WO2013140912A9 - Rotating compressor and freeze-cycle apparatus - Google Patents

Rotating compressor and freeze-cycle apparatus Download PDF

Info

Publication number
WO2013140912A9
WO2013140912A9 PCT/JP2013/053893 JP2013053893W WO2013140912A9 WO 2013140912 A9 WO2013140912 A9 WO 2013140912A9 JP 2013053893 W JP2013053893 W JP 2013053893W WO 2013140912 A9 WO2013140912 A9 WO 2013140912A9
Authority
WO
WIPO (PCT)
Prior art keywords
rotary compressor
discharge port
cylinder
cylinder chamber
bearing
Prior art date
Application number
PCT/JP2013/053893
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013140912A1 (en
Inventor
富永健
森嶋明
加藤久尊
長畑大志
平山卓也
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201380006906.8A priority Critical patent/CN104081055B/en
Publication of WO2013140912A1 publication Critical patent/WO2013140912A1/en
Publication of WO2013140912A9 publication Critical patent/WO2013140912A9/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus using the rotary compressor.
  • a rotary compressor used in a refrigeration cycle apparatus such as an air conditioner
  • a cylinder a rotating shaft that penetrates the cylinder, a roller that is provided on the rotating shaft and moves eccentrically (eccentric rotation) in the cylinder, and rotatably supports the rotating shaft and closes the end face of the cylinder.
  • It has two bearings (main bearing, sub bearing) which form a cylinder chamber in it.
  • a discharge port for discharging the gas refrigerant compressed in the cylinder chamber and a discharge valve for opening and closing the discharge port are provided in the flange portion of the bearing.
  • the discharge valve opens when the gas refrigerant compressed in the cylinder chamber reaches a predetermined pressure. And it closes, after gas refrigerant is discharged from a discharge port.
  • Such rotary compressors are often operated in a medium-speed rotation range (operation frequency is 30 to 60 Hz) or a low-speed rotation range (operation frequency is 30 Hz or less) except during startup. Therefore, the dimensions of each part are set with an emphasis on increasing the compression efficiency in the medium speed rotation range or the low speed rotation range.
  • the inner diameter of the discharge port is made as small as possible in order to reduce the dead volume and reduce the re-expansion loss.
  • the ratio “d / A” of the inner diameter dimension d (mm) of the discharge port to the inner diameter area A (mm 2 ) of the cylinder chamber is “3 ⁇ 10 ⁇ 3 ⁇ d / A ⁇ 4 ⁇ 10 ⁇ 3 (mm / mm 2). ) ”.
  • the discharge valve has a small spring constant so that the valve opens smoothly when the pressure in the cylinder chamber rises.
  • the discharge valve spring constant K (N / mm) and the cylinder chamber volume V (mm 3 ) are used.
  • the ratio “K / V” is set to “0.6 ⁇ 10 ⁇ 4 ⁇ K / V ⁇ 0.7 ⁇ 10 ⁇ 4 (N / mm 4 )”.
  • An object of an embodiment of the present invention is to provide a rotary compressor capable of increasing compression efficiency when operated in a high-speed rotation region, and a refrigeration cycle apparatus including the rotary compressor.
  • an electric motor part and a compression mechanism part connected to the electric motor part via a rotary shaft having an eccentric part are accommodated in a sealed case, and the rotary shaft penetrates the compression mechanism part.
  • V is the volume of one cylinder chamber.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus including a rotary compressor shown in cross section in the first embodiment.
  • FIG. 2 is a plan view showing the main bearing.
  • FIG. 3 is a plan view showing the discharge valve.
  • FIG. 4 shows an experiment of the relationship between the ratio “dm / A” between the inner diameter area A (mm 2 ) of the first cylinder chamber and the inner diameter dimension dm (mm) of the first discharge port and the compression efficiency of the rotary compressor. It is a graph which shows a result.
  • FIG. 5 shows the ratio “K / V (N / mm 4 )” between the volume V (mm 3 ) of the cylinder chamber and the spring constant K (N / mm) of the discharge valve, and the compression efficiency of the rotary compressor.
  • FIG. 6 shows a rotary compressor that satisfies equations (1) to (4), a conventional rotary compressor that does not satisfy all of equations (1) to (4), and equations (1) and (2). It is a PV diagram measured when the rotary compressor of the comparative example which satisfy
  • FIG. 7 shows a rotary compressor that satisfies equations (1) to (4), a conventional rotary compressor that does not satisfy all of equations (1) to (4), and equations (1) to (2).
  • FIG. 6 is a graph showing the experimental results of the relationship between the rotational speed and the overall efficiency of the rotary compressor in the comparative rotary compressor that does not satisfy the expressions (3) and (4).
  • FIG. 8 is a longitudinal front view showing the shape of the discharge port in the second embodiment.
  • FIG. 9 is a graph showing experimental results of the relationship between the ratio “dm2 / dm1” between the minimum diameter dimension dm1 and the maximum diameter dimension dm2 of the tapered portion provided on the discharge side of the discharge port and the overall efficiency of the rotary compression. is there.
  • FIG. 10 is a plan view showing a cylinder in the third embodiment. 11 is a cross-sectional view taken along line YY in FIG.
  • FIG. 12 is a perspective view showing a part of the cylinder of FIG. 10 in cross section.
  • a refrigeration cycle apparatus 1 shown in FIG. 1 includes a compressor body 2 and an accumulator 3, and includes a rotary compressor 4 that compresses a low-pressure gas refrigerant that is a working fluid into a high-pressure gas refrigerant. Further, the refrigeration cycle apparatus 1 is connected to the discharge side of the compressor body 2 to condense the high-pressure gas refrigerant into a liquid refrigerant, and an expansion device 6 connected to the condenser 5 to decompress the liquid refrigerant. And an evaporator 7 connected between the expansion device 6 and the accumulator 3 to evaporate the liquid refrigerant.
  • the compressor body 2 has a sealed case 8 formed in a cylindrical shape. Lubricating oil 9 is stored at the bottom of the sealed case 8. Further, in the sealed case 8, an electric motor part 10 located on the upper side and a compression mechanism part 11 located on the lower side are accommodated. The electric motor unit 10 and the compression mechanism unit 11 are connected via a rotating shaft 12. The rotating shaft 12 rotates about the center in the longitudinal direction of the compressor body 2 as a rotating shaft.
  • the electric motor unit 10 is a so-called motor, and rotates the rotary shaft 12.
  • the electric motor unit 10 includes a rotor 13 and a stator 14.
  • the rotor 13 is fixed to the rotating shaft 12 and is provided with a permanent magnet (not shown).
  • the stator 14 is fixed to the sealed case 8 and disposed at a position surrounding the rotor 13, and a coil (not shown) is wound around the stator 14.
  • the compression mechanism unit 11 compresses the low-pressure gas refrigerant.
  • the compression mechanism part 11 has the 1st cylinder 15a located in the upper part side, and the 2nd cylinder 15b located in the lower part side.
  • a partition plate 17 is provided between the first cylinder 15a and the second cylinder 15b.
  • a main bearing 16a that rotatably supports the rotary shaft 12 is fixed to the upper end surface of the first cylinder 15a, and a sub bearing 16b that rotatably supports the rotary shaft 12 is fixed to the lower end surface of the second cylinder 15b. Yes.
  • the rotary shaft 12 is disposed through the first cylinder 15a and the second cylinder 15b.
  • the rotary shaft 12 is provided with a first eccentric portion 18a and a second eccentric portion 18b having the same diameter with a phase difference of 180 °.
  • a first roller 19a is fitted to the first eccentric portion 18a, and a second roller 19b is fitted to the second eccentric portion 18b.
  • a first cylinder chamber 20a is formed in which both ends of the first cylinder 15a are closed by a main bearing 16a and a partition plate 17.
  • a second cylinder chamber 20b is formed in which both ends of the second cylinder 15b are closed by the partition plate 17 and the auxiliary bearing 16b.
  • a first roller 19a fitted to the first eccentric part 18a is accommodated in the first cylinder chamber 20a
  • a second roller 19b fitted to the second eccentric part 18b is accommodated in the second cylinder chamber 20b.
  • the first roller 19a and the second roller 19b are moved eccentrically (eccentric rotation) while the outer peripheral surface thereof is in line contact with the inner peripheral surfaces of the first cylinder 15a and the second cylinder 15b when the rotary shaft 12 rotates. Has been placed.
  • the main bearing 16a is provided with a first discharge valve mechanism 21a.
  • the first discharge valve mechanism 21a includes a first discharge port 22a formed in the main bearing 16a, a first reed valve 23a, and a first valve stopper 24a.
  • the first reed valve 23a is a first discharge valve that is screwed to the main bearing 16a to open and close the first discharge port 22a.
  • the first valve stopper 24a is screwed to the main bearing 16a together with the first reed valve 23a to restrict the maximum opening of the first reed valve 23a.
  • the first discharge valve mechanism 21a is covered with a first muffler 25a attached to the main bearing 16a.
  • the first muffler 25a is formed with a discharge hole 26 that communicates the inside and outside of the first muffler 25a.
  • the second discharge valve mechanism 21b is provided in the auxiliary bearing 16b.
  • the second discharge valve mechanism 21b has the same configuration as the first discharge valve mechanism 21b described above, and includes a second discharge port 22b formed in the auxiliary bearing 16b, a second reed valve 23b, and a second valve stopper 24b.
  • the second reed valve 23b is a second discharge valve that is screwed to the auxiliary bearing 16b to open and close the second discharge port 22b.
  • the second valve stopper 24b is screwed to the auxiliary bearing 16b together with the second reed valve 23b to restrict the maximum opening of the second reed valve 23b.
  • the second discharge valve mechanism 21b is covered with a second muffler 25b attached to the auxiliary bearing 16b.
  • the inside of the second muffler 25b and the inside of the first muffler 25a are gas refrigerant guide passages (not shown) formed through the auxiliary bearing 16b, the second cylinder 15b, the partition plate 17, the first cylinder 15a, and the main bearing 16a.
  • the gas refrigerant is movably connected.
  • the accumulator 3 has a cylindrical sealed case 27.
  • the accumulator 3 and the evaporator 7 are connected so that the gas refrigerant vaporized by the evaporator 7 or the liquid refrigerant not vaporized by the evaporator 7 flows into the sealed case 27.
  • the sealed case 27 there are provided two suction pipes 28, one end of which opens at the upper side in the sealed case 27 and is arranged so that only the gas refrigerant in the sealed case 27 flows.
  • the other ends of these suction pipes 28 extend from the lower end side of the sealed case 27 to the outside of the sealed case 27 and are connected to the first cylinder chamber 20 a and the second cylinder chamber 20 b of the compression mechanism unit 11.
  • An oil return hole 29 into which lubricating oil accumulated at the bottom of the airtight case 27 flows is formed in a portion of the suction pipe 28 located on the lower side in the airtight case 27.
  • FIG. 2 is a plan view showing the main bearing 16a described above.
  • the first discharge port 22a is formed in the main bearing 16a.
  • the main bearing 16a is formed with a screw hole 30 in which a screw (not shown) for fixing the first reed valve 23a and the first valve stopper 24a described above to the main bearing 16a is fitted by a screw action. Yes.
  • the inner diameter of the first discharge port 22a is set to dm (mm).
  • the sub bearing 16b described above has the same structure as the main bearing 16a. Accordingly, the above-described second discharge port 22b is formed in the auxiliary bearing 16b, and the inner diameter of the second discharge port 22b is set to ds (mm).
  • FIG. 3 is a plan view showing the first reed valve 23a arranged at the mounting position on the main bearing 16a.
  • the first reed valve 23a is formed of a plate-like member.
  • the first reed valve 23 a has an arm portion 32 and a valve main body portion 33.
  • the arm portion 32 has flexibility, and an attachment hole 31 into which a fixing screw is inserted is formed at one end.
  • the valve body portion 33 is provided on the other end side of the arm portion 32 and is formed in a size capable of closing the first discharge port 22a in a disc shape.
  • the outer dimension of the valve body 33 is set to R (mm), the width of the arm 32 is set to W (mm), and the ratio “R / W” is set to “R / W ⁇ 2”.
  • the connecting portion between the valve body 33 and the arm 32 is constricted from the valve body 33 toward the arm 32.
  • the second reed valve 23b attached to the auxiliary bearing 16b is also formed in the same shape as the first reed valve 23a.
  • the inner diameter area of each of the first cylinder chamber 20a and the second cylinder chamber 20b is A (mm 2 )
  • the inner diameter dimension of the first discharge port 22a is dm (mm)
  • the inner diameter dimension of the discharge port 22b is ds (mm).
  • the ratio “ds / A” (mm / mm 2 ) between the inner diameter area A (mm 2 ) and the inner diameter ds (mm) of the second discharge port 22b is respectively 4.6 ⁇ 10 ⁇ 3 ⁇ dm / A ⁇ 6.5 ⁇ 10 ⁇ 3 (mm / mm 2 ) (1) 4.6 ⁇ 10 ⁇ 3 ⁇ ds / A ⁇ 6.5 ⁇ 10 ⁇ 3 (mm / mm 2 ) (2) Is set to hold.
  • the volume of each of the first cylinder chamber 20a and the second cylinder chamber 20b is V (mm 3 )
  • the spring constant of the first reed valve 23a is Km (N / mm)
  • the ratio “Ks / V (N / mm 4 )” of the volume V (mm 3 ) of the second and the spring constant Ks (N / mm) of the second reed valve 23b is respectively 1.2 ⁇ 10 ⁇ 4 ⁇ Km / V ⁇ 3.5 ⁇ 10 ⁇ 4 (N / mm 4 ) (3) 1.2 ⁇ 10 ⁇ 4 ⁇ Ks / V ⁇ 3.5 ⁇ 10 ⁇ 4 (N / mm 4 ) (4) Is set to hold.
  • the volumes “V” of the first cylinder chamber 20a and the second cylinder chamber 20b shown in the equations (3) and (4) mean the volume of one cylinder chamber when there are a plurality of cylinder chambers. .
  • each component of the rotary compressor 4 is set as follows, for example.
  • the inner diameters of the first cylinder chamber 20a and the second cylinder chamber 20b are 43 mm
  • the height dimensions of the first cylinder chamber 20a and the second cylinder chamber 20b are each 18 mm
  • the outer dimensions of the first roller 19a and the second roller 19b are each 35 mm
  • the eccentric amounts of the 118th and second eccentric portions 18b of the rotating shaft 12 are 4 mm, respectively.
  • the inner diameter dimension (dm) of the first discharge port 22a is 8 mm
  • the inner diameter dimension (ds) of the second discharge port 22b is 8 mm.
  • FIG. 4 shows an experiment of the relationship between the ratio “dm / A” between the inner diameter area A (mm 2 ) of the first cylinder chamber and the inner diameter dimension dm (mm) of the first discharge port and the compression efficiency of the rotary compressor. It is a graph which shows a result.
  • the rotation speed in the medium speed rotation range was 40 Hz
  • the rotation speed in the high speed rotation range was 90 Hz.
  • the reed valve used in this experiment is used in a conventional rotary compressor, and has a so-called small spring constant and is soft.
  • the horizontal axis is “dm / A (mm / mm 2 )” and the vertical axis is the compression efficiency of the rotary compressor.
  • the value of “dm / A (mm / mm 2 )” is “4.6 ⁇ 10 ⁇ 3 ⁇ dm / A ⁇ 6.5 ⁇ .
  • the compression efficiency was improved in the range of 10 ⁇ 3 ”, and the maximum compression efficiency was obtained when the value of“ dm / A (mm / mm 2 ) ”was 5.5 ⁇ 10 ⁇ 3 . Therefore, by setting “dm / A (mm / mm 2 )” in the range of “4.6 ⁇ 10 ⁇ 3 ⁇ dm / A ⁇ 6.5 ⁇ 10 ⁇ 3 ”, the rotational type in the high-speed rotation range is set. The compression efficiency of the compressor can be increased.
  • FIG. 5 shows the ratio “K / V (N / mm 4 )” between the volume V (mm 3 ) of the cylinder chamber and the spring constant K (N / mm) of the discharge valve, and the compression efficiency of the rotary compressor. It is a graph which shows the experimental result of a relationship.
  • the horizontal axis is “Km / V (N / mm 4 )”, and the vertical axis is the compression efficiency of the rotary compressor.
  • the value of “dm / A (mm / mm 2 )” is fixed to 5.5 ⁇ 10 ⁇ 3 and the spring constant “Km” of the reed valve is varied. The experiment was conducted for operation in the high-speed rotation range.
  • the value of “Km / V (N / mm 4 )” is “1.2 ⁇ 10 ⁇ 4 ⁇ Km / V ⁇ 3.5 ⁇ 10 ⁇ 4 (N / mm 4 )
  • the compression efficiency of the rotary compressor is increased.
  • the case of “Km / V (N / mm 4 )” has been described as an example, but the same applies to the case of “Ks / V (N / mm 4 )”.
  • the volume and pressure of the two spaces in the first cylinder chamber 20a and the second cylinder chamber 20b change with the eccentric rotation of the first roller 19a and the second roller 19b.
  • a low-pressure gas refrigerant is sucked from the accumulator 3 through the suction pipe 28 into the first cylinder chamber 20a and the second cylinder chamber 20b.
  • the sucked low-pressure gas refrigerant is compressed in the first cylinder chamber 20a and the second cylinder chamber 20b, and becomes a high-pressure gas refrigerant.
  • the first reed valve 23a is opened at the timing when the pressure of the gas refrigerant in the first cylinder chamber 20a rises to a predetermined value.
  • the high-pressure gas refrigerant in the first cylinder chamber 20a passes through the first discharge port 22a and is discharged into the first muffler 25a.
  • the gas refrigerant discharged into the first muffler 25a is discharged into the sealed case 8 through the discharge hole 26 of the first muffler 25a.
  • the second reed valve 23b is opened at the timing when the pressure of the gas refrigerant in the second cylinder chamber 20b rises to a predetermined value.
  • the high-pressure gas refrigerant in the second cylinder chamber 20b passes through the second discharge port 22b and is discharged into the second muffler 25b.
  • the gas refrigerant discharged into the second muffler 25b flows into the first muffler 25a through the gas refrigerant guide passage described above, and further discharged from the first muffler 25a through the discharge hole 26 into the sealed case 8. Is done.
  • the high-pressure gas refrigerant compressed in the first cylinder chamber 20a and the second cylinder chamber 20b and discharged into the sealed case 8 flows into the condenser 5 and is dissipated in the condenser 5 to be liquefied with the liquid refrigerant.
  • the liquid refrigerant flows into the expansion device 6 and is depressurized. After being depressurized, the liquid refrigerant flows into the evaporator 7 and absorbs heat to evaporate to become a gas refrigerant.
  • the gas refrigerant evaporated in the evaporator 7 flows into the accumulator 3 and gas-liquid separation (separation of liquid components contained in the gas refrigerant) is performed. Of these, only the gas refrigerant passes through the suction pipe 28 of the accumulator 3 and is supplied into the first cylinder chamber 20a and the second cylinder chamber 20b of the compression mechanism 11, and is compressed again.
  • FIG. 6 shows the rotary compressor 4 of the present embodiment that satisfies all of the expressions (1), (2), (3), and (4), and the expressions (1) and ( 2), the rotary compressor of the conventional example that does not satisfy all of the expressions (3) and (4), and the expressions (3) and (4) satisfying the expressions (1) and (2). It is a PV diagram measured when the rotary compressor of the comparative example which is not satisfied is operated in a high-speed rotation region.
  • dm / A is 3.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • ds / A is 3.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • Km / V is 0.8 ⁇ 10 ⁇ 4 (N / mm 4 )
  • Ks / V is 0.8 ⁇ 10 ⁇ 4 (N / mm 4 ).
  • dm / A is 5.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • ds / A is 5.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • Km / V is 0. 8 ⁇ 10 ⁇ 4 (N / mm 4 ) and Ks / V is set to 0.8 ⁇ 10 ⁇ 4 (N / mm 4 ).
  • dm / A is 5.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • ds / A is 5.5 ⁇ 10 ⁇ 3 (mm / mm 2 )
  • Km / V Is 1.7 ⁇ 10 ⁇ 4 (N / mm 4 )
  • Ks / V is 1.7 ⁇ 10 ⁇ 4 (N / mm 4 ).
  • the rotary compressor of the comparative example since the inner diameter of the discharge port is large, the passage resistance of the gas refrigerant passing through the discharge port is reduced, and the loss due to overcompression is reduced. Further, as the loss due to overcompression becomes smaller, the force acting in the direction to prevent the reed valve from closing is reduced, so that the delay in timing for closing the reed valve is suppressed, and the loss due to re-expansion is reduced.
  • the inner diameter dimensions of the discharge ports are large. Therefore, the passage resistance of the gas refrigerant passing through these discharge ports (the first discharge port 22a and the second discharge port 22b) is reduced, and the loss due to overcompression is reduced. Further, since reed valves (first reed valve 23a and second reed valve 23b) having a large spring constant are used, the reed valves (first reed valve 23a and second reed valve) after high-pressure gas refrigerant is discharged are used. The timing for closing the valve 23b) is accelerated.
  • FIG. 7 shows the rotational speed and the overall efficiency (of the rotary compressor) in the rotary compressor of the conventional example described in FIG. 6, the rotary compressor of the comparative example, and the rotary compressor 4 of the present embodiment. It is the graph which showed the relationship with (total efficiency). From the graph of FIG. 7, it can be seen that in the rotary compressor of the conventional example, the overall efficiency is high in the medium speed rotation region and the overall efficiency is low in the high speed rotation region. On the other hand, in the rotary compressor of the comparative example, the overall efficiency is low in the medium speed rotation range and the total efficiency is high in the high speed rotation range, but the maximum value of the total efficiency is small. Furthermore, in the rotary compressor 4 of this embodiment, it turns out that total efficiency is low in a medium speed rotation area, and the total efficiency in a high speed rotation area is improving rather than the rotary compressor of a comparative example.
  • the rotary compressor 4 satisfying the equations (1) to (4) can improve the overall efficiency in the high-speed rotation region and can reduce the power consumption.
  • the overall efficiency in the high-speed rotation range can be improved. it can.
  • the ratio of the outer dimension R (mm) of the valve body 33 and the width dimension W (mm) of the arm 32 is “R / W ⁇ 2”.
  • the connection portion between the valve main body 33 and the arm 32 is constricted.
  • the first The reed valve 23 a is easily twisted at the arm portion 32. For this reason, the valve body 33 is prevented from coming into contact with the valve seat portion of the first discharge port 22a, and the adhesion of the valve body 33 to the valve seat portion is improved. And the compression performance in the 1st cylinder chamber 20a can be improved because the adhesiveness of the valve main-body part 33 with respect to a valve-seat part improves. Furthermore, damage to the first discharge port 22a due to one-sided contact can be prevented, and a highly reliable valve mechanism can be obtained. This also applies to the second reed valve 23b formed in the same shape as the first reed valve 23a.
  • the rotary compressor in which the first roller 19a and the second roller 19b and the blade are separately formed has been described.
  • the rotation in which the roller and the blade are integrally formed is described. It is also applicable to a type compressor (swing type compressor).
  • the first cylinder chamber 20a and the second cylinder chamber 20b there are two cylinder chambers, the first cylinder chamber 20a and the second cylinder chamber 20b, and the first discharge port 22a is formed in the main bearing 16a that forms the first cylinder chamber 20a.
  • the case where the second discharge port 22b is formed in the auxiliary bearing 16b that forms the two-cylinder chamber 20b is described as an example.
  • the rotary compressor to which the present invention can be applied may have a single cylinder chamber, and a discharge port may be formed in each of the main bearing and the sub-bearing that form the cylinder chamber. .
  • the basic structure of the second embodiment is the same as that of the first embodiment, and the second embodiment is different from the first embodiment in that the valve seat side, which is the outlet side of the first discharge port 22a.
  • a taper portion 34 that gradually expands in the gas refrigerant discharge direction is formed.
  • a similar taper portion is formed on the outlet side of the second discharge port 22b.
  • the ratio “dm2 / dm1” is 1.1 ⁇ dm2 / dm1 ⁇ 1.35 (6) Is set to hold.
  • the ratio “ ds2 / ds1 is 1.1 ⁇ ds2 / ds1 ⁇ 1.35 (7) Is set to hold.
  • the horizontal axis is a ratio “dm2 / dm1” between the minimum diameter dm1 (mm) of the tapered portion 34 and the maximum diameter dm2 (mm) of the tapered portion 34, and the vertical axis is This is the compression efficiency of the rotary compressor.
  • the tapered portion 34 formed on the outlet side of the first discharge port 22a satisfies the formula (6), so that the gas discharged from the first discharge port 22a during operation in the high-speed rotation region.
  • the refrigerant flows along the tapered portion 34 as shown by the arrow in FIG.
  • Expression (7) is satisfied on the second discharge port 22b side.
  • FIG. 8 shows an example in which the valve seat on the outlet side of the first discharge port 22a has a flat shape
  • the shape of the valve seat may be an arc shape.
  • the maximum diameter dimension “dm2” of the tapered portion 34 is a dimension between the apexes of the arcuate shape.
  • the basic structure of the third embodiment is the same as that of the first embodiment, and the third embodiment is different from the first embodiment in that a relief portion 35 is provided on the inner peripheral surface of the first cylinder 15a. It is a point that is formed.
  • the escape portion 35 is formed in a recessed shape with respect to the inner peripheral surface of the first cylinder 15a.
  • a similar relief portion is formed on the inner peripheral surface of the second cylinder 15b.
  • a reference line connecting the center point “O” of the first cylinder 15a and the blade accommodation chamber 36 formed in the first cylinder 15a is “X”.
  • An angle from the reference line “X” to the center of the first discharge port 22a formed in the main bearing 16a (see FIG. 1) fixed to the first cylinder 15a is “ ⁇ 1”.
  • the relief portion 35 is formed in the range of the angle “ ⁇ 3 ( ⁇ 3> ⁇ 2)” from the reference line “X”.
  • FIG. 11 is a cross-sectional view taken along line YY in FIG. As shown in FIG. 11, when the height dimension of the first cylinder 15a is “H”, the height dimension of the escape portion 35 is “h” from the side where the main bearing 16a is fixed. It is formed in the range.
  • the height dimension “H” of the first cylinder 15a and the height dimension “h” of the relief portion 35 are set to “H / 2 ⁇ h ⁇ H”.
  • FIG. 12 is a perspective view showing a part of the first cylinder 15a in cross section.
  • an escape portion 35 On the inner peripheral surface of the first cylinder 15a, an escape portion 35, a blade accommodating chamber 36, and a suction hole 37 into which the gas refrigerant is sucked into the first cylinder 15a are formed.
  • the first roller 19a (see FIG. 1) contacts the inner peripheral surface of the first cylinder 15a and rotates eccentrically. In the vicinity of the end point of the compression stroke in which the eccentric rotating first roller 19a approaches the first discharge port 22a, the space in which the gas refrigerant is compressed is narrowed, and the pressure in the space is increased. Further, when the first roller 19a contacts the inner peripheral surface of the first cylinder 15a and rotates eccentrically, the lubricating oil in the first cylinder 15a is carried into a narrow space.
  • the lubricating oil carried by the first roller 19a enters the escape portion 35 in the vicinity of the end point of the compression stroke. Accordingly, the narrow space in which the gas refrigerant in the first cylinder 15a is compressed is prevented from being excessively increased due to the liquid compression state.
  • the angle at which the escape portion 35 is formed is “ ⁇ 3”, and the range of “ ⁇ 3” is “ ⁇ 3> ⁇ 2”, so the timing at which the lubricating oil enters the escape portion 35 is reached. Get faster. Therefore, even when the rotary compressor 4 is operated in the high-speed rotation range, the start of liquid compression is accelerated, so that the timing at which the lubricating oil enters the escape portion 35 is accelerated and the occurrence of liquid compression can be prevented. It is possible to prevent the rotary compressor 4 from being damaged by liquid compression.
  • the present invention is used for a rotary compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

4.6×10-3≤dm/A≤6.5×10-3 (formula 1) and/or 4.6×10-3≤ds/A≤6.5×10-3 (formula 2) are true, where A is an inner diameter area of a cylinder chamber (20a, 20b), dm is the inner diameter of a discharge port (22a) on a main bearing (16a), and ds is the inner diameter of a discharge port (22b) of a counter bearing (16b)). 1.2×10-4≤Km/V≤3.5×10-4 (formula 3) and/or 1.2×10-4≤Ks/V≤3.5×10-4 (formula 4) are true, where V is the volume of a cylinder chamber (20a, 20b), Km is the spring constant of a discharge valve (23a) on the main bearing (16a), and Ks is the spring constant of the discharge valve (23b) on the counter bearing (16b).

Description

回転式圧縮機及び冷凍サイクル装置Rotary compressor and refrigeration cycle apparatus
 本発明の実施形態は、回転式圧縮機及びこの回転式圧縮機を用いた冷凍サイクル装置に関する。 Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus using the rotary compressor.
 空調機器等の冷凍サイクル装置において使用されている回転式圧縮機としては、特開2007-92534号公報に記載された発明に示されているような構成を有するものが知られている。すなわち、シリンダと、シリンダを貫通する回転軸と、回転軸に設けられてシリンダ内で偏心移動(偏心回転)するローラと、回転軸を回転可能に軸支するとともにシリンダの端面を閉止してシリンダ内にシリンダ室を形成する二つの軸受(主軸受、副軸受)とを有するものである。このような回転式圧縮機では、シリンダ室内で圧縮されたガス冷媒を吐出する吐出ポートとこの吐出ポートを開閉する吐出弁とが軸受のフランジ部に設けられている。 As a rotary compressor used in a refrigeration cycle apparatus such as an air conditioner, one having a configuration as shown in the invention described in Japanese Patent Application Laid-Open No. 2007-92534 is known. That is, a cylinder, a rotating shaft that penetrates the cylinder, a roller that is provided on the rotating shaft and moves eccentrically (eccentric rotation) in the cylinder, and rotatably supports the rotating shaft and closes the end face of the cylinder. It has two bearings (main bearing, sub bearing) which form a cylinder chamber in it. In such a rotary compressor, a discharge port for discharging the gas refrigerant compressed in the cylinder chamber and a discharge valve for opening and closing the discharge port are provided in the flange portion of the bearing.
 吐出弁は、シリンダ室内で圧縮されたガス冷媒が所定の圧力に達した場合に開く。そして、ガス冷媒が吐出ポートから吐出された後に閉まる。 The discharge valve opens when the gas refrigerant compressed in the cylinder chamber reaches a predetermined pressure. And it closes, after gas refrigerant is discharged from a discharge port.
 このような回転式圧縮機では、起動時を除き中速回転域(運転周波数が30~60Hz)又は低速回転域(運転周波数が30Hz以下)で運転されることが多い。そのため、各部の寸法は中速回転域又は低速回転域の圧縮効率を上げることを重視して設定されている。 Such rotary compressors are often operated in a medium-speed rotation range (operation frequency is 30 to 60 Hz) or a low-speed rotation range (operation frequency is 30 Hz or less) except during startup. Therefore, the dimensions of each part are set with an emphasis on increasing the compression efficiency in the medium speed rotation range or the low speed rotation range.
 そのため、吐出ポートの内径寸法は、死容積を小さくして再膨張損失を低減するために可能な限り小さく形成されている。シリンダ室の内径面積A(mm)に対する吐出ポートの内径寸法d(mm)の比“d/A”は、“3×10-3<d/A<4×10-3(mm/mm)”に設定されている。 Therefore, the inner diameter of the discharge port is made as small as possible in order to reduce the dead volume and reduce the re-expansion loss. The ratio “d / A” of the inner diameter dimension d (mm) of the discharge port to the inner diameter area A (mm 2 ) of the cylinder chamber is “3 × 10 −3 <d / A <4 × 10 −3 (mm / mm 2). ) ”.
 また、吐出弁は、シリンダ室内の圧力上昇時に円滑に弁が開くようにバネ定数の小さいものが使用されており、吐出弁のバネ定数K(N/mm)とシリンダ室の容積V(mm)との比“K/V”は、“0.6×10-4<K/V<0.7×10-4(N/mm)”に設定されている。 The discharge valve has a small spring constant so that the valve opens smoothly when the pressure in the cylinder chamber rises. The discharge valve spring constant K (N / mm) and the cylinder chamber volume V (mm 3 ) are used. The ratio “K / V” is set to “0.6 × 10 −4 <K / V <0.7 × 10 −4 (N / mm 4 )”.
特開2007-92534号公報JP 2007-92534 A
 しかしながら、このような回転式圧縮機を、商用電源周波数の1.2倍以上である70Hz以上の高速回転域で運転する場合には、吐出ポートの通路抵抗が大きくなる。これは吐出ポートの内径寸法が小さいのに対して圧縮スピードが速くなるためである。そして、吐出ポートの通路抵抗が大きくなることにより、シリンダ室内のガス冷媒が過剰に圧縮され、そのために過圧縮に基づく損失が増大して圧縮効率が低下するという問題が発生する。さらに、ガス冷媒の過剰な圧縮に伴い回転軸周りへのガス冷媒の荷重が増加し、摺動部が劣化しやすくなって摺動部の信頼性が低下するという問題が発生する。 However, when such a rotary compressor is operated in a high-speed rotation region of 70 Hz or higher, which is 1.2 times or more of the commercial power supply frequency, the passage resistance of the discharge port increases. This is because the compression speed is increased while the inner diameter of the discharge port is small. And since the passage resistance of the discharge port is increased, the gas refrigerant in the cylinder chamber is excessively compressed, which causes a problem that loss due to overcompression increases and compression efficiency decreases. Further, the gas refrigerant load around the rotation axis increases due to excessive compression of the gas refrigerant, causing a problem that the sliding portion is easily deteriorated and the reliability of the sliding portion is lowered.
 また、吐出弁のバネ定数が小さい場合に回転式圧縮機が高速回転域で運転されると、吐出弁が閉まるタイミングが遅れるという事態が発生する。そして、吐出弁が閉まるタイミングが遅れることにより、圧縮されて吐出ポートから吐出されたガス冷媒がシリンダ室内に逆流する。この逆流したガス冷媒がさらにシリンダ室内で再膨張することにより再膨張に基づく損失が発生し、回転式圧縮機の圧縮効率が低下する。 Also, when the rotary compressor is operated in the high speed rotation region when the spring constant of the discharge valve is small, a situation occurs in which the timing for closing the discharge valve is delayed. Then, when the timing at which the discharge valve closes is delayed, the compressed gas refrigerant discharged from the discharge port flows back into the cylinder chamber. The backflowed gas refrigerant is further re-expanded in the cylinder chamber, so that a loss due to the re-expansion occurs, and the compression efficiency of the rotary compressor is lowered.
 本発明の実施形態の目的は、高速回転域で運転した場合において圧縮効率を上げることができる回転式圧縮機及びこの回転式圧縮機を備えた冷凍サイクル装置を提供することである。 An object of an embodiment of the present invention is to provide a rotary compressor capable of increasing compression efficiency when operated in a high-speed rotation region, and a refrigeration cycle apparatus including the rotary compressor.
 実施形態の回転式圧縮機は、電動機部とこの電動機部に偏心部を有する回転軸を介して連結された圧縮機構部とが密閉ケース内に収容され、圧縮機構部は、回転軸が貫通されるシリンダと、偏心部に嵌合されて外周面の一部をシリンダの内周面に接触させながら偏心移動するローラと、回転軸を軸支するとともにシリンダの端面を閉止してシリンダ内にシリンダ室を形成する主軸受及び副軸受とを有し、主軸受及び副軸受に、ローラが偏心移動することによりシリンダ室内で圧縮された作動流体を密閉ケース内に吐出する吐出ポートと、この吐出ポートを開閉する吐出弁とが設けられている。そして、シリンダ室の内径面積をA(mm)、主軸受に設けられた吐出ポートの内径寸法をdm(mm)、副軸受に設けられた吐出ポートの内径寸法をds(mm)としたとき、式(1)と式(2)との少なくとも一方が成り立つように設定され、
 シリンダ室の容積をV(mm)、主軸受に設けられた吐出弁のバネ定数をKm(N/mm)、副軸受に設けられた吐出弁のバネ定数をKs(N/mm)としたとき、式(3)と式(4)との少なくとも一方が成り立つように設定されている。
In the rotary compressor according to the embodiment, an electric motor part and a compression mechanism part connected to the electric motor part via a rotary shaft having an eccentric part are accommodated in a sealed case, and the rotary shaft penetrates the compression mechanism part. A cylinder that is fitted to the eccentric part and moves eccentrically while part of the outer peripheral surface is in contact with the inner peripheral surface of the cylinder, and supports the rotating shaft and closes the end surface of the cylinder to close the cylinder in the cylinder. A discharge port for discharging the working fluid compressed in the cylinder chamber by a roller eccentrically moving to the main bearing and the sub-bearing into the sealed case, and the discharge port. And a discharge valve for opening and closing. When the inner diameter area of the cylinder chamber is A (mm 2 ), the inner diameter dimension of the discharge port provided in the main bearing is dm (mm), and the inner diameter dimension of the discharge port provided in the auxiliary bearing is ds (mm). , And at least one of formula (1) and formula (2) is established,
The volume of the cylinder chamber is V (mm 3 ), the spring constant of the discharge valve provided in the main bearing is Km (N / mm), and the spring constant of the discharge valve provided in the auxiliary bearing is Ks (N / mm). At this time, at least one of Expression (3) and Expression (4) is set.
  4.6×10-3≦dm/A≦6.5×10-3(mm/mm)……(1)
 4.6×10-3≦ds/A≦6.5×10-3(mm/mm)……(2)
 1.2×10-4≦Km/V≦3.5×10-4(N/mm)………(3)
 1.2×10-4≦Ks/V≦3.5×10-4(N/mm)………(4)
但し、シリンダが複数の場合、Vは1つのシリンダ室の容積である。
4.6 × 10 −3 ≦ dm / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (1)
4.6 × 10 −3 ≦ ds / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (2)
1.2 × 10 −4 ≦ Km / V ≦ 3.5 × 10 −4 (N / mm 4 ) (3)
1.2 × 10 −4 ≦ Ks / V ≦ 3.5 × 10 −4 (N / mm 4 ) (4)
However, when there are a plurality of cylinders, V is the volume of one cylinder chamber.
図1は、第1の実施形態における、断面で示した回転式圧縮機を含む冷凍サイクル装置の構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle apparatus including a rotary compressor shown in cross section in the first embodiment. 図2は、主軸受を示す平面図である。FIG. 2 is a plan view showing the main bearing. 図3は、吐出弁を示す平面図である。FIG. 3 is a plan view showing the discharge valve. 図4は、第1シリンダ室の内径面積A(mm)と第1吐出ポートの内径寸法dm(mm)との比“dm/A”と、回転式圧縮機の圧縮効率との関係の実験結果を示すグラフである。FIG. 4 shows an experiment of the relationship between the ratio “dm / A” between the inner diameter area A (mm 2 ) of the first cylinder chamber and the inner diameter dimension dm (mm) of the first discharge port and the compression efficiency of the rotary compressor. It is a graph which shows a result. 図5は、シリンダ室の容積V(mm)と吐出弁のバネ定数K(N/mm)との比“K/V(N/mm)”と、回転式圧縮機の圧縮効率との関係の実験結果を示すグラフである。FIG. 5 shows the ratio “K / V (N / mm 4 )” between the volume V (mm 3 ) of the cylinder chamber and the spring constant K (N / mm) of the discharge valve, and the compression efficiency of the rotary compressor. It is a graph which shows the experimental result of a relationship. 図6は、式(1)~(4)を満たす回転式圧縮機と、式(1)~(4)の全てを満たさない従来例の回転式圧縮機と、式(1)、(2)を満たして式(3)、(4)を満たさない比較例の回転式圧縮機とを、高速回転域で運転した場合に測定したPV線図である。FIG. 6 shows a rotary compressor that satisfies equations (1) to (4), a conventional rotary compressor that does not satisfy all of equations (1) to (4), and equations (1) and (2). It is a PV diagram measured when the rotary compressor of the comparative example which satisfy | fills (3) and (4) is satisfy | filled but is drive | operated in a high-speed rotation area. 図7は、式(1)~(4)を満たす回転式圧縮機と、式(1)~(4)の全てを満たさない従来例の回転式圧縮機と、式(1)~(2)を満たして式(3)、(4)を満たさない比較例の回転式圧縮機とにおいて、回転数と回転式圧縮機の総合効率との関係の実験結果を示すグラフである。FIG. 7 shows a rotary compressor that satisfies equations (1) to (4), a conventional rotary compressor that does not satisfy all of equations (1) to (4), and equations (1) to (2). 6 is a graph showing the experimental results of the relationship between the rotational speed and the overall efficiency of the rotary compressor in the comparative rotary compressor that does not satisfy the expressions (3) and (4). 図8は、第2の実施形態における、吐出ポートの形状を示す縦断正面図である。FIG. 8 is a longitudinal front view showing the shape of the discharge port in the second embodiment. 図9は、吐出ポートの吐出側に設けられたテーパ部の最小径寸法dm1と最大径寸法dm2との比“dm2/dm1”と回転式圧縮の総合効率との関係の実験結果を示すグラフである。FIG. 9 is a graph showing experimental results of the relationship between the ratio “dm2 / dm1” between the minimum diameter dimension dm1 and the maximum diameter dimension dm2 of the tapered portion provided on the discharge side of the discharge port and the overall efficiency of the rotary compression. is there. 図10は、第3の実施形態における、シリンダを示す平面図である。FIG. 10 is a plan view showing a cylinder in the third embodiment. 図11は、図10におけるY-Y線断面図である。11 is a cross-sectional view taken along line YY in FIG. 図12は、図10のシリンダの一部を断面にして示す斜視図である。FIG. 12 is a perspective view showing a part of the cylinder of FIG. 10 in cross section.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 第1の実施形態について、図1ないし図7に基づいて説明する。図1に示す冷凍サイクル装置1は、圧縮機本体2とアキュムレータ3とを有し、作動流体である低圧のガス冷媒を圧縮して高圧のガス冷媒にする回転式圧縮機4を備えている。さらに冷凍サイクル装置1は、圧縮機本体2の吐出側に接続されて高圧のガス冷媒を凝縮して液冷媒にする凝縮器5と、凝縮器5に接続されて液冷媒を減圧する膨張装置6と、膨張装置6とアキュムレータ3との間に接続されて液冷媒を蒸発させる蒸発器7とを有している。
(First embodiment)
1st Embodiment is described based on FIG. 1 thru | or FIG. A refrigeration cycle apparatus 1 shown in FIG. 1 includes a compressor body 2 and an accumulator 3, and includes a rotary compressor 4 that compresses a low-pressure gas refrigerant that is a working fluid into a high-pressure gas refrigerant. Further, the refrigeration cycle apparatus 1 is connected to the discharge side of the compressor body 2 to condense the high-pressure gas refrigerant into a liquid refrigerant, and an expansion device 6 connected to the condenser 5 to decompress the liquid refrigerant. And an evaporator 7 connected between the expansion device 6 and the accumulator 3 to evaporate the liquid refrigerant.
 圧縮機本体2は、円筒状に形成された密閉ケース8を有している。密閉ケース8内の底部には潤滑油9が貯留されている。さらに、密閉ケース8内には、上部側に位置する電動機部10と、下部側に位置する圧縮機構部11とが収容されている。これらの電動機部10と圧縮機構部11とは、回転軸12を介して連結されている。回転軸12は、圧縮機本体2の長手方向の中心を回転軸として回転する。 The compressor body 2 has a sealed case 8 formed in a cylindrical shape. Lubricating oil 9 is stored at the bottom of the sealed case 8. Further, in the sealed case 8, an electric motor part 10 located on the upper side and a compression mechanism part 11 located on the lower side are accommodated. The electric motor unit 10 and the compression mechanism unit 11 are connected via a rotating shaft 12. The rotating shaft 12 rotates about the center in the longitudinal direction of the compressor body 2 as a rotating shaft.
 電動機部10は、いわばモータであり、回転軸12を回転させる。電動機部10は、回転子13と固定子14とを有している。回転子13は、回転軸12に固定され、永久磁石(図示せず)が設けられている。固定子14は、密閉ケース8に固定されて回転子13を囲む位置に配置されるとともに、コイル(図示せず)が巻かれている。 The electric motor unit 10 is a so-called motor, and rotates the rotary shaft 12. The electric motor unit 10 includes a rotor 13 and a stator 14. The rotor 13 is fixed to the rotating shaft 12 and is provided with a permanent magnet (not shown). The stator 14 is fixed to the sealed case 8 and disposed at a position surrounding the rotor 13, and a coil (not shown) is wound around the stator 14.
 圧縮機構部11は、低圧のガス冷媒を圧縮する。圧縮機構部11は、上部側に位置する第1シリンダ15aと、下部側に位置する第2シリンダ15bとを有している。これらの第1シリンダ15aと第2シリンダ15bとの間には、仕切板17が設けられている。また、第1シリンダ15aの上端面には回転軸12を回転可能に支える主軸受16aが固定され、第2シリンダ15bの下端面には回転軸12を回転可能に支える副軸受16bが固定されている。 The compression mechanism unit 11 compresses the low-pressure gas refrigerant. The compression mechanism part 11 has the 1st cylinder 15a located in the upper part side, and the 2nd cylinder 15b located in the lower part side. A partition plate 17 is provided between the first cylinder 15a and the second cylinder 15b. A main bearing 16a that rotatably supports the rotary shaft 12 is fixed to the upper end surface of the first cylinder 15a, and a sub bearing 16b that rotatably supports the rotary shaft 12 is fixed to the lower end surface of the second cylinder 15b. Yes.
 回転軸12は、第1シリンダ15a、第2シリンダ15bを貫通して配置されている。この回転軸12には180°の位相差で同一直径の第1偏心部18aと第2偏心部18bとが設けられている。第1偏心部18aには第1ローラ19aが嵌め合わされ、第2偏心部18bには第2ローラ19bが嵌め合わされている。 The rotary shaft 12 is disposed through the first cylinder 15a and the second cylinder 15b. The rotary shaft 12 is provided with a first eccentric portion 18a and a second eccentric portion 18b having the same diameter with a phase difference of 180 °. A first roller 19a is fitted to the first eccentric portion 18a, and a second roller 19b is fitted to the second eccentric portion 18b.
 第1シリンダ15aの内部には、第1シリンダ15aの両端を主軸受16aと仕切板17とにより閉じられた第1シリンダ室20aが形成されている。第2シリンダ15bの内部には、第2シリンダ15bの両端を仕切板17と副軸受16bとにより閉じられた第2シリンダ室20bが形成されている。第1シリンダ室20a内には、第1偏心部18aに嵌め合わされた第1ローラ19aが収容され、第2シリンダ室20b内には、第2偏心部18bに嵌め合わされた第2ローラ19bが収容されている。これらの第1ローラ19a、第2ローラ19bは、回転軸12の回転時にその外周面を第1シリンダ15a、第2シリンダ15bの内周面に線接触させながら偏心移動(偏心回転)するように配置されている。 In the first cylinder 15a, a first cylinder chamber 20a is formed in which both ends of the first cylinder 15a are closed by a main bearing 16a and a partition plate 17. Inside the second cylinder 15b, a second cylinder chamber 20b is formed in which both ends of the second cylinder 15b are closed by the partition plate 17 and the auxiliary bearing 16b. A first roller 19a fitted to the first eccentric part 18a is accommodated in the first cylinder chamber 20a, and a second roller 19b fitted to the second eccentric part 18b is accommodated in the second cylinder chamber 20b. Has been. The first roller 19a and the second roller 19b are moved eccentrically (eccentric rotation) while the outer peripheral surface thereof is in line contact with the inner peripheral surfaces of the first cylinder 15a and the second cylinder 15b when the rotary shaft 12 rotates. Has been placed.
 また、第1シリンダ室20a、第2シリンダ室20b内には、第1ローラ19a、第2ローラ19bの回転に伴ってこれら2つのシリンダ室内部を容積と圧力とが変化する二つの空間に仕切るブレード(図示せず)が収容されている。当該ブレードは、先端部を第1ローラ19a、第2ローラ19bの外周面に当接させている。 主軸受16aには第1吐出弁機構21aが設けられている。この第1吐出弁機構21aは、主軸受16aに形成された第1吐出ポート22aと、第1リード弁23aと、第1弁ストッパ24aとを有している。第1リード弁23aは、主軸受16aにネジ止めされて第1吐出ポート22aを開閉する第1吐出弁である。第1弁ストッパ24aは、主軸受16aに第1リード弁23aと共にネジ止めされて第1リード弁23aの最大開度を規制する。この第1吐出弁機構21aは、主軸受16aに取付けられた第1マフラ25aにより覆われている。第1マフラ25aには、第1マフラ25aの内外を連通する吐出孔26が形成されている。 In the first cylinder chamber 20a and the second cylinder chamber 20b, the two cylinder chambers are partitioned into two spaces whose volume and pressure change as the first roller 19a and the second roller 19b rotate. A blade (not shown) is accommodated. The blade is in contact with the outer peripheral surfaces of the first roller 19a and the second roller 19b at the tip. The main bearing 16a is provided with a first discharge valve mechanism 21a. The first discharge valve mechanism 21a includes a first discharge port 22a formed in the main bearing 16a, a first reed valve 23a, and a first valve stopper 24a. The first reed valve 23a is a first discharge valve that is screwed to the main bearing 16a to open and close the first discharge port 22a. The first valve stopper 24a is screwed to the main bearing 16a together with the first reed valve 23a to restrict the maximum opening of the first reed valve 23a. The first discharge valve mechanism 21a is covered with a first muffler 25a attached to the main bearing 16a. The first muffler 25a is formed with a discharge hole 26 that communicates the inside and outside of the first muffler 25a.
 副軸受16bには第2吐出弁機構21bが設けられている。この第2吐出弁機構21bは上述した第1吐出弁機構21bと同じ構成であり、副軸受16bに形成された第2吐出ポート22bと、第2リード弁23bと、第2弁ストッパ24bとを有している。第2リード弁23bは、副軸受16bにネジ止めされて第2吐出ポート22bを開閉する第2吐出弁である。第2弁ストッパ24bは、副軸受16bに第2リード弁23bと共にネジ止めされて第2リード弁23bの最大開度を規制する。この第2吐出弁機構21bは副軸受16bに取付けられた第2マフラ25bにより覆われている。第2マフラ25b内と第1マフラ25a内とは、副軸受16bと第2シリンダ15bと仕切板17と第1シリンダ15aと主軸受16aとを貫通して形成されたガス冷媒案内通路(図示せず)によりガス冷媒が移動可能に連結されている。 The second discharge valve mechanism 21b is provided in the auxiliary bearing 16b. The second discharge valve mechanism 21b has the same configuration as the first discharge valve mechanism 21b described above, and includes a second discharge port 22b formed in the auxiliary bearing 16b, a second reed valve 23b, and a second valve stopper 24b. Have. The second reed valve 23b is a second discharge valve that is screwed to the auxiliary bearing 16b to open and close the second discharge port 22b. The second valve stopper 24b is screwed to the auxiliary bearing 16b together with the second reed valve 23b to restrict the maximum opening of the second reed valve 23b. The second discharge valve mechanism 21b is covered with a second muffler 25b attached to the auxiliary bearing 16b. The inside of the second muffler 25b and the inside of the first muffler 25a are gas refrigerant guide passages (not shown) formed through the auxiliary bearing 16b, the second cylinder 15b, the partition plate 17, the first cylinder 15a, and the main bearing 16a. The gas refrigerant is movably connected.
 アキュムレータ3は円筒状の密閉ケース27を有する。アキュムレータ3と蒸発器7とは、蒸発器7で気化されたガス冷媒、又は、蒸発器7で気化されなかった液冷媒が密閉ケース27内に流入するように接続されている。この密閉ケース27内には、一端が密閉ケース27内の上部側で開口し、密閉ケース27内のガス冷媒のみが流入するように配置された二本の吸込管28が設けられている。これらの吸込管28の他端は、密閉ケース27の下端側から密閉ケース27外に延ばされており、圧縮機構部11の第1シリンダ室20a、第2シリンダ室20bに連結されている。これらの吸込管28における密閉ケース27内の下部側に位置する部分には、密閉ケース27内の底部に溜まった潤滑油が流入する油戻し孔29が形成されている。 The accumulator 3 has a cylindrical sealed case 27. The accumulator 3 and the evaporator 7 are connected so that the gas refrigerant vaporized by the evaporator 7 or the liquid refrigerant not vaporized by the evaporator 7 flows into the sealed case 27. In the sealed case 27, there are provided two suction pipes 28, one end of which opens at the upper side in the sealed case 27 and is arranged so that only the gas refrigerant in the sealed case 27 flows. The other ends of these suction pipes 28 extend from the lower end side of the sealed case 27 to the outside of the sealed case 27 and are connected to the first cylinder chamber 20 a and the second cylinder chamber 20 b of the compression mechanism unit 11. An oil return hole 29 into which lubricating oil accumulated at the bottom of the airtight case 27 flows is formed in a portion of the suction pipe 28 located on the lower side in the airtight case 27.
 図2は、上述した主軸受16aを示す平面図である。この主軸受16aには上述したように第1吐出ポート22aが形成されている。また、主軸受16aには、この主軸受16aに上述した第1リード弁23aと第1弁ストッパ24aとを固定するネジ(図示せず)がネジ作用で嵌め合わされるネジ穴30が形成されている。第1吐出ポート22aの内径寸法はdm(mm)に設定されている。 FIG. 2 is a plan view showing the main bearing 16a described above. As described above, the first discharge port 22a is formed in the main bearing 16a. The main bearing 16a is formed with a screw hole 30 in which a screw (not shown) for fixing the first reed valve 23a and the first valve stopper 24a described above to the main bearing 16a is fitted by a screw action. Yes. The inner diameter of the first discharge port 22a is set to dm (mm).
 平面図による図示は省略しているが、上述した副軸受16bは主軸受16aと同じ構造である。従って、副軸受16bには上述した第2吐出ポート22bが形成され、第2吐出ポート22bの内径寸法はds(mm)に設定されている。 Although illustration by a plan view is omitted, the sub bearing 16b described above has the same structure as the main bearing 16a. Accordingly, the above-described second discharge port 22b is formed in the auxiliary bearing 16b, and the inner diameter of the second discharge port 22b is set to ds (mm).
 図3は、主軸受16a上の取付位置に配置された第1リード弁23aを示す平面図である。第1リード弁23aは板状の部材により形成されている。第1リード弁23aは、腕部32と、弁本体部33とを有している。腕部32は、可撓性を有し、一端に固定用のネジが挿し通される取付孔31が形成されている。弁本体部33は、腕部32の他端側に設けられるとともに、円盤状に第1吐出ポート22aを閉じることが可能なサイズに形成されている。弁本体部33の外形寸法はR(mm)に設定され、腕部32の幅寸法はW(mm)に設定され、その比“R/W”が、“R/W≧2”に設定され、弁本体部33と腕部32との接続部分は弁本体部33から腕部32に向けてくびれた形状となっている。 FIG. 3 is a plan view showing the first reed valve 23a arranged at the mounting position on the main bearing 16a. The first reed valve 23a is formed of a plate-like member. The first reed valve 23 a has an arm portion 32 and a valve main body portion 33. The arm portion 32 has flexibility, and an attachment hole 31 into which a fixing screw is inserted is formed at one end. The valve body portion 33 is provided on the other end side of the arm portion 32 and is formed in a size capable of closing the first discharge port 22a in a disc shape. The outer dimension of the valve body 33 is set to R (mm), the width of the arm 32 is set to W (mm), and the ratio “R / W” is set to “R / W ≧ 2”. The connecting portion between the valve body 33 and the arm 32 is constricted from the valve body 33 toward the arm 32.
 平面図による図示は省略しているが、副軸受16bに取付けられる第2リード弁23bも、第1リード弁23aと同じ形状に形成されている。 Although not shown in the plan view, the second reed valve 23b attached to the auxiliary bearing 16b is also formed in the same shape as the first reed valve 23a.
 ここで、この回転式圧縮機4において、第1シリンダ室20a、第2シリンダ室20bのそれぞれの内径面積をA(mm)、第1吐出ポート22aの内径寸法をdm(mm)、第2吐出ポート22bの内径寸法をds(mm)とする。このとき、第1シリンダ室20aの内径面積A(mm)と第1吐出ポート22aの内径寸法dm(mm)との比“dm/A(mm/mm)”、第2シリンダ室20bの内径面積A(mm)と第2吐出ポート22bの内径寸法ds(mm)との比“ds/A”(mm/mm)は、それぞれ、
 4.6×10-3≦dm/A≦6.5×10-3(mm/mm)……(1)
 4.6×10-3≦ds/A≦6.5×10-3(mm/mm)……(2)
が成り立つように設定されている。
Here, in this rotary compressor 4, the inner diameter area of each of the first cylinder chamber 20a and the second cylinder chamber 20b is A (mm 2 ), the inner diameter dimension of the first discharge port 22a is dm (mm), The inner diameter dimension of the discharge port 22b is ds (mm). At this time, the ratio “dm / A (mm / mm 2 )” between the inner diameter area A (mm 2 ) of the first cylinder chamber 20 a and the inner diameter dimension dm (mm) of the first discharge port 22 a, the second cylinder chamber 20 b The ratio “ds / A” (mm / mm 2 ) between the inner diameter area A (mm 2 ) and the inner diameter ds (mm) of the second discharge port 22b is respectively
4.6 × 10 −3 ≦ dm / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (1)
4.6 × 10 −3 ≦ ds / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (2)
Is set to hold.
 また、この回転式圧縮機4において、第1シリンダ室20a、第2シリンダ室20bのそれぞれの容積をV(mm)、第1リード弁23aのバネ定数をKm(N/mm)、第2リード弁23bのバネ定数をKs(N/mm)とする。このとき、第1シリンダ室20aの容積V(mm)と第1リード弁23aのバネ定数Km(N/mm)との比“Km/V(N/mm)”、第2シリンダ室20bの容積V(mm)と第2リード弁23bのバネ定数Ks(N/mm)との比“Ks/V(N/mm)”は、それぞれ、
 1.2×10-4≦Km/V≦3.5×10-4(N/mm)………(3)
 1.2×10-4≦Ks/V≦3.5×10-4(N/mm)………(4)
が成り立つように設定されている。
Further, in this rotary compressor 4, the volume of each of the first cylinder chamber 20a and the second cylinder chamber 20b is V (mm 3 ), the spring constant of the first reed valve 23a is Km (N / mm), the second Let the spring constant of the reed valve 23b be Ks (N / mm). At this time, the ratio “Km / V (N / mm 4 )” between the volume V (mm 3 ) of the first cylinder chamber 20a and the spring constant Km (N / mm) of the first reed valve 23a, the second cylinder chamber 20b. The ratio “Ks / V (N / mm 4 )” of the volume V (mm 3 ) of the second and the spring constant Ks (N / mm) of the second reed valve 23b is respectively
1.2 × 10 −4 ≦ Km / V ≦ 3.5 × 10 −4 (N / mm 4 ) (3)
1.2 × 10 −4 ≦ Ks / V ≦ 3.5 × 10 −4 (N / mm 4 ) (4)
Is set to hold.
 なお、式(3)、式(4)に示す第1のシリンダ室20a、第2のシリンダ室20bの容積“V”は、シリンダ室が複数ある場合には1つのシリンダ室の容積を意味する。 The volumes “V” of the first cylinder chamber 20a and the second cylinder chamber 20b shown in the equations (3) and (4) mean the volume of one cylinder chamber when there are a plurality of cylinder chambers. .
 また、図3に示したように、第1リード弁23a、第2リード弁23bにおいて、弁本体部33の外形寸法をR(mm)、腕部32の幅寸法をW(mm)としたとき、弁本体部33の外形寸法R(mm)と腕部32の幅寸法W(mm)との比“R/W”は、
 R/W≧2………(5)
が成り立つように設定されている。
Further, as shown in FIG. 3, in the first reed valve 23a and the second reed valve 23b, when the outer dimension of the valve body 33 is R (mm) and the width of the arm 32 is W (mm) The ratio “R / W” between the outer dimension R (mm) of the valve body 33 and the width W (mm) of the arm part 32 is:
R / W ≧ 2 ... (5)
Is set to hold.
 回転式圧縮機4の各構成部の寸法は、例えば、以下のように設定されている。 The dimensions of each component of the rotary compressor 4 are set as follows, for example.
  第1シリンダ室20a、第2シリンダ室20bの内径寸法はそれぞれ43mm、
 第1シリンダ室20a、第2シリンダ室20bの高さ寸法はそれぞれ18mm、
 第1ローラ19a、第2ローラ19bの外形寸法はそれぞれ35mm、
 回転軸12の第118a、第2偏心部18bの偏心量(回転軸12の回転中心から第118a、第2偏心部18bの中心までの距離)はそれぞれ4mm、
 第1吐出ポート22aの内径寸法(dm)は8mm、
 第2吐出ポート22bの内径寸法(ds)は8mm。
The inner diameters of the first cylinder chamber 20a and the second cylinder chamber 20b are 43 mm,
The height dimensions of the first cylinder chamber 20a and the second cylinder chamber 20b are each 18 mm,
The outer dimensions of the first roller 19a and the second roller 19b are each 35 mm,
The eccentric amounts of the 118th and second eccentric portions 18b of the rotating shaft 12 (the distances from the rotation center of the rotating shaft 12 to the centers of the 118a and second eccentric portions 18b) are 4 mm, respectively.
The inner diameter dimension (dm) of the first discharge port 22a is 8 mm,
The inner diameter dimension (ds) of the second discharge port 22b is 8 mm.
 ここで、上述した“dm/A(mm/mm)”、“ds/A(mm/mm)”の範囲の設定について、図4の実験結果を示すグラフを用いて説明する。図4は、第1シリンダ室の内径面積A(mm)と第1吐出ポートの内径寸法dm(mm)との比“dm/A”と、回転式圧縮機の圧縮効率との関係の実験結果を示すグラフである。 Here, the setting of the ranges of “dm / A (mm / mm 2 )” and “ds / A (mm / mm 2 )” described above will be described with reference to the graph showing the experimental results in FIG. FIG. 4 shows an experiment of the relationship between the ratio “dm / A” between the inner diameter area A (mm 2 ) of the first cylinder chamber and the inner diameter dimension dm (mm) of the first discharge port and the compression efficiency of the rotary compressor. It is a graph which shows a result.
 なお、この実験は、中速回転域での回転数を40Hz、高速回転域での回転数を90Hzとして行った。また、この実験で使用したリード弁は、従来の回転式圧縮機で使用されているものであり、所謂、バネ定数が小さく柔らかなものである。 In this experiment, the rotation speed in the medium speed rotation range was 40 Hz, and the rotation speed in the high speed rotation range was 90 Hz. The reed valve used in this experiment is used in a conventional rotary compressor, and has a so-called small spring constant and is soft.
 図4に示すグラフは、横軸を“dm/A(mm/mm)”とし、縦軸を回転式圧縮機の圧縮効率としている。 In the graph shown in FIG. 4, the horizontal axis is “dm / A (mm / mm 2 )” and the vertical axis is the compression efficiency of the rotary compressor.
 この図4に示すグラフから分かるように、回転式圧縮機が中速回転域で運転される場合には、“dm/A(mm/mm)”の値が大きくなるにつれ、即ち、吐出ポートの内径寸法“dm”の割合が大きくなるにつれ、圧縮効率が低下する。 As can be seen from the graph shown in FIG. 4, when the rotary compressor is operated in the middle speed range, the value of “dm / A (mm / mm 2 )” increases, that is, the discharge port. As the ratio of the inner diameter dimension “dm” increases, the compression efficiency decreases.
 一方、回転式圧縮機が高速回転域で運転される場合には、“dm/A(mm/mm)”の値が、“4.6×10-3≦dm/A≦6.5×10-3”の範囲で圧縮効率が向上し、“dm/A(mm/mm)”の値が5.5×10-3の場合に最大の圧縮効率が得られた。したがって、“dm/A(mm/mm)”を“4.6×10-3≦dm/A≦6.5×10-3”の範囲に設定することにより、高速回転域での回転式圧縮機の圧縮効率を高くすることができる。 On the other hand, when the rotary compressor is operated in a high-speed rotation region, the value of “dm / A (mm / mm 2 )” is “4.6 × 10 −3 ≦ dm / A ≦ 6.5 ×. The compression efficiency was improved in the range of 10 −3 ”, and the maximum compression efficiency was obtained when the value of“ dm / A (mm / mm 2 ) ”was 5.5 × 10 −3 . Therefore, by setting “dm / A (mm / mm 2 )” in the range of “4.6 × 10 −3 ≦ dm / A ≦ 6.5 × 10 −3 ”, the rotational type in the high-speed rotation range is set. The compression efficiency of the compressor can be increased.
 なお、ここまで“dm/A(mm/mm)”の場合を例に挙げて説明をしたが、“ds/A(mm/mm)” の場合についても同様である。 Note that the description has been given by taking the case of “dm / A (mm / mm 2 )” as an example, but the same applies to the case of “ds / A (mm / mm 2 )”.
 つぎに、上述した“Km/V(N/mm)”、“Ks/V(N/mm)”の範囲の設定について、図5の実験結果を示すグラフを用いて説明する。図5は、シリンダ室の容積V(mm)と吐出弁のバネ定数K(N/mm)との比“K/V(N/mm)”と、回転式圧縮機の圧縮効率との関係の実験結果を示すグラフである。 Next, setting of the ranges of “Km / V (N / mm 4 )” and “Ks / V (N / mm 4 )” described above will be described using a graph showing the experimental results in FIG. FIG. 5 shows the ratio “K / V (N / mm 4 )” between the volume V (mm 3 ) of the cylinder chamber and the spring constant K (N / mm) of the discharge valve, and the compression efficiency of the rotary compressor. It is a graph which shows the experimental result of a relationship.
 図5に示すグラフは、横軸を“Km/V(N/mm)”とし、縦軸を回転式圧縮機の圧縮効率としている。なお、この実験では、“dm/A(mm/mm)”の値を5.5×10-3に固定し、リード弁のバネ定数“Km”を可変させている。また、実験は高速回転域での運転について行った。 In the graph shown in FIG. 5, the horizontal axis is “Km / V (N / mm 4 )”, and the vertical axis is the compression efficiency of the rotary compressor. In this experiment, the value of “dm / A (mm / mm 2 )” is fixed to 5.5 × 10 −3 and the spring constant “Km” of the reed valve is varied. The experiment was conducted for operation in the high-speed rotation range.
 この図5に示すグラフから分かるように、“Km/V(N/mm)”の値が、“1.2×10-4≦Km/V≦3.5×10-4(N/mm)”の範囲となるようにリード弁のバネ定数“Km”を設定することにより、回転式圧縮機の圧縮効率が高くなる。これまで“Km/V(N/mm)”の場合を例に挙げて説明したが、“Ks/V(N/mm)”の場合についても同様である。 As can be seen from the graph shown in FIG. 5, the value of “Km / V (N / mm 4 )” is “1.2 × 10 −4 ≦ Km / V ≦ 3.5 × 10 −4 (N / mm 4 ) By setting the spring constant “Km” of the reed valve so as to be in the range of “”, the compression efficiency of the rotary compressor is increased. The case of “Km / V (N / mm 4 )” has been described as an example, but the same applies to the case of “Ks / V (N / mm 4 )”.
 このような構成において、この回転式圧縮機4においては、電動機部10に通電されることにより第1ローラ19aと第2ローラ19bとが回転軸12の中心線の回りを偏心回転し、圧縮機構部11が駆動される。 In such a configuration, in the rotary compressor 4, when the motor unit 10 is energized, the first roller 19a and the second roller 19b rotate eccentrically around the center line of the rotary shaft 12, and the compression mechanism The unit 11 is driven.
 圧縮機構部11が駆動された場合には、第1ローラ19a、第2ローラ19bの偏心回転に伴って第1シリンダ室20a、第2シリンダ室20b内の二つの空間の容積と圧力とが変化する。この容積と圧力とが変化することにより、アキュムレータ3内から低圧のガス冷媒が吸込管28を通って第1シリンダ室20a、第2シリンダ室20b内に吸込まれる。そして、吸込まれた低圧のガス冷媒が第1シリンダ室20a、第2シリンダ室20b内で圧縮され、高圧のガス冷媒になる。 When the compression mechanism 11 is driven, the volume and pressure of the two spaces in the first cylinder chamber 20a and the second cylinder chamber 20b change with the eccentric rotation of the first roller 19a and the second roller 19b. To do. By changing the volume and the pressure, a low-pressure gas refrigerant is sucked from the accumulator 3 through the suction pipe 28 into the first cylinder chamber 20a and the second cylinder chamber 20b. The sucked low-pressure gas refrigerant is compressed in the first cylinder chamber 20a and the second cylinder chamber 20b, and becomes a high-pressure gas refrigerant.
 第1シリンダ15aにおいて、第1シリンダ室20a内のガス冷媒の圧力が所定値に上昇したタイミングで第1リード弁23aが開かれる。第1シリンダ室20a内の高圧のガス冷媒は、第1吐出ポート22aを通過して第1マフラ25a内に吐出される。第1マフラ25a内に吐出されたガス冷媒は、第1マフラ25aの吐出孔26を通って密閉ケース8内に吐出される。 In the first cylinder 15a, the first reed valve 23a is opened at the timing when the pressure of the gas refrigerant in the first cylinder chamber 20a rises to a predetermined value. The high-pressure gas refrigerant in the first cylinder chamber 20a passes through the first discharge port 22a and is discharged into the first muffler 25a. The gas refrigerant discharged into the first muffler 25a is discharged into the sealed case 8 through the discharge hole 26 of the first muffler 25a.
 また、第2シリンダ15bにおいて、第2シリンダ室20b内のガス冷媒の圧力が所定値に上昇したタイミングで第2リード弁23bが開かれる。第2シリンダ室20b内の高圧のガス冷媒は、第2吐出ポート22bを通過して第2マフラ25b内に吐出される。第2マフラ25b内に吐出されたガス冷媒は、上述したガス冷媒案内通路を通って第1マフラ25a内に流入し、さらに第1マフラ25a内から吐出孔26を通って密閉ケース8内に吐出される。 In the second cylinder 15b, the second reed valve 23b is opened at the timing when the pressure of the gas refrigerant in the second cylinder chamber 20b rises to a predetermined value. The high-pressure gas refrigerant in the second cylinder chamber 20b passes through the second discharge port 22b and is discharged into the second muffler 25b. The gas refrigerant discharged into the second muffler 25b flows into the first muffler 25a through the gas refrigerant guide passage described above, and further discharged from the first muffler 25a through the discharge hole 26 into the sealed case 8. Is done.
 第1シリンダ室20a、第2シリンダ室20b内で圧縮されて密閉ケース8内に吐出された高圧のガス冷媒は、凝縮器5内に流入し、凝縮器5において放熱されることにより液冷媒となる。この液冷媒は、膨張装置6に流入して減圧され、減圧された後に蒸発器7内に流入して吸熱することにより蒸発してガス冷媒となる。蒸発器7内で蒸発したガス冷媒はアキュムレータ3内に流入して気液分離(ガス冷媒に含まれる液体成分の分離)が行われる。このうちガス冷媒のみがアキュムレータ3の吸込管28内を通って圧縮機構部11の第1シリンダ室20a、第2シリンダ室20b内に供給され、再び圧縮される。 The high-pressure gas refrigerant compressed in the first cylinder chamber 20a and the second cylinder chamber 20b and discharged into the sealed case 8 flows into the condenser 5 and is dissipated in the condenser 5 to be liquefied with the liquid refrigerant. Become. The liquid refrigerant flows into the expansion device 6 and is depressurized. After being depressurized, the liquid refrigerant flows into the evaporator 7 and absorbs heat to evaporate to become a gas refrigerant. The gas refrigerant evaporated in the evaporator 7 flows into the accumulator 3 and gas-liquid separation (separation of liquid components contained in the gas refrigerant) is performed. Of these, only the gas refrigerant passes through the suction pipe 28 of the accumulator 3 and is supplied into the first cylinder chamber 20a and the second cylinder chamber 20b of the compression mechanism 11, and is compressed again.
 ここで、図6は、上述した式(1)、式(2)、式(3)、式(4)の全てを満たす本実施形態の回転式圧縮機4と、式(1)、式(2)、式(3)、式(4)の全てを満たさない従来例の回転式圧縮機と、式(1)と式(2)とを満たして式(3)と式(4)とを満たさない比較例の回転式圧縮機とを、高速回転域で運転した場合に測定したPV線図である。 Here, FIG. 6 shows the rotary compressor 4 of the present embodiment that satisfies all of the expressions (1), (2), (3), and (4), and the expressions (1) and ( 2), the rotary compressor of the conventional example that does not satisfy all of the expressions (3) and (4), and the expressions (3) and (4) satisfying the expressions (1) and (2). It is a PV diagram measured when the rotary compressor of the comparative example which is not satisfied is operated in a high-speed rotation region.
 具体的には、従来例の回転式圧縮機では、dm/Aを3.5×10-3(mm/mm)、ds/Aを3.5×10-3(mm/mm)、Km/Vを0.8×10-4(N/mm)、Ks/Vを0.8×10-4(N/mm)としている。 Specifically, in the rotary compressor of the conventional example, dm / A is 3.5 × 10 −3 (mm / mm 2 ), ds / A is 3.5 × 10 −3 (mm / mm 2 ), Km / V is 0.8 × 10 −4 (N / mm 4 ), and Ks / V is 0.8 × 10 −4 (N / mm 4 ).
 比較例の回転式圧縮機では、dm/Aを5.5×10-3(mm/mm)、ds/Aを5.5×10-3(mm/mm)、Km/Vを0.8×10-4(N/mm)、Ks/Vを0.8×10-4(N/mm)としている。 In the rotary compressor of the comparative example, dm / A is 5.5 × 10 −3 (mm / mm 2 ), ds / A is 5.5 × 10 −3 (mm / mm 2 ), and Km / V is 0. 8 × 10 −4 (N / mm 4 ) and Ks / V is set to 0.8 × 10 −4 (N / mm 4 ).
 本実施形態の回転式圧縮機4では、dm/Aを5.5×10-3(mm/mm)、ds/Aを5.5×10-3(mm/mm)、Km/Vを1.7×10-4(N/mm)、Ks/Vを1.7×10-4(N/mm)としている。 In the rotary compressor 4 of this embodiment, dm / A is 5.5 × 10 −3 (mm / mm 2 ), ds / A is 5.5 × 10 −3 (mm / mm 2 ), and Km / V. Is 1.7 × 10 −4 (N / mm 4 ), and Ks / V is 1.7 × 10 −4 (N / mm 4 ).
 図6に示したPV線図によれば、従来例の回転式圧縮機では、吐出ポートの内径寸法が小さいためにこの吐出ポートを通過するガス冷媒の通路抵抗が大きくなる。そのため、リード弁が開弁された後にもガス冷媒が圧縮されることにより過圧縮による損失が発生する。また、従来例の回転式圧縮機では、バネ定数が小さく柔らかいリード弁が使用されているため、高圧のガス冷媒が吐出した後にリード弁か閉まるタイミングが遅れる。そして、このリード弁か閉まるタイミングが遅れることにより、一旦吐出ポートから吐出された高圧のガス冷媒が吐出ポートからシリンダ室内に逆流する。そしてこの逆流したガス冷媒がシリンダ室内で再膨張することにより再膨張による損失が発生する。 According to the PV diagram shown in FIG. 6, in the rotary compressor of the conventional example, since the inner diameter dimension of the discharge port is small, the passage resistance of the gas refrigerant passing through the discharge port is increased. Therefore, even after the reed valve is opened, loss due to overcompression occurs due to the compression of the gas refrigerant. In the conventional rotary compressor, a soft reed valve having a small spring constant is used, and therefore the timing at which the reed valve closes after the high-pressure gas refrigerant is discharged is delayed. When the reed valve closes late, the high-pressure gas refrigerant once discharged from the discharge port flows backward from the discharge port into the cylinder chamber. And the loss by re-expansion generate | occur | produces when this back-flowed gas refrigerant re-expands in a cylinder chamber.
 これに対し、比較例の回転式圧縮機では、吐出ポートの内径寸法が大きくなっているためにこの吐出ポートを通過するガス冷媒の通路抵抗が小さくなり、過圧縮による損失が小さくなる。さらに、過圧縮による損失が小さくなることに伴い、リード弁が閉まることを阻止する方向に作用する力が小さくなるためにリード弁が閉まるタイミングの遅れが抑制され、再膨張による損失が小さくなる。 On the other hand, in the rotary compressor of the comparative example, since the inner diameter of the discharge port is large, the passage resistance of the gas refrigerant passing through the discharge port is reduced, and the loss due to overcompression is reduced. Further, as the loss due to overcompression becomes smaller, the force acting in the direction to prevent the reed valve from closing is reduced, so that the delay in timing for closing the reed valve is suppressed, and the loss due to re-expansion is reduced.
 さらに、本実施形態の回転式圧縮機4では、吐出ポート(第1吐出ポート22a、第2吐出ポート22b)の内径寸法が大きくなっている。そのためにこれらの吐出ポート(第1吐出ポート22a、第2吐出ポート22b)を通過するガス冷媒の通路抵抗が小さくなり、過圧縮による損失が小さくなる。さらに、バネ定数が大きく硬いリード弁(第1リード弁23a、第2リード弁23b)が使用されているため、高圧のガス冷媒が吐出した後のリード弁(第1リード弁23a、第2リード弁23b)が閉まるタイミングが早くなる。したがって、吐出ポート(第1吐出ポート22a、第2吐出ポート22b)からシリンダ室(第1シリンダ室20a、第2シリンダ室20b)内へのガス冷媒の逆流が抑制され、再膨張による損失が小さくなる。 Furthermore, in the rotary compressor 4 of the present embodiment, the inner diameter dimensions of the discharge ports (the first discharge port 22a and the second discharge port 22b) are large. Therefore, the passage resistance of the gas refrigerant passing through these discharge ports (the first discharge port 22a and the second discharge port 22b) is reduced, and the loss due to overcompression is reduced. Further, since reed valves (first reed valve 23a and second reed valve 23b) having a large spring constant are used, the reed valves (first reed valve 23a and second reed valve) after high-pressure gas refrigerant is discharged are used. The timing for closing the valve 23b) is accelerated. Therefore, the backflow of the gas refrigerant from the discharge port (first discharge port 22a, second discharge port 22b) into the cylinder chamber (first cylinder chamber 20a, second cylinder chamber 20b) is suppressed, and loss due to re-expansion is small. Become.
 シリンダ室内にガス冷媒が吸込まれた場合には過膨張による損失が発生するが、この過膨張による損失は、従来例の回転式圧縮機と、比較例の回転式圧縮機と、本実施形態の回転式圧縮機4とにおいて同様に発生する。 When gas refrigerant is sucked into the cylinder chamber, a loss due to overexpansion occurs. This loss due to overexpansion is caused by the conventional rotary compressor, the comparative rotary compressor, and the present embodiment. The same occurs in the rotary compressor 4.
 図7は、図6で説明した従来例の回転式圧縮機と、比較例の回転式圧縮機と、本実施形態の回転式圧縮機4とにおいて、回転数と総合効率(回転式圧縮機の総合効率)との関係を示したグラフである。図7のグラフから、従来例の回転式圧縮機では、中速回転域において総合効率が高く、高速回転域において総合効率が低いことが分かる。これに対し、比較例の回転式圧縮機では、中速回転域において総合効率が低く、高速回転域において総合効率が高いが、総合効率の最大値は小さいことが分かる。さらに、本実施形態の回転式圧縮機4では、中速回転域において総合効率が低く、高速回転域における総合効率が比較例の回転式圧縮機より向上していることが分かる。 FIG. 7 shows the rotational speed and the overall efficiency (of the rotary compressor) in the rotary compressor of the conventional example described in FIG. 6, the rotary compressor of the comparative example, and the rotary compressor 4 of the present embodiment. It is the graph which showed the relationship with (total efficiency). From the graph of FIG. 7, it can be seen that in the rotary compressor of the conventional example, the overall efficiency is high in the medium speed rotation region and the overall efficiency is low in the high speed rotation region. On the other hand, in the rotary compressor of the comparative example, the overall efficiency is low in the medium speed rotation range and the total efficiency is high in the high speed rotation range, but the maximum value of the total efficiency is small. Furthermore, in the rotary compressor 4 of this embodiment, it turns out that total efficiency is low in a medium speed rotation area, and the total efficiency in a high speed rotation area is improving rather than the rotary compressor of a comparative example.
 したがって、式(1)~式(4)を満たす回転式圧縮機4は、高速回転域での総合効率が向上し、消費電力の減少を図ることができる。 Therefore, the rotary compressor 4 satisfying the equations (1) to (4) can improve the overall efficiency in the high-speed rotation region and can reduce the power consumption.
 なお、第1吐出ポート22a、第2吐出ポート22bのいずれか一方において式(1)又は式(2)が成り立つ場合には、式(1)又は式(2)が成り立つ第1吐出ポート22a、第2吐出ポート22b側において過圧縮による損失を低減することができる。また、第1リード弁23a、第2リード弁23bのいずれか一方において式(3)又は式(4)が成り立つ場合には、式(3)又は式(4)が成り立つ第1リード弁23a、第2リード弁23b側において再膨張による損失を低減することができる。従って、第1吐出ポート22a、第2吐出ポート22bという二つの吐出ポートを有する回転式圧縮機4では、第1吐出ポート22a、第2吐出ポート22bのいずれか一方において式(1)又は式(2)を満たし、かつ、第1リード弁23a、第2リード弁23bのいずれか一方において式(3)又は式(4)を満たす場合には、高速回転域での総合効率を向上させることができる。 In addition, when Formula (1) or Formula (2) is satisfied in any one of the first discharge port 22a and the second discharge port 22b, the first discharge port 22a in which Formula (1) or Formula (2) is satisfied, Loss due to overcompression can be reduced on the second discharge port 22b side. In addition, when the formula (3) or the formula (4) is established in any one of the first reed valve 23a and the second reed valve 23b, the first reed valve 23a that satisfies the formula (3) or the formula (4), Loss due to re-expansion can be reduced on the second reed valve 23b side. Therefore, in the rotary compressor 4 having the two discharge ports, the first discharge port 22a and the second discharge port 22b, in either one of the first discharge port 22a and the second discharge port 22b, the expression (1) or the expression ( If 2) is satisfied and either the first reed valve 23a or the second reed valve 23b satisfies the expression (3) or the expression (4), the overall efficiency in the high-speed rotation range can be improved. it can.
 つぎに、図3に示すように、第1リード弁23aは弁本体部33の外形寸法R(mm)と腕部32の幅寸法W(mm)との比が“R/W≧2”に設定され、弁本体部33と腕部32との接続部分がくびれた形状となっている。このため、第1リード弁23aが開かれる時において、第1吐出ポート22aから吐出したガス冷媒は、図3においてハッチングで示した弁本体部33の周辺部と腕部32の周辺部とを通過するようになる。そのため、第1吐出ポート22aから吐出されたガス冷媒の通路面積が大きくなり、吐出されたガス冷媒の流速が低下する。これにより、第1吐出ポート22aから吐出されたガス冷媒が閉まろうとする第1リード弁23aに対してその閉まることを阻止する方向に作用する力を小さくすることができる。したがって、リード弁が閉まるタイミングの遅れの発生を防止して再膨張による損失を小さくすることができる。この点については、第1リード弁23aと同じ形状に形成されている第2リード弁23bにおいても同様である。 Next, as shown in FIG. 3, in the first reed valve 23a, the ratio of the outer dimension R (mm) of the valve body 33 and the width dimension W (mm) of the arm 32 is “R / W ≧ 2”. The connection portion between the valve main body 33 and the arm 32 is constricted. For this reason, when the first reed valve 23a is opened, the gas refrigerant discharged from the first discharge port 22a passes through the peripheral portion of the valve main body 33 and the peripheral portion of the arm portion 32 shown by hatching in FIG. Will come to do. Therefore, the passage area of the gas refrigerant discharged from the first discharge port 22a increases, and the flow rate of the discharged gas refrigerant decreases. Thereby, it is possible to reduce the force acting in the direction of preventing the gas refrigerant discharged from the first discharge port 22a from closing the first reed valve 23a that is about to close. Therefore, it is possible to prevent the delay due to the re-expansion by preventing the delay of the reed valve closing timing. This also applies to the second reed valve 23b formed in the same shape as the first reed valve 23a.
 また、弁本体部33の外形寸法R(mm)と腕部32の幅寸法W(mm)との比“R/W”が、“R/W≧2”に設定されているため、第1リード弁23aは腕部32の箇所においてねじれ易くなっている。このため、第1吐出ポート22aの弁座部分に弁本体部33が片当りすることが防止されるとともに弁座部分への弁本体部33の密着性が向上する。そして、弁座部分に対する弁本体部33の密着性が向上することにより、第1シリンダ室20aでの圧縮性能を向上させることができる。さらに、片当りによる第1吐出ポート22aの損傷を防止することができ、信頼性の高い弁機構を得ることかできる。この点については、第1リード弁23aと同じ形状に形成されている第2リード弁23bにおいても同様である。 Further, since the ratio “R / W” between the outer dimension R (mm) of the valve main body 33 and the width dimension W (mm) of the arm 32 is set to “R / W ≧ 2”, the first The reed valve 23 a is easily twisted at the arm portion 32. For this reason, the valve body 33 is prevented from coming into contact with the valve seat portion of the first discharge port 22a, and the adhesion of the valve body 33 to the valve seat portion is improved. And the compression performance in the 1st cylinder chamber 20a can be improved because the adhesiveness of the valve main-body part 33 with respect to a valve-seat part improves. Furthermore, damage to the first discharge port 22a due to one-sided contact can be prevented, and a highly reliable valve mechanism can be obtained. This also applies to the second reed valve 23b formed in the same shape as the first reed valve 23a.
 なお、本実施の形態では、第ローラ19a、・第2ローラ19bとブレードが別体に形成されている回転式圧縮機について説明したが、本発明は、ローラとブレードが一体形成されている回転式圧縮機(スイング型圧縮機)にも適用できる。 In the present embodiment, the rotary compressor in which the first roller 19a and the second roller 19b and the blade are separately formed has been described. However, in the present invention, the rotation in which the roller and the blade are integrally formed is described. It is also applicable to a type compressor (swing type compressor).
 また、本実施の形態では、第1シリンダ室20a、第2シリンダ室20bの二つのシリンダ室を有し、第1シリンダ室20aを形成する主軸受16aに第1吐出ポート22aが形成され、第2シリンダ室20bを形成する副軸受16bに第2吐出ポート22bが形成された場合を例に挙げて説明している。しかし、本発明を適用できる回転式圧縮機としては、シリンダ室が一つであり、このシリンダ室を形成する主軸受と副軸受とのそれぞれに吐出ポートが形成されているものであってもよい。 Further, in the present embodiment, there are two cylinder chambers, the first cylinder chamber 20a and the second cylinder chamber 20b, and the first discharge port 22a is formed in the main bearing 16a that forms the first cylinder chamber 20a. The case where the second discharge port 22b is formed in the auxiliary bearing 16b that forms the two-cylinder chamber 20b is described as an example. However, the rotary compressor to which the present invention can be applied may have a single cylinder chamber, and a discharge port may be formed in each of the main bearing and the sub-bearing that form the cylinder chamber. .
 (第2の実施形態)
 第2の実施形態について、図8及び図9に基づいて説明する。なお、第2の実施形態及びその他の実施形態において、第1の実施形態で説明した構成要素と同じ構成要素には同じ符号を付け、重複する説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. Note that, in the second embodiment and other embodiments, the same components as those described in the first embodiment are denoted by the same reference numerals, and redundant descriptions are omitted.
 第2の実施形態の基本的構造は第1の実施形態と同じであり、第2の実施形態が第1の実施形態と異なる点は、第1吐出ポート22aの出口側である弁座側に、ガス冷媒の吐出方向に向けて次第に拡がるテーパ部34が形成されている点である。なお、第2吐出ポート22bの出口側にも、同様のテーパ部が形成されている。 The basic structure of the second embodiment is the same as that of the first embodiment, and the second embodiment is different from the first embodiment in that the valve seat side, which is the outlet side of the first discharge port 22a. A taper portion 34 that gradually expands in the gas refrigerant discharge direction is formed. A similar taper portion is formed on the outlet side of the second discharge port 22b.
 第1吐出ポート22aにおいて、テーパ部34の最小径寸法をdm1(mm)にするとともにテーパ部34の最大径寸法をdm2(mm)としたとき、その比“dm2/dm1”は、
 1.1≦dm2/dm1≦1.35…………(6)
が成り立つように設定されている。
In the first discharge port 22a, when the minimum diameter of the tapered portion 34 is dm1 (mm) and the maximum diameter of the tapered portion 34 is dm2 (mm), the ratio “dm2 / dm1” is
1.1 ≦ dm2 / dm1 ≦ 1.35 (6)
Is set to hold.
 また、図示を省略しているが、第2吐出ポート22bの出口側に形成されているテーパ部の最小径寸法をds1(mm)、最大径寸法をds2(mm)としたとき、その比“ds2/ds1は、
 1.1≦ds2/ds1≦1.35…………(7)
が成り立つように設定されている。
Although not shown, when the minimum diameter dimension of the tapered portion formed on the outlet side of the second discharge port 22b is ds1 (mm) and the maximum diameter dimension is ds2 (mm), the ratio “ ds2 / ds1 is
1.1 ≦ ds2 / ds1 ≦ 1.35 (7)
Is set to hold.
 ここで、上述した“dm2/dm1”の範囲の設定について、図9の実験結果を示すグラフを用いて説明する。図9に示すグラフは、横軸をテーパ部34の最小径寸法であるdm1(mm)とテーパ部34の最大径寸法であるdm2(mm)との比“dm2/dm1”とし、縦軸を回転式圧縮機の圧縮効率としている。 Here, the above-described setting of the range of “dm2 / dm1” will be described using the graph showing the experimental results in FIG. In the graph shown in FIG. 9, the horizontal axis is a ratio “dm2 / dm1” between the minimum diameter dm1 (mm) of the tapered portion 34 and the maximum diameter dm2 (mm) of the tapered portion 34, and the vertical axis is This is the compression efficiency of the rotary compressor.
 この図9に示すグラフから分かるように、式(6)で示した“1.1≦dm2/dm1≦1.35”の範囲において、回転式圧縮機の総合効率が、3%~5%向上することが判明した。 As can be seen from the graph shown in FIG. 9, the overall efficiency of the rotary compressor is improved by 3% to 5% in the range of “1.1 ≦ dm2 / dm1 ≦ 1.35” shown in the equation (6). Turned out to be.
 第2吐出ポート22bに形成された吐出ポート22bのテーパ部においても同様であり、式(7)で示した“1.1≦ds2/ds1≦1.35”の範囲において、回転式圧縮機の総合効率が、3%~5%向上する。 The same applies to the tapered portion of the discharge port 22b formed in the second discharge port 22b. In the range of “1.1 ≦ ds2 / ds1 ≦ 1.35” shown in the equation (7), the rotary compressor Overall efficiency is improved by 3% to 5%.
 このような構成において、第1吐出ポート22aの出口側に形成されたテーパ部34が、式(6)を満たすことにより、高速回転域での運転時において第1吐出ポート22aから吐出されるガス冷媒は、図8の矢印で示すようにテーパ部34に沿って流れる。これによって、吐出されるガス冷媒の通路抵抗がさらに小さくなり、過圧縮による損失をさらに小さくすることができ、結果として回転式圧縮機4の総合効率を向上させることができる。第2吐出ポート22b側で式(7)を満たす場合にも同様のことが言える。 In such a configuration, the tapered portion 34 formed on the outlet side of the first discharge port 22a satisfies the formula (6), so that the gas discharged from the first discharge port 22a during operation in the high-speed rotation region. The refrigerant flows along the tapered portion 34 as shown by the arrow in FIG. As a result, the passage resistance of the discharged gas refrigerant is further reduced, the loss due to overcompression can be further reduced, and as a result, the overall efficiency of the rotary compressor 4 can be improved. The same can be said when Expression (7) is satisfied on the second discharge port 22b side.
 なお、第1吐出ポート22a、第2吐出ポート22bのいずれか一方において式(6)又は式(7)が成り立つ場合には、式(6)又は式(7)が成り立つ第1吐出ポート22a、第2吐出ポート22b側において過圧縮による損失を低減することができる。従って、第1吐出ポート22a、第2吐出ポート22bといった二つの吐出ポートを有する回転式圧縮機4では、第1吐出ポート22a、第2吐出ポート22bのいずれか一方において、式(6)又は式(7)を満たす場合でも、高速回転域での総合効率を向上させることができる。 In addition, when Formula (6) or Formula (7) is satisfied in any one of the first discharge port 22a and the second discharge port 22b, the first discharge port 22a in which Formula (6) or Formula (7) is satisfied, Loss due to overcompression can be reduced on the second discharge port 22b side. Therefore, in the rotary compressor 4 having two discharge ports such as the first discharge port 22a and the second discharge port 22b, in either one of the first discharge port 22a and the second discharge port 22b, the expression (6) or the expression Even when (7) is satisfied, the overall efficiency in the high-speed rotation region can be improved.
 なお、図8では、第1吐出ポート22aの出口側の弁座が平坦な形状の場合を例に挙げて示したが、この弁座の形状は円弧状であってもよい。その場合、テーパ部34の最大径寸法“dm2”は、円孤形状の頂点部間の寸法である。 Although FIG. 8 shows an example in which the valve seat on the outlet side of the first discharge port 22a has a flat shape, the shape of the valve seat may be an arc shape. In this case, the maximum diameter dimension “dm2” of the tapered portion 34 is a dimension between the apexes of the arcuate shape.
 (第3の実施形態)
 第3の実施形態を図10ないし図12に基づいて説明する。
(Third embodiment)
A third embodiment will be described with reference to FIGS.
  第3の実施形態の基本的構造は第1の実施形態と同じであり、第3の実施形態が第1の実施形態と異なる点は、第1のシリンダ15aの内周面に逃げ部35が形成されている点である。逃げ部35は、第1シリンダ15aの内周面に対して凹んだ形状に形成されている。なお、図示を省略しているが、第2のシリンダ15bの内周面にも同様の逃げ部が形成されている。 The basic structure of the third embodiment is the same as that of the first embodiment, and the third embodiment is different from the first embodiment in that a relief portion 35 is provided on the inner peripheral surface of the first cylinder 15a. It is a point that is formed. The escape portion 35 is formed in a recessed shape with respect to the inner peripheral surface of the first cylinder 15a. Although not shown, a similar relief portion is formed on the inner peripheral surface of the second cylinder 15b.
 図10に示すように、第1シリンダ15aの中心点“O”と、第1シリンダ15aに形成されたブレード収容室36とを結ぶ基準線を“X”とする。この基準線“X”から第1シリンダ15aに固定される主軸受16a(図1参照)に形成されている第1吐出ポート22aの中心までの角度を“θ1”とする。さらに第1吐出ポート22aと第1シリンダ15aの内周面とが交差する点であって角度“θ1”より大きな角度となる側において交差する点までの角度を“θ2”とするとき、逃げ部35は、基準線“X”からの角度“θ3(θ3>θ2)”の範囲に形成されている。 As shown in FIG. 10, a reference line connecting the center point “O” of the first cylinder 15a and the blade accommodation chamber 36 formed in the first cylinder 15a is “X”. An angle from the reference line “X” to the center of the first discharge port 22a formed in the main bearing 16a (see FIG. 1) fixed to the first cylinder 15a is “θ1”. Furthermore, when the angle to the point where the first discharge port 22a and the inner peripheral surface of the first cylinder 15a intersect and intersect on the side where the angle is larger than the angle “θ1” is “θ2”, the relief portion 35 is formed in the range of the angle “θ3 (θ3> θ2)” from the reference line “X”.
 図11は、図10におけるY-Y線断面図である。図11に示すように、第1シリンダ15aの高さ寸法を“H”としたとき、逃げ部35の高さ寸法は、主軸受16aが固定されている側からの高さ寸法が“h”となる範囲に形成される。これら第1シリンダ15aの高さ寸法“H”と逃げ部35の高さ寸法“h”とは、“H/2≦h<H”に設定されている。 FIG. 11 is a cross-sectional view taken along line YY in FIG. As shown in FIG. 11, when the height dimension of the first cylinder 15a is “H”, the height dimension of the escape portion 35 is “h” from the side where the main bearing 16a is fixed. It is formed in the range. The height dimension “H” of the first cylinder 15a and the height dimension “h” of the relief portion 35 are set to “H / 2 ≦ h <H”.
 図12は、第1シリンダ15aの一部を断面にして示す斜視図である。第1シリンダ15aの内周面には、逃げ部35と、ブレード収容室36と、第1シリンダ15a内にガス冷媒が吸込まれる吸込穴37とが形成されている。 FIG. 12 is a perspective view showing a part of the first cylinder 15a in cross section. On the inner peripheral surface of the first cylinder 15a, an escape portion 35, a blade accommodating chamber 36, and a suction hole 37 into which the gas refrigerant is sucked into the first cylinder 15a are formed.
 このような構成において、圧縮行程時において、第1ローラ19a(図1参照)が第1シリンダ15aの内周面に接触して偏心回転する。偏心回転する第1ローラ19aが第1吐出ポート22aに近付く圧縮行程の終了時点の近傍では、ガス冷媒が圧縮されている空間が狭くなり、その空間内の圧力が上昇している。また、第1ローラ19aが第1シリンダ15aの内周面に接触して偏心回転することにより、第1シリンダ15a内の潤滑油が狭くなった空間内に運ばれる。 In such a configuration, during the compression stroke, the first roller 19a (see FIG. 1) contacts the inner peripheral surface of the first cylinder 15a and rotates eccentrically. In the vicinity of the end point of the compression stroke in which the eccentric rotating first roller 19a approaches the first discharge port 22a, the space in which the gas refrigerant is compressed is narrowed, and the pressure in the space is increased. Further, when the first roller 19a contacts the inner peripheral surface of the first cylinder 15a and rotates eccentrically, the lubricating oil in the first cylinder 15a is carried into a narrow space.
 第1ローラ19aにより運ばれた潤滑油は、圧縮行程の終了時点の近傍において逃げ部35に入り込む。したがって、第1シリンダ15a内におけるガス冷媒が圧縮されている狭い空間内が液圧縮状態となって圧力が過剰に上昇することが防止される。 The lubricating oil carried by the first roller 19a enters the escape portion 35 in the vicinity of the end point of the compression stroke. Accordingly, the narrow space in which the gas refrigerant in the first cylinder 15a is compressed is prevented from being excessively increased due to the liquid compression state.
 ここで、この実施形態では、逃げ部35が形成されている角度が“θ3”であり、この“θ3”の範囲が“θ3>θ2”であるため、潤滑油が逃げ部35に入り込むタイミングが早くなる。このため、回転式圧縮機4を高速回転域で運転することにより液圧縮の開始が速くなる状況においても、潤滑油が逃げ部35に入り込むタイミングが早くなって液圧縮の発生を防止することができ、液圧縮による回転式圧縮機4の破損を防止することができる。 Here, in this embodiment, the angle at which the escape portion 35 is formed is “θ3”, and the range of “θ3” is “θ3> θ2”, so the timing at which the lubricating oil enters the escape portion 35 is reached. Get faster. Therefore, even when the rotary compressor 4 is operated in the high-speed rotation range, the start of liquid compression is accelerated, so that the timing at which the lubricating oil enters the escape portion 35 is accelerated and the occurrence of liquid compression can be prevented. It is possible to prevent the rotary compressor 4 from being damaged by liquid compression.
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
産業上の利用の可能性Industrial applicability
 本発明は、回転式圧縮機に用いられる。 The present invention is used for a rotary compressor.

Claims (8)

  1.  電動機部とこの電動機部に偏心部を有する回転軸を介して連結された圧縮機構部とが密閉ケース内に収容され、
     前記圧縮機構部は、前記回転軸が貫通するシリンダと、前記偏心部に嵌め合わされて外周面の一部を前記シリンダの内周面に接触させながら偏心移動するローラと、前記回転軸を支えるとともに前記シリンダの端面を閉じて前記シリンダ内にシリンダ室を形成する主軸受及び副軸受とを有し、
     前記主軸受及び前記副軸受に、前記ローラが偏心移動することにより前記シリンダ室内で圧縮された作動流体を前記密閉ケース内に吐出する吐出ポートと、この吐出ポートを開閉する吐出弁とが設けられた回転式圧縮機において、
     前記シリンダ室の内径面積をA(mm)、前記主軸受に設けられた前記吐出ポートの内径寸法をdm(mm)、前記副軸受に設けられた前記吐出ポートの内径寸法をds(mm)としたとき、式(1)と式(2)との少なくとも一方が成り立つように設定され、
     前記シリンダ室の容積をV(mm)、前記主軸受に設けられた前記吐出弁のバネ定数をKm(N/mm)、前記副軸受に設けられた前記吐出弁のバネ定数をKs(N/mm)としたとき、式(3)と式(4)との少なくとも一方が成り立つように設定されていることを特徴とする回転式圧縮機。
     4.6×10-3≦dm/A≦6.5×10-3(mm/mm)……(1)
     4.6×10-3≦ds/A≦6.5×10-3(mm/mm)……(2)
     1.2×10-4≦Km/V≦3.5×10-4(N/mm)………(3)
     1.2×10-4≦Ks/V≦3.5×10-4(N/mm)………(4)
     但し、シリンダが複数の場合、Vは1つのシリンダ室の容積である。
    An electric motor part and a compression mechanism part connected to the electric motor part via a rotating shaft having an eccentric part are accommodated in a sealed case,
    The compression mechanism portion supports the rotation shaft, a cylinder through which the rotation shaft passes, a roller that is fitted to the eccentric portion and moves eccentrically while bringing a part of the outer peripheral surface into contact with the inner peripheral surface of the cylinder, and A main bearing and a sub-bearing that close the end face of the cylinder and form a cylinder chamber in the cylinder;
    The main bearing and the sub-bearing are provided with a discharge port for discharging the working fluid compressed in the cylinder chamber into the sealed case by the eccentric movement of the roller, and a discharge valve for opening and closing the discharge port. In the rotary compressor
    The inner diameter area of the cylinder chamber is A (mm 2 ), the inner diameter dimension of the discharge port provided in the main bearing is dm (mm), and the inner diameter dimension of the discharge port provided in the auxiliary bearing is ds (mm). Is set so that at least one of formula (1) and formula (2) holds,
    The volume of the cylinder chamber is V (mm 3 ), the spring constant of the discharge valve provided in the main bearing is Km (N / mm), and the spring constant of the discharge valve provided in the sub-bearing is Ks (N / mm), the rotary compressor is set so that at least one of formula (3) and formula (4) is established.
    4.6 × 10 −3 ≦ dm / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (1)
    4.6 × 10 −3 ≦ ds / A ≦ 6.5 × 10 −3 (mm / mm 2 ) (2)
    1.2 × 10 −4 ≦ Km / V ≦ 3.5 × 10 −4 (N / mm 4 ) (3)
    1.2 × 10 −4 ≦ Ks / V ≦ 3.5 × 10 −4 (N / mm 4 ) (4)
    However, when there are a plurality of cylinders, V is the volume of one cylinder chamber.
  2.  前記吐出弁は、一端が前記主軸受又は前記副軸受に固定されて可撓性を有する腕部と、前記腕部の他端側に設けられて前記吐出ポートを閉める円盤状の弁本体部とを有するリード弁と、から構成され、前記弁本体部の外形寸法をR(mm)、前記腕部の幅寸法をW(mm)としたとき、式(5)が成り立つように設定されていることを特徴とする請求項1記載の回転式圧縮機。
     R/W≧2………(5)
    The discharge valve has a flexible arm portion with one end fixed to the main bearing or the sub-bearing, and a disc-shaped valve body portion provided on the other end side of the arm portion to close the discharge port; The valve body is set so that equation (5) is established when the outer dimension of the valve body is R (mm) and the width of the arm is W (mm). The rotary compressor according to claim 1.
    R / W ≧ 2 ... (5)
  3.  前記吐出ポートの出口側に、吐出方向に向けて次第に拡がるテーパ部が設けられ、前記主軸受に設けられた前記吐出ポートにおける前記テーパ部の最小径寸法をdm1(mm)、このテーパ部の最大径寸法をdm2(mm)、前記副軸受に設けられた前記吐出ポートにおける前記テーパ部の最小径寸法をds1(mm)、このテーパ部の最大径寸法をds2(mm)としたとき、式(6)と式(7)との少なくとも一方が成り立つように設定されていることを特徴とする請求項1記載の回転式圧縮機。
     1.1≦dm2/dm1≦1.35…………(6)
     1.1≦ds2/ds1≦1.35…………(7)
    A taper portion that gradually expands in the discharge direction is provided on the outlet side of the discharge port, and the minimum diameter dimension of the taper portion in the discharge port provided in the main bearing is dm1 (mm). When the diameter dimension is dm2 (mm), the minimum diameter dimension of the tapered portion in the discharge port provided in the auxiliary bearing is ds1 (mm), and the maximum diameter dimension of the tapered portion is ds2 (mm), The rotary compressor according to claim 1, wherein at least one of 6) and formula (7) is established.
    1.1 ≦ dm2 / dm1 ≦ 1.35 (6)
    1.1 ≦ ds2 / ds1 ≦ 1.35 (7)
  4.  前記吐出ポートの出口側に、吐出方向に向けて次第に拡がるテーパ部が設けられ、前記主軸受に設けられた前記吐出ポートにおける前記テーパ部の最小径寸法をdm1(mm)、このテーパ部の最大径寸法をdm2(mm)、前記副軸受に設けられた前記吐出ポートにおける前記テーパ部の最小径寸法をds1(mm)、このテーパ部の最大径寸法をds2(mm)としたとき、式(6)と式(7)との少なくとも一方が成り立つように設定されていることを特徴とする請求項2記載の回転式圧縮機。
     1.1≦dm2/dm1≦1.35…………(6)
     1.1≦ds2/ds1≦1.35…………(7)
    A taper portion that gradually expands in the discharge direction is provided on the outlet side of the discharge port, the minimum diameter of the taper portion in the discharge port provided in the main bearing is dm1 (mm), and the maximum of the taper portion is When the diameter dimension is dm2 (mm), the minimum diameter dimension of the tapered portion in the discharge port provided in the auxiliary bearing is ds1 (mm), and the maximum diameter dimension of the tapered portion is ds2 (mm), The rotary compressor according to claim 2, wherein at least one of 6) and formula (7) is established.
    1.1 ≦ dm2 / dm1 ≦ 1.35 (6)
    1.1 ≦ ds2 / ds1 ≦ 1.35 (7)
  5.  請求項1に記載された回転式圧縮機と、
     前記回転式圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、
    を備えることを特徴とする冷凍サイクル装置。
    A rotary compressor according to claim 1;
    A condenser connected to the rotary compressor;
    An expansion device connected to the condenser;
    An evaporator connected between the expansion device and the rotary compressor;
    A refrigeration cycle apparatus comprising:
  6.  請求項2に記載された回転式圧縮機と、
     前記回転式圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、
    を備えることを特徴とする冷凍サイクル装置。
    A rotary compressor according to claim 2;
    A condenser connected to the rotary compressor;
    An expansion device connected to the condenser;
    An evaporator connected between the expansion device and the rotary compressor;
    A refrigeration cycle apparatus comprising:
  7.  請求項3に記載された回転式圧縮機と、
     前記回転式圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、
    を備えることを特徴とする冷凍サイクル装置。
    A rotary compressor according to claim 3;
    A condenser connected to the rotary compressor;
    An expansion device connected to the condenser;
    An evaporator connected between the expansion device and the rotary compressor;
    A refrigeration cycle apparatus comprising:
  8.  請求項4に記載された回転式圧縮機と、
     前記回転式圧縮機に接続された凝縮器と、
     前記凝縮器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、
    を備えることを特徴とする冷凍サイクル装置。
     
     
     
     
    A rotary compressor according to claim 4;
    A condenser connected to the rotary compressor;
    An expansion device connected to the condenser;
    An evaporator connected between the expansion device and the rotary compressor;
    A refrigeration cycle apparatus comprising:



PCT/JP2013/053893 2012-03-23 2013-02-18 Rotating compressor and freeze-cycle apparatus WO2013140912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380006906.8A CN104081055B (en) 2012-03-23 2013-02-18 Rotary compressor and freezing cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-067941 2012-03-23
JP2012067941 2012-03-23

Publications (2)

Publication Number Publication Date
WO2013140912A1 WO2013140912A1 (en) 2013-09-26
WO2013140912A9 true WO2013140912A9 (en) 2014-08-07

Family

ID=49222377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053893 WO2013140912A1 (en) 2012-03-23 2013-02-18 Rotating compressor and freeze-cycle apparatus

Country Status (3)

Country Link
JP (1) JPWO2013140912A1 (en)
CN (1) CN104081055B (en)
WO (1) WO2013140912A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165140A (en) * 2014-08-01 2014-11-26 广东美芝制冷设备有限公司 Rotary compressor
JP6177741B2 (en) * 2014-08-22 2017-08-09 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus
WO2016110982A1 (en) * 2015-01-08 2016-07-14 三菱電機株式会社 Multi-cylinder hermetic compressor
JP6407432B2 (en) * 2015-07-08 2018-10-17 三菱電機株式会社 Compressor and refrigeration cycle apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580604A (en) * 1983-06-23 1986-04-08 Mitsubishi Denki Kabushiki Kaisha Discharging valve device for a compressor
JPH11210626A (en) * 1998-01-21 1999-08-03 Toshiba Corp Hermetic compressor
JP2001050184A (en) * 1999-08-05 2001-02-23 Sanyo Electric Co Ltd Multiple cylinder rotary compressor
JP2001342961A (en) * 2000-06-01 2001-12-14 Toyota Industries Corp Gas distribution structure of compressor
JP2002005057A (en) * 2000-06-21 2002-01-09 Mitsubishi Heavy Ind Ltd Scroll compressor
JP4257639B2 (en) * 2003-04-02 2009-04-22 カルソニックコンプレッサー株式会社 Gas compressor on-off valve and gas compressor
JP2005180317A (en) * 2003-12-19 2005-07-07 Daikin Ind Ltd Rotary compressor
JP4483656B2 (en) * 2005-03-31 2010-06-16 ダイキン工業株式会社 Fluid machinery
JP4909597B2 (en) * 2006-01-27 2012-04-04 東芝キヤリア株式会社 Hermetic rotary compressor and refrigeration cycle apparatus
JP4807209B2 (en) * 2006-09-28 2011-11-02 ダイキン工業株式会社 Compressor
JP5338275B2 (en) * 2008-11-25 2013-11-13 ダイキン工業株式会社 Discharge valve mechanism and rotary compressor
JP5328697B2 (en) * 2010-03-02 2013-10-30 三菱電機株式会社 Two-stage compressor and heat pump device

Also Published As

Publication number Publication date
CN104081055B (en) 2016-05-18
JPWO2013140912A1 (en) 2015-08-03
CN104081055A (en) 2014-10-01
WO2013140912A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US8998596B2 (en) Scroll compressor
WO2013065706A1 (en) Sealed rotary compressor and refrigeration cycle device
WO2013140912A9 (en) Rotating compressor and freeze-cycle apparatus
US8366405B2 (en) Screw compressor with capacity control slide valve
US20150211508A1 (en) Compressor
JP5228905B2 (en) Refrigeration equipment
JP6071190B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
WO2016031129A1 (en) Rotary compressor and refrigeration cycle device
JP2015175258A (en) rotary compressor and refrigeration cycle device
WO2016027413A1 (en) Rotary compressor and refrigeration cycle device
WO2022209582A1 (en) Screw compressor and freezer
JP2013053579A (en) Rotary compressor
US20160333881A1 (en) Hermetic compressor
WO2015025449A1 (en) Multi-stage compressor and refrigeration cycle device
KR101324373B1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP2014129755A (en) Rotary compressor
JP2013104368A (en) Rotary compressor
JP2013177868A (en) Screw compressor
US9546659B2 (en) Rotary compressor
JP6927731B2 (en) Closed compressor and refrigeration cycle equipment
JP2005256614A (en) Multi-cylinder type rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
JP6728988B2 (en) Screw compressor
JP2014141888A (en) Compressor
JP6007030B2 (en) Rotary compressor and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2014506084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 13763811

Country of ref document: EP

Kind code of ref document: A1