в поры материала может быть достаточно высокой даже при температурах на заготовке меньшей или равной температуре плавления металла, что позволяет полностью исключить деградацию материала заготовки или по крайней мере существенно её уменьшить.
Новое свойство позволяет повысить степень и равномерность металлирования, а также повысить степень воспроизводимости результатов металлирования изделий (в том числе крупногабаритных) от процесса к процессу и получить при этом КМ с достаточно высокими прочностными характеристиками.
Способ осуществляют следующим образом.
Одним из известных способов изготавливают заготовку из пористого термостойкого материала. Затем заготовку вместе с тиглями, заполненными кусочками металла, размещают в замкнутом объёме реторты. После этого заготовку и тигли с металлом нагревают в парах металла, а затем - также в парах металла - охлаждают. При этом на стадии нагрева и/или охлаждения заготовки тигли с металлом нагревают до более высокой температуры, чем температура заготовки. Если нагрев тиглей с металлом до более высокой температуры, чем металлируемая заготовка, осуществляют на стадии подъёма температуры, то в окрестности заготовки возникает пересыщенное состояние паров металла, что приводит к их частичной конденсации. При этом в зависимости от температуры паров металла и температуры заготовки пары металла конденсируются на поверхности заготовки и/или в объёме материала заготовки.
Если пары металла конденсируются на поверхности, то под действием капиллярных сил конденсат паров металла пропитывает заготовку.
При капиллярной конденсации паров металла их конденсация протекает непосредственно в порах материала заготовки. Затем производят выдержку при температуре не выше температуры реиспарения металла. При этом исключается выпотевание металла из пор материала заготовки и тем самым не расходуется бесполезно время на процесс металлирования, а также снижается температура воздействия металла на материал заготовки.
Если нагрев тиглей с металлом до более высокой температуры, чем температура заготовки, осуществляют и на стадии охлаждения заготовки (при снижении температуры), то в окрестности заготовки также возникает пересыщенное состояние. Причём по величине оно гораздо больше, чем на стадии нагрева заготовки.
И если на стадии нагрева и вьщержки ещё не произошло полное заполнение открытых пор, то оно завершается на этой стадии. После охлаждения заготовки и тиглей до комнатной температуры заготовку извлекают из реторты.
Ниже приведены примеры конкретного выполнения способа.
Пример 1.
Из углеродной ткани марки УТ-900 формировали на формообразующей оправке методом намотки каркас (заготовку из пористого термостойкого материала— 0 160 х h 300 <δ 8 мм). Каркас и тигель с кусочками алюминия помещали в реторту; причём тигель размещали на дне реторты, а над ним каркас. Реторту закрывали крышкой, придавая ей тем самым замкнутый объём. Затем реторту устанавливали в нагреватель 0 220 мм, имеющий в нижней части более высокую температурную зону нагрева, чем на участке, расположенном напротив алюминируемой заготовки (каркаса). Затем нагреватель закрывали крышкой. После этого сборку монтировали в вакуумной установке. Далее производили нагрев каркаса до температуры 700 °С и давлении в реакторе 12 мм. рт. ст. в парах алюминия, которые уже образовывались при достижении тиглем температуры ~ 600 °С.
При температуре 700...740 °С на каркасе ещё не происходит реиспарения алюминия из пор. При этом во время нагрева, производимого со скоростью 150°С/час, на тигле с алюминием устанавливалась температура, превышающая температуру каркаса на 100...120 °С. Затем производили трёхчасовую изотермическую выдержку при 700...740 °С на алюминируемом каркасе. При этом на тигле с расплавом алюминия устанавливалась температура 760...800 °С.
