WO2013141252A1 - 生物多様性評価指標計算装置、方法、及びプログラム - Google Patents
生物多様性評価指標計算装置、方法、及びプログラム Download PDFInfo
- Publication number
- WO2013141252A1 WO2013141252A1 PCT/JP2013/057872 JP2013057872W WO2013141252A1 WO 2013141252 A1 WO2013141252 A1 WO 2013141252A1 JP 2013057872 W JP2013057872 W JP 2013057872W WO 2013141252 A1 WO2013141252 A1 WO 2013141252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mine
- biodiversity
- precipitation
- evaluation index
- index
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims description 45
- 238000005065 mining Methods 0.000 claims abstract description 49
- 241000196324 Embryophyta Species 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims description 174
- 238000001556 precipitation Methods 0.000 claims description 122
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 56
- 239000011707 mineral Substances 0.000 claims description 56
- 241000894007 species Species 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000011161 development Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 5
- 230000004071 biological effect Effects 0.000 claims 1
- 241001465754 Metazoa Species 0.000 abstract description 8
- 238000004422 calculation algorithm Methods 0.000 description 47
- 230000000694 effects Effects 0.000 description 20
- 238000012545 processing Methods 0.000 description 13
- 238000007726 management method Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000002689 soil Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000003673 groundwater Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 229910052934 alunite Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010424 alunite Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000000247 postprecipitation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- KPZTWMNLAFDTGF-UHFFFAOYSA-D trialuminum;potassium;hexahydroxide;disulfate Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O KPZTWMNLAFDTGF-UHFFFAOYSA-D 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/13—File access structures, e.g. distributed indices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/31—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/31—Indexing; Data structures therefor; Storage structures
- G06F16/313—Selection or weighting of terms for indexing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
Definitions
- Embodiments of the present invention relate to a biodiversity evaluation index calculation apparatus, method, and program.
- the problem to be solved by the present invention is to provide a biodiversity evaluation index calculation apparatus, method, and program capable of quantitatively evaluating the influence on biodiversity of each mine with a unified standard.
- the biodiversity evaluation index calculation apparatus includes a first calculation unit, a second calculation unit, and a third calculation unit.
- the first calculation unit refers to a vegetation database that stores data relating to vegetation classification, and calculates vegetation and habitat coefficients representing at least one of plant species diversity and habitat species diversity in a plurality of regions. Calculate every time.
- the second calculation unit refers to a protected area geographic database in which protected area types and ranges are described for each of the protected areas, and based on the protected area type and the vegetation and habitat coefficient, A biodiversity value representing the richness of diversity is calculated for each of the plurality of areas.
- the third calculation unit refers to a mine database that describes the location, yield, purity, and mineral species of each mine, and provides a biodiversity assessment index that represents the impact of mine mining on biodiversity.
- the calculation is performed for each of the plurality of mines.
- the third calculation unit calculates a mine influence range indicating a range where the mine mining affects the surrounding environment based on the output, the purity, and the mineral type, and the mine influence in the plurality of regions.
- One or more regions included in the range are specified, and the biodiversity evaluation index is calculated by adding the biodiversity values of the one or more regions.
- FIG. 1 is a block diagram schematically showing a biodiversity evaluation index calculation device according to a first embodiment.
- the figure explaining the method for the vegetation / habitat coefficient calculation unit shown in FIG. The figure which shows the correspondence table of the classification number of a protected area and a protected area coefficient based on 1st Embodiment.
- the block diagram which shows roughly the biodiversity evaluation index calculation apparatus which concerns on 3rd Embodiment. 14 is a flowchart schematically showing an operation example of the procurement decision support unit shown in FIG. 13.
- the figure which shows an example of the mine operation plan data shown in FIG. The figure explaining the variable shown in FIG.
- FIG. 1 schematically shows a biodiversity evaluation index calculation apparatus 100 according to the first embodiment.
- the biodiversity evaluation index calculation apparatus 100 includes a vegetation database 101, a protected area geography database 102, a mine database 103, a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, A biodiversity evaluation index calculation unit 106 and a display unit 107 are provided.
- the biodiversity described herein includes ecosystem diversity, species diversity, and genetic diversity.
- the biodiversity evaluation index calculation device 100 is realized by an arithmetic processing device 120 such as a CPU executing a control program stored in a storage device 110 including ROM, RAM, HDD, and the like.
- the arithmetic processing unit 120 reads a control program from a ROM or an HDD and develops the control program on a RAM, so that a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, and a biodiversity evaluation are performed. It functions as the index calculation unit 106.
- the storage device 110 functions as a vegetation database 101, a protected area geographic database 102, and a mine database 103.
- the biodiversity evaluation index calculation device 100 may be realized by one arithmetic processing device or may be realized by a plurality of arithmetic processing devices.
- the vegetation database (DB) 101 stores data related to vegetation classification.
- the vegetation classification data detailed worldwide vegetation data obtained by remote sensing can be used.
- the classification includes the type of vegetation and the distribution for each type (for example, the proportion of vegetation in the region).
- vegetation is classified into 14 types. This classification is based on the standard land classification proposed by IGBP (International
- IGBP International
- Programme International
- the world map is divided into a plurality of cells (regions), and a vegetation type is assigned to each cell. Each cell is a square area having a side of 1 km, that is, the resolution is 1 km.
- classification of vegetation is not limited to the example performed in accordance with the classification of IGBT, and other classifications may be applied as long as the classification is related to vegetation.
- the vegetation / habitat coefficient calculation unit 104 calculates a vegetation / habitat coefficient from the vegetation classification.
- the vegetation / habitat coefficient calculation unit 104 converts the vegetation classification into a vegetation / habitat coefficient using the correspondence table shown in FIG.
- the vegetation / habitat coefficient is a value weighted by at least one of vegetation and inhabiting animals in land and water, and represents at least one of plant species diversity and inhabitant species diversity. Species diversity is judged using at least the number of species as an indicator.
- the vegetation / habitat coefficient is set to be higher as the variety of species is higher (that is, as the number of species is larger). For example, since forests (corresponding to classification numbers 1-5 in FIG. 2) are homes of various types of animals and plants, the vegetation / habitat coefficient of forests is high.
- the desert (corresponding to the classification number 12 in FIG. 2) has a small number of animals and plants.
- the urban area (corresponding to the classification number 13 in FIG. 2) emphasizes the productivity of human activities and basically excludes natural ecosystems. For this reason, the vegetation / habitat coefficients for deserts and urban areas are low.
- specific numerical values are assigned to V1 to V13 described in the column of the vegetation / inhabiting animal coefficient.
- the same value may be given to the classification that the diversity of the species can be regarded as the same level.
- V1 may be the same value as V2.
- the vegetation data is, for example, two-dimensional array data, and the positions of array elements (cells) are specified by latitude and longitude.
- the vegetation / habitat coefficient calculation unit 104 generates an array in which the values of each element are converted into vegetation / habitat coefficients.
- one square lattice represents one cell.
- a biodiversity value index is calculated for land. For this reason, as shown in FIG. 2, no vegetation / habitat coefficient is set for water areas (classification number 0) such as lakes and seas.
- the biodiversity value index is calculated for both land and water.
- the weight of the vegetation / habitat coefficient of the water area is set according to the variety of species such as seaweed and fish.
- the water ecosystem, especially the marine ecosystem is extremely important from the viewpoint of biodiversity, and by including the water area, it is possible to more accurately evaluate the impact of mining on biodiversity.
- the protected area geography DB 102 stores protected area data describing the type and range of protected areas for each of the protected areas.
- protected area data There are areas on the earth that are considered to be particularly valuable in maintaining biodiversity, such as areas where many land-specific organisms (animals and plants) live. These are designated as biological reserves, hot spots, national parks, etc. These areas have a particularly high impact on biodiversity.
- the protected area is divided into 8 levels (Ia, Ib, II, III, IV, V, VI, no category) according to the importance. This classification is based on the IUCN (International Union For Conservation of Nature) category.
- IUCN International Union For Conservation of Nature
- the classification of protected areas is not limited to the example performed in accordance with the IUCN category, and other classifications may be applied.
- Fig. 4 shows a correspondence table used when converting the protected area classification into protected area coefficients.
- Protected area coefficients are weighted by protected areas defined on land or sea that are legally or otherwise effectively managed for the purpose of protecting biodiversity and natural and related cultural resources. This is the value that was given and given to areas where protection is needed from at least one perspective of ecosystem diversity, species diversity, and genetic diversity.
- the protected area coefficient is set to be higher as the importance (for example, the degree of management intervention, the importance of management, the urgency, etc.) is higher.
- specific numerical values are assigned to P1 to P9 described in the column of protected area coefficient.
- the same value may be given to the classification that the importance level of the protected area can be regarded as the same level.
- the protected area coefficient may be calculated by the biodiversity value calculation unit 105 using the correspondence table of FIG. 4, or may be calculated in advance and stored in the protected area geography DB 102.
- the biodiversity value calculation unit 105 calculates the biodiversity value from the vegetation / habitat coefficient and the protected area coefficient.
- Biodiversity value reflects the species diversity mainly due to vegetation and at least one of ecosystem diversity, species diversity, and genetic diversity with and without protected areas Represents the richness of biodiversity.
- the biodiversity value is defined by the product of the vegetation / habitat coefficient and the protected area coefficient.
- the biodiversity value calculation unit 105 calculates the biodiversity value for each cell by multiplying the vegetation / habitat coefficient by the protected area coefficient.
- the boundary of the protected area 501 and the boundary of the cell do not always coincide with each other, so the following processing is performed.
- the biodiversity value calculation unit 105 takes out the portion where the cell i and the protected area overlap, and calculates the ratio ⁇ i of the area of the overlapping portion in the area of the cell i as shown in the following formula (1). To do.
- the biodiversity value calculation unit 105 calculates the biodiversity value of the cell i, for example, according to the following mathematical formula (2).
- Biodiversity value Vegetation / habitat coefficient x [(1- ⁇ i ) + ⁇ i x protected area coefficient] (2) Since the number of cells is very large, it takes a lot of time to calculate the biodiversity value for all cells. The biodiversity value needs to be calculated every time at least one of the vegetation DB 101 and the protected area geography DB 102 is updated. As will be described later, it is assumed that the range of mine mining affecting biodiversity is about several kilometers, so the calculation of the biodiversity evaluation index representing the impact on mine mining biodiversity is about 1 km. Resolution is necessary. That is, it is not preferable to reduce the resolution in order to reduce the number of cells.
- the biodiversity value calculation unit 105 calculates the biodiversity value according to the hierarchization algorithm described below, thereby speeding up the calculation.
- the layering algorithm will be described with reference to FIG.
- the peripheral area including the biological reserve 601 is divided by a plurality of grids.
- a lattice is a larger area than a cell.
- the grid is typically set to 2 n times the cell size.
- n is a natural number, and is set so that the lattice has the same scale as the target biological reserve.
- the lattice is a square region having a side length of 4 km.
- each lattice overlaps with the biological reserve. If the grid overlaps the biosphere, it is determined whether the grid size is larger than the cell size. If the size of the lattice is larger than the size of the cell, the lattice is divided into a plurality of (for example, four) small lattices. Further, it is determined whether or not each small lattice overlaps with the biological reserve. Similarly, this process is recursively repeated until the size of the divided small lattice becomes equal to the cell size. As a result, as shown in FIG. 6, the peripheral area of the biological protection area 601 is divided by a lattice having a different size.
- the ratio ⁇ i is calculated according to the formula (1), and the biodiversity value is calculated according to the formula (2).
- This layering algorithm greatly reduces the number of searches for overlapping parts of the lattice and the biological reserve and the number of times of calculating the area of the overlapping part, resulting in faster calculation of biodiversity value. it can.
- the mine DB 103 stores data on a plurality of mines in association with the mine position, annual output, purity, and mineral species.
- purity represents the mass ratio of the mineral contained in this ore with respect to the ore.
- the biodiversity evaluation index calculation unit 106 refers to the mine DB 103 and calculates, for each mine, a biodiversity evaluation index that represents the influence of mine mining on biodiversity from the vegetation / habitat coefficient and the biodiversity value. .
- the biodiversity evaluation index calculation unit 106 includes a mine influence range calculation unit 701, an accumulation unit 702, and a resource mining coefficient multiplication unit 703.
- a method in which the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index of a certain mine included in the mine DB 103 will be described.
- the biodiversity evaluation index can be calculated in the same manner for other mines included in the mine DB 103.
- the mine influence range calculation unit 701 calculates a mine influence range indicating a range where the mine mining affects the surrounding environment. Possible causes of mine mining affecting the surrounding environment include, for example, deforestation for mining, outflow of excavated soil, outflow of harmful substances contained in soil.
- the mine influence range is assumed to be a circular region 802 within a certain distance range from the mine center 801 as shown in FIG.
- ra be the radius of the mine influence range.
- the scale can be estimated from the annual mining volume of the mine.
- the annual mining output of the mine is estimated by dividing the annual output of the mineral by the purity of the ore.
- the amount of mining represents the amount of soil and ore excavated.
- Radius r a is calculated for example according to the following equation (3).
- the coefficient A is, for example, the radius r a is determined to be 10km in the world's largest mines.
- the annual mining volume in the world's largest mine is about 1.68 million tons.
- the integrating unit 702 calculates an integrated value obtained by adding the biodiversity values of the cells within the mine influence range. For example, the integrating unit 702 calculates an integrated value according to the following mathematical formula (4).
- ⁇ i indicates the ratio of the area of the portion where the cell i and the mine influence range overlap to the area of the cell i as in the following formula (5).
- integrating unit 702 determine the range of cells that can be affected by the mine from the radius r a of the position and the mine-affected area of the mine rectangular. Subsequently, the ratio ⁇ i is calculated for all the cells in the rectangular range according to Equation (5), and the integrated value is calculated according to Equation (4).
- the resource mining coefficient multiplication unit 703 calculates a resource mining coefficient according to the purity of the ore. If the ore purity is low, it is necessary to mine a larger amount in order to obtain a given output, and the impact of mine mining on biodiversity is increased.
- the resource mining factor represents the magnitude of the impact of mine mining on biodiversity based on the purity of the ore.
- the resource mining coefficient is calculated according to the following formula (6), for example.
- the mineral species index is a weighting coefficient set for each mineral species. For example, the amount of water used and the amount of harmful substances flowing out differ depending on the mineral species.
- the mineral species index is determined for each mineral species in consideration of the effect on biodiversity caused by the amount of water used, the amount of harmful substances flowing out, and the like.
- the resource mining coefficient multiplication unit 703 may calculate the resource mining coefficient without using the mineral species index, that is, with the mineral species index as 1.
- the resource mining coefficient multiplication unit 703 calculates a biodiversity evaluation index by multiplying the resource mining coefficient by the integrated value, for example, as shown in the following formula (7).
- Biodiversity assessment index resource mining coefficient x integrated value (7)
- the display unit 107 is a display device such as a liquid crystal display.
- the display unit 107 displays the biodiversity evaluation index calculated for each mine.
- the biodiversity evaluation index calculation apparatus includes a vegetation DB that stores data related to the distribution of vegetation classification, a protected area geography DB that stores data related to biological protected areas, and a mine
- a mine DB that stores data on multiple mines by associating position, annual output, purity, and mineral species, the biodiversity of each of the multiple mines around the world is unified. The impact can be estimated quantitatively.
- a method for further speeding up the calculation processing of the first embodiment will be described.
- a world map is divided into a plurality of cells, and biodiversity values are calculated for all the cells.
- the point of the calculation algorithm according to the second embodiment is to search for a biological reserve that overlaps with the mine influence range of this mine when attention is paid to a mine.
- a data structure called an R-tree often used in geospatial information processing can be used.
- An R-tree is a data structure similar to a B-tree and is used for indexing multidimensional information (for example, two-dimensional coordinate data), that is, a spatial index.
- FIG. 9 shows the data structure of the R-tree.
- the R-tree captures a region based on a rectangle.
- a rectangular structure containing rectangles contained in a rectangle is represented by a tree structure.
- the lowermost layer is a rectangle including target data (position, region, etc.).
- a rectangle is the basis. By specifying a rectangle, a leaf having a rectangle that overlaps the rectangle can be acquired. This query can be speeded up by using a tree structure.
- the method of searching for the biological protected area overlapping with the mine influence range is not limited to the example using the R-tree, and any method may be used.
- FIG. 10 schematically shows a biodiversity evaluation index calculation apparatus 1000 according to the second embodiment.
- a biodiversity evaluation index calculation apparatus 1000 in FIG. 10 includes a mine location management unit 1001 and a protected area / mine verification unit 1002 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 in FIG.
- the mine location management unit 1001 and the protected area / mine collation unit 1002 are operated by the arithmetic processing unit 120 in the same manner as the vegetation / habitat coefficient calculation unit 104, the biodiversity value calculation unit 105, and the biodiversity evaluation index calculation unit 106. Can be realized.
- the mine position management unit 1001 refers to the mine DB 103 and manages position information regarding the position of the mine using the R-tree.
- the protected area / mine collation unit 1002 matches the positions of the mine and the protected area based on the position information from the protected area geography DB 1002 and the mine position management unit 1001 and identifies the cell for which the biodiversity value is to be calculated.
- FIG. 11 shows an example of a cell whose biodiversity value is to be calculated. As shown in FIG. 11, the cell whose biodiversity value is to be calculated is a cell in which the protected area 1101 and the mine influence range 1102 overlap, and is a cell in a region 1103 surrounded by a thick line here. From FIG. 11, it can be seen that the number of biodiversity value calculation target cells is greatly reduced.
- the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index by adding all the contributions from all the cells in the area 1103 shown in FIG.
- the biodiversity evaluation index is calculated according to the following mathematical formula (8).
- ⁇ i indicates the ratio of the area of the area where the protected area and the mine influence range overlap in the cell i to the area of the cell i as in the following formula (9).
- ⁇ i indicates the ratio of the area of the area where the protected area and the mine influence range overlap in the cell i to the area of the cell i as in the following formula (9).
- a portion where the protected area and the mine influence range overlap is indicated by hatching.
- step S1201 one of a plurality of mines stored in the mine DB 103 is taken out.
- step S1202 the mine is registered in the mine location management unit 1001.
- the mine position management unit 1001 stores a mine together with position information. For example, the mine position management unit 1001 calculates a rectangle (mine rectangle) surrounding the mine influence range and registers the mine rectangle in the R-tree.
- step S1203 it is determined whether all the mines in the mine DB 103 have been registered in the mine position management unit 1001. If there is an unregistered mine, the process returns to step S1201. When all the mines are registered in the mine position management unit 1001, the process proceeds to step S1204.
- step S1204 one of a plurality of protected areas stored in the protected area geography DB 102 is taken out.
- the protected area / mine collation unit 1002 refers to the mine location management unit 1001 and searches for a mine that intersects with the protected area. For example, the protected area / mine collation unit 1002 calculates a rectangle surrounding the protected area (protected area rectangle), makes an inquiry to the R-tree in this protected area rectangle, and selects all the mine rectangles that overlap the protected area rectangle. Take out. If there is a mine intersecting with the protected area, the process proceeds to step S1206; otherwise, the process proceeds to step S1208.
- a biodiversity evaluation index for one of the mines detected in step S1205 is calculated. Specifically, first, a cell where a protected area and a mine overlap is specified. Subsequently, the vegetation / habitat coefficient calculation unit 104 calculates the vegetation / habitat coefficient for each of the specified cells, and the biodiversity value calculation unit 105 calculates the biodiversity value for each of the specified cells. calculate. Further, the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index according to the equation (8).
- step S1207 it is determined whether there is an unprocessed mine among the mines detected in step S1205. If there is an unprocessed mine, the process returns to step S1206; otherwise, the process proceeds to step S1207.
- step S1207 it is determined whether all protected areas stored in the protected area geography DB 102 have been processed. If there is an unprocessed protected area, the process returns to step S1205. If all protected areas have been processed, the series of processing ends.
- the biodiversity evaluation index calculated by the calculation algorithm (referred to as basic algorithm) according to the first embodiment is the biodiversity evaluation index calculated by the calculation algorithm (referred to as high-speed algorithm) according to the second embodiment. Does not match exactly.
- a cell 1603 in FIG. 16 intersects with a protected area 1601 and also a mine influence range 1602.
- this cell 1603 contributes to the calculation of the mine biodiversity assessment index.
- the protected area 1601 does not overlap with the mine influence area 1602. Therefore, in the high-speed algorithm, the cell 1603 does not contribute to the calculation of the mine biodiversity evaluation index.
- the fact that the cell intersects with the protected area means ⁇ > 0, and the fact that the cell intersects with the mine influence range means ⁇ > 0.
- the high-speed algorithm In the high-speed algorithm, the overlap between the protected area and the mine impact area is accurately observed, so it can be said that the high-speed algorithm is valid in principle from the viewpoint of calculating the biodiversity evaluation index. In that sense, the basic algorithm can be regarded as approximating ⁇ to ⁇ ⁇ ⁇ . This is because the basic algorithm calculates the biodiversity value and the biodiversity assessment index in separate phases, and does not consider the location and size of the mine impact area when calculating the biodiversity value. Derived from.
- the biodiversity value output by the basic algorithm is not only used for calculating biodiversity assessment indices, but is also a meaningful quantity for measuring the value of land, and various applications can be expected. Therefore, although the high-speed algorithm is appropriate for the calculation of the biodiversity evaluation index itself, the meaning of the basic algorithm is not lost, and the two algorithms can be properly used according to the application.
- FIG. 17 shows the result of calculating the biodiversity evaluation index based on these data.
- the biodiversity evaluation index is simply referred to as an evaluation index.
- the evaluation index (basic) is a result calculated by the calculation algorithm (basic algorithm) according to the first embodiment
- the evaluation index (high speed) is the calculation algorithm (high speed algorithm) according to the second embodiment. It is the result of calculation.
- the biodiversity evaluation index of the copper (Cu) mine is one to two digits larger than that of the iron (Fe) mine. This is due to the fact that the purity of copper ore is usually 1% or less, whereas the purity of iron ore is usually about 50%.
- the biodiversity evaluation index of the business is calculated using the biodiversity evaluation index of the mine calculated by the biodiversity evaluation index calculation apparatus according to the first embodiment.
- the mine biodiversity evaluation index may be the one calculated by the biodiversity evaluation index calculating apparatus according to the second embodiment.
- FIG. 13 schematically shows a biodiversity evaluation index calculation apparatus 1300 according to the third embodiment.
- the biodiversity evaluation index calculation apparatus 1300 in FIG. 13 includes a procurement database 1301, a manufacturing database 1302, and a procurement decision support unit 1303 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 in FIG.
- the procurement decision support unit 1303 can be realized by the arithmetic processing device 120, and the procurement database 1301 and the manufacturing database 1302 can be realized by the storage device 110.
- the procurement DB 1301 stores information indicating a mine where a business company procures metal resources, a mineral type procured from the mine, and a procurement amount.
- the production DB 1302 stores information on what purpose and how much metal resources are used for what purpose in the business. In the case of the manufacturing industry, the manufacturing DB 1302 stores information indicating how much metal resources are used for which products.
- the procurement decision support unit 1303 calculates a biodiversity evaluation index basic unit for each metal resource used by the company based on the procurement DB 1301.
- step S1402 the procurement decision support unit 1303 calculates the biodiversity of the business from the amount (kg) of metal resources used in the business and the biodiversity evaluation index basic unit of the metal resources according to the following formula (11). A sex evaluation index is calculated.
- the biodiversity evaluation index calculated by the procurement decision support unit 1303 may be a value for the entire business or a value for one product manufactured by a company.
- the biodiversity evaluation index is calculated with reference to the procurement DB 1301 and the manufacturing DB.
- the biodiversity evaluation index may be calculated based on data input by the user. For example, when a user inputs a mineral resource supplier, a procurement amount, and the like, a biodiversity evaluation index may be calculated in accordance with the user input. As a result, users can make decisions to reduce the impact on biodiversity when deciding the types of minerals used in a business (product), the source of mineral resources, the amount of procurement, etc. .
- FIG. 15 shows an example in which the biodiversity evaluation index of a gasoline vehicle and the biodiversity evaluation index of an electric vehicle are compared.
- Electric vehicles use more copper than gasoline vehicles.
- the biodiversity evaluation index for electric vehicles is calculated to be higher than the biodiversity evaluation index for gasoline vehicles. Therefore, it can be seen that an electric vehicle has a greater influence on biodiversity than a gasoline vehicle. This is due to the large amount imported from mines with high biodiversity assessment indices. Therefore, if the supplier is changed to a mine with a low biodiversity evaluation index, the biodiversity evaluation index for electric vehicles can be limited to the biodiversity evaluation index for gasoline vehicles.
- the procurement decision support unit 1303 that calculates the biodiversity evaluation index of a business (or product)
- the user of the metal resource can The impact on biodiversity can be easily assessed and the business process can be modified to minimize the impact on biodiversity.
- a method for evaluating a deposit by remote sensing using a satellite or an aircraft capable of acquiring data in a wide area will be briefly described.
- altered minerals are generated by the reaction of fluidized hot water and rocks. These altered minerals are often arranged concentrically around the deposit.
- an altered mineral for example, alunite (KAl 3 (SO 4 ) 2 (OH) 6 ) is known.
- Such an altered mineral has a reflection spectrum peculiar to the substance. Therefore, the distribution of the altered mineral on the ground surface can be obtained by measuring reflection in a plurality of wavelength bands by remote sensing. Since the composition of altered minerals depends on the mineral species contained in the deposit, the mineral species can be estimated from remote sensing. Further, the position of the deposit (including the two-dimensional position and spread) can be estimated from the spatial distribution of the altered mineral.
- ore exploration data In order to evaluate the depth of the ore deposit and the purity of the ore contained therein, in addition to remote sensing, ore exploration methods such as gravity exploration, magnetic exploration, and electromagnetic exploration can be used. In particular, the investigation using the boring resistance can obtain high resolution information such as depth and purity. Below, the data obtained from these ore exploration techniques are collectively referred to as ore exploration data.
- FIG. 18 schematically shows a biodiversity evaluation index calculation apparatus 1800 according to the fourth embodiment.
- the biodiversity evaluation index calculation apparatus 1800 includes a vegetation DB 101, a protected area geography DB 102, a mine DB 103, a vegetation / habitat coefficient calculation unit 104, a biodiversity value calculation unit 105, and a biodiversity evaluation.
- An index calculation unit 106, a display unit 107, and a virtual mine data generation unit 1810 are provided.
- the mine DB 103 of this embodiment stores data related to the virtual mine generated by the virtual mine data generation unit 1810.
- the virtual mine refers to, for example, a mine planned for development.
- the virtual mine data generation unit 1810 includes an ore exploration DB 1801, a position estimation unit 1802, a mineral species estimation unit 1803, a purity estimation unit 1804, and a yield / purity calculation unit 1807.
- the ore exploration DB 1801 records ore exploration data.
- Mineral exploration data includes, for example, information on the surface reflection spectrum observed by remote sensing (or information on the spatial distribution of altered minerals obtained by remote sensing) and depth of deposits obtained by boring anti-exploration. And ore purity information.
- the position estimating unit 1802 estimates the position of the deposit (including the spread and depth) from the spatial distribution of the altered mineral.
- the position estimation unit 1802 can estimate the depth of the deposit more accurately by using the spatial distribution of the altered mineral and the data obtained by boring anti-exploration.
- the mineral species estimation unit 1803 estimates the mineral species contained in the deposit from the type of the altered mineral.
- the purity estimation unit 1804 estimates the purity of the ore contained in the deposit using, for example, boring anti-exploration data. Since the purity of the ore can vary depending on the position in the ore deposit, the purity estimation unit 1804 estimates the distribution of the purity of the ore.
- the estimation results by the position estimation unit 1802, the mineral species estimation unit 1803, and the purity estimation unit 1804 are obtained as the deposit estimation data 1805, and the output / purity calculation unit 1807. Given to.
- the position estimation unit 1802, the mineral species estimation unit 1803, and the purity estimation unit 1804 are collectively referred to as a deposit estimation unit 1809.
- the mine operation plan data 1806 designates a mine operation plan (also referred to as a deposit development plan) when a mine is created at a deposit position, and is input by an operator or a user.
- the mine operation plan data 1806 specifies, for example, the position and scale (two-dimensional extent and depth) of the mine for each scheduled mine operation year.
- FIG. 19 shows an example of mine operation plan data 1806.
- the position (x, y) of the mine, the radius r of the mine, and the depth d of the mine are designated for each operation year.
- the position (x, y) indicates, for example, the center position on the ground surface of the area where the mining mine is dug, and is represented by latitude and longitude.
- the radius r indicates the horizontal extent of the area where the mining mine is excavated
- the depth d indicates the depth from the ground surface of the area where the mining mine is excavated.
- the mine operation plan data 1806 is not limited to the example shown in FIG. 19 and may be any data as long as the position and scale of the mine can be specified.
- the production / purity calculation unit 1807 calculates the amount of ore to be mined and the purity of the ore at the location for each operation year. Further, the output / purity calculation unit 1807 calculates the output of the obtained mineral for each operation year from the amount of ore mined and the purity of the ore.
- the output and purity calculated by the output / purity calculation unit 1807, the position of the mine included in the mine operation plan data 1806 (that is, the position of the mine), and the mineral species included in the deposit estimation data 1805 are: It is stored in the mine DB 103 as virtual mine data. That is, the mine DB 103 of the present embodiment stores data related to the virtual mine by associating the position, yield, purity, and mineral species for each operation year.
- the biodiversity evaluation index calculation unit 106 can calculate the biodiversity evaluation index of the virtual mine. .
- the biodiversity evaluation index calculation unit 106 can calculate the biodiversity evaluation index of the virtual mine.
- FIG. 21 schematically shows a biodiversity evaluation index calculation apparatus 2100 according to the fifth embodiment.
- a biodiversity evaluation index calculation apparatus 2100 shown in FIG. 21 includes a precipitation database (DB) 2101 in addition to the configuration of the biodiversity evaluation index calculation apparatus 100 shown in FIG.
- DB precipitation database
- information related to precipitation is recorded.
- the amount of rainfall is recorded, for example, in cell units or other area units.
- the biodiversity evaluation index calculation unit 106 calculates a biodiversity evaluation index including the influence of rain by referring to the precipitation DB 2101 together with the mine DB 103.
- the biodiversity evaluation index calculation unit 106 includes a mine impact range calculation unit 701, an accumulation unit 702, a resource mining coefficient multiplication unit 703, and a precipitation impact assessment unit (precipitation impact assessment unit). 2201) (also referred to as an index calculation unit).
- the precipitation influence evaluation unit 2201 evaluates the precipitation influence index from the precipitation recorded in the precipitation DB 2101.
- the precipitation impact index is used to reflect the impact of rain on the biodiversity assessment index.
- FIG. 23 schematically shows the biodiversity evaluation index calculation unit 106 according to the first example of the present embodiment.
- the biodiversity evaluation index calculated by the method described in the first to fourth embodiments is multiplied by a coefficient for reflecting the influence of rain (that is, the precipitation influence index).
- Precipitation impact assessment unit 2201 calculates a precipitation impact index from precipitation at the mine location.
- the precipitation at the mine position is, for example, the average value of the precipitation in the cells included in the mine influence range calculated by the mine influence range calculation unit 701.
- the precipitation impact assessment unit 2201 multiplies the biodiversity assessment index calculated by the resource mining coefficient multiplication unit 703 by the calculated rainfall impact assessment index, as shown in the following formula (12), to obtain biodiversity.
- the biodiversity evaluation index (precipitation amount) in Expression (12) indicates a biodiversity evaluation index including the influence of rain.
- FIG. 24 shows an example of a method for determining the precipitation influence index.
- the precipitation influence index is set to increase as the precipitation amount increases.
- the precipitation influence index is 1.
- observation data has been obtained that the amount of inflow of harmful substances into groundwater is B-fold when the precipitation is A meter per year. Based on this observation data, if the precipitation is A meter annually, the precipitation impact index is B.
- the graph shown in FIG. 24 can be obtained by smoothly connecting two known points (0, 1) and (A, B).
- the point (A, B) may be based on theoretical estimation.
- the method of estimating the curve representing the precipitation effect index from one observation value was shown.
- the curve is calculated by a method such as interpolation or fitting. It can also be estimated.
- FIG. 25 shows another example of the method for determining the precipitation influence index.
- the precipitation influence index changes stepwise with respect to the precipitation.
- the precipitation impact indicator is 1 when the annual precipitation is 0 meter or more and less than C meters
- F when the annual precipitation is C meters or more and less than D meters
- the annual precipitation is D. If it is more than meter but less than E meter, set as B.
- FIG. 26 schematically illustrates the biodiversity evaluation index calculation unit 106 according to the second example of the present embodiment.
- the sum of precipitation in the mine impact range is considered.
- the mine has a mine influence range r a in accordance with the scale. By rain on the mine effect the range r a, toxic substances may be considered to flow into the groundwater.
- the precipitation influence evaluation unit 2201 determines a precipitation influence index for each cell within the mine influence range.
- the determination of the precipitation influence index can be executed according to the method described in the first example. At this time, annual precipitation is taken as precipitation.
- the integrating unit 702 calculates an integrated value obtained by adding the biodiversity values of the cells within the mine influence range, using the precipitation effect index calculated for each cell by the precipitation effect evaluating unit 2201. For example, the integrating unit 702 calculates an integrated value according to the following mathematical formula (13).
- the biodiversity value is calculated by the biodiversity value calculation unit 105 according to Equation (2).
- ⁇ i is the ratio of the area of the cell i and the area affected by the mine to the area of the cell i, as in Equation (5).
- Equation (13) By calculating the integrated value according to Equation (13), it is possible to incorporate into the biodiversity impact index the effect of the area expansion of the mine impact range and the precipitation effect for each cell within that range.
- the biodiversity evaluation index calculation unit 106 of the second example calculates the biodiversity evaluation index according to the following mathematical formula (14).
- FIG. 27 schematically illustrates the biodiversity evaluation index calculation unit 106 according to the third example of the present embodiment.
- the third example incorporates the effect of expanding the range in which biodiversity is affected by the release of harmful substances (also called biodiversity affecting substances) through groundwater. This effect can be incorporated into the biodiversity assessment index by expanding the mine impact range according to rainfall.
- Mine influence range calculating unit 701 is calculated according using the rainfall effect index determined by rainfall impact evaluating unit 2201, mine impact of not considering the precipitation range r a (e.g. Equation (3) .) Is corrected, and the mine impact range r a ′ after taking into consideration the effect of precipitation is calculated.
- the mine influence range r a ′ after considering the influence of precipitation is calculated according to the following formula (15).
- precipitation effect index for mining influence range r a that does not consider precipitation, given as one of the factors mines influence range after precipitation effects considering r a 'increases much.
- mine influence range r a post precipitation effect consideration ' as shown in FIG. 28, Enlarge mining influence range r a that does not consider precipitation.
- the mine influence range r a ′ after considering the influence of precipitation is used.
- the precipitation influence index is estimated by estimating how much harmful substances may spread due to the influence of groundwater. Assume that it is estimated by observation or theoretical estimation that harmful substances contained in the soil discharged from the mine have spread to a radius ra 'km when the precipitation at the mine location is A meter annually.
- the precipitation influence index b at this time can be calculated as in the following formula (16).
- r a r a ′ / r a (16)
- r a 10km when not considering the precipitation, if the hazardous material it was found that extends to 12km by observation, rainfall effect index of 1.2.
- the two points (0, 1) and (A, 1.2) are connected smoothly as shown in FIG. 24, or by connecting stepwise as shown in FIG.
- the relationship of indicators can be determined.
- the method of estimating the relationship between precipitation and precipitation impact index from one observation value was shown, but when observation values for multiple mines or multiple precipitations are obtained, interpolation or fitting is used. Curves can also be estimated.
- the biodiversity evaluation index calculation apparatus evaluates the precipitation influence index according to the precipitation, and calculates the biodiversity evaluation index using the precipitation influence index.
- the influence of rain can be incorporated into the biodiversity evaluation index.
- the instructions shown in the processing procedure shown in the above-described embodiment can be executed based on a program that is software.
- a general-purpose computer system stores this program in advance and reads this program, so that the same effects as those obtained by the biodiversity evaluation index calculation apparatus described above can be obtained.
- the instructions described in the above-described embodiments are, as programs that can be executed by a computer, magnetic disks (flexible disks, hard disks, etc.), optical disks (CD-ROM, CD-R, CD-RW, DVD-ROM, DVD). ⁇ R, DVD ⁇ RW, etc.), semiconductor memory, or a similar recording medium. As long as the recording medium is readable by the computer or the embedded system, the storage format may be any form.
- the computer reads the program from the recording medium and causes the CPU to execute instructions described in the program based on the program, the same operation as the biodiversity evaluation index device of the above-described embodiment is realized. Can do.
- the computer acquires or reads the program, it may be acquired or read through a network.
- the OS operating system
- database management software database management software
- MW middleware
- a part of each process for performing may be executed.
- the recording medium in the present embodiment is not limited to a medium independent of a computer or an embedded system, but also includes a recording medium in which a program transmitted via a LAN, the Internet, or the like is downloaded and stored or temporarily stored.
- the number of recording media is not limited to one, and when the processing in this embodiment is executed from a plurality of media, it is included in the recording medium in this embodiment, and the configuration of the media may be any configuration.
- the computer or the embedded system in the present embodiment is for executing each process in the present embodiment based on a program stored in a recording medium.
- the computer or the embedded system includes a single device such as a personal computer or a microcomputer.
- the system may be any configuration such as a system connected to the network.
- the computer in this embodiment is not limited to a personal computer, but includes an arithmetic processing device, a microcomputer, and the like included in an information processing device. ing.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Software Systems (AREA)
- Educational Administration (AREA)
- Operations Research (AREA)
- Mining & Mineral Resources (AREA)
- Development Economics (AREA)
- Primary Health Care (AREA)
- Life Sciences & Earth Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- General Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
図1は、第1の実施形態に係る生物多様性評価指標計算装置100を概略的に示している。この生物多様性評価指標計算装置100は、図1に示されるように、植生データベース101、保護区地理データベース102、鉱山データベース103、植生・生息動物係数計算部104、生物多様性価値計算部105、生物多様性評価指標計算部106、及び表示部107を備える。ここに記載される生物多様性は、生態系の多様性、種の多様性、及び遺伝的多様性を含む。
続いて、生物多様性価値計算部105は、例えば下記数式(2)に従って、セルiの生物多様性価値を計算する。
(2)
セルの数が非常に多いため、全てのセルについて生物多様性価値を計算するには多くの時間がかかる。また、生物多様性価値は、植生DB101及び保護区地理DB102の少なくとも一方が更新されるたびに計算される必要がある。後述するように、鉱山採掘が生物多様性に影響が及ぶ範囲は数km程度と想定しているので、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標の計算には、1km程度の分解能は必要である。即ち、セルの数を減らすために分解能を落とすことは好ましくない。本実施形態では、生物多様性価値計算部105は、次に説明する階層化アルゴリズムに従って生物多様性価値を計算することで、計算を高速化している。
図6を参照して、階層化アルゴリズムについて説明する。階層化アルゴリズムでは、生物保護区601を含む周辺領域を複数の格子で分割する。格子は、セルより大きな領域である。格子は、典型的には、セルの大きさの2n倍に設定する。ここで、nは、自然数であり、格子が対象の生物保護区と同程度のスケールとなるように設定する。図6の例では、格子は、一辺の長さが4kmの正方形の領域である。
ここで、係数Aは、例えば、世界最大規模の鉱山で半径raが10kmになるように決定される。世界最大規模の鉱山における年間採掘量は約168万tである。
より詳細には、積算部702は、鉱山の位置と鉱山影響範囲の半径raから鉱山の影響を受ける可能性があるセルの範囲を矩形で割り出す。続いて、数式(5)に従って矩形範囲内の全てのセルに対して割合βiを計算し、数式(4)に従って積算値を計算する。
ここで、鉱物種indexは、鉱物種毎に設定される重み係数である。例えば、水の使用量、有害物質の流出量などは鉱物種によって異なる。鉱物種indexは、水の使用量、有害物質の流出量などに起因する生物多様性への影響を考慮して鉱物種毎に決められる。なお、資源採掘係数乗算部703は、鉱物種indexを用いずに、即ち、鉱物種indexを1として、資源採掘係数を計算してもよい。
表示部107は、液晶ディスプレイなどの表示装置である。表示部107は、鉱山毎に算出された生物多様性評価指標を表示する。
第2の実施形態では、第1の実施形態の計算処理をより高速化する手法を説明する。第1の実施形態では、世界地図を複数のセルで分割し、全てのセルについて生物多様性価値を計算している。保護区は、世界中に多数存在し、その数は16万件以上にもなる。一方、鉱山は世界中に膨大な数存在するものではなく、鉱山影響範囲は、世界全体のごく一部の範囲である。従って、生物多様性価値の計算の際、ほとんどの鉱山の生物多様性評価指標の計算においては保護区の考慮は必要とされない。本実施形態では、生物多様性価値の計算対象とする保護区を鉱山影響範囲内にある保護区に限ることで、計算速度を高速にすることが可能である。
ここで、γiは、下記数式(9)のように、セルi内で保護区と鉱山影響範囲とが重なる部分の面積がセルiの面積に占める割合を示す。図11に拡大して示されるセル1104では、保護区と鉱山影響範囲とが重なる部分は斜線を施されて示されている。
次に、図12を参照して、第2の実施形態に係る計算アルゴリズムを説明する。
まず、全ての鉱山の生物多様性評価指標が0に初期化される。ステップS1201では、鉱山DB103に格納されている複数の鉱山のうちの1つを取り出す。ステップS1202では、この鉱山を鉱山位置管理部1001に登録する。鉱山位置管理部1001は、鉱山を位置情報とともに記憶する。例えば、鉱山位置管理部1001は、鉱山影響範囲を囲む矩形(鉱山矩形)を計算し、その鉱山矩形をR木に登録する。ステップS1203では、鉱山DB103内の全ての鉱山が鉱山位置管理部1001に登録されたか否かが判定される。未登録の鉱山がある場合、ステップS1201に戻る。全ての鉱山が鉱山位置管理部1001に登録されると、ステップS1204に進む。
第1の実施形態に係る計算アルゴリズム(基本アルゴリズムと呼ぶ)で計算された生物多様性評価指標は、第2の実施形態に係る計算アルゴリズム(高速アルゴリズムと呼ぶ)で計算された生物多様性評価指標と厳密には一致しない。このことを図16を参照して説明する。図16のセル1603は、保護区1601とも交わり、鉱山影響範囲1602とも交わる。基本アルゴリズムでは、このセル1603は鉱山の生物多様性評価指標の計算に寄与する。一方、セル1603内では、保護区1601は鉱山影響範囲1602と重なっていない。従って、高速アルゴリズムでは、セル1603は鉱山の生物多様性評価指標の計算に寄与しない。より具体的には、セルが保護区と交わりがあることはα>0を意味し、セルが鉱山影響範囲と交わりがあることはβ>0を意味する。一方、セル内部に保護区と鉱山影響範囲の共通部分が含まれないことはγ=0を意味する。基本アルゴリズムで使用される数式(2)及び数式(4)と高速アルゴリズムで使用される数式(8)を比較すると、α×βがγに置き換わっていることがわかる。一般には、α×β≠γであり、その結果、基本アルゴリズムの計算結果と高速アルゴリズムの計算結果との間に相違が生じる。
この計算例では、植生データ及び保護区データとしては、既存のデータを用いた。鉱山データとしては、例として所定の地域に存在する銅及び鉄の21の鉱山を抜き出して作成したデータを用いた。これらのデータをもとに生物多様性評価指標を計算した結果を図17に示す。図17では、生物多様性評価指標を単に評価指標と称している。また、評価指標(基本)は、第1の実施形態に係る計算アルゴリズム(基本アルゴリズム)で計算した結果であり、評価指標(高速)は、第2の実施形態に係る計算アルゴリズム(高速アルゴリズム)で計算した結果である。
第3の実施形態では、第1の実施形態に係る生物多様性評価指標計算装置で計算される鉱山の生物多様性評価指標を用いて、事業(又は製品)の生物多様性評価指標を算出する方法を説明する。なお、鉱山の生物多様性評価指標は、第2の実施形態に係る生物多様性評価指標計算装置で計算されたものを用いてもよい。
ステップS1401では、調達意思決定支援部1303は、調達DB1301に基づいて、企業が使用している金属資源毎に生物多様性評価指標原単位を計算する。生物多様性評価指標原単位は、金属資源を調達している鉱山の生物多様性評価指標を、調達量による重みをつけて平均化したものである。具体的には、ある1つの金属(例えば鉄)をn個の鉱山からそれぞれwi(i=1,2,…,n)kgの量を調達しているとする。さらに、それぞれの鉱山の生物多様性評価指標をmi(i=1,2,…,n)とする。このとき、この金属資源の生物多様性評価指標原単位は、下記数式(10)で計算される。
調達意思決定支援部1303が計算する生物多様性評価指標は、事業全体についての値であってもよく、企業が製造する1つの製品についての値であってもよい。本実施形態では、調達DB1301及び製造DBを参照して生物多様性評価指標を計算しているが、ユーザによって入力されたデータに基づいて生物多様性評価指標を計算してもよい。例えば、ユーザが鉱物資源の調達先、調達量などを入力すると、このユーザ入力に応じて生物多様性評価指標を計算するように構成してもよい。これにより、事業(製品)に使用する鉱物種、鉱物資源の調達先、調達量などを決める際に、生物多様性への影響を小さくするようにユーザが意思決定を行うことができるようになる。
これまでの実施形態では、実際に存在する鉱山に対して、鉱山の位置、鉱物の産出量、鉱石の純度から生物多様性影響を評価している。しかしながら、生物多様性影響を評価する対象は、実際に存在する鉱山に限定されない。今日、様々な手法を用いて埋蔵されている資源の量を推定することが可能になっている。その推定を元に、ある地点に鉱山を設けて採掘を行った場合に、その鉱山採掘が生物多様性にどの様な影響を持ち得るかという評価にも上述した実施形態は応用可能である。
鉱山周辺には採掘した後の土が積まれている。鉱山周辺に雨が降ると、この土に含まれている有害物質が地下水に流入し、鉱山周辺に拡散する。雨による有害物質の拡散は生物多様性に影響を与えると考えられる。第5の実施形態では、このような雨の影響を生物多様性評価指標に組み入れる方法を説明する。
×降水量影響指標 (12)
降水量影響指標を設定する方法としては、様々な方法が考えられる。図24は、降水量影響指標の決定方法の一例を示している。図24の例では、降水量影響指標は、降水量が多いほど大きくなるように設定される。降水量が年間0メートルである場合、雨が生物多様性評価指標に影響することがないので、降水量影響指標は1とする。降水量が年間Aメートルである場合に有害物質の地下水への流入量がB倍になるという観測データが得られているものとする。この観測データに基づいて、降水量が年間Aメートルである場合、降水量影響指標はBとする。図24に示されるグラフは、既知の二点(0,1)、(A,B)間を滑らかに結ぶことで得ることができる。また点(A,B)は理論的推定に基づいていてもよい。ここでは、降水量影響指標を表す曲線を1つの観測値から推定する方法を示したが、複数の鉱山或いは複数の降水量についての観測値が得られる場合、補間又はフィッティングなどの方法で曲線を推定することもできる。
ここで、生物多様性価値は、生物多様性価値計算部105によって数式(2)に従って算出される。また、βiは、数式(5)のように、セルiと鉱山影響範囲とが重なる部分の面積がセルiの面積に占める割合である。
図27は、本実施形態の第3例に係る生物多様性評価指標計算部106を概略的に示している。第3例は、地下水を通して有害物質(生物多様性影響物質ともいう)が流出することにより、生物多様性が影響を受ける範囲が拡大する効果を取り入れるものである。この効果は、降雨量に応じて鉱山影響範囲を拡大することによって生物多様性評価指標に組み込むことができる。
降水量影響考慮後の鉱山影響範囲ra´は、図28に示すように、降水量を考慮しない場合の鉱山影響範囲raより拡大する。第2例では、積算部702における積算値の計算では、降水量影響考慮後の鉱山影響範囲ra´が使用される。このように鉱山影響範囲を降水量に応じて拡大することにより、雨の影響を生物多様性評価指標に組み込むことが可能になる。
例えば、降水を考慮しないときに鉱山影響範囲raが10kmと見積もられた鉱山で、観測により有害物質が12kmまで広がっていることがわかった場合、降水量影響指標は1.2となる。この場合、図24に示すように2点(0,1)、(A,1.2)を滑らかに結ぶ、或いは、図25に示すように段階的に結ぶことにより、降水量と降水量影響指標の関係を決めることができる。ここでは、降水量と降水量影響指標の関係を1つの観測値から推定する方法を示したが、複数の鉱山又は複数の降水量についての観測値が得られる場合、補間又はフィッティングなどの方法で曲線を推定することもできる。
また、記録媒体からコンピュータや組み込みシステムにインストールされたプログラムの指示に基づきコンピュータ上で稼働しているOS(オペレーティングシステム)や、データベース管理ソフト、ネットワーク等のMW(ミドルウェア)等が本実施形態を実現するための各処理の一部を実行してもよい。
さらに、本実施形態における記録媒体は、コンピュータあるいは組み込みシステムと独立した媒体に限らず、LANやインターネット等により伝達されたプログラムをダウンロードして記憶または一時記憶した記録媒体も含まれる。
また、記録媒体は1つに限られず、複数の媒体から本実施形態における処理が実行される場合も、本実施形態における記録媒体に含まれ、媒体の構成は何れの構成であってもよい。
また、本実施形態におけるコンピュータとは、パソコンに限らず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本実施形態における機能を実現することが可能な機器、装置を総称している。
Claims (21)
- 植生の分類に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算する第1計算部と、
複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算する第2計算部と、
複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算する第3計算部であって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算する第3計算部と、
を具備することを特徴とする生物多様性評価指標計算装置。 - 前記第2計算部は、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算することを特徴とする請求項1に記載の生物多様性評価指標計算装置。
- 製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算する第4計算部をさらに具備する請求項1又は請求項2に記載の生物多様性評価指標計算装置。
- 前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成する生成部をさらに具備し、
前記生成部は、
リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成する鉱床推定部と、
前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算する第5計算部と、
を含む、ことを特徴とする請求項1に記載の生物多様性評価指標計算装置。 - 降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算する第6計算部をさらに具備することを特徴とする請求項1に記載の生物多様性評価指標計算装置。
- 降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算する第6計算部をさらに具備し、
前記第3計算部は、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせることを特徴とする請求項1に記載の生物多様性評価指標計算装置。 - 降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算する第6計算部をさらに具備し、
前記第3計算部は、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算することを特徴とする請求項1に記載の生物多様性評価指標計算装置。 - 第1計算部が、植生分類の分布に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算するステップと、
第2計算部が、複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算するステップと、
第3計算部が、複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算することであって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算するステップと、
を具備することを特徴とする生物多様性評価指標計算方法。 - 前記生物多様性価値を計算するステップは、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算するステップを含む、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。
- 第4計算部が、製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算するステップをさらに具備することを特徴とする請求項8又は9に記載の生物多様性評価指標計算方法。
- 生成部が、前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成するステップをさらに具備し、
前記仮想鉱山データを生成するステップは、
リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成するステップと、
前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算するステップと、
を含む、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。 - 第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算するステップをさらに具備する請求項8に記載の生物多様性評価指標計算方法。
- 第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算するステップをさらに具備し、
前記生物多様性評価指標を計算するステップは、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせる、請求項8に記載の生物多様性評価指標計算方法。 - 第6計算部が、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算するステップをさらに具備し、
前記生物多様性評価指標を計算するステップは、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算する、ことを特徴とする請求項8に記載の生物多様性評価指標計算方法。 - コンピュータを、
植生の分類に関するデータを格納する植生データベースを参照して、植物の種の多様性及び生息動物の種の多様性の少なくとも一方を表す植生及び生息動物係数を、複数の領域毎に計算する第1計算手段、
複数の保護区それぞれに関して保護区の種類及び範囲が記述されている保護区地理データベースを参照して、前記保護区の種類と前記植生及び生息動物係数とに基づいて、生物多様性の豊かさを表す生物多様性価値を、前記複数の領域毎に計算する第2計算手段、及び
複数の鉱山それぞれに関して鉱山の位置、産出量、純度及び鉱物種が記述されている鉱山データベースを参照して、鉱山採掘の生物多様性に対する影響を表す生物多様性評価指標を、前記複数の鉱山毎に計算する第3計算部であって、前記産出量、前記純度及び前記鉱物種に基づいて、鉱山採掘が周辺環境に影響を及ぼす範囲を示す鉱山影響範囲を計算し、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域を特定し、前記1以上の領域の前記生物多様性価値を足し合わせることにより生物多様性評価指標を計算する第3計算手段として機能させるためのプログラム。 - 前記第2計算手段は、前記複数の領域のうちの前記鉱山影響範囲に含まれる1以上の領域毎に前記生物多様性価値を計算する請求項15に記載のプログラム。
- 前記コンピュータを、
製品に使用される複数の金属資源それぞれに関して金属資源の種類、調達先及び使用量が記述されている製造データベースを参照して、前記鉱山毎に計算された生物多様性評価指標から、前記製品の生物多様性評価指標を計算する第4計算手段としてさらに機能させる、請求項15又は16に記載のプログラム。 - 前記コンピュータを、前記鉱山データベースに記録する開発予定の鉱山に関するデータを生成する生成手段としてさらに機能させ、
前記生成手段は、
リモートセンシングによって観測された地表面での反射スペクトルを含む鉱床探査データから、鉱床の位置、前記鉱床に含まれる鉱物種、及び前記鉱床に含まれる鉱石の純度を推定し、鉱床推定データを生成することと、
前記鉱床推定データ及び前記鉱床の開発計画を示す鉱山操業計画データから、前記鉱床から得られる鉱石の純度と該鉱石に含有される鉱物の産出量とを、前記鉱山データベースに記述される前記純度及び前記産出量として計算することと、
を含む、ことを特徴とする請求項15に記載のプログラム。 - 前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算し、前記降水量影響指標を第3計算部によって計算された前記生物多様性評価指標に掛け合わせることにより、雨の影響を含む生物多様性評価指標影響を計算する第6計算手段としてさらに機能させる、請求項15に記載のプログラム。
- 前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を前記1以上の領域毎に計算する第6計算手段として機能させ、
前記第3計算手段は、前記1以上の領域の前記生物多様性価値を足し合わせる際に、前記生物多様性指標に前記降水量影響指標を掛け合わせることを特徴とする請求項15に記載のプログラム。 - 前記コンピュータを、降水量に関する情報を記録した降水量データベースから得られる鉱山周辺の降水量から、降水量影響指標を計算する第6計算手段としてさらに機能させ、
前記第3計算手段は、前記産出量、前記純度及び前記降水量影響指標に基づいて鉱山影響範囲を計算する、請求項15に記載のプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014506249A JP5815120B2 (ja) | 2012-03-21 | 2013-03-19 | 生物多様性評価指標計算装置、方法、及びプログラム |
EP13764564.4A EP2830015A4 (en) | 2012-03-21 | 2013-03-19 | BIODIVERSITY EVALUATION INDEX CALCULATION DEVICE, METHOD, AND PROGRAM |
US14/490,735 US20150012316A1 (en) | 2012-03-21 | 2014-09-19 | Biodiversity evaluation index calculation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012063376 | 2012-03-21 | ||
JP2012-063376 | 2012-03-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/490,735 Continuation US20150012316A1 (en) | 2012-03-21 | 2014-09-19 | Biodiversity evaluation index calculation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013141252A1 true WO2013141252A1 (ja) | 2013-09-26 |
Family
ID=49222709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057872 WO2013141252A1 (ja) | 2012-03-21 | 2013-03-19 | 生物多様性評価指標計算装置、方法、及びプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150012316A1 (ja) |
EP (1) | EP2830015A4 (ja) |
JP (1) | JP5815120B2 (ja) |
WO (1) | WO2013141252A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220179123A1 (en) * | 2020-12-04 | 2022-06-09 | National Institute of Meteorological Sciences | Method and apparatus for producing ground vegetation input data for global climate change prediction model |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106815690A (zh) * | 2017-01-25 | 2017-06-09 | 中国科学院遥感与数字地球研究所 | 基于遥感数据的生态环境质量评价系统与方法 |
CN107632967A (zh) * | 2017-09-14 | 2018-01-26 | 青海省基础地理信息中心 | 一种草地产草量估算方法 |
CN108053403A (zh) * | 2018-01-10 | 2018-05-18 | 中煤航测遥感集团有限公司 | 矿产开发监控方法和矿产开发监控装置 |
JP7086630B2 (ja) * | 2018-02-09 | 2022-06-20 | キヤノン株式会社 | 情報処理装置、情報処理方法、及びプログラム |
CN110458390A (zh) * | 2019-07-01 | 2019-11-15 | 中国石油化工股份有限公司 | 油田矿场集输类设备的优选评价方法 |
CN111311114A (zh) * | 2020-03-11 | 2020-06-19 | 汇明科技(江苏)有限公司 | 一种土地资源修复成效评价方法 |
CN112668851B (zh) * | 2020-12-21 | 2021-11-02 | 浙江弄潮儿智慧科技有限公司 | 一种确定生物多样性保护关键区域的方法及系统 |
CN114897298A (zh) * | 2022-04-01 | 2022-08-12 | 中国科学院东北地理与农业生态研究所 | 面向评估时段的生物多样性保护成效空间对比评估方法 |
CN116956755B (zh) * | 2023-09-21 | 2023-12-19 | 北京建工环境修复股份有限公司 | 一种矿山生态修复智能规划方法、系统及介质 |
CN118097812B (zh) * | 2024-02-29 | 2024-10-01 | 生态环境部南京环境科学研究所 | 一种实地勘测用草原气候变化对生物多样性协同保护影响权重量化评价装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002247900A (ja) * | 2001-02-21 | 2002-08-30 | Electric Power Dev Co Ltd | 環境保全地域の改変方法 |
JP2003102326A (ja) | 2001-09-28 | 2003-04-08 | Kajima Corp | 野生動物の生息状況評価方法及び装置並びにプログラム |
JP2004102606A (ja) * | 2002-09-09 | 2004-04-02 | Taisei Corp | 環境評価装置 |
-
2013
- 2013-03-19 EP EP13764564.4A patent/EP2830015A4/en not_active Withdrawn
- 2013-03-19 WO PCT/JP2013/057872 patent/WO2013141252A1/ja active Application Filing
- 2013-03-19 JP JP2014506249A patent/JP5815120B2/ja not_active Expired - Fee Related
-
2014
- 2014-09-19 US US14/490,735 patent/US20150012316A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002247900A (ja) * | 2001-02-21 | 2002-08-30 | Electric Power Dev Co Ltd | 環境保全地域の改変方法 |
JP2003102326A (ja) | 2001-09-28 | 2003-04-08 | Kajima Corp | 野生動物の生息状況評価方法及び装置並びにプログラム |
JP2004102606A (ja) * | 2002-09-09 | 2004-04-02 | Taisei Corp | 環境評価装置 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2830015A4 * |
TSUTOMU KAWAGUCHI: "Applying ICT in Biodiversity Surveys and Evaluations of Impact on Biodiversity", FUJITSU, vol. 62, no. 6, 10 November 2011 (2011-11-10), pages 745 - 752, XP008174503 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220179123A1 (en) * | 2020-12-04 | 2022-06-09 | National Institute of Meteorological Sciences | Method and apparatus for producing ground vegetation input data for global climate change prediction model |
JP2022089779A (ja) * | 2020-12-04 | 2022-06-16 | ナショナル インスティチュート オブ ミティオロロジカル サイエンシズ | 全地球気候変化予測モデルの遂行のための地面植生入力資料の生産方法及び装置 |
JP7246457B2 (ja) | 2020-12-04 | 2023-03-27 | ナショナル インスティチュート オブ ミティオロロジカル サイエンシズ | 全地球気候変化予測モデルの遂行のための地面植生入力資料の生産方法及び装置 |
US11693151B2 (en) * | 2020-12-04 | 2023-07-04 | National Institute of Meteorological Sciences | Method and apparatus for producing ground vegetation input data for global climate change prediction model |
Also Published As
Publication number | Publication date |
---|---|
US20150012316A1 (en) | 2015-01-08 |
EP2830015A1 (en) | 2015-01-28 |
JP5815120B2 (ja) | 2015-11-17 |
EP2830015A4 (en) | 2015-11-11 |
JPWO2013141252A1 (ja) | 2015-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5815120B2 (ja) | 生物多様性評価指標計算装置、方法、及びプログラム | |
Pande et al. | Study of land use classification in an arid region using multispectral satellite images | |
Amatulli et al. | A suite of global, cross-scale topographic variables for environmental and biodiversity modeling | |
Zhang et al. | Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China | |
Appelhans et al. | Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania | |
Yang et al. | A review of historical reconstruction methods of land use/land cover | |
Kobal et al. | Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover—Case study of a high karst area in the Dinaric Mountains | |
Lee et al. | A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests | |
Lacoste et al. | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France | |
Rahman et al. | Assessing regional environmental quality by integrated use of remote sensing, GIS, and spatial multi-criteria evaluation for prioritization of environmental restoration | |
Wilcox et al. | Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-based modeling | |
Albarelli et al. | Identification of potential rockfall sources using UAV-derived point cloud | |
Valent et al. | Utilization of historical maps in the land use change impact studies: A case study from Myjava river basin | |
Pandey et al. | Analyzing and modeling of a large river basin dynamics applying integrated cellular automata and Markov model | |
CN116050935B (zh) | 一种确定生物多样性优先保护地信息的方法及装置 | |
Crespo-Mendes et al. | Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment | |
Liao et al. | Errors prediction for vector-to-raster conversion based on map load and cell size | |
Grenier et al. | Accuracy assessment method for wetland object-based classification | |
Busho et al. | Quantifying spatial patterns of urbanization: growth types, rates, and changes in Addis Ababa City from 1990 to 2020 | |
JP5403726B2 (ja) | 浸水深調査システム及びプログラム | |
Bagwan | An assessment of rainfall-induced land degradation condition using Erosivity Density (ED) and heatmap method for Urmodi River watershed of Maharashtra, India | |
Jantke et al. | Benefits of earth observation data for conservation planning in the case of European wetland biodiversity | |
CN116934139A (zh) | 城镇化进程中水生态功能空间响应识别方法、装置及设备 | |
Bickford et al. | Reconstructing pre‐impact vegetation cover in modified landscapes using environmental modelling, historical surveys and remnant vegetation data: a case study in the Fleurieu Peninsula, South Australia | |
Qing et al. | Quantifying urban expansion using Landsat images and landscape metrics: A case study of the Halton Region, Ontario |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13764564 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014506249 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013764564 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013764564 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |