WO2013141252A1 - 生物多様性評価指標計算装置、方法、及びプログラム - Google Patents

生物多様性評価指標計算装置、方法、及びプログラム Download PDF

Info

Publication number
WO2013141252A1
WO2013141252A1 PCT/JP2013/057872 JP2013057872W WO2013141252A1 WO 2013141252 A1 WO2013141252 A1 WO 2013141252A1 JP 2013057872 W JP2013057872 W JP 2013057872W WO 2013141252 A1 WO2013141252 A1 WO 2013141252A1
Authority
WO
WIPO (PCT)
Prior art keywords
mine
biodiversity
precipitation
evaluation index
index
Prior art date
Application number
PCT/JP2013/057872
Other languages
English (en)
French (fr)
Inventor
満 柿元
裕子 渡戸
小林 英樹
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2014506249A priority Critical patent/JP5815120B2/ja
Priority to EP13764564.4A priority patent/EP2830015A4/en
Publication of WO2013141252A1 publication Critical patent/WO2013141252A1/ja
Priority to US14/490,735 priority patent/US20150012316A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/13File access structures, e.g. distributed indices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • G06F16/313Selection or weighting of terms for indexing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management

Definitions

  • Embodiments of the present invention relate to a biodiversity evaluation index calculation apparatus, method, and program.
  • the problem to be solved by the present invention is to provide a biodiversity evaluation index calculation apparatus, method, and program capable of quantitatively evaluating the influence on biodiversity of each mine with a unified standard.
  • the biodiversity evaluation index calculation apparatus includes a first calculation unit, a second calculation unit, and a third calculation unit.
  • the first calculation unit refers to a vegetation database that stores data relating to vegetation classification, and calculates vegetation and habitat coefficients representing at least one of plant species diversity and habitat species diversity in a plurality of regions. Calculate every time.
  • the second calculation unit refers to a protected area geographic database in which protected area types and ranges are described for each of the protected areas, and based on the protected area type and the vegetation and habitat coefficient, A biodiversity value representing the richness of diversity is calculated for each of the plurality of areas.
  • the third calculation unit refers to a mine database that describes the location, yield, purity, and mineral species of each mine, and provides a biodiversity assessment index that represents the impact of mine mining on biodiversity.
  • the calculation is performed for each of the plurality of mines.
  • the third calculation unit calculates a mine influence range indicating a range where the mine mining affects the surrounding environment based on the output, the purity, and the mineral type, and the mine influence in the plurality of regions.
  • One or more regions included in the range are specified, and the biodiversity evaluation index is calculated by adding the biodiversity values of the one or more regions.
  • FIG. 1 is a block diagram schematically showing a biodiversity evaluation index calculation device according to a first embodiment.
  • the figure explaining the method for the vegetation / habitat coefficient calculation unit shown in FIG. The figure which shows the correspondence table of the classification number of a protected area and a protected area coefficient based on 1st Embodiment.
  • the block diagram which shows roughly the biodiversity evaluation index calculation apparatus which concerns on 3rd Embodiment. 14 is a flowchart schematically showing an operation example of the procurement decision support unit shown in FIG. 13.
  • the figure which shows an example of the mine operation plan data shown in FIG. The figure explaining the variable shown in FIG.
  • FIG. 1 schematically shows a biodiversity evaluation index calculation apparatus 100 according to the first embodiment.
  • the biodiversity evaluation index calculation apparatus 100 includes a vegetation database 101, a protected area geography database 102, a mine database 103, a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, A biodiversity evaluation index calculation unit 106 and a display unit 107 are provided.
  • the biodiversity described herein includes ecosystem diversity, species diversity, and genetic diversity.
  • the biodiversity evaluation index calculation device 100 is realized by an arithmetic processing device 120 such as a CPU executing a control program stored in a storage device 110 including ROM, RAM, HDD, and the like.
  • the arithmetic processing unit 120 reads a control program from a ROM or an HDD and develops the control program on a RAM, so that a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, and a biodiversity evaluation are performed. It functions as the index calculation unit 106.
  • the storage device 110 functions as a vegetation database 101, a protected area geographic database 102, and a mine database 103.
  • the biodiversity evaluation index calculation device 100 may be realized by one arithmetic processing device or may be realized by a plurality of arithmetic processing devices.
  • the vegetation database (DB) 101 stores data related to vegetation classification.
  • the vegetation classification data detailed worldwide vegetation data obtained by remote sensing can be used.
  • the classification includes the type of vegetation and the distribution for each type (for example, the proportion of vegetation in the region).
  • vegetation is classified into 14 types. This classification is based on the standard land classification proposed by IGBP (International
  • IGBP International
  • Programme International
  • the world map is divided into a plurality of cells (regions), and a vegetation type is assigned to each cell. Each cell is a square area having a side of 1 km, that is, the resolution is 1 km.
  • classification of vegetation is not limited to the example performed in accordance with the classification of IGBT, and other classifications may be applied as long as the classification is related to vegetation.
  • the vegetation / habitat coefficient calculation unit 104 calculates a vegetation / habitat coefficient from the vegetation classification.
  • the vegetation / habitat coefficient calculation unit 104 converts the vegetation classification into a vegetation / habitat coefficient using the correspondence table shown in FIG.
  • the vegetation / habitat coefficient is a value weighted by at least one of vegetation and inhabiting animals in land and water, and represents at least one of plant species diversity and inhabitant species diversity. Species diversity is judged using at least the number of species as an indicator.
  • the vegetation / habitat coefficient is set to be higher as the variety of species is higher (that is, as the number of species is larger). For example, since forests (corresponding to classification numbers 1-5 in FIG. 2) are homes of various types of animals and plants, the vegetation / habitat coefficient of forests is high.
  • the desert (corresponding to the classification number 12 in FIG. 2) has a small number of animals and plants.
  • the urban area (corresponding to the classification number 13 in FIG. 2) emphasizes the productivity of human activities and basically excludes natural ecosystems. For this reason, the vegetation / habitat coefficients for deserts and urban areas are low.
  • specific numerical values are assigned to V1 to V13 described in the column of the vegetation / inhabiting animal coefficient.
  • the same value may be given to the classification that the diversity of the species can be regarded as the same level.
  • V1 may be the same value as V2.
  • the vegetation data is, for example, two-dimensional array data, and the positions of array elements (cells) are specified by latitude and longitude.
  • the vegetation / habitat coefficient calculation unit 104 generates an array in which the values of each element are converted into vegetation / habitat coefficients.
  • one square lattice represents one cell.
  • a biodiversity value index is calculated for land. For this reason, as shown in FIG. 2, no vegetation / habitat coefficient is set for water areas (classification number 0) such as lakes and seas.
  • the biodiversity value index is calculated for both land and water.
  • the weight of the vegetation / habitat coefficient of the water area is set according to the variety of species such as seaweed and fish.
  • the water ecosystem, especially the marine ecosystem is extremely important from the viewpoint of biodiversity, and by including the water area, it is possible to more accurately evaluate the impact of mining on biodiversity.
  • the protected area geography DB 102 stores protected area data describing the type and range of protected areas for each of the protected areas.
  • protected area data There are areas on the earth that are considered to be particularly valuable in maintaining biodiversity, such as areas where many land-specific organisms (animals and plants) live. These are designated as biological reserves, hot spots, national parks, etc. These areas have a particularly high impact on biodiversity.
  • the protected area is divided into 8 levels (Ia, Ib, II, III, IV, V, VI, no category) according to the importance. This classification is based on the IUCN (International Union For Conservation of Nature) category.
  • IUCN International Union For Conservation of Nature
  • the classification of protected areas is not limited to the example performed in accordance with the IUCN category, and other classifications may be applied.
  • Fig. 4 shows a correspondence table used when converting the protected area classification into protected area coefficients.
  • Protected area coefficients are weighted by protected areas defined on land or sea that are legally or otherwise effectively managed for the purpose of protecting biodiversity and natural and related cultural resources. This is the value that was given and given to areas where protection is needed from at least one perspective of ecosystem diversity, species diversity, and genetic diversity.
  • the protected area coefficient is set to be higher as the importance (for example, the degree of management intervention, the importance of management, the urgency, etc.) is higher.
  • specific numerical values are assigned to P1 to P9 described in the column of protected area coefficient.
  • the same value may be given to the classification that the importance level of the protected area can be regarded as the same level.
  • the protected area coefficient may be calculated by the biodiversity value calculation unit 105 using the correspondence table of FIG. 4, or may be calculated in advance and stored in the protected area geography DB 102.
  • the biodiversity value calculation unit 105 calculates the biodiversity value from the vegetation / habitat coefficient and the protected area coefficient.
  • Biodiversity value reflects the species diversity mainly due to vegetation and at least one of ecosystem diversity, species diversity, and genetic diversity with and without protected areas Represents the richness of biodiversity.
  • the biodiversity value is defined by the product of the vegetation / habitat coefficient and the protected area coefficient.
  • the biodiversity value calculation unit 105 calculates the biodiversity value for each cell by multiplying the vegetation / habitat coefficient by the protected area coefficient.
  • the boundary of the protected area 501 and the boundary of the cell do not always coincide with each other, so the following processing is performed.
  • the biodiversity value calculation unit 105 takes out the portion where the cell i and the protected area overlap, and calculates the ratio ⁇ i of the area of the overlapping portion in the area of the cell i as shown in the following formula (1). To do.
  • the biodiversity value calculation unit 105 calculates the biodiversity value of the cell i, for example, according to the following mathematical formula (2).
  • Biodiversity value Vegetation / habitat coefficient x [(1- ⁇ i ) + ⁇ i x protected area coefficient] (2) Since the number of cells is very large, it takes a lot of time to calculate the biodiversity value for all cells. The biodiversity value needs to be calculated every time at least one of the vegetation DB 101 and the protected area geography DB 102 is updated. As will be described later, it is assumed that the range of mine mining affecting biodiversity is about several kilometers, so the calculation of the biodiversity evaluation index representing the impact on mine mining biodiversity is about 1 km. Resolution is necessary. That is, it is not preferable to reduce the resolution in order to reduce the number of cells.
  • the biodiversity value calculation unit 105 calculates the biodiversity value according to the hierarchization algorithm described below, thereby speeding up the calculation.
  • the layering algorithm will be described with reference to FIG.
  • the peripheral area including the biological reserve 601 is divided by a plurality of grids.
  • a lattice is a larger area than a cell.
  • the grid is typically set to 2 n times the cell size.
  • n is a natural number, and is set so that the lattice has the same scale as the target biological reserve.
  • the lattice is a square region having a side length of 4 km.
  • each lattice overlaps with the biological reserve. If the grid overlaps the biosphere, it is determined whether the grid size is larger than the cell size. If the size of the lattice is larger than the size of the cell, the lattice is divided into a plurality of (for example, four) small lattices. Further, it is determined whether or not each small lattice overlaps with the biological reserve. Similarly, this process is recursively repeated until the size of the divided small lattice becomes equal to the cell size. As a result, as shown in FIG. 6, the peripheral area of the biological protection area 601 is divided by a lattice having a different size.
  • the ratio ⁇ i is calculated according to the formula (1), and the biodiversity value is calculated according to the formula (2).
  • This layering algorithm greatly reduces the number of searches for overlapping parts of the lattice and the biological reserve and the number of times of calculating the area of the overlapping part, resulting in faster calculation of biodiversity value. it can.
  • the mine DB 103 stores data on a plurality of mines in association with the mine position, annual output, purity, and mineral species.
  • purity represents the mass ratio of the mineral contained in this ore with respect to the ore.
  • the biodiversity evaluation index calculation unit 106 refers to the mine DB 103 and calculates, for each mine, a biodiversity evaluation index that represents the influence of mine mining on biodiversity from the vegetation / habitat coefficient and the biodiversity value. .
  • the biodiversity evaluation index calculation unit 106 includes a mine influence range calculation unit 701, an accumulation unit 702, and a resource mining coefficient multiplication unit 703.
  • a method in which the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index of a certain mine included in the mine DB 103 will be described.
  • the biodiversity evaluation index can be calculated in the same manner for other mines included in the mine DB 103.
  • the mine influence range calculation unit 701 calculates a mine influence range indicating a range where the mine mining affects the surrounding environment. Possible causes of mine mining affecting the surrounding environment include, for example, deforestation for mining, outflow of excavated soil, outflow of harmful substances contained in soil.
  • the mine influence range is assumed to be a circular region 802 within a certain distance range from the mine center 801 as shown in FIG.
  • ra be the radius of the mine influence range.
  • the scale can be estimated from the annual mining volume of the mine.
  • the annual mining output of the mine is estimated by dividing the annual output of the mineral by the purity of the ore.
  • the amount of mining represents the amount of soil and ore excavated.
  • Radius r a is calculated for example according to the following equation (3).
  • the coefficient A is, for example, the radius r a is determined to be 10km in the world's largest mines.
  • the annual mining volume in the world's largest mine is about 1.68 million tons.
  • the integrating unit 702 calculates an integrated value obtained by adding the biodiversity values of the cells within the mine influence range. For example, the integrating unit 702 calculates an integrated value according to the following mathematical formula (4).
  • ⁇ i indicates the ratio of the area of the portion where the cell i and the mine influence range overlap to the area of the cell i as in the following formula (5).
  • integrating unit 702 determine the range of cells that can be affected by the mine from the radius r a of the position and the mine-affected area of the mine rectangular. Subsequently, the ratio ⁇ i is calculated for all the cells in the rectangular range according to Equation (5), and the integrated value is calculated according to Equation (4).
  • the resource mining coefficient multiplication unit 703 calculates a resource mining coefficient according to the purity of the ore. If the ore purity is low, it is necessary to mine a larger amount in order to obtain a given output, and the impact of mine mining on biodiversity is increased.
  • the resource mining factor represents the magnitude of the impact of mine mining on biodiversity based on the purity of the ore.
  • the resource mining coefficient is calculated according to the following formula (6), for example.
  • the mineral species index is a weighting coefficient set for each mineral species. For example, the amount of water used and the amount of harmful substances flowing out differ depending on the mineral species.
  • the mineral species index is determined for each mineral species in consideration of the effect on biodiversity caused by the amount of water used, the amount of harmful substances flowing out, and the like.
  • the resource mining coefficient multiplication unit 703 may calculate the resource mining coefficient without using the mineral species index, that is, with the mineral species index as 1.
  • the resource mining coefficient multiplication unit 703 calculates a biodiversity evaluation index by multiplying the resource mining coefficient by the integrated value, for example, as shown in the following formula (7).
  • Biodiversity assessment index resource mining coefficient x integrated value (7)
  • the display unit 107 is a display device such as a liquid crystal display.
  • the display unit 107 displays the biodiversity evaluation index calculated for each mine.
  • the biodiversity evaluation index calculation apparatus includes a vegetation DB that stores data related to the distribution of vegetation classification, a protected area geography DB that stores data related to biological protected areas, and a mine
  • a mine DB that stores data on multiple mines by associating position, annual output, purity, and mineral species, the biodiversity of each of the multiple mines around the world is unified. The impact can be estimated quantitatively.
  • a method for further speeding up the calculation processing of the first embodiment will be described.
  • a world map is divided into a plurality of cells, and biodiversity values are calculated for all the cells.
  • the point of the calculation algorithm according to the second embodiment is to search for a biological reserve that overlaps with the mine influence range of this mine when attention is paid to a mine.
  • a data structure called an R-tree often used in geospatial information processing can be used.
  • An R-tree is a data structure similar to a B-tree and is used for indexing multidimensional information (for example, two-dimensional coordinate data), that is, a spatial index.
  • FIG. 9 shows the data structure of the R-tree.
  • the R-tree captures a region based on a rectangle.
  • a rectangular structure containing rectangles contained in a rectangle is represented by a tree structure.
  • the lowermost layer is a rectangle including target data (position, region, etc.).
  • a rectangle is the basis. By specifying a rectangle, a leaf having a rectangle that overlaps the rectangle can be acquired. This query can be speeded up by using a tree structure.
  • the method of searching for the biological protected area overlapping with the mine influence range is not limited to the example using the R-tree, and any method may be used.
  • FIG. 10 schematically shows a biodiversity evaluation index calculation apparatus 1000 according to the second embodiment.
  • a biodiversity evaluation index calculation apparatus 1000 in FIG. 10 includes a mine location management unit 1001 and a protected area / mine verification unit 1002 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 in FIG.
  • the mine location management unit 1001 and the protected area / mine collation unit 1002 are operated by the arithmetic processing unit 120 in the same manner as the vegetation / habitat coefficient calculation unit 104, the biodiversity value calculation unit 105, and the biodiversity evaluation index calculation unit 106. Can be realized.
  • the mine position management unit 1001 refers to the mine DB 103 and manages position information regarding the position of the mine using the R-tree.
  • the protected area / mine collation unit 1002 matches the positions of the mine and the protected area based on the position information from the protected area geography DB 1002 and the mine position management unit 1001 and identifies the cell for which the biodiversity value is to be calculated.
  • FIG. 11 shows an example of a cell whose biodiversity value is to be calculated. As shown in FIG. 11, the cell whose biodiversity value is to be calculated is a cell in which the protected area 1101 and the mine influence range 1102 overlap, and is a cell in a region 1103 surrounded by a thick line here. From FIG. 11, it can be seen that the number of biodiversity value calculation target cells is greatly reduced.
  • the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index by adding all the contributions from all the cells in the area 1103 shown in FIG.
  • the biodiversity evaluation index is calculated according to the following mathematical formula (8).
  • ⁇ i indicates the ratio of the area of the area where the protected area and the mine influence range overlap in the cell i to the area of the cell i as in the following formula (9).
  • ⁇ i indicates the ratio of the area of the area where the protected area and the mine influence range overlap in the cell i to the area of the cell i as in the following formula (9).
  • a portion where the protected area and the mine influence range overlap is indicated by hatching.
  • step S1201 one of a plurality of mines stored in the mine DB 103 is taken out.
  • step S1202 the mine is registered in the mine location management unit 1001.
  • the mine position management unit 1001 stores a mine together with position information. For example, the mine position management unit 1001 calculates a rectangle (mine rectangle) surrounding the mine influence range and registers the mine rectangle in the R-tree.
  • step S1203 it is determined whether all the mines in the mine DB 103 have been registered in the mine position management unit 1001. If there is an unregistered mine, the process returns to step S1201. When all the mines are registered in the mine position management unit 1001, the process proceeds to step S1204.
  • step S1204 one of a plurality of protected areas stored in the protected area geography DB 102 is taken out.
  • the protected area / mine collation unit 1002 refers to the mine location management unit 1001 and searches for a mine that intersects with the protected area. For example, the protected area / mine collation unit 1002 calculates a rectangle surrounding the protected area (protected area rectangle), makes an inquiry to the R-tree in this protected area rectangle, and selects all the mine rectangles that overlap the protected area rectangle. Take out. If there is a mine intersecting with the protected area, the process proceeds to step S1206; otherwise, the process proceeds to step S1208.
  • a biodiversity evaluation index for one of the mines detected in step S1205 is calculated. Specifically, first, a cell where a protected area and a mine overlap is specified. Subsequently, the vegetation / habitat coefficient calculation unit 104 calculates the vegetation / habitat coefficient for each of the specified cells, and the biodiversity value calculation unit 105 calculates the biodiversity value for each of the specified cells. calculate. Further, the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index according to the equation (8).
  • step S1207 it is determined whether there is an unprocessed mine among the mines detected in step S1205. If there is an unprocessed mine, the process returns to step S1206; otherwise, the process proceeds to step S1207.
  • step S1207 it is determined whether all protected areas stored in the protected area geography DB 102 have been processed. If there is an unprocessed protected area, the process returns to step S1205. If all protected areas have been processed, the series of processing ends.
  • the biodiversity evaluation index calculated by the calculation algorithm (referred to as basic algorithm) according to the first embodiment is the biodiversity evaluation index calculated by the calculation algorithm (referred to as high-speed algorithm) according to the second embodiment. Does not match exactly.
  • a cell 1603 in FIG. 16 intersects with a protected area 1601 and also a mine influence range 1602.
  • this cell 1603 contributes to the calculation of the mine biodiversity assessment index.
  • the protected area 1601 does not overlap with the mine influence area 1602. Therefore, in the high-speed algorithm, the cell 1603 does not contribute to the calculation of the mine biodiversity evaluation index.
  • the fact that the cell intersects with the protected area means ⁇ > 0, and the fact that the cell intersects with the mine influence range means ⁇ > 0.
  • the high-speed algorithm In the high-speed algorithm, the overlap between the protected area and the mine impact area is accurately observed, so it can be said that the high-speed algorithm is valid in principle from the viewpoint of calculating the biodiversity evaluation index. In that sense, the basic algorithm can be regarded as approximating ⁇ to ⁇ ⁇ ⁇ . This is because the basic algorithm calculates the biodiversity value and the biodiversity assessment index in separate phases, and does not consider the location and size of the mine impact area when calculating the biodiversity value. Derived from.
  • the biodiversity value output by the basic algorithm is not only used for calculating biodiversity assessment indices, but is also a meaningful quantity for measuring the value of land, and various applications can be expected. Therefore, although the high-speed algorithm is appropriate for the calculation of the biodiversity evaluation index itself, the meaning of the basic algorithm is not lost, and the two algorithms can be properly used according to the application.
  • FIG. 17 shows the result of calculating the biodiversity evaluation index based on these data.
  • the biodiversity evaluation index is simply referred to as an evaluation index.
  • the evaluation index (basic) is a result calculated by the calculation algorithm (basic algorithm) according to the first embodiment
  • the evaluation index (high speed) is the calculation algorithm (high speed algorithm) according to the second embodiment. It is the result of calculation.
  • the biodiversity evaluation index of the copper (Cu) mine is one to two digits larger than that of the iron (Fe) mine. This is due to the fact that the purity of copper ore is usually 1% or less, whereas the purity of iron ore is usually about 50%.
  • the biodiversity evaluation index of the business is calculated using the biodiversity evaluation index of the mine calculated by the biodiversity evaluation index calculation apparatus according to the first embodiment.
  • the mine biodiversity evaluation index may be the one calculated by the biodiversity evaluation index calculating apparatus according to the second embodiment.
  • FIG. 13 schematically shows a biodiversity evaluation index calculation apparatus 1300 according to the third embodiment.
  • the biodiversity evaluation index calculation apparatus 1300 in FIG. 13 includes a procurement database 1301, a manufacturing database 1302, and a procurement decision support unit 1303 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 in FIG.
  • the procurement decision support unit 1303 can be realized by the arithmetic processing device 120, and the procurement database 1301 and the manufacturing database 1302 can be realized by the storage device 110.
  • the procurement DB 1301 stores information indicating a mine where a business company procures metal resources, a mineral type procured from the mine, and a procurement amount.
  • the production DB 1302 stores information on what purpose and how much metal resources are used for what purpose in the business. In the case of the manufacturing industry, the manufacturing DB 1302 stores information indicating how much metal resources are used for which products.
  • the procurement decision support unit 1303 calculates a biodiversity evaluation index basic unit for each metal resource used by the company based on the procurement DB 1301.
  • step S1402 the procurement decision support unit 1303 calculates the biodiversity of the business from the amount (kg) of metal resources used in the business and the biodiversity evaluation index basic unit of the metal resources according to the following formula (11). A sex evaluation index is calculated.
  • the biodiversity evaluation index calculated by the procurement decision support unit 1303 may be a value for the entire business or a value for one product manufactured by a company.
  • the biodiversity evaluation index is calculated with reference to the procurement DB 1301 and the manufacturing DB.
  • the biodiversity evaluation index may be calculated based on data input by the user. For example, when a user inputs a mineral resource supplier, a procurement amount, and the like, a biodiversity evaluation index may be calculated in accordance with the user input. As a result, users can make decisions to reduce the impact on biodiversity when deciding the types of minerals used in a business (product), the source of mineral resources, the amount of procurement, etc. .
  • FIG. 15 shows an example in which the biodiversity evaluation index of a gasoline vehicle and the biodiversity evaluation index of an electric vehicle are compared.
  • Electric vehicles use more copper than gasoline vehicles.
  • the biodiversity evaluation index for electric vehicles is calculated to be higher than the biodiversity evaluation index for gasoline vehicles. Therefore, it can be seen that an electric vehicle has a greater influence on biodiversity than a gasoline vehicle. This is due to the large amount imported from mines with high biodiversity assessment indices. Therefore, if the supplier is changed to a mine with a low biodiversity evaluation index, the biodiversity evaluation index for electric vehicles can be limited to the biodiversity evaluation index for gasoline vehicles.
  • the procurement decision support unit 1303 that calculates the biodiversity evaluation index of a business (or product)
  • the user of the metal resource can The impact on biodiversity can be easily assessed and the business process can be modified to minimize the impact on biodiversity.
  • a method for evaluating a deposit by remote sensing using a satellite or an aircraft capable of acquiring data in a wide area will be briefly described.
  • altered minerals are generated by the reaction of fluidized hot water and rocks. These altered minerals are often arranged concentrically around the deposit.
  • an altered mineral for example, alunite (KAl 3 (SO 4 ) 2 (OH) 6 ) is known.
  • Such an altered mineral has a reflection spectrum peculiar to the substance. Therefore, the distribution of the altered mineral on the ground surface can be obtained by measuring reflection in a plurality of wavelength bands by remote sensing. Since the composition of altered minerals depends on the mineral species contained in the deposit, the mineral species can be estimated from remote sensing. Further, the position of the deposit (including the two-dimensional position and spread) can be estimated from the spatial distribution of the altered mineral.
  • ore exploration data In order to evaluate the depth of the ore deposit and the purity of the ore contained therein, in addition to remote sensing, ore exploration methods such as gravity exploration, magnetic exploration, and electromagnetic exploration can be used. In particular, the investigation using the boring resistance can obtain high resolution information such as depth and purity. Below, the data obtained from these ore exploration techniques are collectively referred to as ore exploration data.
  • FIG. 18 schematically shows a biodiversity evaluation index calculation apparatus 1800 according to the fourth embodiment.
  • the biodiversity evaluation index calculation apparatus 1800 includes a vegetation DB 101, a protected area geography DB 102, a mine DB 103, a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, and a biodiversity evaluation.
  • An index calculation unit 106, a display unit 107, and a virtual mine data generation unit 1810 are provided.
  • the mine DB 103 of this embodiment stores data related to the virtual mine generated by the virtual mine data generation unit 1810.
  • the virtual mine refers to, for example, a mine planned for development.
  • the virtual mine data generation unit 1810 includes an ore exploration DB 1801, a position estimation unit 1802, a mineral species estimation unit 1803, a purity estimation unit 1804, and a yield / purity calculation unit 1807.
  • the ore exploration DB 1801 records ore exploration data.
  • Mineral exploration data includes, for example, information on the surface reflection spectrum observed by remote sensing (or information on the spatial distribution of altered minerals obtained by remote sensing) and depth of deposits obtained by boring anti-exploration. And ore purity information.
  • the position estimating unit 1802 estimates the position of the deposit (including the spread and depth) from the spatial distribution of the altered mineral.
  • the position estimation unit 1802 can estimate the depth of the deposit more accurately by using the spatial distribution of the altered mineral and the data obtained by boring anti-exploration.
  • the mineral species estimation unit 1803 estimates the mineral species contained in the deposit from the type of the altered mineral.
  • the purity estimation unit 1804 estimates the purity of the ore contained in the deposit using, for example, boring anti-exploration data. Since the purity of the ore can vary depending on the position in the ore deposit, the purity estimation unit 1804 estimates the distribution of the purity of the ore.
  • the estimation results by the position estimation unit 1802, the mineral species estimation unit 1803, and the purity estimation unit 1804 are obtained as the deposit estimation data 1805, and the output / purity calculation unit 1807. Given to.
  • the position estimation unit 1802, the mineral species estimation unit 1803, and the purity estimation unit 1804 are collectively referred to as a deposit estimation unit 1809.
  • the mine operation plan data 1806 designates a mine operation plan (also referred to as a deposit development plan) when a mine is created at a deposit position, and is input by an operator or a user.
  • the mine operation plan data 1806 specifies, for example, the position and scale (two-dimensional extent and depth) of the mine for each scheduled mine operation year.
  • FIG. 19 shows an example of mine operation plan data 1806.
  • the position (x, y) of the mine, the radius r of the mine, and the depth d of the mine are designated for each operation year.
  • the position (x, y) indicates, for example, the center position on the ground surface of the area where the mining mine is dug, and is represented by latitude and longitude.
  • the radius r indicates the horizontal extent of the area where the mining mine is excavated
  • the depth d indicates the depth from the ground surface of the area where the mining mine is excavated.
  • the mine operation plan data 1806 is not limited to the example shown in FIG. 19 and may be any data as long as the position and scale of the mine can be specified.
  • the production / purity calculation unit 1807 calculates the amount of ore to be mined and the purity of the ore at the location for each operation year. Further, the output / purity calculation unit 1807 calculates the output of the obtained mineral for each operation year from the amount of ore mined and the purity of the ore.
  • the output and purity calculated by the output / purity calculation unit 1807, the position of the mine included in the mine operation plan data 1806 (that is, the position of the mine), and the mineral species included in the deposit estimation data 1805 are: It is stored in the mine DB 103 as virtual mine data. That is, the mine DB 103 of the present embodiment stores data related to the virtual mine by associating the position, yield, purity, and mineral species for each operation year.
  • the biodiversity evaluation index calculation unit 106 can calculate the biodiversity evaluation index of the virtual mine. .
  • the biodiversity evaluation index calculation unit 106 can calculate the biodiversity evaluation index of the virtual mine.
  • FIG. 21 schematically shows a biodiversity evaluation index calculation apparatus 2100 according to the fifth embodiment.
  • a biodiversity evaluation index calculation apparatus 2100 shown in FIG. 21 includes a precipitation database (DB) 2101 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 shown in FIG.
  • DB precipitation database
  • information related to precipitation is recorded.
  • the amount of rainfall is recorded, for example, in cell units or other area units.
  • the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index including the influence of rain by referring to the precipitation DB 2101 together with the mine DB 103.
  • the biodiversity evaluation index calculation unit 106 includes a mine impact range calculation unit 701, an accumulation unit 702, a resource mining coefficient multiplication unit 703, and a precipitation impact assessment unit (precipitation impact assessment unit). 2201) (also referred to as an index calculation unit).
  • the precipitation influence evaluation unit 2201 evaluates the precipitation influence index from the precipitation recorded in the precipitation DB 2101.
  • the precipitation impact index is used to reflect the impact of rain on the biodiversity assessment index.
  • FIG. 23 schematically shows the biodiversity evaluation index calculation unit 106 according to the first example of the present embodiment.
  • the biodiversity evaluation index calculated by the method described in the first to fourth embodiments is multiplied by a coefficient for reflecting the influence of rain (that is, the precipitation influence index).
  • Precipitation impact assessment unit 2201 calculates a precipitation impact index from precipitation at the mine location.
  • the precipitation at the mine position is, for example, the average value of the precipitation in the cells included in the mine influence range calculated by the mine influence range calculation unit 701.
  • the precipitation impact assessment unit 2201 multiplies the biodiversity assessment index calculated by the resource mining coefficient multiplication unit 703 by the calculated rainfall impact assessment index, as shown in the following formula (12), to obtain biodiversity.
  • the biodiversity evaluation index (precipitation amount) in Expression (12) indicates a biodiversity evaluation index including the influence of rain.
  • FIG. 24 shows an example of a method for determining the precipitation influence index.
  • the precipitation influence index is set to increase as the precipitation amount increases.
  • the precipitation influence index is 1.
  • observation data has been obtained that the amount of inflow of harmful substances into groundwater is B-fold when the precipitation is A meter per year. Based on this observation data, if the precipitation is A meter annually, the precipitation impact index is B.
  • the graph shown in FIG. 24 can be obtained by smoothly connecting two known points (0, 1) and (A, B).
  • the point (A, B) may be based on theoretical estimation.
  • the method of estimating the curve representing the precipitation effect index from one observation value was shown.
  • the curve is calculated by a method such as interpolation or fitting. It can also be estimated.
  • FIG. 25 shows another example of the method for determining the precipitation influence index.
  • the precipitation influence index changes stepwise with respect to the precipitation.
  • the precipitation impact indicator is 1 when the annual precipitation is 0 meter or more and less than C meters
  • F when the annual precipitation is C meters or more and less than D meters
  • the annual precipitation is D. If it is more than meter but less than E meter, set as B.
  • FIG. 26 schematically illustrates the biodiversity evaluation index calculation unit 106 according to the second example of the present embodiment.
  • the sum of precipitation in the mine impact range is considered.
  • the mine has a mine influence range r a in accordance with the scale. By rain on the mine effect the range r a, toxic substances may be considered to flow into the groundwater.
  • the precipitation influence evaluation unit 2201 determines a precipitation influence index for each cell within the mine influence range.
  • the determination of the precipitation influence index can be executed according to the method described in the first example. At this time, annual precipitation is taken as precipitation.
  • the integrating unit 702 calculates an integrated value obtained by adding the biodiversity values of the cells within the mine influence range, using the precipitation effect index calculated for each cell by the precipitation effect evaluating unit 2201. For example, the integrating unit 702 calculates an integrated value according to the following mathematical formula (13).
  • the biodiversity value is calculated by the biodiversity value calculation unit 105 according to Equation (2).
  • ⁇ i is the ratio of the area of the cell i and the area affected by the mine to the area of the cell i, as in Equation (5).
  • Equation (13) By calculating the integrated value according to Equation (13), it is possible to incorporate into the biodiversity impact index the effect of the area expansion of the mine impact range and the precipitation effect for each cell within that range.
  • the biodiversity evaluation index calculation unit 106 of the second example calculates the biodiversity evaluation index according to the following mathematical formula (14).
  • FIG. 27 schematically illustrates the biodiversity evaluation index calculation unit 106 according to the third example of the present embodiment.
  • the third example incorporates the effect of expanding the range in which biodiversity is affected by the release of harmful substances (also called biodiversity affecting substances) through groundwater. This effect can be incorporated into the biodiversity assessment index by expanding the mine impact range according to rainfall.
  • Mine influence range calculating unit 701 is calculated according using the rainfall effect index determined by rainfall impact evaluating unit 2201, mine impact of not considering the precipitation range r a (e.g. Equation (3) .) Is corrected, and the mine impact range r a ′ after taking into consideration the effect of precipitation is calculated.
  • the mine influence range r a ′ after considering the influence of precipitation is calculated according to the following formula (15).
  • precipitation effect index for mining influence range r a that does not consider precipitation, given as one of the factors mines influence range after precipitation effects considering r a 'increases much.
  • mine influence range r a post precipitation effect consideration ' as shown in FIG. 28, Enlarge mining influence range r a that does not consider precipitation.
  • the mine influence range r a ′ after considering the influence of precipitation is used.
  • the precipitation influence index is estimated by estimating how much harmful substances may spread due to the influence of groundwater. Assume that it is estimated by observation or theoretical estimation that harmful substances contained in the soil discharged from the mine have spread to a radius ra 'km when the precipitation at the mine location is A meter annually.
  • the precipitation influence index b at this time can be calculated as in the following formula (16).
  • r a r a ′ / r a (16)
  • r a 10km when not considering the precipitation, if the hazardous material it was found that extends to 12km by observation, rainfall effect index of 1.2.
  • the two points (0, 1) and (A, 1.2) are connected smoothly as shown in FIG. 24, or by connecting stepwise as shown in FIG.
  • the relationship of indicators can be determined.
  • the method of estimating the relationship between precipitation and precipitation impact index from one observation value was shown, but when observation values for multiple mines or multiple precipitations are obtained, interpolation or fitting is used. Curves can also be estimated.
  • the biodiversity evaluation index calculation apparatus evaluates the precipitation influence index according to the precipitation, and calculates the biodiversity evaluation index using the precipitation influence index.
  • the influence of rain can be incorporated into the biodiversity evaluation index.
  • the instructions shown in the processing procedure shown in the above-described embodiment can be executed based on a program that is software.
  • a general-purpose computer system stores this program in advance and reads this program, so that the same effects as those obtained by the biodiversity evaluation index calculation apparatus described above can be obtained.
  • the instructions described in the above-described embodiments are, as programs that can be executed by a computer, magnetic disks (flexible disks, hard disks, etc.), optical disks (CD-ROM, CD-R, CD-RW, DVD-ROM, DVD). ⁇ R, DVD ⁇ RW, etc.), semiconductor memory, or a similar recording medium. As long as the recording medium is readable by the computer or the embedded system, the storage format may be any form.
  • the computer reads the program from the recording medium and causes the CPU to execute instructions described in the program based on the program, the same operation as the biodiversity evaluation index device of the above-described embodiment is realized. Can do.
  • the computer acquires or reads the program, it may be acquired or read through a network.
  • the OS operating system
  • database management software database management software
  • MW middleware
  • a part of each process for performing may be executed.
  • the recording medium in the present embodiment is not limited to a medium independent of a computer or an embedded system, but also includes a recording medium in which a program transmitted via a LAN, the Internet, or the like is downloaded and stored or temporarily stored.
  • the number of recording media is not limited to one, and when the processing in this embodiment is executed from a plurality of media, it is included in the recording medium in this embodiment, and the configuration of the media may be any configuration.
  • the computer or the embedded system in the present embodiment is for executing each process in the present embodiment based on a program stored in a recording medium.
  • the computer or the embedded system includes a single device such as a personal computer or a microcomputer.
  • the system may be any configuration such as a system connected to the network.
  • the computer in this embodiment is not limited to a personal computer, but includes an arithmetic processing device, a microcomputer, and the like included in an information processing device. ing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Mining & Mineral Resources (AREA)
  • Development Economics (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 一実施形態に係る生物多様性評価指標計算装置は、第1計算部、第2計算部、及び第3計算部を含む。第1計算部は、植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を計算する。第2計算部は、保護区地理データベースを参照して、保護区の種類と植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を計算する。第3計算部は、鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、複数の鉱山毎に計算する。この第3計算部は、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲に含まれる領域の生物多様性価値を足し合わせることにより生物多様性評価指標を計算する。

Description

生物多様性評価指標計算装置、方法、及びプログラム
 本発明の実施形態は、生物多様性評価指標計算装置、方法、及びプログラムに関する。
 今日の産業は、鉱山から産出される鉱物資源に依存している。特に、ベースメタルと呼ばれる鉄、銅、アルミニウムが重要である。世界規模の経済発展とともに、ベースメタルの需要は伸び続けている。リサイクルは、質も量もまだ十分なレベルではなく、鉱物資源は、依然として鉱山からの採掘に頼らざるを得ない。
 従来から、採掘のための土地の改変、採掘の際に生じる土壌の流出などにより、鉱山が周囲環境に大きな影響を与えることが指摘されている。さらに、鉱山は、生物多様性にも多大な影響を及ぼすと考えられている。このため、鉱山採掘の生物多様性に対する影響を定量的に評価することが重要であるとされている。
特開2003-102326号公報
 しかしながら、生物多様性に対する影響の評価は、その土地の生態系の固有の状況に応じて行われているため、異なった場所での生物多様性に対する影響を比較することは行われていない。即ち、世界中に広く分布している金属鉱山の生物多様性に対する影響を統一的に見積もる試みは行われていない。
 本発明が解決しようとする課題は、統一基準で、各鉱山の生物多様性に対する影響を定量的に評価することができる生物多様性評価指標計算装置、方法、及びプログラムを提供することにある。
 一実施形態に係る生物多様性評価指標計算装置は、第1計算部、第2計算部、及び第3計算部を含む。第1計算部は、植生の分類に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算する。第2計算部は、複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算する。第3計算部は、複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算する。この第3計算部は、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算する。
第1の実施形態に係る生物多様性評価指標計算装置を概略的に示すブロック図。 図1に示した植生・生息動物係数計算部が参照する、植生分類と植生・生息動物係数との対応表を示す図。 図1に示した植生・生息動物係数計算部が植生・生息動物係数を計算する手法を説明する図。 第1の実施形態に係る、保護区の分類番号と保護区係数との対応表を示す図。 セルと保護区との配置を概略的に示す図。 図1に示した生物多様性価値計算部が生物多様性価値を計算する際に用いる階層化アルゴリズムを説明する図。 図1に示した生物多様性評価指標計算部をより詳細に示すブロック図。 鉱山影響範囲を概略的に示す図。 第2の実施形態において鉱山影響範囲と重なる生物保護区を探索する方法の一例を説明する図。 第2の実施形態に係る生物多様性評価指標計算装置を概略的に示すブロック図。 第2の実施形態に係る生物多様性価値を計算する方法を説明する図。 図10の生物多様性評価指標計算装置の動作例を示すフローチャート。 第3の実施形態に係る生物多様性評価指標計算装置を概略的に示すブロック図。 図13に示した調達意思決定支援部の動作例を概略的に示すフローチャート。 ガソリン車の生物多様性評価指標と電気自動車の生物多様性評価指標を比較する図。 第1の実施形態に係る計算アルゴリズムによる計算結果と第2の実施形態に係る計算アルゴリズムによる計算結果の相違を説明する図。 第1及び第2の実施形態に従って生物多様性評価指標を計算した結果の一例を示す図。 第4の実施形態に係る生物多様性評価指標計算装置を概略的に示すブロック図。 図18に示した鉱山操業計画データの一例を示す図。 図19に示した変数を説明する図。 第5の実施形態に係る生物多様性評価指標計算装置を概略的に示すブロック図。 図19に示した生物多様性評価指標計算部を概略的に示すブロック図。 第5の実施形態の第1例に係る生物多様性評価指標計算部を概略的に示すブロック図。 図20に示した降水量影響評価部が降水量影響指標を計算する方法の一例を説明するグラフ。 図20に示した降水量影響評価部が降水量影響指標を計算する方法の他の例を説明するグラフ。 第5の実施形態の第2例に係る生物多様性評価指標計算部を概略的に示すブロック図。 第5の実施形態の第3例に係る生物多様性評価指標計算部を概略的に示すブロック図。 図27に示した鉱山影響範囲計算部によって計算される鉱山影響範囲を示す図。
 以下、必要に応じて図面を参照しながら、実施形態に係る生物多様性評価指標計算装置及び方法を説明する。なお、以下の実施形態では、同一の番号を付した部分については同様の動作を行うものとして、重ねての説明を省略する。
 (第1の実施形態) 
 図1は、第1の実施形態に係る生物多様性評価指標計算装置100を概略的に示している。この生物多様性評価指標計算装置100は、図1に示されるように、植生データベース101、保護区地理データベース102、鉱山データベース103、植生・生息動物係数計算部104、生物多様性価値計算部105、生物多様性評価指標計算部106、及び表示部107を備える。ここに記載される生物多様性は、生態系の多様性、種の多様性、及び遺伝的多様性を含む。
 本実施形態に係る生物多様性評価指標計算装置100は、CPUなどの演算処理装置120がROM、RAM及びHDDなどを含む記憶装置110に記憶されている制御プログラムを実行することにより、実現することが可能である。例えば、演算処理装置120は、ROM又はHDDから制御プログラムを読み込み、制御プログラムをRAM上に展開することにより、植生・生息動物係数計算部104、生物多様性価値計算部105、及び生物多様性評価指標計算部106として機能する。さらに、記憶装置110は、植生データベース101、保護区地理データベース102、及び鉱山データベース103として機能する。なお、生物多様性評価指標計算装置100は、1つの演算処理装置により実現されてもよく、複数の演算処理装置により実現されてもよい。
 植生データベース(DB)101は、植生の分類に関するデータを格納する。植生の分類に関するデータとしては、リモートセンシングによって得られる全世界規模の詳細な植生データを利用することができる。ここで、分類は、植生の種類と種類毎の分布(例えば、領域内で植生が占める割合)とを含む。一例の植生データでは、図2に示すように、植生は14種類に分類される。この分類は、IGBP(International Geosphere-Biosphere Programme)が提唱する標準的な土地分類に準拠している。この植生データでは、世界地図を複数のセル(領域)に分割し、それぞれのセルに植生種類を割り当てている。各セルは、一辺の長さが1kmの正方形の領域であり、即ち、分解能は、1kmである。
 なお、植生の分類は、IGBPの分類に準拠して行われる例に限らず、植生に関する分類であれば他の分類を適用してもよい。
 植生・生息動物係数計算部104は、植生分類から植生・生息動物係数を計算する。例えば、植生・生息動物係数計算部104は、図2に示される対応表を用いて、植生分類を植生・生息動物係数に変換する。植生・生息動物係数は、陸地及び水域における植生及び生息動物の少なくとも一方によって重み付けをした値であり、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す。種の多様性は、少なくとも種の数を指標として判断される。本実施形態では、植生・生息動物係数は、種の多様性が高いほど(即ち、種の数が多いほど)、高い値になるよう設定する。例えば、森林(図2の分類番号1-5に対応する。)は多種の動植物の住みかであることから、森林の植生・生息動物係数は高い値になる。一方、砂漠(図2の分類番号12に対応する。)は動植物の数も種類も少ない。また、都市部(図2の分類番号13に対応する。)は、人間活動の生産性を重視して、基本的に自然の生態系を排除している。このことから、砂漠及び都市部の植生・生息動物係数は、低い値になる。図2において、植生・生息動物係数の欄に記載されているV1~V13には、具体的な数値が付与される。なお、種の多様性が同レベルとみなせる分類には、同一の値が付与されてもよい。例えば、V1がV2と同じ値であってもよい。
 植生データは、例えば、二次元配列データであり、配列の要素(セル)の位置は、緯度及び経度で特定される。植生・生息動物係数計算部104は、図3に示すように、各要素の値を植生・生息動物係数に変換した配列を生成する。図3では、1つの正方格子が1つのセルを表す。
 なお、本実施形態では、陸地を対象として生物多様性価値指標を算出する例を説明している。このため、図2に示されるように、湖や海などの水域(分類番号0)については植生・生息動物係数を設定していない。他の実施形態では、陸地及び水域の両方を対象として生物多様性価値指標を算出する。この場合、水域の植生・生息動物係数は、海草や魚など種の多様性に応じて重み付けした値を設定する。水域の、特に、海の生態系は、生物多様性の観点から極めて重要であり、水域も考慮に含めることで、鉱山採掘の生物多様性に対する影響をより正確に評価することが可能になる。
 保護区地理DB102は、複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区データを格納する。地球には、土地固有の生物(動植物)が多く住む地域など、生物多様性を維持する上で特に価値が高いと考えられる地域が存在する。これらは、生物保護区、ホットスポット、国立公園などの形で指定されている。これらの地域は、生物多様性に対する影響が特に高い。一例の保護区データでは、その重要度に従って保護区が8段階(Ia、Ib、II、III、IV、V、VI、カテゴリ無し)にレベル分けされる。この分類は、IUCN(International Union for Conservation of Nature)カテゴリに準拠している。なお、保護区の分類は、IUCNカテゴリに準拠して行われる例に限らず、他の分類を適用してもよい。
 図4は、保護区分類を保護区係数に変換する際に用いる対応表を示す。保護区係数は、生物多様性、及び自然資源や関連した文化的資源の保護を目的として、法的に若しくは他の効果的によって管理される陸域または海域で定義された保護区によって重みづけを行った値であり、生態系の多様性、種の多様性、及び遺伝的多様性の少なくとも1つの観点から保護が必要とされる地域に与えられる。本実施形態では、保護区係数は、重要度(例えば、管理の介在の度合い、管理の重要度、急務性など)が高いほど高い値になるように設定する。図4において、保護区係数の欄に記載されているP1~P9には、具体的な数値が付与される。なお、保護区の重要度が同レベルとみなせる分類には、同一の値が付与されてもよい。なお、保護区係数は、生物多様性価値計算部105が図4の対応表を用いて計算してもよく、事前に計算されて保護区地理DB102に格納されていてもよい。
 生物多様性価値計算部105は、植生・生息動物係数及び保護区係数から、生物多様性価値を計算する。生物多様性価値は、主に植生に起因する生物の種の多様性と、保護区の有無による生態系の多様性、種の多様性、及び遺伝的多様性のうちの少なくとも1つとを反映した生物多様性の豊かさを表す。本実施形態では、植生・生息動物係数と保護区係数の積で生物多様性価値を定義する。基本的には、生物多様性価値計算部105は、セル毎に、植生・生息動物係数に保護区係数を掛けることにより生物多様性価値を計算する。ただし、図5に示すように、保護区501の境界とセルの境界とが必ずしも一致しないので、次のような処理を行う。
 まず、生物多様性価値計算部105は、セルiと保護区とが重なっている部分を取り出し、下記数式(1)のように、重なり部分の面積がセルiの面積に占める割合αを計算する。
Figure JPOXMLDOC01-appb-M000001

 続いて、生物多様性価値計算部105は、例えば下記数式(2)に従って、セルiの生物多様性価値を計算する。
 生物多様性価値=植生・生息動物係数×[(1-α)+α×保護区係数]
                                   (2)
 セルの数が非常に多いため、全てのセルについて生物多様性価値を計算するには多くの時間がかかる。また、生物多様性価値は、植生DB101及び保護区地理DB102の少なくとも一方が更新されるたびに計算される必要がある。後述するように、鉱山採掘が生物多様性に影響が及ぶ範囲は数km程度と想定しているので、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標の計算には、1km程度の分解能は必要である。即ち、セルの数を減らすために分解能を落とすことは好ましくない。本実施形態では、生物多様性価値計算部105は、次に説明する階層化アルゴリズムに従って生物多様性価値を計算することで、計算を高速化している。 
 図6を参照して、階層化アルゴリズムについて説明する。階層化アルゴリズムでは、生物保護区601を含む周辺領域を複数の格子で分割する。格子は、セルより大きな領域である。格子は、典型的には、セルの大きさの2倍に設定する。ここで、nは、自然数であり、格子が対象の生物保護区と同程度のスケールとなるように設定する。図6の例では、格子は、一辺の長さが4kmの正方形の領域である。
 続いて、個々の格子が生物保護区と重なるか否かを判断する。格子が生物保護区と重なる場合、その格子のサイズがセルのサイズより大きいか否かを判断する。格子のサイズがセルのサイズより大きい場合、その格子を複数の(例えば4つの)小格子に分割する。さらに、個々の小格子が生物保護区と重なるか否かを判断する。同様にして、分割後の小格子のサイズがセルのサイズと等しくなるまで、この処理を再帰的に繰り返す。この結果、図6に示すように、生物保護区601の周辺領域が異なる大きさの格子で分割される。
 生物保護区と重ならない格子(又は小格子)では、生物保護区の生物多様性への寄与はなく、即ち、生物多様性価値はα=0として計算される。生物保護区内に位置する格子(又は小格子)では、格子内の各セルについて、α=1として数式(2)に従って生物多様性価値を計算する。さらに、生物保護区と部分的に重なるセルについては、数式(1)に従って割合αを計算し、数式(2)に従って生物多様性価値を計算する。
 この階層化アルゴリズムにより、格子と生物保護区とが重なる部分を探索する回数及び重なり部分の面積を計算する回数が大幅に減り、その結果、生物多様性価値の計算をより高速に実行することができる。
 鉱山DB103は、鉱山の位置、年間産出量、純度、及び鉱物種を対応付けて複数の鉱山に関するデータを格納する。ここで、純度は、鉱石に対する、この鉱石に含有される鉱物の質量割合を表す。
 生物多様性評価指標計算部106は、鉱山DB103を参照して、植生・生息動物係数及び生物多様性価値から、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を鉱山毎に計算する。具体的には、生物多様性評価指標計算部106は、図7に示すように、鉱山影響範囲計算部701、積算部702、及び資源採掘係数乗算部703を備える。以下では、生物多様性評価指標計算部106が、鉱山DB103に含まれるある1つの鉱山の生物多様性評価指標を計算する方法を説明する。鉱山DB103に含まれる他の鉱山についても同様にして生物多様性評価指標を計算することができる。
 鉱山影響範囲計算部701は、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算する。鉱山での採掘が周辺環境に影響を及ぼす原因としては、例えば、採掘のための森林伐採、掘り出した土壌の流出、土壌に含まれる有害物質の流出などが考えられる。本実施形態では、鉱山影響範囲は、図8に示すように、鉱山の中心801から一定の距離範囲内の円形の領域802と想定する。ここで、鉱山影響範囲の半径をrとする。鉱山の規模が大きいほど半径rは大きくなる。規模は、鉱山の年間採掘量から推定することができる。鉱山の年間採掘量は、鉱物の年間産出量を鉱石の純度で除算した値で見積もる。採掘量とは、掘り出した土や鉱石の量を表す。半径rは、例えば下記数式(3)に従って算出する。ここでは、鉱山採掘の影響は、地中を含めて三次元的に広がり、さらに、鉱石の純度に反比例して影響が大きくなると想定している。
Figure JPOXMLDOC01-appb-M000002

 ここで、係数Aは、例えば、世界最大規模の鉱山で半径rが10kmになるように決定される。世界最大規模の鉱山における年間採掘量は約168万tである。
 積算部702は、鉱山影響範囲内のセルの生物多様性価値を足し合わせた積算値を計算する。例えば、積算部702は、下記数式(4)に従って、積算値を計算する。
Figure JPOXMLDOC01-appb-M000003

 ここで、βは、下記数式(5)のように、セルiと鉱山影響範囲とが重なる部分の面積がセルiの面積に占める割合を示す。
Figure JPOXMLDOC01-appb-M000004

 より詳細には、積算部702は、鉱山の位置と鉱山影響範囲の半径rから鉱山の影響を受ける可能性があるセルの範囲を矩形で割り出す。続いて、数式(5)に従って矩形範囲内の全てのセルに対して割合βを計算し、数式(4)に従って積算値を計算する。
 資源採掘係数乗算部703は、まず、鉱石の純度に応じた資源採掘係数を計算する。鉱石の純度が低い場合、所定の産出量を得るためにはより大量の採掘を行う必要があり、鉱山採掘の生物多様性に対する影響は大きくなる。資源採掘係数は、鉱石の純度に基づく、鉱山採掘の生物多様性に対する影響の大きさを表す。資源採掘係数は、例えば下記数式(6)に従って計算される。
Figure JPOXMLDOC01-appb-M000005

 ここで、鉱物種indexは、鉱物種毎に設定される重み係数である。例えば、水の使用量、有害物質の流出量などは鉱物種によって異なる。鉱物種indexは、水の使用量、有害物質の流出量などに起因する生物多様性への影響を考慮して鉱物種毎に決められる。なお、資源採掘係数乗算部703は、鉱物種indexを用いずに、即ち、鉱物種indexを1として、資源採掘係数を計算してもよい。
 資源採掘係数乗算部703は、例えば下記数式(7)に示すように、資源採掘係数に積算値を乗じて生物多様性評価指標を算出する。
   生物多様性評価指標=資源採掘係数×積算値   (7)
 表示部107は、液晶ディスプレイなどの表示装置である。表示部107は、鉱山毎に算出された生物多様性評価指標を表示する。
 以上のように、第1の実施形態に係る生物多様性評価指標計算装置は、植生分類の分布に関するデータを格納する植生DBと、生物保護区に関するデータを格納する保護区地理DBと、鉱山の位置、年間産出量、純度、及び鉱物種を対応付けて複数の鉱山に関するデータを格納する鉱山DBとを用いることにより、統一基準で、世界中に存在する複数の鉱山の各々の生物多様性に対する影響を定量的に推定することができる。
 (第2の実施形態) 
 第2の実施形態では、第1の実施形態の計算処理をより高速化する手法を説明する。第1の実施形態では、世界地図を複数のセルで分割し、全てのセルについて生物多様性価値を計算している。保護区は、世界中に多数存在し、その数は16万件以上にもなる。一方、鉱山は世界中に膨大な数存在するものではなく、鉱山影響範囲は、世界全体のごく一部の範囲である。従って、生物多様性価値の計算の際、ほとんどの鉱山の生物多様性評価指標の計算においては保護区の考慮は必要とされない。本実施形態では、生物多様性価値の計算対象とする保護区を鉱山影響範囲内にある保護区に限ることで、計算速度を高速にすることが可能である。
 第2の実施形態に係る計算アルゴリズムのポイントは、ある鉱山に注目したときに、この鉱山の鉱山影響範囲と重なりのある生物保護区を探索することである。鉱山影響範囲と重なる生物保護区を探索するには、地理空間情報処理でよく用いられるR木と呼ばれるデータ構造を利用することができる。R木(R-tree)は、B木に似たデータ構造であり、多次元情報(例えば、二次元座標データなど)のインデックス付け、すなわち空間インデックスに使われる。R木が持つデータ構造を図9に示す。R木は、矩形を基本として領域を捉える。矩形の中に含まれる矩形を階層的に入れたものを木構造で表現している。最下層(葉)が対象となるデータ(位置や領域など)を含む矩形となっている。R木に問い合わせをする場合も矩形が基本となる。矩形を指定して、その矩形と重なりのある矩形を持つ葉を取得することができる。木構造を用いることにより、この問い合わせを高速化することができる。なお、鉱山影響範囲と重なる生物保護区を探索する方法は、R木を用いる例に限らず、いかなる手法を用いてもよい。
 図10は、第2の実施形態に係る生物多様性評価指標計算装置1000を概略的に示している。図10の生物多様性評価指標計算装置1000は、図1の生物多様性評価指標計算装置100の構成に追加して、鉱山位置管理部1001及び保護区・鉱山照合部1002を備える。鉱山位置管理部1001及び保護区・鉱山照合部1002は、植生・生息動物係数計算部104、生物多様性価値計算部105、及び生物多様性評価指標計算部106と同様に、演算処理装置120により実現することができる。
 鉱山位置管理部1001は、鉱山DB103を参照して、R木を用いて、鉱山の位置に関する位置情報を管理する。保護区・鉱山照合部1002は、保護区地理DB1002及び鉱山位置管理部1001からの位置情報に基づいて、鉱山と保護区の位置のマッチングを取り、生物多様性価値を計算すべきセルを特定する。図11に、生物多様性価値を計算すべきセルの一例を示す。図11に示されるように、生物多様性価値を計算すべきセルは、保護区1101と鉱山影響範囲1102が重なるセルであり、ここでは、太線で囲まれた領域1103内のセルである。図11からは、生物多様性価値の計算対象のセルの数が大幅に減っているのがわかる。
 生物多様性評価指標計算部106は、図11に示される領域1103内の全てのセルからの寄与を全て足し合わせることで、生物多様性評価指標を計算する。例えば、生物多様性評価指標は、下記数式(8)に従って計算される。
Figure JPOXMLDOC01-appb-M000006

 ここで、γは、下記数式(9)のように、セルi内で保護区と鉱山影響範囲とが重なる部分の面積がセルiの面積に占める割合を示す。図11に拡大して示されるセル1104では、保護区と鉱山影響範囲とが重なる部分は斜線を施されて示されている。
Figure JPOXMLDOC01-appb-M000007

 次に、図12を参照して、第2の実施形態に係る計算アルゴリズムを説明する。 
 まず、全ての鉱山の生物多様性評価指標が0に初期化される。ステップS1201では、鉱山DB103に格納されている複数の鉱山のうちの1つを取り出す。ステップS1202では、この鉱山を鉱山位置管理部1001に登録する。鉱山位置管理部1001は、鉱山を位置情報とともに記憶する。例えば、鉱山位置管理部1001は、鉱山影響範囲を囲む矩形(鉱山矩形)を計算し、その鉱山矩形をR木に登録する。ステップS1203では、鉱山DB103内の全ての鉱山が鉱山位置管理部1001に登録されたか否かが判定される。未登録の鉱山がある場合、ステップS1201に戻る。全ての鉱山が鉱山位置管理部1001に登録されると、ステップS1204に進む。
 ステップS1204では、保護区地理DB102に格納されている複数の保護区のうちの1つを取り出す。ステップS1205では、保護区・鉱山照合部1002は、鉱山位置管理部1001を参照して、この保護区と交わる鉱山を探索する。例えば、保護区・鉱山照合部1002は、保護区を囲む矩形(保護区矩形)を計算し、この保護区矩形でR木に対して問い合わせを行い、保護区矩形と重なりのある鉱山矩形を全て取り出す。保護区と交わる鉱山がある場合、ステップS1206に進み、そうでなければ、ステップS1208に進む。
 ステップS1206では、ステップS1205で検出された鉱山のうちの1つの生物多様性評価指標を計算する。具体的には、まず、保護区と鉱山とが重なるセルが特定される。続いて、植生・生息動物係数計算部104が、特定されたセルの各々に関して植生・生息動物係数を計算し、生物多様性価値計算部105が、特定されたセルの各々に関して生物多様性価値を計算する。さらに、生物多様性評価指標計算部106が数式(8)に従って生物多様性評価指標を計算する。
 ステップS1207では、ステップS1205で検出された鉱山の中で未処理の鉱山があるか否かを判断する。未処理の鉱山がある場合、ステップS1206に戻り、そうでなければ、ステップS1207に進む。
 ステップS1207では、保護区地理DB102に格納されている全ての保護区が処理されたか否かを判断する。未処理の保護区がある場合、ステップS1205に戻り、全ての保護区が処理された場合、一連の処理が終了となる。
 以上のように、第2の実施形態によれば、鉱山影響範囲と重なる保護区を対象として生物多様性価値を計算することで、計算速度を高速にすることが可能である。
 次に、第1の実施形態に係る計算アルゴリズムと第2の実施形態に係る計算アルゴリズムによる計算結果の相違について説明する。 
 第1の実施形態に係る計算アルゴリズム(基本アルゴリズムと呼ぶ)で計算された生物多様性評価指標は、第2の実施形態に係る計算アルゴリズム(高速アルゴリズムと呼ぶ)で計算された生物多様性評価指標と厳密には一致しない。このことを図16を参照して説明する。図16のセル1603は、保護区1601とも交わり、鉱山影響範囲1602とも交わる。基本アルゴリズムでは、このセル1603は鉱山の生物多様性評価指標の計算に寄与する。一方、セル1603内では、保護区1601は鉱山影響範囲1602と重なっていない。従って、高速アルゴリズムでは、セル1603は鉱山の生物多様性評価指標の計算に寄与しない。より具体的には、セルが保護区と交わりがあることはα>0を意味し、セルが鉱山影響範囲と交わりがあることはβ>0を意味する。一方、セル内部に保護区と鉱山影響範囲の共通部分が含まれないことはγ=0を意味する。基本アルゴリズムで使用される数式(2)及び数式(4)と高速アルゴリズムで使用される数式(8)を比較すると、α×βがγに置き換わっていることがわかる。一般には、α×β≠γであり、その結果、基本アルゴリズムの計算結果と高速アルゴリズムの計算結果との間に相違が生じる。
 高速アルゴリズムでは、保護区と鉱山影響範囲の重なりを正確に見ているので、生物多様性評価指標の計算の観点からは、原理的には高速アルゴリズムに正当性があるといえる。その意味では、基本アルゴリズムは、γ~α×βと近似していると見なすことができる。これは、基本アルゴリズムが生物多様性価値と生物多様性評価指標を別々のフェーズで計算していて、生物多様性価値の計算の際には鉱山影響範囲の位置や大きさを考慮していないことに由来する。
 しかしながら、以下に具体的に説明するように、基本アルゴリズムの計算結果と高速アルゴリズムの計算結果には実用上意味のある違いはない。さらに、基本アルゴリズムが中間的に出力する生物多様性価値は、生物多様性評価指標の計算に用いる以外に、土地の価値を計る上で意味のある量であり、多様な応用が期待できる。従って、生物多様性評価指標の計算そのものには、高速アルゴリズムが妥当であるが、基本アルゴリズムの意味がなくなるわけではなく、2つのアルゴリズムを用途に応じて適宜使い分けることができる。
 次に、生物多様性評価指標の計算例を説明する。 
 この計算例では、植生データ及び保護区データとしては、既存のデータを用いた。鉱山データとしては、例として所定の地域に存在する銅及び鉄の21の鉱山を抜き出して作成したデータを用いた。これらのデータをもとに生物多様性評価指標を計算した結果を図17に示す。図17では、生物多様性評価指標を単に評価指標と称している。また、評価指標(基本)は、第1の実施形態に係る計算アルゴリズム(基本アルゴリズム)で計算した結果であり、評価指標(高速)は、第2の実施形態に係る計算アルゴリズム(高速アルゴリズム)で計算した結果である。
 図17に示される鉱山の中で、その鉱山影響範囲が生物保護区と交わるのはMine10のみである。この鉱山は、産出量や純度に関しては、他の鉱山と比較して大きな違いはない。しかしながら、Mine10の鉱山影響範囲が生物保護区と交わっていることから、Mine10の生物多様性評価指標は、他の鉱山より突出して大きな値になっている。このことは、Mine10は、生物多様性に与える影響が大きいことを示している。
 基本アルゴリズムによる計算結果と高速アルゴリズムによる計算結果を比較すると、全ての鉱山において、計算誤差の範囲で一致している。生物保護区と交わるMine10では、前述した理由のために、基本アルゴリズムによる計算結果と高速アルゴリズムによる計算結果との間に差が生じる。しかし、その差はごく小さいことから、図17に示す計算結果では生物多様性評価指標は同じ値になっている。即ち、基本アルゴリズムによる計算結果と高速アルゴリズムによる計算結果との間の差は、実用上問題になる程度のものではない。
 さらに、図17からは、銅(Cu)鉱山の生物多様性評価指標は、鉄(Fe)鉱山と比較して一桁から二桁大きいことがわかる。これは、鉄鉱石の純度が通常50%程度であるのに対して、銅鉱石の純度が通常1%からそれ以下であることに起因する。
 計算時間に関して基本アルゴリズムと高速アルゴリズムの比較を説明する。上記計算結果を得る際に、基本アルゴリズムでは、約3時間で計算が完了し、高速アルゴリズムでは、85秒で計算が完了した。このように、高速アルゴリズムは、基本アルゴリズムより短時間に処理を終えている。これは、生物保護区と交わる鉱山が少数(上記の例では1つ)に限られていることに起因する。
 (第3の実施形態) 
 第3の実施形態では、第1の実施形態に係る生物多様性評価指標計算装置で計算される鉱山の生物多様性評価指標を用いて、事業(又は製品)の生物多様性評価指標を算出する方法を説明する。なお、鉱山の生物多様性評価指標は、第2の実施形態に係る生物多様性評価指標計算装置で計算されたものを用いてもよい。
 図13は、第3の実施形態に係る生物多様性評価指標計算装置1300を概略的に示している。図13の生物多様性評価指標計算装置1300は、図1の生物多様性評価指標計算装置100の構成に追加して、調達データベース1301、製造データベース1302、及び調達意思決定支援部1303を備える。調達意思決定支援部1303は、演算処理装置120により実現することができ、調達データベース1301及び製造データベース1302は、記憶装置110により実現することができる。
 調達DB1301は、事業を行っている企業が金属資源を調達している鉱山と、その鉱山から調達している鉱物種及び調達量とを示す情報を格納する。製造DB1302は、事業において、どの様な目的に、どの金属資源をどれだけ用いているかの情報を格納する。製造業の場合、製造DB1302は、どの製品にどれだけ金属資源が使われているかを示す情報を格納する。
 図14を参照して、調達意思決定支援部1303を説明する。 
 ステップS1401では、調達意思決定支援部1303は、調達DB1301に基づいて、企業が使用している金属資源毎に生物多様性評価指標原単位を計算する。生物多様性評価指標原単位は、金属資源を調達している鉱山の生物多様性評価指標を、調達量による重みをつけて平均化したものである。具体的には、ある1つの金属(例えば鉄)をn個の鉱山からそれぞれw(i=1,2,…,n)kgの量を調達しているとする。さらに、それぞれの鉱山の生物多様性評価指標をm(i=1,2,…,n)とする。このとき、この金属資源の生物多様性評価指標原単位は、下記数式(10)で計算される。
Figure JPOXMLDOC01-appb-M000008

 ステップS1402では、調達意思決定支援部1303は、事業に使用している金属資源の量(kg)と金属資源の生物多様性評価指標原単位とから、下記数式(11)に従って、事業の生物多様性評価指標を算出する。
Figure JPOXMLDOC01-appb-M000009

 調達意思決定支援部1303が計算する生物多様性評価指標は、事業全体についての値であってもよく、企業が製造する1つの製品についての値であってもよい。本実施形態では、調達DB1301及び製造DBを参照して生物多様性評価指標を計算しているが、ユーザによって入力されたデータに基づいて生物多様性評価指標を計算してもよい。例えば、ユーザが鉱物資源の調達先、調達量などを入力すると、このユーザ入力に応じて生物多様性評価指標を計算するように構成してもよい。これにより、事業(製品)に使用する鉱物種、鉱物資源の調達先、調達量などを決める際に、生物多様性への影響を小さくするようにユーザが意思決定を行うことができるようになる。
 図15は、ガソリン車の生物多様性評価指標と電気自動車の生物多様性評価指標を比較した例を示す。電気自動車は、ガソリン車に比べて銅の使用量が多い。この結果、電気自動車の生物多様性評価指標は、ガソリン車の生物多様性評価指標よりも高い値に算出されている。従って、電気自動車は、ガソリン車と比べて、生物多様性に対する影響が大きいことがわかる。これは、生物多様性評価指標が高い鉱山から輸入する量が多いことに由来する。そこで、生物多様性評価指標が低い鉱山に調達先を変更すれば、電気自動車の生物多様性評価指標をガソリン車並みの生物多様性評価指標にとどめることができる。
 以上のように、第3の実施形態によれば、事業(又は製品)の生物多様性評価指標を計算する調達意思決定支援部1303を備えることにより、金属資源の利用者が事業(製品)の生物多様性に対する影響を容易に評価することができるとともに、生物多様性への影響をできるだけ小さくするように事業プロセスを変更することを可能にする。
 (第4の実施形態) 
 これまでの実施形態では、実際に存在する鉱山に対して、鉱山の位置、鉱物の産出量、鉱石の純度から生物多様性影響を評価している。しかしながら、生物多様性影響を評価する対象は、実際に存在する鉱山に限定されない。今日、様々な手法を用いて埋蔵されている資源の量を推定することが可能になっている。その推定を元に、ある地点に鉱山を設けて採掘を行った場合に、その鉱山採掘が生物多様性にどの様な影響を持ち得るかという評価にも上述した実施形態は応用可能である。
 まず、鉱床探査手法の一例として、広域にデータ取得が可能な衛星又は航空機を用いたリモートセンシングによって鉱床を評価する方法を簡単に説明する。地殻の活動に伴って鉱床が形成される際に、流動した熱水と岩石との反応により変質鉱物が生成される。この変質鉱物は鉱床を中心に同心円状に配列することが多い。そのような変質鉱物としては、例えば明礬石(KAl3(SO4)2(OH)6)などが知られている。このような変質鉱物は、その物質特有の反射スペクトルを持っている。従って、リモートセンシングで複数の波長帯域の反射を計測することにより変質鉱物の地表面での分布を得ることができる。変質鉱物の組成は鉱床に含まれる鉱物種に依存するので、リモートセンシングから鉱物種を推定することができる。さらに、変質鉱物の空間的分布から鉱床の位置(二次元的位置、広がりを含む)を推定することができる。
 さらに、鉱床の深さ、そこに含まれる鉱石の純度などを評価するために、リモートセンシングに加えて、重力探査、磁気探査、電磁探査などの鉱床探査手法を利用することができる。特にボーリング抗を利用する調査は、深さ、純度などの高分解能な情報を得ることができる。以下では、これらの鉱床探査手法から得られるデータを総称して鉱床探査データと呼ぶ。
 鉱床を推定することができると、その鉱床の開発計画を策定することが可能になる。即ち、鉱山の仮想的な設計や操業の計画を行うことが可能になる。具体的には、採掘坑の位置、そこから得られる鉱石の純度、鉱物の産出量などに関して試算が可能である。本実施形態では、このような試算に基づいて生物多様性評価指標を計算する方法を説明する。
 図18は、第4の実施形態に係る生物多様性評価指標計算装置1800を概略的に示している。生物多様性評価指標計算装置1800は、図18に示されるように、植生DB101、保護区地理DB102、鉱山DB103、植生・生息動物係数計算部104、生物多様性価値計算部105、生物多様性評価指標計算部106、表示部107、及び仮想鉱山データ生成部1810を備える。本実施形態の鉱山DB103は、仮想鉱山データ生成部1810によって生成される仮想鉱山に関するデータを格納する。仮想鉱山は、例えば、開発予定の鉱山を指す。具体的には、仮想鉱山データ生成部1810は、鉱床探査DB1801、位置推定部1802、鉱物種推定部1803、純度推定部1804、及び産出量・純度計算部1807を備える。
 鉱床探査DB1801には、鉱床探査データが記録されている。鉱物探査データは、例えば、リモートセンシングによって観測された地表での反射スペクトルの情報(又はリモートセンシングにより得られた変質鉱物の空間的分布の情報)、及びボーリング抗探査で得られた鉱床の深さ及び鉱石の純度の情報を含む。
 位置推定部1802は、変質鉱物の空間的分布から鉱床の位置(広がり及び深さを含む。)を推定する。位置推定部1802は、変質鉱物の空間的分布とともにボーリング抗探査などで得られたデータを用いることで、鉱床の深さをより正確に推定することができる。鉱物種推定部1803は、変質鉱物の種類から、鉱床に含まれている鉱物種を推定する。純度推定部1804は、例えばボーリング抗探査のデータを用いて、鉱床に含まれる鉱石の純度を推定する。鉱石の純度は鉱床内の位置に応じて異なり得るので、純度推定部1804は、鉱石の純度の分布を推定する。位置推定部1802、鉱物種推定部1803、及び純度推定部1804による推定結果(すなわち、鉱床の位置、鉱床に含まれる鉱物種、鉱石の純度)は鉱床推定データ1805として産出量・純度計算部1807へ与えられる。位置推定部1802、鉱物種推定部1803、及び純度推定部1804を総称して鉱床推定部1809と呼ぶ。
 鉱山操業計画データ1806は、鉱床位置に鉱山を作る場合の鉱山の操業計画(鉱床の開発計画ともいう)を指定するものであり、オペレータ又はユーザによって入力される。鉱山操業計画データ1806は、例えば、予定される鉱山の操業年度毎に採掘坑の位置、規模(二次元的な広がりと深さ)を指定するものである。図19に鉱山操業計画データ1806の一例を示す。図19の例では、採掘坑の位置(x,y)、採掘坑の半径r、採掘坑の深さdが操業年度毎に指定されている。図20に示すように、位置(x,y)は、例えば、採掘坑を掘る領域の地表での中心位置を示し、緯度及び経度で表される。半径rは、採掘坑を掘る領域の水平方向の広がりを示し、深さdは、採掘坑を掘る領域の地表からの深さを示す。なお、鉱山操業計画データ1806は、図19に示される例に限定されず、採掘坑の位置と規模を特定することができれば、いかなるデータであってもよい。
 産出量・純度計算部1807は、鉱床推定データ1805及び鉱山操業計画データ1806に基づいて、採掘される鉱石の量及びその場所の鉱石の純度を操業年度毎に計算する。さらに、産出量・純度計算部1807は、採掘される鉱石の量及び鉱石の純度から、得られる鉱物の産出量を操業年度毎に計算する。産出量・純度計算部1807によって計算された産出量及び純度と、鉱山操業計画データ1806に含まれる採掘坑の位置(すなわち、鉱山の位置)と、鉱床推定データ1805に含まれる鉱物種とが、仮想鉱山データとして鉱山DB103に格納される。すなわち、本実施形態の鉱山DB103は、操業年度毎に、位置、産出量、純度、及び鉱物種を対応付けて仮想鉱山に関するデータを格納する。
 本実施形態では、仮想鉱山データ生成部1810によって生成された仮想鉱山データを鉱山DB103に格納することにより、生物多様性評価指標計算部106は仮想鉱山の生物多様性評価指標を計算することができる。このように鉱山開発を開始する前に、その生物多様性影響を評価することで、生物多様性影響の少ない鉱山開発が可能になる。
 (第5の実施形態) 
 鉱山周辺には採掘した後の土が積まれている。鉱山周辺に雨が降ると、この土に含まれている有害物質が地下水に流入し、鉱山周辺に拡散する。雨による有害物質の拡散は生物多様性に影響を与えると考えられる。第5の実施形態では、このような雨の影響を生物多様性評価指標に組み入れる方法を説明する。
 図21は、第5の実施形態に係る生物多様性評価指標計算装置2100を概略的に示している。図21に示される生物多様性評価指標計算装置2100は、図1に示される生物多様性評価指標計算装置100の構成に加えて、降水量データベース(DB)2101を備える。降水量DB2101には、降水量に関する情報が記録されている。降雨量は、例えば、セル単位又は他の領域単位で記録されている。
 本実施形態の生物多様性評価指標計算部106は、鉱山DB103とともに降水量DB2101を参照することで、雨の影響を含む生物多様性評価指標を計算する。具体的には、生物多様性評価指標計算部106は、図22に示すように、鉱山影響範囲計算部701、積算部702、資源採掘係数乗算部703、及び降水量影響評価部(降水量影響指標計算部ともいう)2201を備える。降水量影響評価部2201は、降水量DB2101に記録されている降水量から降水量影響指標を評価する。降水量影響指標は、生物多様性評価指標に雨の影響を反映させるために使用される。
 降水量影響評価部2201を含む生物多様性評価指標計算部106の構成については様々なバリエーションが考えられる。本実施形態では、生物多様性評価指標計算部106についての3つの構成例を説明する。
 図23は、本実施形態の第1例に係る生物多様性評価指標計算部106を概略的に示している。第1例は、第1から第4の実施形態で説明した方法で計算した生物多様性評価指標に、雨の影響を反映させるための係数(すなわち、降水量影響指標)を掛けることで、雨の影響を含む生物多様性評価指標を計算するものである。
 降水量影響評価部2201は、鉱山位置の降水量から降水量影響指標を計算する。降水量がセル毎に記録されている場合、鉱山位置の降水量は、例えば、鉱山影響範囲計算部701によって計算される鉱山影響範囲に含まれるセルの降水量の平均値とする。さらに、降水量影響評価部2201は、下記数式(12)に示すように、計算した降水量影響指標を資源採掘係数乗算部703で算出された生物多様性評価指標に乗算して、生物多様性評価指標(降水量)を求める。数式(12)の生物多様性評価指標(降水量)は、雨の影響を含む生物多様性評価指標を示す。
  生物多様性評価指標(降水量)=数式(7)で計算される生物多様性評価指標
                ×降水量影響指標           (12)
 降水量影響指標を設定する方法としては、様々な方法が考えられる。図24は、降水量影響指標の決定方法の一例を示している。図24の例では、降水量影響指標は、降水量が多いほど大きくなるように設定される。降水量が年間0メートルである場合、雨が生物多様性評価指標に影響することがないので、降水量影響指標は1とする。降水量が年間Aメートルである場合に有害物質の地下水への流入量がB倍になるという観測データが得られているものとする。この観測データに基づいて、降水量が年間Aメートルである場合、降水量影響指標はBとする。図24に示されるグラフは、既知の二点(0,1)、(A,B)間を滑らかに結ぶことで得ることができる。また点(A,B)は理論的推定に基づいていてもよい。ここでは、降水量影響指標を表す曲線を1つの観測値から推定する方法を示したが、複数の鉱山或いは複数の降水量についての観測値が得られる場合、補間又はフィッティングなどの方法で曲線を推定することもできる。
 図25は、降水量影響指標の決定方法の他の例を示している。図25の例では、降水量影響指標は、降水量に対して段階的に変化する。具体的には、降水量影響指標は、年間降水量が0メートル以上Cメートル未満である場合には1、年間降水量がCメートル以上Dメートル未満である場合にはF、年間降水量がDメートル以上Eメートル未満である場合にはBのように設定する。ここで、0<C<D<A<E、1<F<Bである。
 図26は、本実施形態の第2例に係る生物多様性評価指標計算部106を概略的に示している。第2例では、鉱山の影響範囲での降水量の総和が考慮される。図8に示されるように、鉱山は、その規模に応じた鉱山影響範囲rを持つ。この鉱山影響範囲r内に雨が降ることにより、有害物質が地下水に流入すると考えることができる。
 第2例では、降水量影響評価部2201は、鉱山影響範囲内のセル毎に、降水量影響指標を決定する。降水量影響指標の決定は、第1例で説明した方法に従って実行することができる。このとき、降水量としては、年間降水量を採る。
 積算部702は、降水量影響評価部2201でセル毎に算出された降水量影響指標を使用して、鉱山影響範囲内のセルの生物多様性価値を足し合わせた積算値を計算する。例えば、積算部702は、下記数式(13)に従って、積算値を計算する。
Figure JPOXMLDOC01-appb-M000010

 ここで、生物多様性価値は、生物多様性価値計算部105によって数式(2)に従って算出される。また、βは、数式(5)のように、セルiと鉱山影響範囲とが重なる部分の面積がセルiの面積に占める割合である。
 数式(13)に従って積算値を計算することにより、鉱山影響範囲の面的な広がりの効果と、その範囲内におけるセル毎の降水量の効果を生物多様性影響指標に組み入れることができる。
 即ち、第2例の生物多様性評価指標計算部106は、下記数式(14)に従って、生物多様性評価指標を計算する。
Figure JPOXMLDOC01-appb-M000011

 図27は、本実施形態の第3例に係る生物多様性評価指標計算部106を概略的に示している。第3例は、地下水を通して有害物質(生物多様性影響物質ともいう)が流出することにより、生物多様性が影響を受ける範囲が拡大する効果を取り入れるものである。この効果は、降雨量に応じて鉱山影響範囲を拡大することによって生物多様性評価指標に組み込むことができる。
 鉱山影響範囲計算部701は、降水量影響評価部2201によって決定された降雨量影響指数を用いて、降水量を考慮しなかった場合の鉱山影響範囲r(例えば数式(3)に従って計算される。)を補正して、降水量影響考慮後の鉱山影響範囲r´を計算する。一例では、降水量影響考慮後の鉱山影響範囲r´は、下記数式(15)に従って算出される。即ち、降水量影響指標は、降水量を考慮しない場合の鉱山影響範囲rに対して、降水量影響考慮後の鉱山影響範囲r´がどれだけ大きくなるかの係数として与えられる。
   r´=r×降水量影響指標   (15)
 降水量影響考慮後の鉱山影響範囲r´は、図28に示すように、降水量を考慮しない場合の鉱山影響範囲rより拡大する。第2例では、積算部702における積算値の計算では、降水量影響考慮後の鉱山影響範囲r´が使用される。このように鉱山影響範囲を降水量に応じて拡大することにより、雨の影響を生物多様性評価指標に組み込むことが可能になる。
 第3例では、降水量影響指標は、地下水の影響で有害物質がどのくらい広がる可能性があるか推定することによって見積もられる。観測或いは理論的な推定により鉱山の位置の降水量が年間Aメートルのときに鉱山から排出された土に含まれる有害物質が半径r´kmまで広がっていると推定されたとする。このときの降水量影響指標bは、下記数式(16)のように計算することができる。
  b=r´/r   (16)
 例えば、降水を考慮しないときに鉱山影響範囲rが10kmと見積もられた鉱山で、観測により有害物質が12kmまで広がっていることがわかった場合、降水量影響指標は1.2となる。この場合、図24に示すように2点(0,1)、(A,1.2)を滑らかに結ぶ、或いは、図25に示すように段階的に結ぶことにより、降水量と降水量影響指標の関係を決めることができる。ここでは、降水量と降水量影響指標の関係を1つの観測値から推定する方法を示したが、複数の鉱山又は複数の降水量についての観測値が得られる場合、補間又はフィッティングなどの方法で曲線を推定することもできる。
 上述した3つの方法はそれぞれ独立した観点から降水量の影響を定量的に組み込んでいる。従って、これら3つの方法を組み合わせて降水量影響を評価することも可能である。
 以上のように、本実施形態に係る生物多様性評価指標計算装置では、降水量に応じて降水量影響指標を評価し、この降水量影響指標を使用して生物多様性評価指標を計算することにより、雨の影響を生物多様性評価指標に組み込むことができる。この結果、雨の影響を含めて鉱山採掘の生物多様性に対する影響を定量的に評価することが可能になる。
 上述の実施形態の中で示した処理手順に示された指示は、ソフトウェアであるプログラムに基づいて実行されることが可能である。汎用の計算機システムが、このプログラムを予め記憶しておき、このプログラムを読み込むことにより、上述した生物多様性評価指標計算装置による効果と同様な効果を得ることも可能である。上述の実施形態で記述された指示は、コンピュータに実行させることのできるプログラムとして、磁気ディスク(フレキシブルディスク、ハードディスクなど)、光ディスク(CD-ROM、CD-R、CD-RW、DVD-ROM、DVD±R、DVD±RWなど)、半導体メモリ、又はこれに類する記録媒体に記録される。コンピュータまたは組み込みシステムが読み取り可能な記録媒体であれば、その記憶形式は何れの形態であってもよい。コンピュータは、この記録媒体からプログラムを読み込み、このプログラムに基づいてプログラムに記述されている指示をCPUで実行させれば、上述した実施形態の生物多様性評価指標装置と同様な動作を実現することができる。もちろん、コンピュータがプログラムを取得する場合又は読み込む場合はネットワークを通じて取得又は読み込んでもよい。 
 また、記録媒体からコンピュータや組み込みシステムにインストールされたプログラムの指示に基づきコンピュータ上で稼働しているOS(オペレーティングシステム)や、データベース管理ソフト、ネットワーク等のMW(ミドルウェア)等が本実施形態を実現するための各処理の一部を実行してもよい。 
 さらに、本実施形態における記録媒体は、コンピュータあるいは組み込みシステムと独立した媒体に限らず、LANやインターネット等により伝達されたプログラムをダウンロードして記憶または一時記憶した記録媒体も含まれる。 
 また、記録媒体は1つに限られず、複数の媒体から本実施形態における処理が実行される場合も、本実施形態における記録媒体に含まれ、媒体の構成は何れの構成であってもよい。
 なお、本実施形態におけるコンピュータまたは組み込みシステムは、記録媒体に記憶されたプログラムに基づき、本実施形態における各処理を実行するためのものであって、パソコン、マイコン等の1つからなる装置、複数の装置がネットワーク接続されたシステム等の何れの構成であってもよい。 
 また、本実施形態におけるコンピュータとは、パソコンに限らず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本実施形態における機能を実現することが可能な機器、装置を総称している。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (21)

  1.  植生の分類に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算する第1計算部と、
     複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算する第2計算部と、
     複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算する第3計算部であって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算する第3計算部と、
     を具備することを特徴とする生物多様性評価指標計算装置。
  2.  前記第2計算部は、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算することを特徴とする請求項1に記載の生物多様性評価指標計算装置。
  3.  製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算する第4計算部をさらに具備する請求項1又は請求項2に記載の生物多様性評価指標計算装置。
  4.  前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成する生成部をさらに具備し、
     前記生成部は、
      リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成する鉱床推定部と、
      前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算する第5計算部と、
     を含む、ことを特徴とする請求項1に記載の生物多様性評価指標計算装置。
  5.  降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算する第6計算部をさらに具備することを特徴とする請求項1に記載の生物多様性評価指標計算装置。
  6.  降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算する第6計算部をさらに具備し、
     前記第3計算部は、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせることを特徴とする請求項1に記載の生物多様性評価指標計算装置。
  7.  降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算する第6計算部をさらに具備し、
     前記第3計算部は、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算することを特徴とする請求項1に記載の生物多様性評価指標計算装置。
  8.  第1計算部が、植生分類の分布に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算するステップと、
     第2計算部が、複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算するステップと、
     第3計算部が、複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算することであって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算するステップと、
     を具備することを特徴とする生物多様性評価指標計算方法。
  9.  前記生物多様性価値を計算するステップは、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算するステップを含む、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。
  10.  第4計算部が、製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算するステップをさらに具備することを特徴とする請求項8又は9に記載の生物多様性評価指標計算方法。
  11.  生成部が、前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成するステップをさらに具備し、
     前記仮想鉱山データを生成するステップは、
      リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成するステップと、
      前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算するステップと、
     を含む、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。
  12.  第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算するステップをさらに具備する請求項8に記載の生物多様性評価指標計算方法。
  13.  第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算するステップをさらに具備し、
     前記生物多様性評価指標を計算するステップは、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせる、請求項8に記載の生物多様性評価指標計算方法。
  14.  第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算するステップをさらに具備し、
     前記生物多様性評価指標を計算するステップは、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算する、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。
  15.  コンピュータを、
     植生の分類に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算する第1計算手段、
     複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算する第2計算手段、及び
     複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算する第3計算部であって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算する第3計算手段として機能させるためのプログラム。
  16.  前記第2計算手段は、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算する請求項15に記載のプログラム。
  17.  前記コンピュータを、
     製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算する第4計算手段としてさらに機能させる、請求項15又は16に記載のプログラム。
  18.  前記コンピュータを、前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成する生成手段としてさらに機能させ、
     前記生成手段は、
      リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成することと、
      前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算することと、
     を含む、ことを特徴とする請求項15に記載のプログラム。
  19.  前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算する第6計算手段としてさらに機能させる、請求項15に記載のプログラム。
  20.  前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算する第6計算手段として機能させ、
     前記第3計算手段は、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせることを特徴とする請求項15に記載のプログラム。
  21.  前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算する第6計算手段としてさらに機能させ、
     前記第3計算手段は、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算する、請求項15に記載のプログラム。
PCT/JP2013/057872 2012-03-21 2013-03-19 生物多様性評価指標計算装置、方法、及びプログラム WO2013141252A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014506249A JP5815120B2 (ja) 2012-03-21 2013-03-19 生物多様性評価指標計算装置、方法、及びプログラム
EP13764564.4A EP2830015A4 (en) 2012-03-21 2013-03-19 BIODIVERSITY EVALUATION INDEX CALCULATION DEVICE, METHOD, AND PROGRAM
US14/490,735 US20150012316A1 (en) 2012-03-21 2014-09-19 Biodiversity evaluation index calculation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012063376 2012-03-21
JP2012-063376 2012-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/490,735 Continuation US20150012316A1 (en) 2012-03-21 2014-09-19 Biodiversity evaluation index calculation

Publications (1)

Publication Number Publication Date
WO2013141252A1 true WO2013141252A1 (ja) 2013-09-26

Family

ID=49222709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057872 WO2013141252A1 (ja) 2012-03-21 2013-03-19 生物多様性評価指標計算装置、方法、及びプログラム

Country Status (4)

Country Link
US (1) US20150012316A1 (ja)
EP (1) EP2830015A4 (ja)
JP (1) JP5815120B2 (ja)
WO (1) WO2013141252A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220179123A1 (en) * 2020-12-04 2022-06-09 National Institute of Meteorological Sciences Method and apparatus for producing ground vegetation input data for global climate change prediction model

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106815690A (zh) * 2017-01-25 2017-06-09 中国科学院遥感与数字地球研究所 基于遥感数据的生态环境质量评价系统与方法
CN107632967A (zh) * 2017-09-14 2018-01-26 青海省基础地理信息中心 一种草地产草量估算方法
CN108053403A (zh) * 2018-01-10 2018-05-18 中煤航测遥感集团有限公司 矿产开发监控方法和矿产开发监控装置
JP7086630B2 (ja) * 2018-02-09 2022-06-20 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム
CN110458390A (zh) * 2019-07-01 2019-11-15 中国石油化工股份有限公司 油田矿场集输类设备的优选评价方法
CN111311114A (zh) * 2020-03-11 2020-06-19 汇明科技(江苏)有限公司 一种土地资源修复成效评价方法
CN112668851B (zh) * 2020-12-21 2021-11-02 浙江弄潮儿智慧科技有限公司 一种确定生物多样性保护关键区域的方法及系统
CN114897298A (zh) * 2022-04-01 2022-08-12 中国科学院东北地理与农业生态研究所 面向评估时段的生物多样性保护成效空间对比评估方法
CN116956755B (zh) * 2023-09-21 2023-12-19 北京建工环境修复股份有限公司 一种矿山生态修复智能规划方法、系统及介质
CN118097812B (zh) * 2024-02-29 2024-10-01 生态环境部南京环境科学研究所 一种实地勘测用草原气候变化对生物多样性协同保护影响权重量化评价装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247900A (ja) * 2001-02-21 2002-08-30 Electric Power Dev Co Ltd 環境保全地域の改変方法
JP2003102326A (ja) 2001-09-28 2003-04-08 Kajima Corp 野生動物の生息状況評価方法及び装置並びにプログラム
JP2004102606A (ja) * 2002-09-09 2004-04-02 Taisei Corp 環境評価装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247900A (ja) * 2001-02-21 2002-08-30 Electric Power Dev Co Ltd 環境保全地域の改変方法
JP2003102326A (ja) 2001-09-28 2003-04-08 Kajima Corp 野生動物の生息状況評価方法及び装置並びにプログラム
JP2004102606A (ja) * 2002-09-09 2004-04-02 Taisei Corp 環境評価装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2830015A4 *
TSUTOMU KAWAGUCHI: "Applying ICT in Biodiversity Surveys and Evaluations of Impact on Biodiversity", FUJITSU, vol. 62, no. 6, 10 November 2011 (2011-11-10), pages 745 - 752, XP008174503 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220179123A1 (en) * 2020-12-04 2022-06-09 National Institute of Meteorological Sciences Method and apparatus for producing ground vegetation input data for global climate change prediction model
JP2022089779A (ja) * 2020-12-04 2022-06-16 ナショナル インスティチュート オブ ミティオロロジカル サイエンシズ 全地球気候変化予測モデルの遂行のための地面植生入力資料の生産方法及び装置
JP7246457B2 (ja) 2020-12-04 2023-03-27 ナショナル インスティチュート オブ ミティオロロジカル サイエンシズ 全地球気候変化予測モデルの遂行のための地面植生入力資料の生産方法及び装置
US11693151B2 (en) * 2020-12-04 2023-07-04 National Institute of Meteorological Sciences Method and apparatus for producing ground vegetation input data for global climate change prediction model

Also Published As

Publication number Publication date
US20150012316A1 (en) 2015-01-08
EP2830015A1 (en) 2015-01-28
JP5815120B2 (ja) 2015-11-17
EP2830015A4 (en) 2015-11-11
JPWO2013141252A1 (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5815120B2 (ja) 生物多様性評価指標計算装置、方法、及びプログラム
Pande et al. Study of land use classification in an arid region using multispectral satellite images
Amatulli et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling
Zhang et al. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China
Appelhans et al. Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania
Yang et al. A review of historical reconstruction methods of land use/land cover
Kobal et al. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover—Case study of a high karst area in the Dinaric Mountains
Lee et al. A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests
Lacoste et al. Evaluating large-extent spatial modeling approaches: A case study for soil depth for France
Rahman et al. Assessing regional environmental quality by integrated use of remote sensing, GIS, and spatial multi-criteria evaluation for prioritization of environmental restoration
Wilcox et al. Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-based modeling
Albarelli et al. Identification of potential rockfall sources using UAV-derived point cloud
Valent et al. Utilization of historical maps in the land use change impact studies: A case study from Myjava river basin
Pandey et al. Analyzing and modeling of a large river basin dynamics applying integrated cellular automata and Markov model
CN116050935B (zh) 一种确定生物多样性优先保护地信息的方法及装置
Crespo-Mendes et al. Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment
Liao et al. Errors prediction for vector-to-raster conversion based on map load and cell size
Grenier et al. Accuracy assessment method for wetland object-based classification
Busho et al. Quantifying spatial patterns of urbanization: growth types, rates, and changes in Addis Ababa City from 1990 to 2020
JP5403726B2 (ja) 浸水深調査システム及びプログラム
Bagwan An assessment of rainfall-induced land degradation condition using Erosivity Density (ED) and heatmap method for Urmodi River watershed of Maharashtra, India
Jantke et al. Benefits of earth observation data for conservation planning in the case of European wetland biodiversity
CN116934139A (zh) 城镇化进程中水生态功能空间响应识别方法、装置及设备
Bickford et al. Reconstructing pre‐impact vegetation cover in modified landscapes using environmental modelling, historical surveys and remnant vegetation data: a case study in the Fleurieu Peninsula, South Australia
Qing et al. Quantifying urban expansion using Landsat images and landscape metrics: A case study of the Halton Region, Ontario

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506249

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013764564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013764564

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE