WO2013141223A1 - 発酵乳の硬度の評価方法および発酵乳の硬度の評価装置 - Google Patents

発酵乳の硬度の評価方法および発酵乳の硬度の評価装置 Download PDF

Info

Publication number
WO2013141223A1
WO2013141223A1 PCT/JP2013/057752 JP2013057752W WO2013141223A1 WO 2013141223 A1 WO2013141223 A1 WO 2013141223A1 JP 2013057752 W JP2013057752 W JP 2013057752W WO 2013141223 A1 WO2013141223 A1 WO 2013141223A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
hardness
fermented milk
depth
evaluating
Prior art date
Application number
PCT/JP2013/057752
Other languages
English (en)
French (fr)
Inventor
婀娜 劉
山本 昌志
芙由子 山本
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to JP2014506235A priority Critical patent/JP6067678B2/ja
Priority to CN201380009070.7A priority patent/CN104114030B/zh
Publication of WO2013141223A1 publication Critical patent/WO2013141223A1/ja
Priority to HK15102070.2A priority patent/HK1201415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials

Definitions

  • the present invention relates to a method for evaluating the hardness of fermented milk and an apparatus for evaluating the hardness of fermented milk.
  • Fermented milk curd is formed by an acid component (organic acid) produced by live bacteria such as lactic acid bacteria. Since the activity of lactic acid bacteria affects the hardness of the card, the hardness of the card cannot be stably controlled only by managing the blending components. That is, if the production rate or type of organic acid derived from lactic acid bacteria or the like is different, the hardness of the curd is different and the physical properties of the fermented milk are also different. Therefore, in the manufacturing process of fermented milk, it is necessary to measure the hardness of fermented milk regularly, and it is important when managing the quality.
  • organic acid organic acid
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-028056 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-279086 (Patent Document 2) describe that the hardness of fermented milk was measured by Leoner (manufactured by Yamaden Co., Ltd.). .
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2005-176603 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2005-348703 (Patent Document 4) describe that the hardness of fermented milk was measured with a neo card meter (manufactured by iTechno Engineering Co., Ltd.). ing.
  • Patent Documents 1 and 2 the hardness of fermented milk is expressed as a breaking stress (g / cm 2 ).
  • the hardness of fermented milk is represented as a load (g) when a sample fractures
  • hardness of fermented milk is used to mean the load (breaking strength) when fermented milk breaks.
  • the outline of the configuration and measurement principle of the above card meter is as follows.
  • the card meter includes a sample table that can be moved up and down at a constant speed and a pressure-sensitive shaft.
  • a sample whose hardness is to be measured is placed on a sample table, and the sample is raised at a constant speed.
  • the sample is pressed against one end of the pressure sensitive shaft.
  • the other end of the pressure sensitive shaft is connected to the load cell via a spring. Due to the action of the spring, a load that increases at a constant rate (constant speed load) is applied to the sample.
  • a load-displacement curve is obtained from the load applied to the sample and the measured value by the load cell. From the load-displacement curve, the breaking strength, viscosity, elasticity, etc. of the sample can be evaluated.
  • the hardness of fermented milk can be determined quantitatively by using a card meter. In addition, other characteristics such as viscosity and elasticity can be evaluated together.
  • the hardness of post-fermented fermented milk is controlled to be 40 to 100 g.
  • the hardness of 40 g or more is set from the viewpoint of physical properties so that the fermented milk can withstand vibrations during transportation of the automobile.
  • the hardness of 100 g or less is set from the viewpoint of texture so that the fermented milk has an appropriate crunch and texture.
  • the method for evaluating the hardness of fermented milk includes a step of preparing fermented milk housed in a container having an opening at the top, a weight is carried from the opening, and the weight is placed on the upper surface of the fermented milk. Placing the weight, measuring the depth of the weight sinking into the fermented milk after a predetermined time after placing the weight, the depth of the weight sinking, and the hardness associated with the weight Referring to a conversion table, and evaluating the hardness of the fermented milk.
  • the hardness of fermented milk can be evaluated quickly and easily by using the same weight thereafter.
  • a step of measuring the depth of the weight sinking into the fermented milk after a predetermined time after mounting the weight, and the weight sinking depth associated with the weight A first comparison step for comparing with a reference value, and a step for evaluating the hardness of the fermented milk from a result of the first comparison step and a hardness threshold value associated with the weight.
  • the hardness of the fermented milk is lower than a certain hardness or higher than a certain hardness.
  • the hardness evaluation apparatus is a hardness evaluation apparatus that evaluates the hardness of fermented milk stored in a container having an opening at an upper portion thereof, and carries a weight from the opening, and the weight is placed on an upper surface of the fermented milk.
  • a measurement unit that measures the depth at which the weight sinks into the fermented milk, a measurement value received from the measurement unit, and a hardness conversion table associated with the measurement value and the weight.
  • an evaluation unit for evaluating the hardness of the fermented milk is a hardness evaluation apparatus that evaluates the hardness of fermented milk stored in a container having an opening at an upper portion thereof, and carries a weight from the opening, and the weight is placed on an upper surface of the fermented milk.
  • a measurement unit that measures the depth at which the weight sinks into the fermented milk, a measurement value received from the measurement unit, and a hardness conversion table associated with the measurement value and the weight.
  • an evaluation unit for evaluating the hardness of the fermented milk is a
  • Another hardness evaluation apparatus is a hardness evaluation apparatus for evaluating the hardness of fermented milk stored in a container having an opening at an upper portion, and carries a weight from the opening, and is placed on the upper surface of the fermented milk.
  • a transport unit for placing the weight a measurement unit for measuring the depth of the weight sinking into the fermented milk, a measurement value received from the measurement unit, and a reference value associated with the weight for the measurement value;
  • a comparison unit for comparison.
  • an object of the present invention is to provide an evaluation method and an evaluation apparatus that can quickly and easily evaluate the hardness of fermented milk.
  • FIG. 1 is a diagram showing a procedure of a method for evaluating the hardness of fermented milk according to the first embodiment of the present invention.
  • FIG. 2A is a perspective view for explaining a method for evaluating the hardness of fermented milk according to the first embodiment of the present invention.
  • FIG. 2B is a perspective view for explaining a method for evaluating the hardness of fermented milk according to the first embodiment of the present invention.
  • FIG. 2C is a perspective view for explaining a method for evaluating the hardness of fermented milk according to the first embodiment of the present invention.
  • FIG. 2D is a view for explaining the hardness evaluation method for fermented milk according to the first embodiment of the present invention, and is a cross-sectional view taken along the line A-A ′ in FIG.
  • FIG. 3 is an example of a hardness conversion table.
  • FIG. 4 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 2nd Embodiment of this invention.
  • FIG. 5 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 3rd Embodiment of this invention.
  • FIG. 6 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 4th Embodiment of this invention.
  • FIG. 7 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 5th Embodiment of this invention.
  • FIG. 4 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 2nd Embodiment of this invention.
  • FIG. 5 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 3rd Embodiment of this invention.
  • FIG. 6 is a figure which
  • FIG. 8A is a functional block diagram showing a configuration of a hardness evaluation apparatus according to an embodiment of the present invention.
  • FIG. 8B is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 8C is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 9A is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 9B is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 9C is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 9D is a functional block diagram showing a configuration of a hardness evaluation apparatus according to another embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a procedure of a method for evaluating the hardness of fermented milk according to the present embodiment.
  • 2A to 2D are views for explaining a method for evaluating the hardness of fermented milk according to the present embodiment, in which FIGS. 2A to 2C are perspective views, and FIG. 2D is a line AA ′ in FIG. 2C.
  • FIG. 1 is a diagram illustrating a procedure of a method for evaluating the hardness of fermented milk according to the present embodiment.
  • 2A to 2D are views for explaining a method for evaluating the hardness of fermented milk according to the present embodiment, in which FIGS. 2A to 2C are perspective views, and FIG. 2D is a line AA ′ in FIG. 2C.
  • FIG. 1 is a diagram illustrating a procedure of a method for evaluating the hardness of fermented milk according to the present embodiment.
  • 2A to 2D are views for explaining a method for evaluating the hardness of fermente
  • the method for evaluating the hardness of fermented milk includes a step of preparing fermented milk 1 accommodated in a container 2 having an opening 2a at the top (step S1), and the weight 3 is carried from the opening 2a.
  • step S4 a depth d where the weight 3 sinks and a hardness conversion table associated with the weight 3, and a step of evaluating the hardness of the fermented milk 1.
  • fermented milk 1 to be evaluated for hardness is prepared (step S1).
  • Fermented milk 1 is obtained by fermenting and coagulating animal milk.
  • fermented milk 1 is, for example, yogurt or cheese.
  • the evaluation method of the hardness of fermented milk according to the present embodiment is preferably used for post-fermented fermented milk (hard type yogurt) rather than pre-fermented fermented milk (soft type or drink type yogurt). be able to.
  • the fermented milk 1 is yoghurt, for example, the raw material mix is filled in the container 2 and fermented in the container 2 is prepared.
  • the container 2 for storing the fermented milk 1 has an opening 2a at the top of the stored fermented milk 1.
  • the container 2 should just be opened at least partially so that the weight 3 can be carried in from the opening 2 a and the weight 3 can be placed on the upper surface of the fermented milk 1. Even if the container 2 is sealed and the fermented milk 1 is stored, it may be opened in this step.
  • the material and shape of the container 2 are not particularly limited.
  • the container 2 is a cup container formed of, for example, plastic or paper.
  • the fermented milk 1 preferably has a flat upper surface. However, the entire upper surface may not be flat. For example, the location in contact with the inner peripheral wall of the container 2 may be raised or depressed.
  • the weight 3 is carried in from the opening 2a, and the weight 3 is placed on the upper surface of the fermented milk 1 (see step S2, FIG. 2A and FIG. 2B).
  • the weight of the weight 3 is determined in advance according to the hardness of the fermented milk 1. That is, when evaluating the hardness of the relatively soft fermented milk 1, a relatively light weight 3 is used. When evaluating the hardness of the relatively hard fermented milk 1, a relatively heavy weight 3 is used.
  • the weight 3 is, for example, a cylinder or a square pole. As for the weight 3, it is preferable that the corner
  • the weight 3 is preferably high in density to some extent, and for example, a metal can be used.
  • the weight 3 preferably has a flat bottom surface.
  • the weight 3 needs to be large enough to be carried in from the opening 2 a of the container 2.
  • the area of the bottom surface of the weight 3 is preferably wider. Therefore, the weight 3 is preferably slightly smaller than the opening 2 a of the container 2. More preferably, the area of the bottom surface of the weight 3 is approximately the same as the area of the top surface of the fermented milk 1 on which the weight 3 is to be placed.
  • the surface of the fermented milk 1 on which the weight 3 is placed is preferably flat.
  • the weight 3 is preferably placed slowly.
  • the weight 3 sinks into the fermented milk 1 due to its own weight. If the hardness of the fermented milk 1 is low, the weight 3 will sink deeper. On the contrary, if the hardness of the fermented milk 1 is high, the weight 3 does not sink so much or does not sink at all.
  • the depth d where the weight 3 sinks into the fermented milk 1 is measured (see step S3, FIG. 2C and FIG. 2D).
  • the depth d at which the weight 3 sinks can be a distance between the top surface of the fermented milk 1 and the bottom surface of the weight 3.
  • the predetermined time is, for example, 1 second to 5 minutes, preferably 3 seconds to 4 minutes, more preferably 5 seconds to 3 minutes, further preferably 7 seconds to 1 minute, and particularly preferably 10 seconds to 30 seconds. preferable.
  • the hardness d of the fermented milk 1 is evaluated with reference to the depth d where the weight 3 sinks and the hardness conversion table associated with the weight 3 (step S4).
  • the hardness conversion table is created in advance using weight 3 for fermented milk having various hardnesses.
  • a method for creating a hardness conversion table will be described.
  • a plurality of fermented milks having various hardnesses are prepared.
  • the hardness of these fermented milk is quantitatively measured using a card meter or the like.
  • These fermented milk is stored in the same container 2 as the fermented milk 1.
  • the weight 3 is mounted on the upper surface of these fermented milk similarly to step S2.
  • the depth at which the weight 3 sinks into the fermented milk is measured a predetermined time after the weight 3 is placed. Then, the measured value is recorded.
  • FIG. 3 is an example of a hardness conversion table.
  • a method for evaluating the hardness of the fermented milk 1 will be described with reference to a hardness conversion table.
  • the depth d where the weight 3 sinks is compared with the depths d (1) to d (5) recorded in the reference table.
  • the hardness h of the fermented milk can be evaluated as h ⁇ h (1).
  • D ⁇ d (5) it can be evaluated that h ⁇ h (5).
  • the hardness may be obtained more finely by interpolation or fitting.
  • FIG. 3 illustrates a case where the conversion table records five types of hardness.
  • the type of hardness recorded by the conversion table is arbitrary. The more the types of hardness that the conversion table records, the more finely the hardness of the fermented milk 1 can be evaluated. Further, the wider the hardness range recorded by the conversion table, the wider the hardness can be evaluated.
  • the evaluation method of the hardness of fermented milk concerning the 1st Embodiment of this invention was demonstrated. According to the method for evaluating the hardness of fermented milk according to the present embodiment, once the correspondence between the hardness of the fermented milk and the weight is examined, the hardness of the fermented milk can be evaluated quickly and easily by using the same weight. can do.
  • FIG. 4 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 2nd Embodiment of this invention.
  • the method for evaluating the hardness of fermented milk according to the present embodiment includes a step of preparing fermented milk housed in a container having an opening at the top (step S1), a weight is carried from the opening, and the top surface of the fermented milk A step of placing a weight (step S2), a step of measuring the depth d after the weight is placed on the fermented milk after a predetermined time (step S3), and a depth of the weight being placed.
  • steps S1 to S3 are performed. Steps S1 to S3 are the same as in the first embodiment.
  • the depth d at which the weight is depressed is compared with a reference value associated with the weight (step S4).
  • the reference value associated with the weight is, for example, half the height of the weight. In this case, it is determined that the reference value has been reached if the depth d at which the weight sinks is more than half of the height of the weight. On the other hand, if the depth d where the weight sinks is less than half of the height of the weight, it is determined that the reference value has not been reached. Or, conversely, if the depth d of the weight is more than half of the height of the weight, it is determined that the reference value has not been reached, and the depth of the weight is less than half of the height of the weight. If there is, it may be determined that the reference value has been reached.
  • the hardness of the fermented milk 1 is evaluated from the result of the comparison process and the hardness threshold associated with the weight (step S5). That is, if the depth d is not less than the reference value, it can be evaluated that the hardness of the fermented milk 1 is lower than a certain hardness. If the depth d is less than the reference value, it can be evaluated that the hardness of the fermented milk is higher than a certain hardness.
  • the relationship between the hardness and weight of fermented milk in advance is preferable to examine the relationship between the hardness and weight of fermented milk in advance as follows.
  • a plurality of fermented milks having various hardnesses are prepared.
  • the hardness of these fermented milk is quantitatively measured using a card meter or the like.
  • the depth that sinks after a predetermined time becomes a reference value or more
  • the depth that sinks after the predetermined time is the reference.
  • the hardness threshold values h1 and h2 that are less than the values are examined.
  • the hardness of the fermented milk 1 is at least from the threshold value h1 of the hardness when the depth d that sinks after a predetermined time is less than the reference value. Can be evaluated as high. Moreover, when the depth d is more than the reference value, it can be evaluated that the hardness of the fermented milk 1 is at least lower than the hardness threshold value h2.
  • the depth d only needs to be able to determine the magnitude relationship with the reference value. Therefore, it is not necessary to accurately measure the depth d.
  • the depth d can be measured visually. But you may measure using a measuring instrument, a sensor, or a camera.
  • the method for evaluating the hardness of fermented milk according to the second embodiment of the present invention has been described above. According to the method for evaluating the hardness of fermented milk according to the present embodiment, it is determined whether the hardness of the fermented milk to be evaluated is lower than a certain hardness or higher than a certain hardness. it can.
  • FIG. 5 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 3rd Embodiment of this invention.
  • the method for evaluating the hardness of fermented milk according to the present embodiment includes a step of preparing fermented milk housed in a container having an opening at the top (step S1), a weight is carried from the opening, and the top surface of the fermented milk A step (step S2) of placing the first weight, a step (step 3) of measuring the depth d1 at which the first weight has sunk into the fermented milk after a predetermined time from placing the weight, and a depth; A step of comparing the height d1 with a reference value associated with the first weight (step S4), taking out the first weight from the opening, carrying in the second weight from the opening, and placing it on the upper surface of the fermented milk A step of placing the second weight (step S2-1) and a step of measuring the depth d2 of the second weight sinking into
  • first and second weights are used.
  • the depth that sinks after a predetermined time becomes a reference value or more, and when it is placed on the upper surface of the fermented milk having the hardness h2, the depth that sinks after the predetermined time.
  • the values of the hardness threshold values h1 and h2 are checked so that the thickness becomes less than the reference value. It is preferable that the values of h1 and h2 are as close as possible.
  • the hardness of the fermented milk is at least higher than the threshold value h1 when the depth that sinks after a predetermined time is less than the reference value. I understand. Moreover, when the depth is not less than the reference value, it can be seen that the hardness of the fermented milk is at least lower than the threshold value h2.
  • the second weight when the second weight is placed on the upper surface of the fermented milk having a hardness of h3, the depth that sinks after a predetermined time becomes equal to or greater than the reference value, and when placed on the upper surface of the fermented milk having the hardness of h4, the second weight sinks after a predetermined time.
  • the values of the hardness thresholds h3 and h4 are checked so that the depth is less than the reference value. It is preferable that the values of h3 and h4 are as close as possible.
  • the hardness of the fermented milk is at least higher than the threshold value h3 when the depth that sinks after a predetermined time is less than the reference value. I understand. Moreover, when the depth is more than the reference value, it can be seen that the hardness of the fermented milk is at least lower than the threshold value h4.
  • the first and second weights are selected so that h1 ⁇ h2 ⁇ h3 ⁇ h4.
  • a weight that is heavier than the first weight is employed as the second weight.
  • steps S1 to S4 are performed. Steps S1 to S4 are the same as in the first embodiment.
  • step S4 In the step of comparing the depth d1 with the reference value (step S4), if the depth d1 is greater than or equal to the reference value, the steps S2-1 to S4-1 are skipped and the process proceeds to the step of evaluating the hardness (step S5). . This is because the hardness of the fermented milk can be evaluated to be lower than the threshold value h2 at this point.
  • step S4 when the depth d1 is less than the reference value, it is found that the hardness of the fermented milk is higher than the threshold value h1. However, at this time, the magnitude relationship between the hardness of the fermented milk and the threshold values h3 and h4 is unknown. Therefore, in this case, step S2-1 and subsequent steps are performed.
  • the first weight is taken out from the opening, the second weight is carried in from the opening, and the second weight is placed on the upper surface of the fermented milk (step S2-1). Then, after a predetermined time after placing the second weight, the depth d2 of the fermented milk sinking to the second weight is measured (step S3-1).
  • the depth d2 is compared with a reference value associated with the second weight (step S4-1).
  • a reference value associated with the second weight
  • the depth d2 is less than the reference value, it can be evaluated that the hardness of the fermented milk is higher than the threshold value h3 (step S5).
  • depth d2 is more than a reference value, it can be evaluated that the hardness of fermented milk is higher than threshold value h1 and lower than threshold value h4 (step S5).
  • the hardness of the fermented milk to be evaluated is determined in three ranges (lower than threshold h2, higher than threshold h1, lower than threshold h4, or higher than threshold h3. ).
  • the case where the first weight is placed first has been described.
  • reference value associated with the first weight and the reference value associated with the second weight may be the same.
  • FIG. 6 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 4th Embodiment of this invention.
  • a step of placing the second weight on the first weight (step S2-2) is performed instead of step S2-1 (FIG. 4) of the third embodiment. That is, the second weight is placed on the first weight without taking out the first weight placed on the upper surface of the fermented milk.
  • the step S3-1 (FIG. 4) of measuring the depth d2 at which the second weight sank
  • the first and A step (step S3-2) of measuring the depth d3 in which the laminated body made of the second weight is sunk is performed instead of the step (step S3-1 (FIG. 4) of measuring the depth d2 at which the second weight sank.
  • Step S4-2 the step of comparing the depth d3 with the reference value associated with the laminate.
  • the relationship with the hardness of the fermented milk is examined in advance. That is, when the laminated body is placed on the upper surface of the fermented milk having a hardness of h5, the depth that sinks after a predetermined time becomes a reference value or more, and when placed on the upper surface of the fermented milk having the hardness of h6, the depth that sinks after a predetermined time is reached.
  • the values of the hardness threshold values h5 and h6 that are less than the reference value are examined. It is preferable that the values of h5 and h6 are as close as possible.
  • the hardness of the fermented milk is higher than the threshold value h5 when the depth of sinking after a predetermined time is less than the reference value. . Moreover, when the depth is more than the reference value, it can be seen that the hardness of the fermented milk is at least lower than the threshold value h6.
  • the hardness of the fermented milk to be evaluated is determined in three ranges (lower than the threshold h2, higher than the threshold h1, lower than the threshold h6, or higher than the threshold h5. ).
  • the first weight and the second weight may be the same.
  • FIG. 7 is a figure which shows the procedure of the evaluation method of the hardness of fermented milk concerning the 5th Embodiment of this invention.
  • the present embodiment is a combination of the third embodiment and the fourth embodiment. That is, in the method for evaluating the hardness of fermented milk according to the present embodiment, the step of preparing fermented milk stored in a container having an opening at the top (Step S1), the first weight is carried from the opening, A step of placing the first weight on the upper surface of the fermented milk (step S2), and a depth d1 at which the first weight is sunk in the fermented milk is measured after a predetermined time has elapsed from the placement of the first weight.
  • step 3 the step of comparing the depth d1 with the reference value associated with the first weight (step S4), the first weight is taken out from the opening, and the second weight is carried in from the opening
  • step S2-1 The step of placing the second weight on the upper surface of the fermented milk (step S2-1), and the depth at which the second weight has sunk into the fermented milk after a predetermined time has elapsed since the second weight was placed.
  • step S3-1 a step of measuring d2 (step S3-1), and the depth d2 is associated with the second weight.
  • step S4-1 A step of comparing with a reference value (step S4-1), a step of carrying in the first weight from the opening, and placing the first weight on the second weight (step S2-2); A step (step S3-2) of measuring the depth d3 at which the laminate composed of the first and second weights has been sunk in the fermented milk after a predetermined time from placing the first weight, and the depth d3 Is compared with the reference value associated with the stack (step S4-2), the results of steps S4, S4-1, and S4-2, and the first weight, the second weight, and the stack A step of evaluating the hardness of the fermented milk from the obtained threshold value (step S5).
  • the relationship between the hardness and weight of fermented milk is examined in advance. That is, when the first weight is placed on the upper surface of the fermented milk having the hardness h1, the depth that sinks after a predetermined time becomes a reference value or more, and when placed on the upper surface of the fermented milk having the hardness h2, the first weight sinks after the predetermined time. The depth is less than the reference value.
  • the depth that sinks after a predetermined time is equal to or greater than the reference value
  • the depth that sinks after a predetermined time is equal to or greater than the reference value
  • the depth that sinks after a predetermined time Is less than the reference value.
  • the laminated body in which the first weight is placed on the second weight is placed on the upper surface of the fermented milk having the hardness h5
  • the depth of sinking after a predetermined time becomes a reference value or more
  • the hardness h6 When placed on the upper surface of the fermented milk, the depth of sinking after a predetermined time becomes less than the reference value.
  • the same symbols as in the fourth embodiment are used for the hardnesses h5 and h6.
  • the depth at which the laminated body placed with the second weight placed on the first weight sinks into the fermented milk and the laminated body placed with the first weight placed on the second weight are fermented.
  • the depth of sinking into milk may be different.
  • the weight is selected so that h1 ⁇ h2 ⁇ h3 ⁇ h4.
  • h1 ⁇ h2 ⁇ h3 ⁇ h4 ⁇ h5 ⁇ h6.
  • steps S1 to S4 and steps S2-1 to S4-1 are performed. Steps S1 to S4 and steps S2-1 to S4-1 are the same as in the third embodiment (FIG. 5).
  • step S4-1 if the depth d2 is greater than or equal to the reference value, steps S2-2 to S4-2 are skipped and the process proceeds to a step of evaluating the hardness (step S5). This is because the hardness of the fermented milk can be evaluated to be higher than the threshold value h1 and lower than the threshold value h4 at this time.
  • step S4-1 when the depth d2 is less than the reference value, it can be seen that the hardness of the fermented milk is higher than the threshold value h3. However, at this time, the magnitude relationship between the hardness of the fermented milk and the threshold values h5 and h6 is unknown. Therefore, in this case, step S2-2 and subsequent steps are performed.
  • steps S2-2 to S4-2 are performed. Steps S2-2 to S4-2 are the same as those in the fourth embodiment (FIG. 6).
  • step S4-2 when the depth d3 is less than the reference value, it can be evaluated that the hardness of the fermented milk is higher than the threshold value h5 (step S5).
  • step S5 when depth d3 is more than a reference value, it can be evaluated that the hardness of fermented milk is higher than threshold value h3 and lower than threshold value h6 (step S5).
  • the hardness of fermented milk to be evaluated can be evaluated in four ranges (lower than threshold h2, higher than threshold h1, lower than threshold h4, higher than threshold h3. lower than h6 or higher than the threshold value h5).
  • the method for evaluating the hardness of fermented milk using two weights has been described according to the third to fifth embodiments.
  • the number of weights is not limited in the method for evaluating the hardness of fermented milk of the present invention. That is, the hardness of fermented milk may be evaluated using three or more weights.
  • n types n is a natural number
  • the hardness of fermented milk can be classified into the range of n + 1.
  • the hardness of fermented milk can be classified into a range of 2 n at the maximum by using n kinds of weights and a laminate obtained by combining these weights.
  • FIG. 8A is a functional block diagram showing the configuration of the hardness evaluation apparatus 10 according to one embodiment of the present invention.
  • the hardness evaluation apparatus 10 is an apparatus for implementing the hardness evaluation method for fermented milk according to the first embodiment of the present invention. That is, the hardness evaluation apparatus 10 is an evaluation apparatus for the hardness of fermented milk stored in a container having an opening at the top, and includes a transport unit 11 that performs step S2 in FIG. 1 and a measurement unit that performs step S3. 12 and an evaluation unit 13 that performs step S4.
  • the conveyance part 11 receives a measurement start signal, carries in a weight from an opening part, and mounts a weight on the upper surface of fermented milk.
  • the transport unit 11 is a known transport unit that is driven by, for example, a motor.
  • the measurement start signal is generated, for example, when the measurer presses the measurement start switch.
  • Measurement unit 12 measures the depth of weight sinking into fermented milk.
  • the measurement unit 12 is a position sensor that detects the position of the weight in the vertical direction, for example.
  • the measurement part 12 contains the camera which image
  • the measurement unit 12 outputs the measurement result to the evaluation unit 13.
  • the evaluation unit 13 has a storage device and an arithmetic device.
  • the storage device stores a hardness conversion table associated with the weight.
  • the arithmetic device refers to the measurement result received from the measurement unit 12 and the hardness conversion table, and evaluates the hardness of the fermented milk.
  • the evaluation of hardness may be performed by performing an interpolation operation or the like and calculating the hardness as a numerical value.
  • the evaluation value by the evaluation unit 13 is displayed on, for example, a display or output to another device.
  • fermented milk stored in a container having an opening at the top is set in the hardness evaluation apparatus 10.
  • a measurement start signal is sent to the conveyance part 11 by pressing a measurement start switch.
  • the fermented milk that is being transported by a belt conveyor or the like in the production line may be automatically set to the hardness evaluation apparatus 10 at a predetermined ratio, and a measurement start signal may be automatically sent to the transport unit 11. .
  • the weight is transported from the opening by the transport unit 11 and the weight is placed on the upper surface of the fermented milk.
  • the measurer confirms the evaluation value of the hardness by the evaluation unit 13 displayed on the display after a predetermined time after the weight is placed.
  • the hardness of fermented milk can be evaluated quickly and easily.
  • FIG. 8B is a functional block diagram showing the configuration of the hardness evaluation apparatus 20 according to another embodiment of the present invention.
  • the hardness evaluation apparatus 20 is configured such that the transport unit 11 and the evaluation unit 13 operate in cooperation.
  • the transport unit 11 outputs a transport completion signal to the evaluation unit 13 when the operation of placing the weight on the upper surface of the fermented milk is completed.
  • the evaluation unit 13 starts measuring elapsed time in synchronization with the conveyance end signal. And the hardness of fermented milk is evaluated from the measured value received from the measurement part 12, and the conversion table of hardness after predetermined time from a conveyance end signal.
  • the conveyance part 11 has a function which takes out the weight mounted on the upper surface of fermented milk.
  • the evaluation unit 13 outputs an evaluation end signal to the transport unit 11 when the evaluation of the hardness of the fermented milk is completed.
  • the conveyance part 11 takes out the weight mounted in the upper surface of fermented milk in response to an evaluation completion signal. Thereby, the weight is automatically taken out when the evaluation is completed.
  • the evaluation of the hardness of the fermented milk can be further automated as compared with the configuration of the hardness evaluation apparatus 10.
  • FIG. 8C is a functional block diagram showing a configuration of a hardness evaluation apparatus 30 according to another embodiment of the present invention.
  • the hardness evaluation device 30 further includes a selection unit 14 that selects a weight to be transported by the transport unit 11 from a plurality of weights.
  • the selection unit 14 selects a weight to be transported by the transport unit 11 from a plurality of weights, for example, when a measurer operates a selection switch.
  • the selection unit 14 outputs information indicating which weight is selected to the evaluation unit 13.
  • the storage unit of the evaluation unit 13 stores a hardness conversion table associated with each weight.
  • the evaluation unit 13 receives information from the selection unit 14 and selects a hardness conversion table associated with the selected weight.
  • the arithmetic unit of the evaluation unit 13 refers to the measurement result received from the measurement unit 12 and the hardness conversion table, and evaluates the hardness of the fermented milk.
  • the hardness of a wider range of fermented milk can be evaluated by selecting a weight to be placed on the upper surface of the fermented milk.
  • FIG. 9A is a functional block diagram showing a configuration of a hardness evaluation apparatus 40 according to another embodiment of the present invention.
  • the hardness evaluation apparatus 40 is an apparatus for implementing the hardness evaluation method (FIG. 4) according to the second embodiment of the present invention. That is, the hardness evaluation apparatus 10 is an evaluation apparatus for the hardness of fermented milk housed in a container having an opening at the top, and includes a transport unit 11 that performs step S2 in FIG. 4 and a measurement unit that performs step S3. 12 and a comparison unit 15 that performs step S4.
  • the comparison unit 15 receives the measurement result from the measurement unit 12.
  • the comparison unit 15 compares the depth at which the weight is sunk with a reference value associated with the weight conveyed by the conveyance unit 11.
  • the comparison unit 15 is, for example, a comparator circuit that inputs the depth of weight sinking as a voltage and outputs a signal to the outside when a voltage equal to or higher than the voltage corresponding to the reference value is input.
  • the measurement unit 12 and the comparison unit 15 are integrated.
  • the measurement unit 12 and the comparison unit 15 are sensors that operate when, for example, the height of the weight in the vertical direction becomes a certain level or less.
  • the signal from the comparison unit 15 is output to a lamp, for example. That is, the measurer is notified by lighting the lamp that the weight sinking depth is equal to or greater than the reference value.
  • the signal from the comparison unit 15 may be output to a display, an alarm, or an external device.
  • fermented milk stored in a container having an opening at the top is set in the hardness evaluation device 40.
  • a measurement start signal is sent to the conveyance part 11 by the measurement start switch being pushed.
  • the fermented milk transported by a belt conveyor or the like in the production line is automatically set to the hardness evaluation device 40 at a predetermined ratio, and a measurement start signal is automatically sent to the transport unit 11. good.
  • the weight is transported from the opening by the transport unit 11 and the weight is placed on the upper surface of the fermented milk.
  • Measurer can determine that if the lamp is lit within a predetermined time after the weight is placed, the depth of the weight sinking within the predetermined time is equal to or greater than the reference value. That is, it can be evaluated that the hardness of fermented milk is lower than the hardness threshold value associated with the weight. On the other hand, if the lamp is not turned on within a predetermined time after the weight is placed, the measurer can determine that the depth of the weight sinking within the predetermined time is less than the reference value. That is, it can be evaluated that the hardness of fermented milk is higher than the hardness threshold value associated with the weight.
  • the conveyance part 11 has a function which takes out the weight mounted on the upper surface of fermented milk.
  • the transport unit 11 starts measuring elapsed time in synchronization with the completion of the operation of placing the weight on the upper surface of the fermented milk. Then, after a predetermined time, the weight placed on the upper surface of the fermented milk is taken out. This eliminates the need for the measurer to measure time, and the weight is automatically taken out when the evaluation is completed.
  • the hardness of fermented milk can be evaluated quickly and easily.
  • FIG. 9B is a functional block diagram showing a configuration of a hardness evaluation apparatus 50 according to another embodiment of the present invention.
  • the hardness evaluation apparatus 20 is configured such that the transport unit 11 and the comparison unit 15 operate in cooperation.
  • the transport unit 11 can receive an signal from the comparison unit 15 and take out a weight placed on the upper surface of the fermented milk.
  • FIG. 9C is a functional block diagram showing a configuration of a hardness evaluation apparatus 60 according to another embodiment of the present invention.
  • the hardness evaluation device 60 further includes a selection unit 14 that selects a weight to be transported by the transport unit 11 from a plurality of weights.
  • the selection unit 14 can sequentially select weights to be placed on the upper surface of the fermented milk from a plurality of weights.
  • the method for evaluating the hardness of fermented milk according to the third to fifth embodiments of the present invention (FIGS. 5 to 7) can be carried out.
  • the hardness evaluation apparatus 60 it is not essential to output information indicating which weight is selected by the selection unit 14 to the comparison unit 15. This is because it is sufficient to unify the reference values associated with the respective weights.
  • FIG. 9D is a functional block diagram showing a configuration of a hardness evaluation apparatus 70 according to another embodiment of the present invention.
  • the hardness evaluation device 70 further includes a control unit 16 in addition to the configuration of the hardness evaluation device 60.
  • the control unit 16 receives a signal from the outside and controls the transport unit 11, the selection unit 14, and the comparison unit 15.
  • the control unit 16 further includes a storage device and an arithmetic device.
  • the storage device stores a control program and hardness threshold values associated with a plurality of weights selected by the selection unit 14.
  • the control unit 16 controls the transport unit 11, the selection unit 14, and the comparison unit 15 according to a control program stored in the storage device.
  • the control unit 16 receives a signal from the comparison unit 15.
  • the arithmetic unit evaluates the hardness of the fermented milk from the signal from the comparison unit 15 and the hardness threshold value stored in the storage device.
  • the hardness of fermented milk evaluated by the arithmetic unit is output to a display, for example.
  • the hardness evaluation methods (FIGS. 4 to 7) according to the second to fifth embodiments of the present invention can be automatically performed.
  • the hardness evaluation apparatus 70 implements the hardness evaluation method (FIG. 5) of fermented milk concerning 3rd Embodiment is demonstrated.
  • fermented milk stored in a container having an opening at the top is set in the hardness evaluation apparatus 70. Then, a measurement start signal is sent to the control unit 16 when the measurement start switch is pressed. Alternatively, the fermented milk being conveyed on the production line by a belt conveyor or the like is automatically set to the hardness evaluation device 70 at a predetermined ratio, and a measurement start signal is automatically sent to the control unit 16. good.
  • the control unit 16 executes the control program stored in the storage device.
  • control unit 16 drives the selection unit 14 to select the first weight. And the control part 16 drives the conveyance part 11, and mounts a 1st weight on the upper surface of fermented milk.
  • the measurement unit 12 measures the depth d1 where the first weight is sunk. The measurement result is output to the comparison unit 15. During this time, the control unit 16 receives a signal from the comparison unit 15.
  • the arithmetic unit of the control unit 16 refers to the threshold value associated with the first weight stored in the storage device, and the hardness of the fermented milk is lower than the threshold value h2 And evaluate.
  • control unit 16 drives the transport unit 11 and takes out the first weight. Then, the control unit 16 drives the selection unit 14 to select the second weight. And the control part 16 drives the conveyance part 11, and mounts a 2nd weight on the upper surface of fermented milk.
  • the measuring unit 12 measures the depth d2 where the second weight is sunk. The measurement result is output to the comparison unit 15. During this time, the control unit 16 receives a signal from the comparison unit 15.
  • the arithmetic unit of the control unit 16 refers to the threshold values associated with the first and second weights stored in the storage device, and the hardness of the fermented milk is: It is evaluated that it is higher than the threshold value h1 and lower than the threshold value h4.
  • the arithmetic unit of the control unit 16 refers to the threshold value associated with the second weight stored in the storage device, and the hardness of the fermented milk is greater than the threshold value h3. Evaluate as high.
  • the hardness of the fermented milk evaluated by the arithmetic unit of the control unit 16 is output to a display, for example.
  • the hardness evaluation apparatus 70 implements the method for evaluating the hardness of fermented milk according to the third embodiment (FIG. 5) has been described above.
  • the hardness evaluation apparatus 70 is not limited to the method of evaluating the hardness of fermented milk using one or two weights as exemplified in the second to fifth embodiments, but also n (n is a natural number) ) Can be implemented using various weights.
  • Fermented milk was prepared under various conditions. The hardness of these fermented milks was measured with a card meter.
  • the raw material mix was sterilized by holding at 95 ° C. for 5 minutes. Subsequently, the raw material mix was cooled to 40-45 ° C. Thereafter, a starter (lactic acid bacterium) was inoculated (added) to the raw material mix.
  • the starter used was separated from Meiji Bulgaria Yogurt LB81 (Meiji Co.). 80 g each of the raw material mix to which the starter was added was filled into a cup container.
  • the cup container was made of plastic and had an opening with a diameter of 71 mm, a bottom with a diameter of 50 mm, and a height of 55 mm.
  • the raw material mix filled in the cup container was fermented by holding it in a constant temperature chamber at 43 ° C. for 3 hours to produce fermented milk.
  • the prepared fermented milk was kept in a refrigerator and cooled to 5 ° C.
  • the hardness of the cooled fermented milk was measured with a card meter (Card Meter Max, ME-500, Asuka Kikai Co., Ltd.).
  • Table 2 shows the blended amounts of the produced fermented milk (sample numbers (1-1) to (1-4)) and the hardness measured by a card meter.
  • weight A and weight B are placed on the upper surface of the fermented milk of sample numbers (1-1) to (1-4). And held for 30 seconds. Then, the traces, such as the weight which remained on the upper surface of fermented milk, were observed, and the depth in which the weight etc. sunk was measured.
  • the weight A and the weight B were both cylindrical and made of metal.
  • the weight A was 32 mm in diameter, 10 mm in height, and 60 g in weight.
  • the weight B was 40 mm in diameter, 12 mm in height, and 100 g in weight.
  • Table 3 shows the relationship between the hardness of fermented milk and the depth of weight sinking.
  • “ ⁇ ” in Table 3 indicates that traces such as weights could be confirmed on the upper surface of the fermented milk, but the weights and the like were not substantially sunk.
  • “ ⁇ ” in Table 3 indicates that one half of the weight or one quarter of the entire laminate was sank.
  • “X” in Table 3 indicates that one half of the entire laminate was sunk.
  • the present invention is industrially applicable as a method for evaluating the hardness of fermented milk and a device for evaluating the hardness of fermented milk.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dairy Products (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 迅速かつ簡便に発酵乳の硬度を評価することができる評価方法を提供する。発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程(ステップS1)と、前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する工程(ステップS2)と、前記重りを載置してから所定時間後に、前記発酵乳へ前記重りが沈んだ深さを測定する工程(ステップS3)と、前記重りが沈んだ深さおよび前記重りに関連付けられた硬度の変換テーブルを参照し、前記発酵乳の硬度を評価する工程(ステップS4)と、を備える。

Description

発酵乳の硬度の評価方法および発酵乳の硬度の評価装置
 本発明は、発酵乳の硬度の評価方法および発酵乳の硬度の評価装置に関する。
 発酵乳のカード(curd)は、乳酸菌等の生菌が生産する酸成分(有機酸)により形成される。乳酸菌の活性がカードの硬度に影響するため、配合成分を管理するだけでは、カードの硬度を安定して管理できない。すなわち、乳酸菌等に由来する有機酸の生成速度または種類が異なれば、カードの硬度が異なり、発酵乳の物性も異なる。そのため、発酵乳の製造工程において、発酵乳の硬度を定期的に測定する必要があり、その品質を管理する上で重要である。
 従来、発酵乳の硬度は、専用の機器によって計測されている。特開平11-028056号公報(特許文献1)、および特開2000-279086号公報(特許文献2)には、発酵乳の硬度をレオナー(山電社製)により測定したことが記載されている。特開2005-176603号公報(特許文献3)および特開2005-348703号公報(特許文献4)には、発酵乳の硬度をネオカードメーター(アイテクノエンジニアリング社製)により測定したことが記載されている。なお、特許文献1および2では、発酵乳の硬度を、破断応力(g/cm)として表している。特許文献3および4では、発酵乳の硬度を、試料が破断するときの荷重(g)として表している。
 本明細書では以後、発酵乳の硬度の用語を、発酵乳が破断するときの荷重(破断強度)の意味で用いる。
 上記のカードメーターの構成および測定原理の概略は、次の通りである。カードメーターは、一定速度で昇降できる試料台と、感圧軸とを備えている。硬度を測定しようとする試料を試料台に載置して、試料を一定速度で上昇させる。これにより、試料は、感圧軸の一方の端部に押し当てられる。感圧軸の他方の端部は、スプリングを介してロードセルに接続されている。スプリングの作用によって、試料には、一定の割合で増加する荷重(定速荷重)がかかる。試料にかかる荷重と、ロードセルによる計測値とから、荷重-変位曲線が得られる。荷重‐変位曲線から、試料の破断強度、粘調度、および弾力性等を評価することができる。
 カードメーターを用いることで、発酵乳の硬度を定量的に求めることができる。また、粘調度および弾力性等といった他の特性も併せて評価することができる。
特開平11-028056号公報 特開2000-279086号公報 特開2005-176603号公報 特開2005-348703号公報
 しかしながら、カードメーターは精密機器であるため、遠方へ運搬して使用するのは手間がかかる。また、校正等の保守が必要である。
 一方、発酵乳の製造工程における硬度の管理においては、グラム1桁単位までの測定精度は要求されない場合が多い。その代わりに、迅速かつ簡便に評価することができる評価方法が望まれている。
 例えば、後発酵型の発酵乳(ハードタイプのヨーグルト)の硬度は、40~100gとなるように管理される。硬度が40g以上であることは、発酵乳が自動車の輸送中の振動等に耐え得るように、物性の観点から設定されている。硬度が100g以下であることは、発酵乳が適度な歯応えと舌触りになるように、食感の観点から設定されている。
 この発明の発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程と、前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する工程と、前記重りを載置してから所定時間後に、前記発酵乳へ前記重りが沈んだ深さを測定する工程と、前記重りが沈んだ深さおよび前記重りに関連付けられた硬度の変換テーブルを参照し、前記発酵乳の硬度を評価する工程と、を備える。
 この発明によれば、発酵乳の硬度と重りとの対応関係(相関関係)を一度調べておけば、後は同じ重りを用いることで、迅速かつ簡便に発酵乳の硬度を評価することができる。
 この発明の他の発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程と、前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する工程と、前記重りを載置してから所定時間後に、前記発酵乳へ前記重りが沈んだ深さを測定する工程と、前記重りが沈んだ深さを前記重りに関連付けられた基準値と比較する第1比較工程と、前記第1比較工程の結果および前記重りに関連付けられた硬度の閾値から、前記発酵乳の硬度を評価する工程と、を備える。
 この発明によれば、発酵乳の硬度が、ある一定の硬度よりも低いかどうか、または、ある一定の硬度よりも高いかどうかを判断できる。
 この発明の硬度評価装置は、上部に開口部を有する容器に収納された発酵乳の硬度を評価する硬度評価装置であって、前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する搬送部と、前記発酵乳へ前記重りが沈んだ深さを測定する測定部と、前記測定部から測定値を受け取り、前記測定値および前記重に関連付けられた硬度の変換テーブルを参照し、前記発酵乳の硬度を評価する評価部と、を備える。
 この発明の他の硬度評価装置は、上部に開口部を有する容器に収納された発酵乳の硬度を評価する硬度評価装置であって、前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する搬送部と、前記発酵乳へ前記重りが沈んだ深さを測定する測定部と、前記測定部から測定値を受け取り、前記測定値を前記重りに関連付けられた基準値と比較する比較部と、を備える。
 それゆえに、この発明の目的は、迅速かつ簡便に発酵乳の硬度を評価することができる評価方法および評価装置を提供することである。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面によって、明白となる。
図1は、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。 図2Aは、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明するための斜視図である。 図2Bは、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明するための斜視図である。 図2Cは、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明するための斜視図である。 図2Dは、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明するための図であって、図2CにおけるA-A’線に沿った断面図である。 図3は、硬度の変換テーブルの例である。 図4は、本発明の第2の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。 図5は、本発明の第3の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。 図6は、本発明の第4の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。 図7は、本発明の第5の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。 図8Aは、本発明の一実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図8Bは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図8Cは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図9Aは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図9Bは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図9Cは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。 図9Dは、本発明の他の実施形態にかかる硬度評価装置の構成を示す機能ブロック図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付して、その説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [発酵乳の硬度の評価方法]
 [第1の実施形態]
 図1および図2を用いて、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明する。図1は、本実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。図2A~図2Dは、本実施形態にかかる発酵乳の硬度の評価方法を説明するための図であって、図2A~図2Cは斜視図、図2Dは図2CにおけるA-A’線に沿った断面図である。
 本実施形態にかかる発酵乳の硬度の評価方法は、上部に開口部2aを有する容器2に収容された発酵乳1を準備する工程(ステップS1)と、開口部2aから重り3を搬入し、発酵乳1の上に重り3を載置する工程(ステップS2)と、重り3を載置してから所定時間後に、発酵乳1へ重り3が沈んだ深さdを測定する工程(ステップS3)と、重り3が沈んだ深さdおよび重り3に関連付けられた硬度の変換テーブルを参照し、発酵乳1の硬度を評価する工程(ステップS4)と、を備えている。
 まず、硬度の評価の対象となる発酵乳1を準備する(ステップS1)。発酵乳1は、動物の乳を発酵させて凝固させたものである。発酵乳1は、具体的には、例えばヨーグルトまたはチーズである。本実施形態にかかる発酵乳の硬度の評価方法は、前発酵型の発酵乳(ソフトタイプやドリンクタイプのヨーグルト)よりも後発酵型の発酵乳(ハードタイプのヨーグルト)に対して、好適に用いることができる。発酵乳1が例えばヨーグルトの場合、原料ミックスを容器2に充填し、容器2内で発酵させたものを準備する。
 発酵乳1を収納する容器2は、収納される発酵乳1の上部に開口部2aを有している。容器2は、開口部2aから重り3を搬入して、重り3を発酵乳1の上面に置くことができるように、少なくとも一部が開口していれば良い。容器2が封口されて発酵乳1を収納している場合であっても、本工程において開口しておけば良い。容器2の材質および形状は特に限定されない。容器2は、例えばプラスチックまたは紙で形成されたカップ容器である。
 発酵乳1は、平坦な上面を有していることが好ましい。もっとも、上面の全面が平坦でなくても良い。例えば、容器2の内周壁と接する箇所が隆起していたり、または窪んでいても良い。
 次に、開口部2aから重り3を搬入し、発酵乳1の上面に重り3を載置する(ステップS2、図2Aおよび図2Bを参照)。重り3の重量は、発酵乳1の硬度に合わせて、あらかじめ定めておく。すなわち、比較的に軟らかい発酵乳1の硬度を評価する場合、比較的に軽い重り3を使用する。比較的に硬い発酵乳1の硬度を評価する場合、比較的に重い重り3を使用する。
 重り3は、例えば円柱または四角柱である。重り3は、局所的に応力がかからないように、角部が面取りされていることが好ましい。重り3は、ある程度で密度の高い物が好ましく、例えば金属製のものを用いることができる。
 重り3は、底面が平らであることが好ましい。重り3は、容器2の開口部2aから搬入することが可能な大きさであることが必要である。一方、重り3の底面の面積は、広い方が好ましい。したがって、重り3は、容器2の開口部2aより若干小さい程度が好ましい。より好ましくは、重り3の底面の面積は、重り3を載置しようとする発酵乳1の上面の面積と同程度である。
 重り3を載置する発酵乳1の面は、平坦であることが好ましい。また、重り3は、ゆっくりと載置することが好ましい。
 重り3は、自重によって、発酵乳1の内部へ沈む。発酵乳1の硬度が低ければ、重り3は、より深くまで沈む。反対に、発酵乳1の硬度が高ければ、重り3は、あまり沈まないか、あるいは全く沈まない。
 そして、重り3を載置してから所定時間後に、発酵乳1へ重り3が沈んだ深さdを測定する(ステップS3、図2Cおよび図2Dを参照)。重り3が沈んだ深さdは、例えば図2Dに示すように、発酵乳1の上面と重り3の底面との間の距離とすることができる。ここで、所定時間とは、例えば1秒間~5分間であり、3秒間~4分間が好ましく、5秒間~3分間がより好ましく、7秒間~1分間がさらに好ましく、10秒間~30秒間が特に好ましい。
 次に、重り3が沈んだ深さdおよび重り3に関連付けられた硬度の変換テーブルを参照し、発酵乳1の硬度を評価する(ステップS4)。硬度の変換テーブルは、あらかじめ、様々な硬度を持つ発酵乳に対して、重り3を使用して作成されたものである。
 ここで、硬度の変換テーブルの作成方法について説明する。まず、様々な硬度をもった複数の発酵乳を準備する。これらの発酵乳の硬度は、カードメーター等を用いて定量的に測定しておく。これらの発酵乳は、発酵乳1と同じ容器2に収納されている。そして、ステップS2と同様にして、これらの発酵乳の上面に重り3を載置する。そして、ステップS3と同様にして、重り3を載置してから所定時間後に、当該発酵乳へ重り3が沈んだ深さを測定する。そして、その測定値を記録する。
 図3は、硬度の変換テーブルの例である。h(1)~h(5)の5種類の硬度を持つ発酵乳に対して、重り3が沈んだ深さd(1)~d(5)が記録されている。なお、h(1)<h(2)<h(3)<h(4)<h(5)であるとする。この場合、d(1)>d(2)>d(3)>d(4)>d(5)となる。
 硬度の変換テーブルを参照し、発酵乳1の硬度を評価する方法を説明する。重り3が沈んだ深さdを、参照テーブルに記録された深さd(1)~d(5)と比較する。例えば、深さd≒d(1)であれば、発酵乳の硬度hは、h≒h(1)であると評価できる。同様に、d≒d(2)であればh≒h(2)、d≒d(3)であればh≒h(3)、d≒d(4)であればh≒h(4)、d≒d(5)であればh≒h(5)であると評価できる。
 また、d(1)>d>d(2)である場合、h(1)<h<h(2)であると評価できる。同様に、d(2)>d>d(3)であればh(2)<h<h(3)、d(3)>d>d(4)であればh(3)<h<h(4)、d(4)>d>d(5)であればh(4)<h<h(5)であると評価できる。また、d>d(1)であればh<h(1)である。d(5)>dであればh(5)<hである。
 補間またはフィッティングにより、より細かく硬度を求めても良い。
 図3では、変換テーブルが5種類の硬度を記録している場合を例示している。しかし、変換テーブルが記録する硬度の種類は任意である。変換テーブルが記録する硬度の種類が多いほど、より細かく発酵乳1の硬度を評価できる。また、変換テーブルが記録する硬度の範囲が広いほど、より広い範囲の硬度を評価できる。
 以上、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を説明した。本実施形態にかかる発酵乳の硬度の評価方法によれば、発酵乳の硬度と重りとの対応関係を一度調べておけば、同じ重りを用いることで、迅速かつ簡便に発酵乳の硬度を評価することができる。
 [第2の実施形態]
 図4は、本発明の第2の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。本実施形態にかかる発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程(ステップS1)と、開口部から重りを搬入し、発酵乳の上面に重りを載置する工程(ステップS2)と、重りを載置してから所定時間後に、発酵乳へ重りが沈んだ深さdを測定する工程(ステップS3)と、重りが沈んだ深さを重りに関連付けられた基準値と比較する比較工程(ステップS4)と、比較工程の結果および重りに関連付けられた硬度の閾値から、発酵乳の硬度を評価する工程(ステップS5)と、を備えている。
 まず、ステップS1~S3を実施する。ステップS1~S3については、第1の実施形態と同様である。
 次に、重りが沈んだ深さdを、その重りに関連付けられた基準値と比較する(ステップS4)。重りに関連付けられた基準値とは、例えば、その重りの高さの半分の長さである。この場合、重りが沈んだ深さdが、その重りの高さの半分以上であれば、基準値に達していると判断する。一方、重りが沈んだ深さdが、その重りの高さの半分未満であれば、基準値に達していないと判断する。あるいは、反対に、重りの沈んだ深さdがその重りの高さの半分以上であれば基準値に達していないと判断し、重りの沈んだ深さがその重りの高さの半分未満であれば基準値に達していると判断しても良い。
 そして、比較工程の結果および重りに関連付けられた硬度の閾値から、発酵乳1の硬度を評価する(ステップS5)。すなわち、深さdが基準値以上であれば、発酵乳1の硬度は、ある一定の硬度よりも低いと評価できる。深さdが基準値未満であれば、発酵乳の硬度は、ある一定の硬度よりも高いと評価できる。
 より具体的には、発酵乳の硬度と重りとの関係を、あらかじめ、次の様に調べておくことが好ましい。まず、様々な硬度をもった複数の発酵乳を準備する。これらの発酵乳の硬度は、カードメーター等を用いて定量的に測定しておく。そして、重りを硬度h1の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h2の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となるような、硬度の閾値h1およびh2の値を調べておく。
 これにより、硬度が未知の発酵乳1の上面に重り3を載置した場合、所定時間後に沈む深さdが基準値未満であるときは、発酵乳1の硬度は、少なくとも硬度の閾値h1より高いと評価できる。また、深さdが基準値以上であるときは、発酵乳1の硬度は、少なくとも硬度の閾値h2より低いと評価できる。
 本実施形態では、深さdは、基準値との大小関係が判断できれば良い。したがって、深さdを精密に測定する必要はない。深さdの測定は、目視で良い。もっとも、測定器具、センサ、またはカメラ等を用いて測定しても良い。
 以上、本発明の第2の実施形態にかかる発酵乳の硬度の評価方法を説明した。本実施形態にかかる発酵乳の硬度の評価方法によれば、評価の対象となる発酵乳の硬度が、ある一定の硬度よりも低いかどうか、または、ある一定の硬度よりも高いかどうかを判断できる。
 [第3の実施形態]
 図5は、本発明の第3の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。本実施形態にかかる発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程(ステップS1)と、開口部から重りを搬入し、発酵乳の上面に第1の重りを載置する工程(ステップS2)と、重りを載置してから所定時間後に、発酵乳へ第1の重りが沈んだ深さd1を測定する工程(ステップ3)と、深さd1を第1の重りに関連付けられた基準値と比較する工程(ステップS4)と、開口部から第1の重りを取り出して、開口部から第2の重りを搬入し、発酵乳の上面に第2の重りを載置する工程(ステップS2-1)と、第2の重りを載置してから所定時間後に、発酵乳へ第2の重りが沈んだ深さd2を測定する工程(ステップS3-1)と、深さd2を第2の重りに関連付けられた基準値と比較する工程(ステップS4-1)と、ステップS4およびステップS4-1の結果ならびに第1および第2の重りに関連付けられた硬度の閾値から、発酵乳の硬度を評価する工程(ステップS5)と、を備えている。
 本実施形態では、2種類の重り(第1および第2の重り)を使用する。第2の実施形態と同様に、発酵乳の硬度と重りとの関係を、あらかじめ調べておくことが好ましい。
 すなわち、第1の重りを硬度h1の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h2の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となるような、硬度の閾値h1およびh2の値を調べておく。h1とh2とは、なるべく値が近接していることが好ましい。
 これにより、硬度が未知の発酵乳の上面に第1の重りを載置した場合、所定時間後に沈む深さが基準値未満であるときは、当該発酵乳の硬度は、少なくとも閾値h1より高いことが分かる。また、深さが基準値以上であるときは、当該発酵乳の硬度は、少なくとも閾値h2より低いことが分かる。
 同様に、第2の重りを硬度h3の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h4の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となるような、硬度の閾値h3およびh4の値を調べておく。h3とh4とは、なるべく値が近接していることが好ましい。
 これにより、硬度が未知の発酵乳の上面に第2の重りを載置した場合、所定時間後に沈む深さが基準値未満であるときは、当該発酵乳の硬度は、少なくとも閾値h3より高いことが分かる。また、深さが基準値以上であるときは、当該発酵乳の硬度は、少なくとも閾値h4より低いことが分かる。
 本実施形態では、h1<h2<h3<h4となるように、第1および第2の重りを選定する。例えば、第2の重りとして、第1の重りよりも重量の大きいものを採用する。
 以上の前提のもと、本実施形態にかかる発酵乳の硬度の評価方法を実施する。
 まず、ステップS1~S4を実施する。ステップS1~S4については、第1の実施形態と同様である。
 深さd1を基準値と比較する工程(ステップS4)において、深さd1が基準値以上の場合、ステップS2-1~S4-1をスキップして、硬度を評価する工程(ステップS5)に進む。この時点で、発酵乳の硬度は、閾値h2より低いと評価できるためである。
 一方、ステップS4において、深さd1が基準値未満の場合、発酵乳の硬度は、閾値h1より高いことが分かる。しかし、この時点では、発酵乳の硬度と閾値h3およびh4との大小関係が不明である。したがって、この場合、ステップS2-1以降を行う。
 次に、開口部から第1の重りを取り出し、開口部から第2の重りを搬入し、発酵乳の上面に第2の重りを載置する(ステップS2-1)。そして、第2の重りを載置してから所定時間後に、発酵乳へ第2の重りへ沈んだ深さd2を測定する(ステップS3-1)。
 続いて、深さd2を第2の重りに関連付けられた基準値と比較する(ステップS4-1)。深さd2が基準値未満の場合、発酵乳の硬度は、閾値h3より高いと評価できる(ステップS5)。また、深さd2が基準値以上の場合、発酵乳の硬度は、閾値h1より高く閾値h4よりも低いと評価できる(ステップS5)。
 以上、本発明の第3の実施形態にかかる発酵乳の硬度の評価方法を説明した。本実施形態にかかる発酵乳の硬度の評価方法によれば、評価の対象となる発酵乳の硬度を、3つの範囲(閾値h2より低い、閾値h1より高く閾値h4より低い、または閾値h3より高い)に分類することができる。
 本実施形態では、第1の重りを先に載置する場合を説明した。このように、例えば、重量の小さい重りを先に載置することが好ましい。重量の大きい重りを先に載置すると、発酵乳が塑性変形して、後のステップを実施できなくなる場合があるためである。
 なお、第1の重りに関連付けられた基準値と、第2の重りに関連付けられた基準値とは、同じものでも良い。
 [第4の実施形態]
 図6は、本発明の第4の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。本実施形態では、第3の実施形態のステップS2-1(図4)に代えて、第1の重りの上に第2の重りを載置する工程(ステップS2-2)を実施する。すなわち、発酵乳の上面に載置された第1の重りを取り出さずに、第1の重りの上に第2の重りを重ねて載置する。そして、第2の重りが沈んだ深さd2を測定する工程(ステップS3-1(図4))に代えて、第2の重りを載置してから所定時間後に、発酵乳へ第1および第2の重りからなる積層体が沈んだ深さd3を測定する工程(ステップS3-2)を実施する。そして、深さd2を第2の重りに関連付けられた基準値と比較する工程(ステップS4-1(図4))に代えて、深さd3を積層体に関連付けられた基準値と比較する工程(ステップS4-2)を実施する。
 第1および第2の重りからなる積層体についても、あらかじめ、発酵乳の硬度との関係を調べておく。すなわち、積層体を硬度h5の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h6の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となるような、硬度の閾値h5およびh6の値を調べておく。h5とh6とは、なるべく値が近接していることが好ましい。
 これにより、硬度が未知の発酵乳の上面に積層体を載置した場合、所定時間後に沈む深さが基準値未満であるときは、当該発酵乳の硬度は、少なくとも閾値h5より高いことが分かる。また、深さが基準値以上であるときは、当該発酵乳の硬度は、少なくとも閾値h6より低いことが分かる。
 本実施形態にかかる発酵乳の硬度の評価方法によれば、評価の対象となる発酵乳の硬度を、3つの範囲(閾値h2より低い、閾値h1より高く閾値h6より低い、または閾値h5より高い)に分類することができる。
 なお、本実施形態の場合、第1の重りと第2の重りとは、同じものであっても良い。
 [第5の実施形態]
 図7は、本発明の第5の実施形態にかかる発酵乳の硬度の評価方法の手順を示す図である。本実施形態は、第3の実施形態と第4の実施形態とを組み合わせたものである。すなわち、本実施形態にかかる発酵乳の硬度の評価方法は、上部に開口部を有する容器に収納された発酵乳を準備する工程(ステップS1)と、開口部から第1の重りを搬入し、発酵乳の上面に第1の重りを載置する工程(ステップS2)と、第1の重りを載置してから所定時間後に、発酵乳へ第1の重りが沈んだ深さd1を測定する工程(ステップ3)と、深さd1を第1の重りと関連付けられた基準値と比較する工程(ステップS4)と、開口部から第1の重りを取り出し、開口部から第2の重りを搬入し、発酵乳の上面に第2の重りを載置する工程(ステップS2-1)と、第2の重りを載置してから所定時間後に、発酵乳へ第2の重りが沈んだ深さd2を測定する工程(ステップS3-1)と、深さd2を第2の重りと関連付けられた基準値と比較する工程(ステップS4-1)と、開口部から第1の重りを搬入し、第2の重りの上に第1の重りを重ねて載置する工程(ステップS2-2)と、第1の重りを載置してから所定時間後に、発酵乳へ第1および第2の重りからなる積層体が沈んだ深さd3を測定する工程(ステップS3-2)と、深さd3を積層体に関連付けられた基準値と比較する工程(ステップS4-2)と、ステップS4、S4-1、およびS4-2の結果ならびに第1の重り、第2の重り、および積層体に関連付けられた閾値から、発酵乳の硬度を評価する工程(ステップS5)と、を備えている。
 本実施形態においても、第3および第4の実施形態と同様に、発酵乳の硬度と重りとの関係を、あらかじめ調べておく。すなわち、第1の重りは、硬度h1の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h2の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となる。第2の重りは、硬度h3の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h4の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となる。さらに、第2の重りの上に第1の重りを重ねて載置した積層体は、硬度h5の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値以上となり、硬度h6の発酵乳の上面に載置した場合、所定時間後に沈む深さが基準値未満となる。
 なお、本実施形態では硬度h5およびh6について、第4の実施形態と同じ符号を用いている。しかし、第1の重りの上に第2の重りを重ねて載置した積層体が発酵乳へ沈む深さと、第2の重りの上に第1の重りを重ねて載置した積層体が発酵乳へ沈む深さとは、異なる場合がある。
 本実施形態では、h1<h2<h3<h4となるように重りを選定する。これにより、当然に、h1<h2<h3<h4<h5<h6となる。
 以上の前提のもと、本実施形態にかかる発酵乳の硬度の評価方法を実施する。
 まず、ステップS1~S4およびステップS2-1~S4-1を実施する。ステップS1~S4およびステップS2-1~S4-1については、第3の実施形態(図5)と同様である。
 ステップS4-1において、深さd2が基準値以上の場合、ステップS2-2~S4-2をスキップして、硬度を評価する工程(ステップS5)に進む。この時点で、発酵乳の硬度は、閾値h1より高く閾値h4より低いと評価できるためである。
 一方、ステップS4-1において、深さd2が基準値未満の場合、発酵乳の硬度は、閾値h3より高いことが分かる。しかしこの時点では、発酵乳の硬度と閾値h5およびh6との大小関係が不明である。したがって、この場合はステップS2-2以降を行う。
 次に、ステップS2-2~S4-2を行う。ステップS2-2~S4-2については、第4の実施形態(図6)と同様である。ステップS4-2において、深さd3が基準値未満の場合、発酵乳の硬度は、閾値h5より高いと評価できる(ステップS5)。また、深さd3が基準値以上の場合、発酵乳の硬度は、閾値h3より高く閾値h6より低いと評価できる(ステップS5)。
 本実施形態にかかる発酵乳の硬度の評価方法によれば、評価の対象となる発酵乳の硬度を、4つの範囲(閾値h2より低い、閾値h1より高く閾値h4より低い、閾値h3より高く閾値h6より低い、または閾値h5より高い)に分類することができる。
 以上、第3~第5の実施形態によって、2つの重りを使用して発酵乳の硬度を評価する方法を説明した。しかし、本発明の発酵乳の硬度の評価方法は、重りの数は限定されない。すなわち、3つ以上の重りを使用して発酵乳の硬度を評価しても良い。n種類(nは自然数)の重りを用いることで、発酵乳の硬度を、n+1の範囲に分類することができる。また、第5の実施形態で例示したように、n種類の重りとこれらを組み合わせた積層体とを利用することによって、発酵乳の硬度を、最大で2の範囲に分類することができる。
 [発酵乳の硬度の評価装置]
 以下では、第1~第5の実施形態において例示してきた発酵乳の硬度の評価方法を実施する、硬度評価装置の構成例について述べる。但し、本発明の硬度の評価方法は、以下の装置によって実施されることに限定されるものではない。
 [硬度評価装置の第1の構成]
 図8Aは、本発明の一実施形態にかかる硬度評価装置10の構成を示す機能ブロック図である。硬度評価装置10は、本発明の第1の実施形態にかかる発酵乳の硬度の評価方法を実施するための装置である。すなわち、硬度評価装置10は、上部に開口部を有する容器に収納された発酵乳の硬度の評価装置であって、図1におけるステップS2を実施する搬送部11と、ステップS3を実施する測定部12と、ステップS4を実施する評価部13とを備えている。
 搬送部11は、測定開始信号を受けて、開口部から重りを搬入し、重りを発酵乳の上面に載置する。搬送部11は、例えばモータ等で駆動される公知の搬送手段である。測定開始信号は、例えば測定者が測定開始スイッチを押すことで発生する。
 測定部12は、発酵乳へ重りが沈んだ深さを測定する。測定部12は、例えば重りの鉛直方向の位置を検出する位置センサである。または、測定部12は、例えば重りを撮影するカメラと、カメラの画像を解析して深さを算出する画像処理装置とを含むものである。測定部12は、測定結果を評価部13に出力する。
 評価部13は、記憶装置と演算装置とを有している。記憶装置には、重りと関連付けられた硬度の変換テーブルが格納されている。演算装置は、測定部12から受けた測定結果および硬度の変換テーブルを参照し、発酵乳の硬度を評価する。硬度の評価は、補間演算等を行って、硬度を数値として算出するものであっても良い。
 評価部13による評価値は、例えばディスプレイに表示されたり、他の装置に出力される。
 次に、硬度評価装置10による発酵乳の硬度の評価方法を説明する。まず、上部に開口部を有する容器に収納された発酵乳を、硬度評価装置10にセットする。そして、測定開始スイッチが押されること等により、搬送部11へ測定開始信号が送られる。あるいは、製造ラインにおいてベルトコンベア等で搬送されている発酵乳が、所定割合で自動的に硬度評価装置10にセットされ、さらに自動的に搬送部11へ測定開始信号が送られるようにしても良い。搬送部11により、開口部から重りが搬送され、発酵乳の上面に重りが載置される。測定者は、重りが載置されてから所定時間後に、ディスプレイに表示された評価部13による硬度の評価値を確認する。
 硬度評価装置40によれば、迅速かつ簡便に発酵乳の硬度を評価することができる。
 [硬度評価装置の第2の構成]
 図8Bは、本発明の他の実施形態にかかる硬度評価装置20の構成を示す機能ブロック図である。硬度評価装置20は、搬送部11と評価部13とが連携して動作するように構成されている。
 すなわち、搬送部11は、重りを発酵乳の上面に載置する動作が完了すると、搬送完了信号を評価部13に出力する。評価部13は、搬送終了信号に同期して、経過時間の計測を開始する。そして、搬送終了信号から所定時間後に、測定部12から受けた測定値と、硬度の変換テーブルとから、発酵乳の硬度を評価する。
 搬送部11は、発酵乳の上面に載置された重りを取り出す機能を有していることが好ましい。この場合、例えば、次のような動作が可能である。すなわち、評価部13は、発酵乳の硬度の評価が終了すると、評価終了信号を搬送部11へ出力する。そして、搬送部11は、評価終了信号を受けて、発酵乳の上面に載置された重りを取り出す。これにより、評価が終了すると自動的に重りが取り出される。
 硬度評価装置20の構成によれば、硬度評価装置10の構成と比較して、発酵乳の硬度の評価をより自動化することができる。
 [硬度評価装置の第3の構成]
 図8Cは、本発明の他の実施形態にかかる硬度評価装置30の構成を示す機能ブロック図である。硬度評価装置30は、硬度評価装置20の構成に加えて、搬送部11が搬送する重りを複数の重りから選択する選択部14をさらに備える。
 選択部14は、例えば、測定者が選択スイッチを操作することで、搬送部11が搬送する重りを複数の重りから選択する。選択部14は、どの重りが選択されたかという情報を、評価部13へ出力する。評価部13の記憶装置には、それぞれの重りについて関連付けられた硬度の変換テーブルが格納されている。評価部13は、選択部14からの情報を受け、選択された重りと関連付けられた硬度の変換テーブルを選択する。評価部13の演算装置は、測定部12から受けた測定結果および硬度の変換テーブルを参照し、発酵乳の硬度を評価する。
 硬度評価装置30の構成によれば、発酵乳の上面に載置する重りを選択することによって、より広い範囲の発酵乳の硬度を評価することができる。
 [硬度評価装置の第4の構成]
 図9Aは、本発明の他の実施形態にかかる硬度評価装置40の構成を示す機能ブロック図である。硬度評価装置40は、本発明の第2の実施形態にかかる硬度の評価方法(図4)を実施するための装置である。すなわち、硬度評価装置10は、上部に開口部を有する容器に収納された発酵乳の硬度の評価装置であって、図4におけるステップS2を実施する搬送部11と、ステップS3を実施する測定部12と、ステップS4を実施する比較部15とを備えている。
 比較部15は、測定部12から測定結果を受ける。比較部15は、重りが沈んだ深さを、搬送部11が搬送した重りに関連付けられた基準値と比較する。
 比較部15は、例えば、重りが沈んだ深さを電圧として入力し、基準値に対応する電圧以上の電圧を入力したときに信号を外部へ出力するコンパレータ回路である。
 なお、測定部12と比較部15とを一体とした構成も可能である。この場合、測定部12および比較部15は、例えば、重りの鉛直方向の高さが一定以下になったときに作動するセンサである。
 比較部15からの信号は、例えばランプに出力される。すなわち、重りが沈んだ深さが基準値以上になったことを、ランプの点灯により測定者に通知する。比較部15からの信号は、ディスプレイ、アラーム、または外部の装置に出力されても良い。
 次に、硬度評価装置40による発酵乳の硬度の評価方法を説明する。まず、上部に開口部を有する容器に収納された発酵乳が、硬度評価装置40にセットされる。そして、測定開始スイッチが押される等により、搬送部11へ測定開始信号が送られる。あるいは、製造ラインにおいてベルトコンベア等で搬送されている発酵乳が、所定の割合で自動的に硬度評価装置40にセットされ、さらに自動的に搬送部11へ測定開始信号が送られるようにしても良い。搬送部11により、開口部から重りが搬送され、発酵乳の上面に重りが載置される。
 測定者は、重りが載置されてから所定時間内にランプが点灯すれば、所定時間内に重りが沈んだ深さが基準値以上であったと判断できる。すなわち、発酵乳の硬度は、その重りに関連付けられた硬度の閾値よりも低いと評価できる。測定者は、一方、重りが載置されてから所定時間内にランプが点灯しなければ、所定時間内に重りが沈んだ深さが基準値未満であったと判断できる。すなわち、発酵乳の硬度は、その重りに関連付けられた硬度の閾値よりも高いと評価できる。
 搬送部11は、発酵乳の上面に載置された重りを取り出す機能を有していることが好ましい。この場合、例えば、次のような動作が可能である。すなわち、搬送部11は、重りを発酵乳の上面に載置する動作の完了に同期して、経過時間の計測を開始する。そして、所定時間後に、発酵乳の上面に載置された重りを取り出す。これにより、測定者が時間を計測する必要がなくなり、さらに、評価が終了すると自動的に重りが取り出される。
 硬度評価装置40によれば、迅速かつ簡便に発酵乳の硬度を評価することができる。
 [硬度評価装置の第5の構成]
 図9Bは、本発明の他の実施形態にかかる硬度評価装置50の構成を示す機能ブロック図である。硬度評価装置20は、搬送部11と比較部15とが連携して動作するように構成されている。
 硬度評価装置50の構成によれば、例えば、搬送部11は、比較部15からの信号を受けて、発酵乳の上面に載置された重りを取り出すといった動作が可能になる。
 [硬度評価装置の第6の構成]
 図9Cは、本発明の他の実施形態にかかる硬度評価装置60の構成を示す機能ブロック図である。硬度評価装置60は、硬度評価装置50の構成に加えて、搬送部11が搬送する重りを複数の重りから選択する選択部14をさらに備えている。
 硬度評価装置60の構成によれば、選択部14により、複数の重りから発酵乳の上面に載置する重りを順次選択することができる。これにより、本発明の第3~第5の実施形態にかかる発酵乳の硬度の評価方法(図5~図7)を実施することができる。
 なお、硬度評価装置60では、選択部14によってどの重りが選択されたかという情報を比較部15へ出力することは必須ではない。それぞれの重りに関連付けられた基準値を統一しておけば良いからである。
 [硬度評価装置の第7の構成]
 図9Dは、本発明の他の実施形態にかかる硬度評価装置70の構成を示す機能ブロック図である。硬度評価装置70は、硬度評価装置60の構成に加えて、制御部16をさらに備えている。
 制御部16は、外部から信号を受けるとともに、搬送部11、選択部14、および比較部15を制御する。制御部16は、さらに、記憶装置と演算装置とを有している。記憶装置には、制御プログラムと、選択部14が選択する複数の重りに関連付けられた硬度の閾値とが格納されている。制御部16は、記憶装置に格納された制御プログラムに従って、搬送部11、選択部14、および比較部15を制御する。制御部16は、比較部15から信号を受け取る。演算装置は、比較部15からの信号および記憶装置格納された硬度の閾値とから、発酵乳の硬度を評価する。演算装置によって評価された発酵乳の硬度は、例えばディスプレイに出力される。
 硬度評価装置70の構成によれば、本発明の第2~第5の実施形態にかかる硬度の評価方法(図4~図7)を、自動で実施することができる。以下では、第3の実施形態にかかる発酵乳の硬度の評価方法(図5)を、硬度評価装置70で実施する場合を説明する。
 まず、上部に開口部を有する容器に収納された発酵乳が硬度評価装置70にセットされる。そして、測定開始スイッチが押されること等により、制御部16へ測定開始信号が送られる。あるいは、製造ラインにおいてベルトコンベア等で搬送されている発酵乳が、所定の割合で自動的に硬度評価装置70にセットされ、さらに自動的に制御部16へ測定開始信号が送られるようにしても良い。制御部16は、測定開始信号を受けると、記憶装置に格納された制御プログラムを実行する。
 まず、制御部16は、選択部14を駆動して、第1の重りを選択する。そして、制御部16は、搬送部11を駆動して、第1の重りを発酵乳の上面に載置する。
 測定部12によって、第1の重りが沈んだ深さd1が測定される。測定結果は、比較部15へ出力される。この間、制御部16は、比較部15からの信号を受け付ける。
 所定時間内に比較部15からの信号があれば、制御部16の演算装置は、記憶装置に格納された第1の重りに関連付けられた閾値を参照し、発酵乳の硬度は閾値h2より低いと評価する。
 所定時間内に比較部15からの信号がなければ、制御部16は、搬送部11を駆動して、第1の重りを取り出す。そして、制御部16は、選択部14を駆動して、第2の重りを選択する。そして、制御部16は、搬送部11を駆動して、第2の重りを発酵乳の上面に載置する。
 測定部12によって、第2の重りが沈んだ深さd2が測定される。測定結果は、比較部15へ出力される。この間、制御部16は、比較部15からの信号を受け付ける。
 所定時間内に比較部15からの信号があれば、制御部16の演算装置は、記憶装置に格納された第1および第2の重りに関連付けられた閾値を参照し、発酵乳の硬度は、閾値h1より高く閾値h4より低いと評価する。
 所定時間内に比較部15からの信号がなければ、制御部16の演算装置は、記憶装置に格納された第2の重りに関連付けられた閾値を参照し、発酵乳の硬度は、閾値h3より高いと評価する。
 制御部16の演算装置によって評価された発酵乳の硬度は、例えばディスプレイに出力される。
 以上、硬度評価装置70により、第3の実施形態にかかる発酵乳の硬度の評価方法(図5)を実施する場合を説明した。なお、硬度評価装置70は、第2~第5の実施形態で例示したような、1つまたは2つの重りを使用して発酵乳の硬度を評価する方法だけではなく、n個(nは自然数)の重りを使った種々の方法を実施することができる。
 [その他の実施形態]
 以上、本発明についての実施形態を説明したが、本発明は上述の各実施形態にのみ限定されず、発明の範囲内で種々の変更が可能である。
 以下、実施例に基づいて本発明をより具体的に説明する。なお、この実施例は本発明を限定するものではない。
 種々の条件で発酵乳を作製した。これらの発酵乳の硬度を、カードメーターによって測定した。
 まず、表1に記載した原料および水を、種々の割合で混合し、原料ミックスを作製した。
Figure JPOXMLDOC01-appb-T000001
                  
 次に、原料ミックスを95℃、5分間で保持して殺菌した。続いて、原料ミックスを40~45℃に冷却した。その後、原料ミックスにスターター(乳酸菌)を接種(添加)した。スターターには、明治ブルガリアヨーグルトLB81(明治社)から分離したものを使用した。スターターを添加した原料ミックスを、カップ容器に80gずつ充填した。カップ容器は、プラスチック製で、開口部の直径が71mm、底部の直径が50mm、高さが55mmであった。カップ容器に充填された原料ミックスを、43℃の恒温庫内に、3時間で保持して発酵させ、発酵乳を作製した。
 作製した発酵乳を、冷蔵庫に保持して5℃に冷却した。冷却した発酵乳の硬度を、カードメーター(カードメータ・マックス、ME-500、飛鳥機器社)によって測定した。
 表2に、作製した発酵乳(試料番号(1-1)~(1-4))の配合量、およびカードメーターによって測定された硬度を示す。
Figure JPOXMLDOC01-appb-T000002
                  
 次に、試料番号(1-1)~(1-4)の発酵乳の上面に、2種類の重り(重りAおよび重りB)、またはこれらの積層体(以下、重り等と呼ぶ)を載置し、30秒間で保持した。その後、発酵乳の上面に残った重り等の形跡等を観察し、重り等が沈んだ深さを測定した。なお、重りAおよび重りBはともに円柱形状で金属製であった。重りAは、直径32mm、高さ10mm、重量60gであった。重りBは、直径40mm、高さ12mm、重量100gであった。
 表3に、発酵乳の硬度と、重り等が沈んだ深さとの関係を示す。なお、表3中の「○」は、発酵乳の上面に重り等の形跡を確認できたが、重り等は、ほぼ沈まなかったことを示す。表3中の「△」は、重りの1個の半分、または積層体全体の4分の1が沈んでいたことを示す。表3中の「×」は、積層体全体の2分の1が沈んでいたことを示す。
Figure JPOXMLDOC01-appb-T000003
                  
 表3に示す通り、発酵乳の硬度と、重り等が沈む深さとに相関があることが見出された。したがって、重り等が沈んだ深さから、発酵乳の硬度を迅速かつ簡便に評価できることが分かった。
 この発明を添付図面に示す実施態様について説明したが、この発明は、その詳細な説明の記載をもって制約しようとするものではなく、特許請求の範囲に記載する範囲において広く構成される。
 本発明は、発酵乳の硬度の評価方法および発酵乳の硬度の評価装置として、産業上利用可能である。

Claims (10)

  1.  発酵乳の硬度の評価方法であって、
     上部に開口部を有する容器に収納された発酵乳を準備する工程と、
     前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する工程と、
     前記重りを載置してから所定時間後に、前記発酵乳へ前記重りが沈んだ深さを測定する工程と、
     前記重りが沈んだ深さおよび前記重りに関連付けられた硬度の変換テーブルを参照し、前記発酵乳の硬度を評価する工程と、
     を備える、発酵乳の硬度の評価方法。
  2.  発酵乳の硬度の評価方法であって、
     上部に開口部を有する容器に収納された発酵乳を準備する工程と、
     前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する工程と、
     前記重りを載置してから所定時間後に、前記発酵乳へ前記重りが沈んだ深さを測定する工程と、
     前記重りが沈んだ深さを前記重りに関連付けられた基準値と比較する第1比較工程と、
     前記第1比較工程の結果および前記重りに関連付けられた硬度の閾値から、前記発酵乳の硬度を評価する工程と、
     を備える、発酵乳の硬度の評価方法。
  3.  請求項2に記載の発酵乳の硬度の評価方法であって、
     前記開口部から前記発酵乳の上面に載置された前記重りを取り出し、前記開口部から前記重りと重量の異なる別の重りを搬入し、前記発酵乳の上面に前記別の重りを載置する工程と、
     前記別の重りを載置してから所定時間後に、前記発酵乳へ前記別の重りが沈んだ深さを測定する工程と、
     前記別の重りが沈んだ深さを、前記別の重りに関連付けられた基準値と比較する第2比較工程と、
     をさらに備え、
     前記硬度を評価する工程は、前記第2比較工程の結果および前記別の重りに関連付けられた硬度の閾値を加味した上で、前記発酵乳の硬度を評価する、発酵乳の硬度の評価方法。
  4.  請求項2に記載の発酵乳の硬度の評価方法であって、
     前記開口部から前記重りと別の重りを搬入し、前記発酵乳の上面に載置された前記重りの上に前記別の重りを載置する工程と、
     前記別の重りを載置してから所定時間後に、前記重りおよび前記別の重りからなる積層体が前記発酵乳へ沈んだ深さを測定する工程と、
     前記積層体が沈んだ深さを、前記積層体に関連付けられた基準値と比較する第3比較工程と、
     をさらに備え、
     前記硬度を評価する工程は、前記第3比較工程の結果および前記積層体に関連付けられた硬度の閾値を加味した上で、前記発酵乳の硬度を評価する、発酵乳の硬度の評価方法。
  5.  請求項1~4のいずれか一項に記載の発酵乳の硬度の評価方法であって、
     前記重りは、前記発酵乳と接する底面が平坦であり、
     前記重りが沈んだ深さを測定する工程において、前記発酵乳の上面と前記重りの底面との間の距離を、沈んだ深さとする、発酵乳の硬度の評価方法。
  6.  上部に開口部を有する容器に収納された発酵乳の硬度を評価する硬度評価装置であって、
     前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する搬送部と、
     前記発酵乳へ前記重りが沈んだ深さを測定する測定部と、
     前記測定部から測定値を受け取り、前記測定値および前記重に関連付けられた硬度の変換テーブルを参照し、前記発酵乳の硬度を評価する評価部と、
     を備える、硬度評価装置。
  7.  上部に開口部を有する容器に収納された発酵乳の硬度を評価する硬度評価装置であって、
     前記開口部から重りを搬入し、前記発酵乳の上面に前記重りを載置する搬送部と、
     前記発酵乳へ前記重りが沈んだ深さを測定する測定部と、
     前記測定部から測定値を受け取り、前記測定値を前記重りに関連付けられた基準値と比較する比較部と、
     を備える、硬度評価装置。
  8.  請求項6または7に記載の硬度評価装置であって、
     前記搬送部が前記発酵乳の上面に載置する重りを複数の重りから選択する選択部、
     をさらに備える、硬度評価装置。
  9.  請求項6または7に記載の硬度評価装置であって、
     前記測定部は、前記重りの鉛直方向の位置を検出する位置センサである、硬度評価装置。
  10.  請求項6または7に記載の発酵乳の硬度評価装置であって、
     前記測定部は、前記重りを撮影するカメラと、前記カメラの画像を解析して前記深さを算出する画像処理装置とを含む、硬度評価装置。
PCT/JP2013/057752 2012-03-21 2013-03-19 発酵乳の硬度の評価方法および発酵乳の硬度の評価装置 WO2013141223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014506235A JP6067678B2 (ja) 2012-03-21 2013-03-19 発酵乳の硬度の評価方法および発酵乳の硬度の評価装置
CN201380009070.7A CN104114030B (zh) 2012-03-21 2013-03-19 发酵乳的破裂强度的评价方法及发酵乳的破裂强度的评价装置
HK15102070.2A HK1201415A1 (zh) 2012-03-21 2015-03-02 發酵乳的破裂强度的評價方法及發酵乳的破裂强度的評價裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012063330 2012-03-21
JP2012-063330 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013141223A1 true WO2013141223A1 (ja) 2013-09-26

Family

ID=49222680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057752 WO2013141223A1 (ja) 2012-03-21 2013-03-19 発酵乳の硬度の評価方法および発酵乳の硬度の評価装置

Country Status (4)

Country Link
JP (1) JP6067678B2 (ja)
CN (1) CN104114030B (ja)
HK (1) HK1201415A1 (ja)
WO (1) WO2013141223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153902A (ja) * 2019-03-22 2020-09-24 森永乳業株式会社 半固形状食品の硬度測定装置、半固形状食品の硬度測定方法および食品の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300821A (zh) * 2015-11-27 2016-02-03 贵州大学 简便快捷鉴别工程机械轮胎硬度的方法及装置
CN106872302A (zh) * 2017-03-24 2017-06-20 陕西瑞之源农牧科技有限公司 饲料用复合颗粒载体硬度测定装置及硬度对比测定方法
CN107607423A (zh) * 2017-08-31 2018-01-19 四川南格尔生物科技有限公司 一种软料件硬度检测装置及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273302A (ja) * 1993-03-01 1994-09-30 Navas Garcia Jose M Las 試験片の特性を測定する方法、及び装置
JPH06308004A (ja) * 1993-02-25 1994-11-04 Navas Garcia Jose M Las 硬度測定方法及び測定装置
JP2005195357A (ja) * 2003-12-26 2005-07-21 National Institute Of Advanced Industrial & Technology 光学式圧子接触面のその場定量に基づく力学特性計測法及びその試験装置
JP2007240418A (ja) * 2006-03-10 2007-09-20 Citizen Holdings Co Ltd 硬さ計
JP2009052911A (ja) * 2007-08-23 2009-03-12 Univ Nihon 物性測定装置及び物性測定方法
JP2009204574A (ja) * 2008-02-29 2009-09-10 Citizen Holdings Co Ltd 硬さ計

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148114A (en) * 1965-12-02 1969-04-10 Uniroyal Inc Durometer
GB1561732A (en) * 1975-10-16 1980-02-27 Sidaway J Hardnesstesting machine
JPH09236529A (ja) * 1996-02-29 1997-09-09 Shimadzu Corp 硬度計
CN201974978U (zh) * 2010-12-20 2011-09-14 山东科技职业学院 洛氏硬度测量演示仪
CN202471532U (zh) * 2012-03-02 2012-10-03 吉林工商学院 一种用于测定凝胶状食品硬度的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308004A (ja) * 1993-02-25 1994-11-04 Navas Garcia Jose M Las 硬度測定方法及び測定装置
JPH06273302A (ja) * 1993-03-01 1994-09-30 Navas Garcia Jose M Las 試験片の特性を測定する方法、及び装置
JP2005195357A (ja) * 2003-12-26 2005-07-21 National Institute Of Advanced Industrial & Technology 光学式圧子接触面のその場定量に基づく力学特性計測法及びその試験装置
JP2007240418A (ja) * 2006-03-10 2007-09-20 Citizen Holdings Co Ltd 硬さ計
JP2009052911A (ja) * 2007-08-23 2009-03-12 Univ Nihon 物性測定装置及び物性測定方法
JP2009204574A (ja) * 2008-02-29 2009-09-10 Citizen Holdings Co Ltd 硬さ計

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153902A (ja) * 2019-03-22 2020-09-24 森永乳業株式会社 半固形状食品の硬度測定装置、半固形状食品の硬度測定方法および食品の製造方法

Also Published As

Publication number Publication date
CN104114030A (zh) 2014-10-22
JP6067678B2 (ja) 2017-01-25
JPWO2013141223A1 (ja) 2015-08-03
CN104114030B (zh) 2016-07-27
HK1201415A1 (zh) 2015-09-04

Similar Documents

Publication Publication Date Title
JP6067678B2 (ja) 発酵乳の硬度の評価方法および発酵乳の硬度の評価装置
EP2538184A3 (en) Rule-based diagnostics apparatus and method for rotating machinery
GB2478684A (en) Method and device for measuring the thickness of any deposit of material on an inner wall of a structure
ATE553457T1 (de) Binned-micro-vessel-dichteverfahren und vorrichtungen
EP2009428A3 (en) Method and device for inspection of drugs concealed in liquid articles
EP2345884A3 (en) Hardness test method, hardness tester, and computer-readable storage medium storing program
WO2013142347A8 (en) Method and system for detection of microbial growth in a specimen container
MY169616A (en) Methods for examining a bonding structure of a substrate and bonding structure inspection devices
EP2276006A3 (en) Living person anomaly detection system and method
GB2499347A (en) Surface data acquisition, storage, and assessment system
EP2302479A3 (en) Condition monitoring of an underwater facility
WO2006066216A3 (en) Rapid microbial detection and antimicrobial susceptibility testing
EP2293562A3 (en) Contents reproducing device and method
EP2757841A3 (en) Method and apparatus for determining timing information for cells
EP2191775A3 (en) Detection of the position of a moving object
SG156583A1 (en) Method for performing a shelf lifetime acceleration test
EP2500732A3 (en) Specimen analyzer
Guggisberg et al. Eye formation in semi-hard cheese: X-ray computed tomography as a non-invasive tool for assessing the influence of adjunct lactic acid bacteria
Grossi et al. Detection of microbial concentration in ice-cream using the impedance technique
EP2420785A3 (en) Fermented food refrigerator and control method thereof
EP2159570A3 (en) X-ray inspection apparatus
WO2013015841A3 (en) Method for calibrating apparatus for measuring shape factor
Grossi et al. Total bacterial count in soft-frozen dairy products by impedance biosensor system
EP2424252A3 (en) Video display apparatus and video display method
Omola et al. Physico-chemical, sensory and microbiological qualities of yoghurt brands sold in Kano metropolis, Nigeria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764467

Country of ref document: EP

Kind code of ref document: A1