В период нагрева и на изотермической выдержке при 700...740 °С в окрестности алюминируемого каркаса возникало пересыщенное состояние паров алюминия, в результате чего происходила их конденсация непосредственно в порах каркаса. Затем производили охлаждение заготовки. В период охлаждения заготовки до 600 °С на тигле с алюминием устанавливалась температура на 30...40 °С выше. Таким образом, охлаждение производилось в парах алюминия и также сопровождалось их конденсацией.
После охлаждения до 70 °С заготовку извлекали из реторты и снимали с формообразующей оправки. Затем заготовку механически обрабатывали.
Полученный при этом КМ, который называется углеалюминием, имел плотность 2,24 г/см , что свидетельствует о высокой степени металлирования пористой заготовки.
В результате многократного повторного изготовления таких заготовок установили, что разброс по плотности материала находится в пределах 12 %, что свидетельствует о достаточно высокой степени воспроизводимости результатов металлирования заявленным способом.
В результате микроструктурных и рентгеноструктурных исследований установлено отсутствие химического взаимодействия между углеродными волокнами и алюминием, что свидетельствует об отсутствии деградации материала каркаса.
Пример 2.
Изготовили заготовку из карбонизованного углепластика 0 180 χ h 300χδ 5 мм, плотностью 1,16 г/см . При этом для пропитки фенолформальдегидным связующим использовали такой же каркас, как в примере 1.
Алюминирование заготовки произвели по тому же режиму, что и в примере 1. В результате получили деталь из КМ (углеалюминия) с плотностью 2,05 г/см3. В результате многократного повторения процесса изготовления детали в соответствии с технологическими параметрами данного примера установлено, что разброс по плотности материала находится в пределах 15 %.
Пример 3.
Изготовили заготовку путём частичного уплотнения каркаса пироуглеродом с использованием вакуумного изотермического метода. После уплотнения пироуглеродом такого же каркаса, как в примере 1, пористый материал имел плотность 0,83 г/см .
Алюминирование заготовки произвели по тому же режиму, что и в примере 1. В результате получили деталь из КМ (углеалюминия) с плотностью 2,18 г/см3. Разброс плотности в партии деталей из 10 шт, изготовленных в соответствии с технологическими параметрами данного примера, составил 8,6 %.
Пример 4.
Изготовили такую же заготовку как и в примере 3, плотностью 0,87 г/см3. Заготовку подвергли обработке в парах меди. Для этого заготовку нагрели до температуры 1 180 °С при давлении в реакторе 27 мм. рт. ст. со скоростью ~150 °С/час. Затем выдержали в течение 5 часов при 1180 ...1220 °С . При этом на стадии нагрева и вьщержки температура на тигле с медью была соответственно на 60...90 °С, 40...60 °С больше, чем на заготовке.
В период нагрева и изотермической вьщержки при 1 180 ...1220 °С в окрестности заготовки возникало пересыщение парами меди, в результате чего происходила их конденсация непосредственно в порах материала. Затем производили охлаждение заготовки в парах меди, в результате чего также происходила конденсация паров меди.
После охлаждения заготовки до 70 °С её извлекали из реторты и механически обрабатывали.
Полученный при этом КМ имел плотность 2,64 г/см3.
В результате повторных изготовлений детали в соответствии с технологическими параметрами данного примера установлено, что разброс плотности материала находится в пределах 11 %.
Пример 5.
Из карбидокремниевых волокон японского производства марки «Никалон» сформировали на формообразующей оправке каркас 0 160 χ h 300χδ 8 мм.
В садку наряду с каркасом установили тигель, заполненный кусочками кремния.
Затем произвели нагрев каркаса в парах кремния до температуры 1400 °С при давлении в реакторе 27 мм. рт. ст. со скоростью нагрева 180 °С/час. После этого произвели 5-часовую выдержку при 1400...1450°С.
Во время нагрева и изотермической вьщержки на тигле с кремнием устанавливалась температура соответственно на 100...120 °С и 60...90 °С выше, чем на каркасе. Затем производили охлаждение заготовки. В период охлаждения заготовки до 1100 °С на тигле с кремнием устанавливалась температура на 20...30 °С выше. На всех стадиях (нагрева, изотермической вьщержки, охлаждения) в окрестности силицируемои заготовки возникало пересыщенное состояние паров кремния, что приводило к их конденсации в порах материала заготовки.
В результате получили заготовку из КМ с плотностью 2,46 г/см3.
В результате 5-ти кратного повторения процесса изготовления заготовки в соответствии с технологическими параметрами данного примера установлено, что разброс плотности составляет 18 %.
Пример 6.
В качестве пористой заготовки использовали такой же каркас, как в примере
5.
Алюминирование каркаса производили в соответствии с технологическими параметрами примера 1.
В результате получили заготовку с плотностью 2,93 г/см3. В результате 4-х кратного повторения процесса изготовления заготовки в соответствии с технологическими параметрами данного примера установлено, что разброс плотности составляет 14 %.
Остальные примеры, в том числе описанные выше, приведены в более кратком изложении в таблице, где примеры 1...10, 13, 15 соответствуют заявленному способу, а примеры 11, 12, 14 - способу - прототипу.
Как видно из таблицы, изготовление изделий в соответствии с предлагаемым способом в сравнении с прототипом позволяет:
1) проводить процесс металлирования при меньших температурах на заготовках;
2) получать более стабильные по воспроизводимости результаты при более высокой прочности композиционного материала.
Таблица 1 - П име ы конк етного вьшолнения заявленного способа
Figure imgf000010_0001
Таблица 1 - продолжение
Figure imgf000011_0001
Таблица 1 - продолжение
Figure imgf000012_0001
Известно устройство для металлирования изделий паро-жидкофазным методом содержащее нагреватели, расположенные вокруг выполненной из нескольких частей реторты замкнутого объема для размещения в нем тиглей с карбидообразующим металлом и металлируемых изделий, водоохлаждаемый реактор проточного типа, теплоизоляцию из пористых углеграфитовых материалов и пневмо- газо-вакуумную систему (пат RU J ° 1834839 кл. С01В31/02, 1993г.).
Недостатком устройства является низкая степень и равномерность металлирования, а также плохая воспроизводимость результатов от процесса к процессу. Еще одним недостатком устройства является недостаточная надежность его работы из-за уплотнения пористого материала теплоизоляции конденсатом паров металла, выходящих через стыки реторты в реакторное пространство, из-за чего теряются теплоизолирующие свойства материала.
Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является устройство для металлирования, содержащее нагреватель или систему нагревателей, расположенных вокруг наружной реторты, внутреннюю реторту для объемного металлирования с размещенным внутри нее металлируемыми изделиями и тиглями с металлом, реактор проточного типа, теплоизоляцию из пористых углеграфитовых материалов пневмо-газо-вакуумную систему; при этом наружная и внутренняя реторты выполнены из нескольких по высоте частей и расположены коаксиально друг к другу с зазором, а наружная реторта снабжена патрубками для соединения межретортного зазора с пневмо-газо-вакуумной системой (пат. RU на полезную модель N° 110089, 2011г.)
Такое конструктивное исполнение устройства позволяет повысить надежность его работы за счет исключения доступа паров металла к пористым углеграфитовым материалам теплоизоляции.
Однако низкая степень и равномерность металлирования, а также плохая воспроизводимость результатов от процесса к процессу, проводимых в данном устройстве, сохраняется. Причиной этого является уход паров металла в стыки между частями внутренней реторты, что приводит к уменьшению их давления (концентрации) в окрестности металлируемых изделий.
Задачей изобретения является повышение степени и равномерности металлирования, а также повышение степени воспроизводимости результатов металлирования от процесса к процессу, проводимых в данном устройстве. Эта задача решается за счет того, что устройство для металлирования содержащее нагреватель или систему нагревателей, расположенных вокруг наружной реторты, внутреннюю реторту замкнутого объема с размещенными внутри нее металлируемыми изделиями и тиглями с металлом, реактор проточного типа, теплоизоляцию из пористых углеграфитовых материалов и пневмо-газо-вакуумную систему, в котором наружная и внутренняя реторты выполнены из нескольких по высоте частей и расположены коаксиально друг к другу с зазором, а наружная реторта снабжена патрубками для соединения межретортного зазора с пневмо-газо- вакуумной системой, данное устройство в соответствии с предлагаемым техническим решением дополнительно содержит донный нагреватель или расположенные вокруг наружной реторты нагреватели имеют в нижней части более высокотемпературную зону, расположенную напротив нижних частей наружной и внутренней реторты, а тигли с металлом сконсолидированы в нижней части внутренней реторты.
В предпочтительном варианте исполнения устройства оно содержит донный нагреватель, а также имеет более высокотемпературные зоны в нижней части нагревателей, расположенных вокруг наружной реторты.
Еще в одном предпочтительном исполнении устройства донный нагреватель снабжен автономным источником питания.
Дополнительное наличие в устройстве донного нагревателя или наличие в нижней части расположенных вокруг наружной реторты нагревателей более высокотемпературной зоны, расположенной напротив нижних частей наружной и внутренней реторты, при консолидации тиглей с металлом в нижней части реторты обеспечивает возможность нагрева тиглей с металлом до более высокой температуры, чем температура металлируемых изделий.
Если реализовать имеющуюся возможность, то в окрестности металлируемых изделий (даже при проницаемых стыках между частями внутренней реторты) на стадиях нагрева, изотермической выдержки и охлаждения возникает пересыщенное состояние паров металла, следствием чего будет их конденсация на поверхности и/или в порах материала изделий.
Снабжение донного нагревателя автономным источником питания позволяет регулировать подаваемую на нагреватель мощность, включать и выключать его, когда в этом есть необходимость, т.е. создавать тот или иной перепад температур между парами металла и металлируемыми изделиями. Так, если на стадии охлаждения не производить нагрев тиглей до более высокой температуры, чем температура металлируемых изделий, то в их окрестности не будет возникать излишне пересыщенное состояние паров металла, следствием чего будет исключение образования наростов на металлируемых изделиях, представляющих собой застывшие капли или натеки конденсата паров металла.
В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность эффективно влиять на массоперенос металла к металлируемым изделиям на любой стадии этого процесса.
Новое свойство позволит повысить степень и равномерность металлирования, а также воспроизводимость результатов от процесса к процессу, проводимых в данном устройстве.
Техническая сущность предложенного технического решения поясняется чертежом, на котором изображен общий вид устройства.
Заявляемое устройство для металлирования изделий содержит нагреватели 1, наружную реторту 2, состоящую из частей 2а, 26, 2в, 2г, внутреннюю реторту 3, состоящую из частей За, 36, Зв, Зг, реактор проточного типа 4, теплоизоляцию из пористых углеграфитовых материалов 5 и пневмо-газо-вакуумную систему (с обозначением на чертеже мест подачи газа и вакуумирования).
Внутренняя реторта 3 имеет замкнутый объем и расположена с зазором 6 коаксиально наружной реторте 2. Во внутренней реторте 3 размещаются металлируемые изделия 7 и тигли с металлом 8. Наружная реторта 2 снабжена патрубками 9а и 96 для соединения межретортного зазора 6 с пневмо-газо-вакуумной системой.
Устройство дополнительно содержит донный нагреватель 10 или расположенные вокруг наружной реторты нагреватели 1 имеют в нижней части более высокотемпературную зону 16, расположенную напротив нижних частей наружной и внутренней реторты 2г и Зг, а тигли с металлом 8 сконсолидированы в нижней части внутренней реторты Зг.
В одном из предпочтительных вариантов устройства оно содержит донный нагреватель 10, а также имеет более высокотемпературные зоны 16 в нижней части нагревателей 1, расположенных вокруг наружной реторты 2.
Еще в одном из предпочтительных вариантов донный нагреватель 10 заявляемого устройства снабжен автономным источником питания. Устройство работает следующим образом.
При подаче мощности на нагреватели 1 происходит нагрев реторт 2 и 3, а затем и металлируемых изделий 7 и тиглей с металлом 8. Как только температура на тиглях с металлом 8 достигает температуры его испарения, происходит испарение металла.
Испарению металла способствует вакуумирование реактора 4. Оно же предохраняет изделия от окисления. При вакуумировании реактора 4 происходит вакуумирование внутренних полостей реторт 2 и 3 через стыки между их частями 2а- 2г, За, Зг и межретортньгх зазоров 6.
Пары металла диффузионным путем заполняют замкнутый объем внутренней реторты 3 и через стыки между ее частями За-Зг выходят в межретортный зазор 6. Благодаря наличию наружной реторты 2, а также подаче инертного газа в межретортный зазор 6, они увлекаются в вакуумную систему, что препятствует их выходу в объем реактора 2.
Из-за выхода паров металла в межретортный зазор 6 в окрестности металлируемых изделий не может возникнуть даже насыщенное состояние паров металла, если не предпринять соответствующих мер. Так, при проведении скоростного нагрева с 1200 до 1500-1600 С0 в окрестности металлируемых изделий, расположенных в центре внутренней реторты 3, может сформироваться пересыщенное состояние паров металла из-за отставания температуры изделия от температуры паров металла, испаряющегося с внутренней поверхности реторты 3, где их наличие обусловлено конденсацией их на стадии промежуточного или окончательного охлаждения (это одна из соответствующих мер).
В таком случае рассчитывать на получение стабильно хороших результатов металлирования не приходится.
При наличии же в устройстве донного нагревателя 10 или наличии в нижней части расположенных вокруг наружной реторты нагревателей более высокотемпературной зоны 16 (в сравнении с зонами 1а) и консолидации тиглей с металлом 8 последние нагреваются до более высокой температуры, чем металлируемые изделия 7. Благодаря возникшему перепаду температур, не смотря на отток паров металла в проницаемые стыки реторты 3, в окрестности металлируемых изделий возникает пересыщенное состояние паров металла, что вызывает их конденсацию на поверхности и/или в порах материала изделий. При наличии в устройстве донного нагревателя и одновременном наличии в нижней части расположенных вокруг наружной реторты нагревателей более высокотемпературной зоны 16 легче создать более высокий перепад температур между парами металла и металлируемыми изделиями и тем самым более эффективно препятствовать отрицательному влиянию оттока паров металла в проницаемые стыки реторты 3.
При снабжении донного нагревателя 10 автономным источником питания появляется возможность регулировать подаваемую на нагреватель мощность, включать и выключать его, когда в этом есть необходимость с точки зрения целесообразности процесса конденсации паров металла в том или ином интервале температур, на той или иной стадии процесса металлирования.
Все это позволяет существенно повысить вероятность достижения высокой степени и равномерности металлирования, а также получения при проведении металлирования в заявляемом устройстве воспроизводимых от процесса к процессу результатов.

Claims

Формула изобретения
1. Способ изготовления изделий из композиционных материалов, включающий изготовление заготовки из пористого термостойкого материала и её объёмное металлирование путём размещения заготовки и тиглей с металлом в замкнутом объёме реторты, нагрева, вьщержки в вакууме и охлаждения в парах металла, отличающийся тем, что на стадии нагрева и/или изотермической выдержки, и/или охлаждения тигли с металлом нагревают до более высокой температуры, чем температура заготовки, при этом выдержку заготовки производят при температуре, не превышающей температуру реиспарения металла из пор материала.
2. Устройство для объёмного металлирования, содержащее нагреватели, расположенные вокруг наружной реторты, внутреннюю реторту замкнутого объёма с размещёнными внутри неё металлируемыми изделиями и тиглями с металлом, реактор проточного типа, теплоизоляцию из пористых углеграфитовьгх материалов и пневмо-газо-вакуумную систему, и в котором наружная и внутренняя реторты выполнены из нескольких по высоте частей и расположены коаксиально друг другу с зазором, а наружная реторта снабжена патрубками для соединения межретортного зазора с пневмо-газо-вакуумной системой, отличающееся тем, что оно дополнительно содержит донный нагреватель или расположенные вокруг наружной реторты нагреватели имеют в нижней части более высокотемпературную зону, расположенную напротив нижних частей наружной и внутренней реторты, а тигли сконсолидированы в нижней части внутренней реторты.
3. Устройство по п.2, отличающееся тем, что оно содержит донный нагреватель, а также имеет более высокотемпературные зоны в нижней части нагревателей, расположенных вокруг наружной реторты.
4. Устройство по п.2, отличающееся тем, что донный нагреватель снабжён автономным источником питания.
PCT/RU2013/000184 2012-03-23 2013-03-12 Способ изготовления изделий из композиционных материалов и устройство для его осуществления WO2013141756A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012111421 2012-03-23
RU2012111421/03A RU2490238C1 (ru) 2012-03-23 2012-03-23 Способ изготовления изделий из композиционных материалов и устройство для его осуществления

Publications (2)

Publication Number Publication Date
WO2013141756A2 true WO2013141756A2 (ru) 2013-09-26
WO2013141756A3 WO2013141756A3 (ru) 2013-11-28

Family

ID=49162781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000184 WO2013141756A2 (ru) 2012-03-23 2013-03-12 Способ изготовления изделий из композиционных материалов и устройство для его осуществления

Country Status (2)

Country Link
RU (1) RU2490238C1 (ru)
WO (1) WO2013141756A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456848A (zh) * 2020-12-18 2021-03-09 天津水泥工业设计研究院有限公司 一种钢渣微粉活性激发剂、制备方法及其制备装置
EP4019664A1 (en) * 2020-12-23 2022-06-29 Raytheon Technologies Corporation Method and article for metal vapor infiltration of cmc parts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570073C1 (ru) * 2014-04-23 2015-12-10 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Углерод-карбидокремниевый композиционный материал и способ изготовления из него герметичных изделий
RU2568670C1 (ru) * 2014-07-30 2015-11-20 Открытое Акционерное Общество "Уральский научно-исследовательский институт композиционных материалов" Способ изготовления герметичных изделий из углерод-карбидокремниевого материала
RU2665860C2 (ru) * 2016-11-30 2018-09-04 Вячеслав Максимович Бушуев Способ металлирования крупногабаритных заготовок в реакторе установки для объемного металлирования, конструкция реактора и способ его изготовления
RU2665646C2 (ru) * 2016-12-26 2018-09-03 Вячеслав Максимович Бушуев Футеровка корпуса реактора установок для металлирования заготовок
RU2705860C1 (ru) * 2019-04-30 2019-11-12 Александр Федорович Попов Способ выполнения искусственной среды для космической станции на меркурии
RU2723247C1 (ru) * 2019-07-23 2020-06-09 Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" Устройство для силицирования паро-жидкофазным методом

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935055A (en) * 1988-01-07 1990-06-19 Lanxide Technology Company, Lp Method of making metal matrix composite with the use of a barrier
US20040097360A1 (en) * 2002-09-13 2004-05-20 Bodo Benitsch Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic
RU2250887C2 (ru) * 1999-07-23 2005-04-27 М Кьюбид Текнолоджиз, Инк. Композиционные материалы, содержащие карбид кремния, и способы их получения
RU110089U1 (ru) * 2011-05-16 2011-11-10 Открытое акционерное общество "Сибирский завод электротермического оборудования" "ОАО "Сибэлектротерм" Устройство для силицирования изделий паро-жидкофазным методом

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2219133A1 (en) * 1973-02-23 1974-09-20 Onera (Off Nat Aerospatiale) Metal impregnated porous bodies - using metals forming low m. pt. alloy, to improve uniformity of structure
RU1834839C (ru) * 1991-06-28 1993-08-15 Государственный научно-исследовательский институт конструкционных материалов на основе графита Способ насыщени изделий из пористого углеродного материала карбидом кремни

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935055A (en) * 1988-01-07 1990-06-19 Lanxide Technology Company, Lp Method of making metal matrix composite with the use of a barrier
RU2250887C2 (ru) * 1999-07-23 2005-04-27 М Кьюбид Текнолоджиз, Инк. Композиционные материалы, содержащие карбид кремния, и способы их получения
US20040097360A1 (en) * 2002-09-13 2004-05-20 Bodo Benitsch Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic
RU110089U1 (ru) * 2011-05-16 2011-11-10 Открытое акционерное общество "Сибирский завод электротермического оборудования" "ОАО "Сибэлектротерм" Устройство для силицирования изделий паро-жидкофазным методом

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456848A (zh) * 2020-12-18 2021-03-09 天津水泥工业设计研究院有限公司 一种钢渣微粉活性激发剂、制备方法及其制备装置
EP4019664A1 (en) * 2020-12-23 2022-06-29 Raytheon Technologies Corporation Method and article for metal vapor infiltration of cmc parts

Also Published As

Publication number Publication date
WO2013141756A3 (ru) 2013-11-28
RU2490238C1 (ru) 2013-08-20

Similar Documents

Publication Publication Date Title
WO2013141756A2 (ru) Способ изготовления изделий из композиционных материалов и устройство для его осуществления
Feng et al. Spark plasma sintering of functionally graded material in the Ti–TiB2–B system
EP1829843B1 (de) Vorrichtung zum behandeln von werkstücken aus porösem kohlenstoff-material
CN103060744B (zh) 一种超高温度下使用的复合型坩埚的制备方法
US6776936B2 (en) Process for making porous graphite and articles produced therefrom
EP3033155B1 (de) Apparat und verfahren zur vakuumaufreinigung
RU2486163C2 (ru) Способ изготовления изделий из керамоматричного композиционного материала
EP2039666B1 (de) Verfahren und Vorrichtung zur Silicierung von kohlenstoffhaltigen Werksstoffen
RU2542047C2 (ru) Способ и устройство для металлирования изделий паро-жидкофазным методом и способ регулирования проницаемости стыков между частями реторты в указанном устройстве
CA2547273C (en) Isostat for processing materials and method for removing ceramic material from metallic articles by using said isostat
RU2494998C2 (ru) Способ изготовления изделий из углерод-карбидокремниевого материала
RU2225354C2 (ru) Способ получения композиционного материала
RU2569385C1 (ru) Способ изготовления изделий из термостойких композиционных материалов
RU2723247C1 (ru) Устройство для силицирования паро-жидкофазным методом
RU2521170C2 (ru) Способ изготовления изделий из композиционных материалов
RU2554645C2 (ru) Способ изготовления изделий из реакционноспеченного композиционного материала
RU2543243C2 (ru) Способ изготовления изделий из композиционных материалов на основе матрицы из карбидов металлов, получаемой с применением способа регулируемого введения металла в поры углеродсодержащего материала заготовки
CN104245580B (zh) 硅精制装置
Okuyama et al. Effective preparation of SiC nanoparticles by the reaction of thermal nitrogen plasma with solid SiC
KR100958097B1 (ko) 연속 공정에 의한 반응소결 탄화규소 다공체의 제조 방법
RU2401719C2 (ru) Способ изготовления изделий из композита на основе карбида титана
RU2513497C1 (ru) Способ изготовления изделий из углерод-карбидокремниевого материала в форме оболочек
CN112585304A (zh) 一种晶体生长方法和装置
RU2468991C1 (ru) Способ изготовления изделий из углерод-карбидокремниевого материала
RU2516096C2 (ru) Способ изготовления изделий из композиционных материалов

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 13764574

Country of ref document: EP

Kind code of ref document: A2