WO2016027413A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2016027413A1
WO2016027413A1 PCT/JP2015/003684 JP2015003684W WO2016027413A1 WO 2016027413 A1 WO2016027413 A1 WO 2016027413A1 JP 2015003684 W JP2015003684 W JP 2015003684W WO 2016027413 A1 WO2016027413 A1 WO 2016027413A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
discharge port
partition plate
cylinder
discharge valve
Prior art date
Application number
PCT/JP2015/003684
Other languages
French (fr)
Japanese (ja)
Inventor
平山 卓也
ジャフェット フェルディ モナスリ
木村 茂喜
昌宏 畑山
善幸 嶋田
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201580040229.0A priority Critical patent/CN106574620B/en
Priority to EP15834041.4A priority patent/EP3184822B1/en
Publication of WO2016027413A1 publication Critical patent/WO2016027413A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet

Definitions

  • Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus.
  • a rotary compressor that compresses a working fluid such as a gas refrigerant forms a cylinder chamber in a cylinder by closing both ends of the cylinder with a closing member, and a blade that reciprocates with a roller that rotates eccentrically in the cylinder chamber.
  • a working fluid such as a gas refrigerant
  • the suction chamber and the compression chamber are divided into two, the working fluid sucked into the suction chamber is compressed in the compression chamber, and the compressed working fluid is discharged from a discharge port formed in the closing member.
  • various contrivances are made to reduce the compression loss due to overcompression.
  • a discharge port is formed in each of the closing members located on both sides of the cylinder, and a discharge valve is provided for each discharge port so that the pressure in the compression chamber is a predetermined pressure.
  • the discharge valve is opened to discharge the working fluid from each discharge port. This reduces the amount of working fluid that passes through each discharge port, reduces the compression loss due to over-compression caused by the flow path resistance when the working fluid passes through the discharge port, and improves the compression performance.
  • An object of an embodiment of the present invention is to prevent resonance due to discharge pressure pulsation when a working fluid compressed in one compression chamber is discharged from two discharge ports, and to open the discharge valve during low-speed rotation. Therefore, there is a need to obtain a rotary compressor and a refrigeration cycle apparatus capable of reducing compression loss caused by overcompression and improving compression performance during low-speed rotation.
  • the rotary compressor according to the embodiment is a rotary compressor in which an electric motor unit and a compression mechanism unit driven by a rotary shaft connected to the electric motor unit are housed in a hermetically sealed case, and the working fluid is compressed by the compression mechanism unit.
  • the compression mechanism section is fitted to a cylinder, a pair of blocking members that close both ends of the cylinder to form a cylinder chamber in the cylinder, and a rotating shaft that passes through the blocking member, and is eccentric in the cylinder chamber.
  • a rotating roller a discharge port that is formed in the cylinder chamber and is compressed in the compression chamber formed in the cylinder chamber; and a discharge valve that opens and closes the discharge port.
  • One discharge port formed in one closing member has a smaller opening area than the other discharge port formed in the other closing member of the pair of closing members, and the opening area is small.
  • One of the discharge valve for opening and closing the have one discharge port, characterized in that it is open at the other of the discharge valve is smaller than the differential pressure at the discharge valve.
  • the refrigeration cycle apparatus of the embodiment includes the rotary compressor, a condenser connected to the rotary compressor, an expansion device connected to the condenser, and an expansion device and the rotary compressor. And a connected evaporator.
  • FIG. 1 shows the overall configuration of a refrigeration cycle apparatus 1, which has a compressor body 2 and an accumulator 3. Further, a rotary compressor 4 provided in the compressor body 2 for compressing a gas refrigerant as a working fluid, and a high-pressure and high-temperature gas refrigerant connected to the compressor body 2 and discharged from the compressor body 2 A condenser 5 that condenses into liquid refrigerant, an expansion device 6 that is connected to the condenser 5 to depressurize the liquid refrigerant, and an evaporation device that is connected between the expansion device 6 and the accumulator 3 to evaporate the expanded liquid refrigerant. And a container 7. The accumulator 3 and the compressor body 2 are connected by a suction flow path 8 through which a gas refrigerant flows.
  • the compressor main body 2 has a sealed case 9 formed in a cylindrical shape.
  • a sealed case 9 formed in a cylindrical shape.
  • an electric motor unit 10 located on the upper side, a rotating shaft 11 connected to the electric motor unit 10, and a rotating shaft A compression mechanism unit 12 driven by the electric motor unit 10 via 11 is accommodated.
  • Lubricating oil is stored in the lower part of the sealed case 9.
  • the electric motor unit 10 includes a rotor 13 to which the rotating shaft 11 is fixed, and a stator 14 that is fixed to the sealed case 9 and arranged at a position surrounding the rotor 13.
  • the rotor 13 is provided with a permanent magnet (not shown), and a current-carrying coil (not shown) is wound around the stator 14. By energizing the coil, the rotor 13 and the rotating shaft 11 rotate.
  • the compression mechanism portion 12 is a portion that compresses the gas refrigerant.
  • the compression mechanism portion 12 includes a cylinder 15, a sub-bearing 17 that is a pair of closing members that close both ends of the cylinder 15 and form a cylinder chamber 16 in the cylinder 15, and the main bearing 17. It has a bearing 18 and a blade 19 (see FIG. 2).
  • the auxiliary bearing 17 and the main bearing 18 pivotally support the rotating shaft 11 inserted into the cylinder 15.
  • An eccentric portion 20 that is eccentric from the center of rotation is provided at a portion of the rotating shaft 11 that is located in the cylinder chamber 16, and a roller 21 is fitted to the eccentric portion 20.
  • the roller 21 is arranged so as to rotate eccentrically while the outer peripheral surface is in line contact with the inner peripheral surface of the cylinder 15 via an oil film when the rotary shaft 11 rotates.
  • the blade 19 will be described later with reference to FIG.
  • a discharge port 22 (one discharge port 22) through which the gas refrigerant compressed in the cylinder chamber 16 is discharged is formed in the auxiliary bearing 17 which is one closing member forming the cylinder chamber 16, and further, the discharge port A discharge valve 23 (one discharge valve 23) that opens and closes 22 and a valve presser 24 that regulates the maximum opening of the discharge valve 23 are attached.
  • a sub-bearing side muffler 25 into which the gas refrigerant discharged from the discharge port 22 flows is attached to the outer peripheral portion of the sub-bearing 17.
  • the main bearing 18 which is the other closing member forming the cylinder chamber 16 is formed with a discharge port 26 (the other discharge port 26) through which the gas refrigerant compressed in the cylinder chamber 16 is discharged.
  • a discharge valve 27 (the other discharge valve 27) that opens and closes the valve 26 and a valve presser 28 that regulates the maximum opening of the discharge valve 27 are attached.
  • a main bearing side muffler 29 into which the gas refrigerant discharged from the discharge port 26 flows is attached to the outer peripheral portion of the main bearing 18.
  • the main bearing side muffler 29 and the sub bearing side muffler 25 communicate with each other via a communication passage 30 formed in the sub bearing 17, the cylinder 15, and the main bearing 18, and the gas flowing into the sub bearing side muffler 25.
  • the refrigerant flows into the main bearing side muffler 29 through the communication path 30.
  • the main bearing side muffler 29 is formed with an outflow hole 31 through which the gas refrigerant in the main bearing side muffler 29 flows into the sealed case 9.
  • the volume of the sub bearing side muffler 25 is smaller than the volume of the main bearing side muffler 29.
  • the opening area of one discharge port 22 and the other discharge port 26 are different, and the opening area of one discharge port 22 is smaller than the opening area of the other discharge port 26.
  • the size of one discharge valve 23 is smaller than the size of the other discharge valve 27.
  • one discharge valve 23 is opened with a differential pressure smaller than that of the other discharge valve 27 (a difference between a pressure in a compression chamber and a pressure outside the compression chamber, which will be described later).
  • K is the spring constant of the discharge valves 23 and 26
  • m is the mass of the opening / closing part of the discharge valves 23 and 26.
  • the natural frequency “f” of one discharge valve 23 is formed to be larger than the natural frequency “f” of the other discharge valve 27.
  • the discharge ports 22 and 26 are formed at positions where a part is removed from the cylinder chamber 16 for reasons of design restrictions.
  • Discharge notches 32 and 33 are formed in the inner peripheral portion of the cylinder 15 so that the entire opening area of the discharge ports 22 and 26 communicates with the cylinder chamber 16. Comparing these discharge notches 32 and 33, the volume of one discharge notch 32 communicating with one discharge port 22 formed in the sub-bearing 17 is formed small, and the other formed in the main bearing 18 is the other. The volume of the other discharge notch 33 communicating with the discharge port 26 is formed large.
  • FIG. 2 is a cross-sectional view showing the compression mechanism section 12.
  • a blade groove 34 is formed in the cylinder 15, and a blade 19 is accommodated in the blade groove 34 so as to be reciprocally movable.
  • the blade 19 is urged so that the tip end thereof is brought into contact with the outer peripheral surface of the roller 21, and the tip of the blade 19 is brought into contact with the outer peripheral surface of the roller 21.
  • the compression chamber 36 The suction flow path 8 is communicated with the suction chamber 35, and the discharge port 22 (26) is communicated with the compression chamber 36.
  • the discharge valves 23 and 27 are opened, and the gas refrigerant is discharged from the discharge ports 22 and 26.
  • the gas refrigerant discharged from the discharge port 26 flows into the main bearing side muffler 29, and the gas refrigerant discharged from the discharge port 22 flows into the auxiliary bearing side muffler 25 and then passes through the communication path 30 to the main bearing side. It flows into the muffler 29.
  • the gas refrigerant flowing into the main bearing side muffler 29 flows out from the outflow hole 31 into the sealed case 9.
  • the gas refrigerant that has flowed into the sealed case 9 flows in the order of the condenser 5, the expansion device 6, and the evaporator 7, returns to the rotary compressor 4, and the refrigeration cycle in the refrigeration cycle apparatus 1 is executed.
  • the compression mechanism unit 12 includes one discharge port 22 provided in the sub-bearing 17 as a discharge port through which the gas refrigerant compressed in the cylinder chamber 16 (more specifically, the compression chamber 36) is discharged, It has two discharge ports 22 and 26 with the other discharge port 26 provided in the bearing 18.
  • the differential pressure at which one discharge valve 23 that opens and closes one discharge port 22 and the other discharge valve 27 that opens and closes the other discharge port 26 open is different. For this reason, both the discharge amount of the gas refrigerant discharged from the discharge ports 22 and 26 is reduced, and the timing of opening the discharge valves 23 and 27 for opening and closing the discharge ports 22 and 26 is different. Can be suppressed from being discharged from the discharge ports 22 and 26, and pulsation resonance can be prevented, and noise generated from the rotary compressor 4 can be suppressed.
  • One discharge valve 23 that opens and closes one discharge port 22 having a small opening area is opened with a smaller differential pressure than the other discharge valve 27 that opens and closes the other discharge port 26 having a large opening area.
  • one of the discharge valves 23 is opened first at the time of low pressure, so that the pressure loss due to overcompression that occurs to open the discharge valves 23 and 27 is reduced.
  • the compression performance can be improved during low-speed rotation.
  • the natural frequency “f” of one discharge valve 23 that opens and closes one discharge port 22 having a small opening area is larger than the natural frequency “f” of a discharge valve 27 that opens and closes the other discharge port 26 having a large opening area. Is formed. For this reason, the responsiveness of one discharge valve 23 (the ability to close quickly when the pressure decreases) can be improved, and the backflow of gas refrigerant into the cylinder chamber 16 can be prevented to improve the compression performance. Can be achieved.
  • one discharge valve 23 that opens and closes one discharge port 22 having a small opening area is small in size and can reduce “m”.
  • one of the discharge valves 23 reduces the pressure loss due to over-compression caused by opening the discharge valve 23 during low-speed rotation by reducing “K” and opening the valve with a small differential pressure. It is possible to improve the compression performance by improving the responsiveness of the discharge valve 23 while improving the compression performance during rotation.
  • the gas refrigerant compressed in the cylinder chamber 16 is discharged from one discharge port 22 and flows into the auxiliary bearing side muffler 25, and is discharged from the other discharge port 26 and flows into the main bearing side muffler 29. . Comparing the opening areas of the discharge ports 22 and 26, since the opening area of one discharge port 22 is small, the amount of gas refrigerant discharged from one discharge port 22 and flowing into the auxiliary bearing side muffler 25 is the other. The amount of gas refrigerant discharged from the discharge port 26 and flowing into the main bearing side muffler 29 is smaller.
  • the gas refrigerant discharged from the discharge port 22 and flowing into the sub-bearing side muffler 25 is hot, and the gas refrigerant passes through the communication passage 30 formed in the vicinity of the cylinder chamber 16 to the main bearing side. Since it flows into the muffler 29, the gas refrigerant in the cylinder chamber 16 is heated in the process.
  • the compression performance of the rotary compressor 4 is lowered, but it is discharged from one discharge port 22 and flows into the auxiliary bearing side muffler 25. Since the amount of gas refrigerant to be discharged is smaller than the amount of gas refrigerant discharged from the other discharge port 26 and flowing into the main bearing side muffler 29, the gas refrigerant in the cylinder chamber 16 is heated by the gas refrigerant passing through the communication passage 30. Can be suppressed. Thereby, it can suppress that the gas refrigerant in the cylinder chamber 16 is heated by the heat from the outside, and the compression performance of the rotary compressor 4 falls.
  • the volume of the auxiliary bearing side muffler 25 can be reduced.
  • capacitance of the sub bearing side muffler 25 becomes small, regarding the lubricating oil accommodated in the airtight case 9, the oil storage amount can be increased without raising the oil level, and the performance of the rotary compressor 4 can be increased. It can be maintained for a long time.
  • the discharge ports 22 and 26 are partially formed at positions away from the cylinder chamber 16, the discharge ports 22 and 26 are discharged to the inner peripheral portion of the cylinder 15 so that the entire opening area of the discharge ports 22 and 26 communicates with the cylinder chamber 16.
  • Notches 32 and 33 are formed. By forming the discharge notches 32 and 33, the gas refrigerant compressed in the cylinder chamber 16 is smoothly discharged from the discharge ports 22 and 26, and the gas refrigerant is discharged from the discharge ports 22 and 26.
  • the compression loss due to overcompression caused by the flow path resistance up to can be reduced, and the compression performance can be improved.
  • the volume of the discharge notches 32 and 33 is larger than the volume of the discharge notch 33 communicating with the discharge port 26 having a larger opening area than the volume of the discharge notch 32 communicating with the discharge port 22 having a smaller opening area. Is also formed small. For this reason, the total volume of the discharge notches 32 and 33 can be suppressed, and the amount of gas refrigerant remaining in the discharge notches 32 and 33 at the time when the discharge of the gas refrigerant from the cylinder chamber 16 is completed is suppressed. And the re-expansion loss caused by the compressed gas refrigerant remaining in the discharge notches 32 and 33 can be suppressed.
  • the basic configuration of the rotary compressor 4A of the second embodiment is the same as that of the first embodiment. The difference is that in the first embodiment, one cylinder 15 is provided in the compression mechanism section 12 in the first embodiment. On the other hand, in the second embodiment, two cylinders 41 and 42 are provided in the compression mechanism portion 12A.
  • a partition plate 44 having a partition plate inner space 43 is provided as one closing member.
  • a sub-bearing 45 which is the other closing member, is provided on the side opposite to the side where the partition plate 44 is provided in one cylinder 41 positioned on the lower side.
  • a main bearing 46 which is the other closing member, is provided on the opposite side of the other cylinder 42 located on the upper side to the side where the partition plate 44 is provided.
  • the cylinder chamber 47 is formed inside the cylinder 41 by closing both ends of one cylinder 41 with the partition plate 44 and the auxiliary bearing 45, and both ends of the other cylinder 42 are connected to the partition plate 44 and the main bearing 46. As a result, the cylinder chamber 48 is formed inside the cylinder 42.
  • the auxiliary bearing 45 and the main bearing 46 support the rotary shaft 11, and the rotary shaft 11 is inserted into the cylinders 41 and 42.
  • An eccentric portion 20a that is eccentric from the center of rotation is provided in a portion of the rotary shaft 11 that is located in the cylinder chamber 47, and a roller 21a is fitted to the eccentric portion 20a.
  • an eccentric portion 20b that is eccentric from the center of rotation is provided at a portion of the rotary shaft 11 that is located in the cylinder chamber 48, and a roller 21b is fitted to the eccentric portion 20b.
  • the partition plate 44 is formed by connecting two of the first divided partition plate 44 a and the second divided partition plate 44 b that are overlapped in the axial direction of the rotating shaft 11.
  • the first and second divided partition plates 44a and 44b are respectively formed with concave digging portions and the first and second divided partition plates 44a and 44b are connected to form the partition plate 44
  • the first A partition plate inner space 43 is formed in the partition plate 44 by combining the dug portions of the second divided partition plates 44a and 44b.
  • a partition plate discharge port 49a that is one discharge port through which the gas refrigerant compressed in the cylinder chamber 47 is discharged into the partition plate inner space 43 is formed in the first divided partition plate 44a. Further, a partition plate discharge valve 50a that is one discharge valve that opens and closes the partition plate discharge port 49a and a valve presser 51a that regulates the maximum opening of the partition plate discharge valve 50a are attached to the first divided partition plate 44a. It has been.
  • the configuration of the second divided partition plate 44b is the same as that of the first divided partition plate 44a, and a partition plate discharge port which is one discharge port through which the gas refrigerant compressed in the cylinder chamber 48 is discharged into the partition plate inner space 43. 49b is formed. Further, a partition plate discharge valve 50b, which is one discharge valve for opening and closing the partition plate discharge port 49b, and a valve presser 51b for regulating the maximum opening of the partition plate discharge valve 50a are attached to the second divided partition plate 44b. It has been.
  • a discharge port 52 (the other discharge port 52) through which the gas refrigerant compressed in the cylinder chamber 47 is discharged is formed in the sub-bearing 45, and a discharge valve 53 (the other discharge valve) that opens and closes the discharge port 52 is formed. 53) and a valve presser 54 for restricting the maximum opening of the discharge valve 53 are attached.
  • a sub-bearing side muffler 55 into which the gas refrigerant discharged from the discharge port 52 flows is attached to the outer peripheral portion of the sub-bearing 45.
  • the main bearing 46 is formed with a discharge port 56 (the other discharge port 56) through which the gas refrigerant compressed in the cylinder chamber 48 is discharged, and a discharge valve 57 (the other discharge valve) that opens and closes the discharge port 56. 57) and a valve presser 58 for restricting the maximum opening degree of the discharge valve 57 are attached.
  • a main bearing side muffler 59 into which the gas refrigerant discharged from the discharge port 56 flows is attached to the outer peripheral portion of the main bearing 46.
  • the sub-bearing side muffler 55 and the main bearing-side muffler 59 communicate with each other via a communication passage 60 formed in the sub-bearing 45, the cylinders 41 and 42, and the main bearing 46, and flow into the sub-bearing side muffler 55.
  • the gas refrigerant flows through the communication path 60 into the main bearing side muffler 59.
  • the main bearing side muffler 59 is formed with an outflow hole 31 through which the gas refrigerant in the main bearing side muffler 59 flows into the sealed case 9.
  • partition plate discharge port 49a formed in the partition plate 44 first divided partition plate 44a
  • other discharge port 52 formed in the auxiliary bearing 45 the partition plate discharge valve 50a and the other discharge valve 53.
  • the opening area of the partition plate discharge port 49 a and the other discharge port 52 is different, and the opening area of the partition plate discharge port 49 a is smaller than the opening area of the other discharge port 52.
  • the size of the partition plate discharge valve 50 a is smaller than the size of the other discharge valve 53 in accordance with the difference in opening area. Further, the partition plate discharge valve 50 a is opened with a smaller differential pressure than the other discharge valve 53.
  • the natural frequency “f” of the partition plate discharge valve 50 a is formed larger than the natural frequency “f” of the other discharge valve 53.
  • Discharge notches 32 and 33 are formed in the inner peripheral portion of the cylinder 41 so that the entire opening area of the partition plate discharge port 49 a and the discharge port 52 communicate with the cylinder chamber 47. Comparing these discharge notches 32 and 33, the volume of one discharge notch 32 communicating with the partition plate discharge port 49a is formed smaller than the volume of the other discharge notch 33 communicating with the other discharge port 52. Has been.
  • the partition plate discharge valve 50b is formed smaller than the other discharge valve 57, and the partition plate discharge valve 50b is opened with a differential pressure smaller than that of the other discharge valve 57.
  • the natural frequency “f” of the partition plate discharge valve 50 b is formed larger than the natural frequency “f” of the other discharge valve 57.
  • the partition plate discharge valve 50a and the discharge valve 53 are opened, and the gas refrigerant is discharged from the partition plate discharge port 49a and the discharge port 52.
  • the gas refrigerant discharged from the partition plate discharge port 49 a flows into the partition plate inner space 43, and the gas refrigerant discharged from the discharge port 52 flows into the auxiliary bearing side muffler 55.
  • two discharge ports (a partition plate discharge port 49a of the partition plate 44 and a discharge port 52 of the auxiliary bearing 45) are provided as discharge ports from which the gas refrigerant compressed in the cylinder chamber 47 is discharged.
  • the differential pressure at which the partition plate discharge valve 50a that opens and closes the partition plate discharge port 49a and the other discharge valve 53 that opens and closes the discharge port 52 of the auxiliary bearing 45 are different.
  • the partition plate discharge valve 50a for opening and closing the partition plate discharge port 49a having a small opening area is opened with a differential pressure smaller than that of the other discharge valve 53 for opening and closing the other discharge port 52 having a large opening area.
  • the partition plate discharge valve 50a is opened first at the time of low pressure, so that the pressure loss due to overcompression that occurs to open the discharge valves 50a and 53 is reduced.
  • the compression performance can be improved during low-speed rotation.
  • the natural frequency “f” of the partition plate discharge valve 50 a that opens and closes the partition plate discharge port 49 a having a small opening area is equal to the natural frequency “f” of the other discharge valve 53 that opens and closes the other discharge port 52 having a large opening area. It is formed larger. For this reason, the responsiveness of the partition plate discharge valve 50a (the ability to close quickly when the pressure decreases) can be improved, and the backflow of the gas refrigerant into the cylinder chamber 47 can be prevented to improve the compression performance. Can be achieved.
  • the noise generated when the compressed gas refrigerant is discharged from the cylinder chamber 47 is greatest when the partition plate discharge valve 50a that is opened first is opened, but the partition plate discharge valve 50a is provided. Since the partition plate 44 is located between the two cylinders 41 and 42, noise leaking out of the rotary compressor 4 ⁇ / b> A can be reduced due to the sound insulation effect of the cylinders 41 and 42.
  • Part of the gas refrigerant compressed in the cylinder chamber 48 is discharged from the partition plate discharge port 49b and flows into the partition plate inner space 43, and the other part is discharged from the discharge port 56 to be discharged from the main bearing side muffler. 59 flows in. Then, the gas refrigerant discharged from the discharge port 56 and flowing into the main bearing side muffler 59 is compressed in the cylinder chamber 47 and discharged from the discharge port 52 to flow into the auxiliary bearing side muffler 55 and then communicated. The gas refrigerant that has flowed into the main bearing side muffler 59 through the passage 60 merges, and flows into the sealed case 9 from the outflow hole 31 formed in the main bearing side muffler 59.
  • the blade and the roller are separately described.
  • the blade and the roller may be integrally formed.
  • the main bearing side muffler, 30 ... the communication passage, 32 ... one discharge notch, 33 ... the other Discharge notch, 36 ... compression chamber, 41, 42 ... cylinder, 47, 48 ... cylinder chamber, 43 ... partition plate inner space, 44 ... partition plate (one closing member), 45 ... sub-bearing (other closing member) 46 ... main bearing (the other closing member), 49a, 49b ... partition plate Outflow port (one of the discharge port), 50a, 50b ... partition plate discharge valve (one of the discharge valve), 52, 56 ... the other discharge ports, 53, 57 ... the other of the discharge valve,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided are: a rotary compressor wherein it is possible to reduce discharge resistance and pulsation, improve performance, and reduce noise; and a refrigeration cycle device. A compression mechanism part (12) has a cylinder (15) and a pair of closing members (17, 18) for closing off both ends of the cylinder (15) and forming a cylinder chamber (16) in the cylinder (15). The closing members (17, 18) are provided with discharge ports (22, 26) for discharging a hydraulic fluid compressed in the cylinder chamber (16) and discharge valves (23, 27) for opening/closing the discharge ports (22, 26). One of the discharge ports (22), which is formed in one of the closing members (17), is formed so as to have a smaller opening area than that of the other discharge port (26), which is formed in the other closing member (18). One of the discharge valves (23), for opening/closing the discharge port (22) having the smaller opening area, is opened by a smaller differential pressure than that for the other discharge valve (27).

Description

回転式圧縮機及び冷凍サイクル装置Rotary compressor and refrigeration cycle apparatus
 本発明の実施形態は、回転式圧縮機及び冷凍サイクル装置に関する。 Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle apparatus.
 従来、ガス冷媒等の作動流体を圧縮する回転式圧縮機は、シリンダの両端を閉塞部材で閉塞することによりシリンダ内にシリンダ室を形成し、このシリンダ室内を偏心回転するローラと往復移動するブレードとにより吸込室と圧縮室とに二分し、吸込室内に吸い込んだ作動流体を圧縮室内で圧縮し、圧縮した作動流体を閉塞部材に形成した吐出ポートから吐出させている。このような回転式圧縮機では、過圧縮による圧縮損失を低減させるための様々な工夫がされている。例えば、下記特許文献1に記載された回転式圧縮機では、シリンダの両側に位置する閉塞部材のそれぞれに吐出ポートを形成すると共に各吐出ポートごとに吐出弁を設け、圧縮室内の圧力が所定圧に上昇した場合に吐出弁を開弁させて作動流体を各吐出ポートから吐出させている。これにより、各吐出ポートを通過する作動流体の量が少なくなり、作動流体が吐出ポートを通過する際の流路抵抗が原因となる過圧縮による圧縮損失を低減させ、圧縮性能を向上させている。 2. Description of the Related Art Conventionally, a rotary compressor that compresses a working fluid such as a gas refrigerant forms a cylinder chamber in a cylinder by closing both ends of the cylinder with a closing member, and a blade that reciprocates with a roller that rotates eccentrically in the cylinder chamber. Thus, the suction chamber and the compression chamber are divided into two, the working fluid sucked into the suction chamber is compressed in the compression chamber, and the compressed working fluid is discharged from a discharge port formed in the closing member. In such a rotary compressor, various contrivances are made to reduce the compression loss due to overcompression. For example, in the rotary compressor described in Patent Document 1 below, a discharge port is formed in each of the closing members located on both sides of the cylinder, and a discharge valve is provided for each discharge port so that the pressure in the compression chamber is a predetermined pressure. When the pressure rises, the discharge valve is opened to discharge the working fluid from each discharge port. This reduces the amount of working fluid that passes through each discharge port, reduces the compression loss due to over-compression caused by the flow path resistance when the working fluid passes through the discharge port, and improves the compression performance. .
特開2013-83245号公報JP 2013-83245 A
 しかしながら、特許文献1に記載された回転式圧縮機においては、二つの吐出弁が開弁するタイミングについては何ら言及されていない。このため、圧縮室内で圧縮された作動流体が吐出される二つの吐出ポートの吐出弁が同時に開弁される場合には、吐出圧力脈動が共鳴して騒音が増大する。また、吐出弁の開き遅れや閉じ遅れが生じた場合には、圧縮損失が増大する。 However, in the rotary compressor described in Patent Document 1, there is no mention of the timing at which the two discharge valves open. For this reason, when the discharge valves of the two discharge ports through which the working fluid compressed in the compression chamber is simultaneously opened, the discharge pressure pulsation resonates and noise increases. Further, when a delay in opening or closing the discharge valve occurs, the compression loss increases.
 本発明の実施形態の目的は、一つの圧縮室内で圧縮された作動流体が二つの吐出ポートから吐出される場合における吐出圧力脈動による共鳴を防止し、さらに、低速回転時において吐出弁を開弁するために生じる過圧縮による圧縮損失を低減させて低速回転時の圧縮性能を向上させることができる回転式圧縮機及び冷凍サイクル装置を得るにある。 An object of an embodiment of the present invention is to prevent resonance due to discharge pressure pulsation when a working fluid compressed in one compression chamber is discharged from two discharge ports, and to open the discharge valve during low-speed rotation. Therefore, there is a need to obtain a rotary compressor and a refrigeration cycle apparatus capable of reducing compression loss caused by overcompression and improving compression performance during low-speed rotation.
 実施形態の回転式圧縮機は、電動機部とこの電動機部に連結された回転軸により駆動される圧縮機構部とが密閉ケース内に収容され、圧縮機構部で作動流体を圧縮する回転式圧縮機において、圧縮機構部は、シリンダと、このシリンダの両端を閉塞してこのシリンダ内にシリンダ室を形成する一対の閉塞部材と、この閉塞部材を貫通する回転軸に嵌合されてシリンダ室内で偏心回転するローラと、閉塞部材に形成されてシリンダ室内に形成される圧縮室内で圧縮された作動流体が吐出される吐出ポートと、吐出ポートを開閉する吐出弁とを有し、一対の閉塞部材における一方の閉塞部材に形成された一方の吐出ポートは、一対の閉塞部材における他方の閉塞部材に形成された他方の吐出ポートより開口面積が小さく形成され、開口面積が小さい一方の吐出ポートを開閉する一方の吐出弁は、吐出弁における他方の吐出弁より小さい差圧で開弁されることを特徴とする。 The rotary compressor according to the embodiment is a rotary compressor in which an electric motor unit and a compression mechanism unit driven by a rotary shaft connected to the electric motor unit are housed in a hermetically sealed case, and the working fluid is compressed by the compression mechanism unit. The compression mechanism section is fitted to a cylinder, a pair of blocking members that close both ends of the cylinder to form a cylinder chamber in the cylinder, and a rotating shaft that passes through the blocking member, and is eccentric in the cylinder chamber. A rotating roller; a discharge port that is formed in the cylinder chamber and is compressed in the compression chamber formed in the cylinder chamber; and a discharge valve that opens and closes the discharge port. One discharge port formed in one closing member has a smaller opening area than the other discharge port formed in the other closing member of the pair of closing members, and the opening area is small. One of the discharge valve for opening and closing the have one discharge port, characterized in that it is open at the other of the discharge valve is smaller than the differential pressure at the discharge valve.
 また、実施形態の冷凍サイクル装置は、上記回転式圧縮機と、回転式圧縮機に接続される凝縮器と、凝縮器に接続される膨張装置と、膨張装置と回転式圧縮機との間に接続される蒸発器とを備えることを特徴とする。 In addition, the refrigeration cycle apparatus of the embodiment includes the rotary compressor, a condenser connected to the rotary compressor, an expansion device connected to the condenser, and an expansion device and the rotary compressor. And a connected evaporator.
 これにより、吐出抵抗の低減や脈動の低減を図り、性能向上や騒音の低減を図ることができる回転式圧縮機及び冷凍サイクル装置を提供できる。 Thus, it is possible to provide a rotary compressor and a refrigeration cycle apparatus capable of reducing discharge resistance and pulsation, improving performance and reducing noise.
第1の実施形態における一部断面で示した回転式圧縮機を含む冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus containing the rotary compressor shown in the partial cross section in 1st Embodiment. 図1における圧縮機構部の断面図である。It is sectional drawing of the compression mechanism part in FIG. 第2の実施形態における一部断面で示した回転式圧縮機を含む冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus containing the rotary compressor shown in the partial cross section in 2nd Embodiment.
 (第1の実施形態)
 第1の実施形態について、図1及び図2に基づいて説明する。図1は冷凍サイクル装置1の全体構成を示しており、この冷凍サイクル装置1は、圧縮機本体2とアキュムレータ3とを有している。また、圧縮機本体2内に設けられ、作動流体であるガス冷媒を圧縮する回転式圧縮機4と、圧縮機本体2に接続されて圧縮機本体2から吐出された高圧・高温のガス冷媒を凝縮して液冷媒にする凝縮器5と、凝縮器5に接続されて液冷媒を減圧する膨張装置6と、膨張装置6とアキュムレータ3との間に接続されて膨張した液冷媒を蒸発させる蒸発器7とを有している。アキュムレータ3と圧縮機本体2とは、ガス冷媒が流れる吸込流路8により接続されている。
(First embodiment)
1st Embodiment is described based on FIG.1 and FIG.2. FIG. 1 shows the overall configuration of a refrigeration cycle apparatus 1, which has a compressor body 2 and an accumulator 3. Further, a rotary compressor 4 provided in the compressor body 2 for compressing a gas refrigerant as a working fluid, and a high-pressure and high-temperature gas refrigerant connected to the compressor body 2 and discharged from the compressor body 2 A condenser 5 that condenses into liquid refrigerant, an expansion device 6 that is connected to the condenser 5 to depressurize the liquid refrigerant, and an evaporation device that is connected between the expansion device 6 and the accumulator 3 to evaporate the expanded liquid refrigerant. And a container 7. The accumulator 3 and the compressor body 2 are connected by a suction flow path 8 through which a gas refrigerant flows.
 圧縮機本体2は、円筒状に形成された密閉ケース9を有し、密閉ケース9内には、上方側に位置する電動機部10と、電動機部10に連結された回転軸11と、回転軸11を介して電動機部10により駆動される圧縮機構部12とが収容されている。密閉ケース9内の下部には、潤滑油が収容されている。 The compressor main body 2 has a sealed case 9 formed in a cylindrical shape. In the sealed case 9, an electric motor unit 10 located on the upper side, a rotating shaft 11 connected to the electric motor unit 10, and a rotating shaft A compression mechanism unit 12 driven by the electric motor unit 10 via 11 is accommodated. Lubricating oil is stored in the lower part of the sealed case 9.
 電動機部10は、回転軸11が固定された回転子13と、密閉ケース9に固定されて回転子13を囲む位置に配置された固定子14とを有している。回転子13には永久磁石(図示せず)が設けられ、固定子14には通電用のコイル(図示せず)が巻かれている。コイルに通電することにより、回転子13と回転軸11とが回転する。 The electric motor unit 10 includes a rotor 13 to which the rotating shaft 11 is fixed, and a stator 14 that is fixed to the sealed case 9 and arranged at a position surrounding the rotor 13. The rotor 13 is provided with a permanent magnet (not shown), and a current-carrying coil (not shown) is wound around the stator 14. By energizing the coil, the rotor 13 and the rotating shaft 11 rotate.
 圧縮機構部12は、ガス冷媒を圧縮する部分であり、シリンダ15と、このシリンダ15の両端を閉塞してこのシリンダ15内にシリンダ室16を形成する一対の閉塞部材である副軸受17及び主軸受18と、ブレード19(図2参照)とを有している。これらの副軸受17と主軸受18とはシリンダ15内に挿通されている回転軸11を軸支している。回転軸11におけるシリンダ室16内に位置する部分には回転中心から偏心した偏心部20が設けられ、この偏心部20にはローラ21が嵌合されている。ローラ21は、回転軸11の回転時に外周面をシリンダ15の内周面に油膜を介して線接触させながら偏心回転するように配置されている。ブレード19については後述する図2において説明する。 The compression mechanism portion 12 is a portion that compresses the gas refrigerant. The compression mechanism portion 12 includes a cylinder 15, a sub-bearing 17 that is a pair of closing members that close both ends of the cylinder 15 and form a cylinder chamber 16 in the cylinder 15, and the main bearing 17. It has a bearing 18 and a blade 19 (see FIG. 2). The auxiliary bearing 17 and the main bearing 18 pivotally support the rotating shaft 11 inserted into the cylinder 15. An eccentric portion 20 that is eccentric from the center of rotation is provided at a portion of the rotating shaft 11 that is located in the cylinder chamber 16, and a roller 21 is fitted to the eccentric portion 20. The roller 21 is arranged so as to rotate eccentrically while the outer peripheral surface is in line contact with the inner peripheral surface of the cylinder 15 via an oil film when the rotary shaft 11 rotates. The blade 19 will be described later with reference to FIG.
 シリンダ室16を形成する一方の閉塞部材である副軸受17には、シリンダ室16内で圧縮されたガス冷媒が吐出される吐出ポート22(一方の吐出ポート22)が形成され、さらに、吐出ポート22を開閉する吐出弁23(一方の吐出弁23)と、吐出弁23の最大開度を規制する弁押え24とが取付けられている。また、副軸受17の外周部には、吐出ポート22から吐出されたガス冷媒が流入する副軸受側マフラ25が取付けられている。 A discharge port 22 (one discharge port 22) through which the gas refrigerant compressed in the cylinder chamber 16 is discharged is formed in the auxiliary bearing 17 which is one closing member forming the cylinder chamber 16, and further, the discharge port A discharge valve 23 (one discharge valve 23) that opens and closes 22 and a valve presser 24 that regulates the maximum opening of the discharge valve 23 are attached. A sub-bearing side muffler 25 into which the gas refrigerant discharged from the discharge port 22 flows is attached to the outer peripheral portion of the sub-bearing 17.
 シリンダ室16を形成する他方の閉塞部材である主軸受18には、シリンダ室16内で圧縮されたガス冷媒が吐出される吐出ポート26(他方の吐出ポート26)が形成され、さらに、吐出ポート26を開閉する吐出弁27(他方の吐出弁27)と、吐出弁27の最大開度を規制する弁押え28とが取付けられている。また、主軸受18の外周部には、吐出ポート26から吐出されたガス冷媒が流入する主軸受側マフラ29が取付けられている。 The main bearing 18 which is the other closing member forming the cylinder chamber 16 is formed with a discharge port 26 (the other discharge port 26) through which the gas refrigerant compressed in the cylinder chamber 16 is discharged. A discharge valve 27 (the other discharge valve 27) that opens and closes the valve 26 and a valve presser 28 that regulates the maximum opening of the discharge valve 27 are attached. A main bearing side muffler 29 into which the gas refrigerant discharged from the discharge port 26 flows is attached to the outer peripheral portion of the main bearing 18.
 主軸受側マフラ29内と副軸受側マフラ25内とは、副軸受17とシリンダ15と主軸受18とに形成された連通路30を介して連通され、副軸受側マフラ25内に流入したガス冷媒は連通路30を通って主軸受側マフラ29内に流入するようになっている。主軸受側マフラ29には、主軸受側マフラ29内のガス冷媒を密閉ケース9内に流出させる流出孔31が形成されている。 The main bearing side muffler 29 and the sub bearing side muffler 25 communicate with each other via a communication passage 30 formed in the sub bearing 17, the cylinder 15, and the main bearing 18, and the gas flowing into the sub bearing side muffler 25. The refrigerant flows into the main bearing side muffler 29 through the communication path 30. The main bearing side muffler 29 is formed with an outflow hole 31 through which the gas refrigerant in the main bearing side muffler 29 flows into the sealed case 9.
 副軸受側マフラ25と主軸受側マフラ29との容積を比べると、副軸受側マフラ25の容積は、主軸受側マフラ29の容積より小さく形成されている。 Comparing the volume of the sub bearing side muffler 25 and the main bearing side muffler 29, the volume of the sub bearing side muffler 25 is smaller than the volume of the main bearing side muffler 29.
 ここで、一方の吐出ポート22と他方の吐出ポート26、及び、一方の吐出弁23と他方の吐出弁27との差異について説明する。 Here, the difference between one discharge port 22 and the other discharge port 26, and one discharge valve 23 and the other discharge valve 27 will be described.
 一方の吐出ポート22と他方の吐出ポート26とは開口面積が異なり、一方の吐出ポート22の開口面積は他方の吐出ポート26の開口面積より小さく形成されている。この開口面積の差異に応じ、一方の吐出弁23のサイズは他方の吐出弁27のサイズより小さく形成されている。さらに、一方の吐出弁23は他方の吐出弁27より小さな差圧(後述する圧縮室内の圧力と圧縮室の外側の圧力との差)で開弁されるようになっている。 The opening area of one discharge port 22 and the other discharge port 26 are different, and the opening area of one discharge port 22 is smaller than the opening area of the other discharge port 26. Depending on the difference in opening area, the size of one discharge valve 23 is smaller than the size of the other discharge valve 27. Further, one discharge valve 23 is opened with a differential pressure smaller than that of the other discharge valve 27 (a difference between a pressure in a compression chamber and a pressure outside the compression chamber, which will be described later).
 また、吐出弁23、26の固有振動数“f”は、“f=√(K/m)÷2π”で求めることができる。但し、Kは吐出弁23、26のばね定数、mは吐出弁23、26の開閉部の質量である。そして、一方の吐出弁23の固有振動数“f”は、他方の吐出弁27の固有振動数“f”より大きく形成されている。 Further, the natural frequency “f” of the discharge valves 23 and 26 can be obtained by “f = √ (K / m) ÷ 2π”. However, K is the spring constant of the discharge valves 23 and 26, and m is the mass of the opening / closing part of the discharge valves 23 and 26. The natural frequency “f” of one discharge valve 23 is formed to be larger than the natural frequency “f” of the other discharge valve 27.
 吐出ポート22、26は、設計制約上の理由から一部分がシリンダ室16から外れる位置に形成されている。そして、シリンダ15の内周部には、吐出ポート22、26の開口面積の全体をシリンダ室16に連通させるように吐出切欠き32、33が形成されている。これらの吐出切欠き32、33を比較すると、副軸受17に形成されている一方の吐出ポート22に連通する一方の吐出切欠き32の容積は小さく形成され、主軸受18に形成されている他方の吐出ポート26に連通する他方の吐出切欠き33の容積は大きく形成されている。 The discharge ports 22 and 26 are formed at positions where a part is removed from the cylinder chamber 16 for reasons of design restrictions. Discharge notches 32 and 33 are formed in the inner peripheral portion of the cylinder 15 so that the entire opening area of the discharge ports 22 and 26 communicates with the cylinder chamber 16. Comparing these discharge notches 32 and 33, the volume of one discharge notch 32 communicating with one discharge port 22 formed in the sub-bearing 17 is formed small, and the other formed in the main bearing 18 is the other. The volume of the other discharge notch 33 communicating with the discharge port 26 is formed large.
 図2は、圧縮機構部12を示す断面図である。シリンダ15にはブレード溝34が形成され、このブレード溝34には往復移動可能にブレード19が収容されている。ブレード19は、先端部をローラ21の外周面に当接させるように付勢されており、ブレード19の先端部がローラ21の外周面に当接されることによりシリンダ室16内が吸込室35と圧縮室36とに仕切られる。吸込室35には吸込流路8が連通され、圧縮室36には吐出ポート22(26)が連通されている。 FIG. 2 is a cross-sectional view showing the compression mechanism section 12. A blade groove 34 is formed in the cylinder 15, and a blade 19 is accommodated in the blade groove 34 so as to be reciprocally movable. The blade 19 is urged so that the tip end thereof is brought into contact with the outer peripheral surface of the roller 21, and the tip of the blade 19 is brought into contact with the outer peripheral surface of the roller 21. And the compression chamber 36. The suction flow path 8 is communicated with the suction chamber 35, and the discharge port 22 (26) is communicated with the compression chamber 36.
 このような構成において、この回転式圧縮機4においては、電動機部10に通電されることにより回転軸11が回転子13と共に中心線回りに回転し、この回転により圧縮機構部12が駆動され、シリンダ室16内でガス冷媒が圧縮される。 In such a configuration, in the rotary compressor 4, when the electric motor unit 10 is energized, the rotating shaft 11 rotates around the center line together with the rotor 13, and the compression mechanism unit 12 is driven by this rotation. The gas refrigerant is compressed in the cylinder chamber 16.
 圧縮されたガス冷媒の圧力が設定圧に達すると、吐出弁23、27が開弁され、ガス冷媒が吐出ポート22、26から吐出される。吐出ポート26から吐出されたガス冷媒は主軸受側マフラ29内に流入し、吐出ポート22から吐出されたガス冷媒は副軸受側マフラ25内に流入した後に連通路30内を通って主軸受側マフラ29内に流入する。主軸受側マフラ29に流入したガス冷媒は、流出孔31から密閉ケース9内に流出する。 When the pressure of the compressed gas refrigerant reaches the set pressure, the discharge valves 23 and 27 are opened, and the gas refrigerant is discharged from the discharge ports 22 and 26. The gas refrigerant discharged from the discharge port 26 flows into the main bearing side muffler 29, and the gas refrigerant discharged from the discharge port 22 flows into the auxiliary bearing side muffler 25 and then passes through the communication path 30 to the main bearing side. It flows into the muffler 29. The gas refrigerant flowing into the main bearing side muffler 29 flows out from the outflow hole 31 into the sealed case 9.
 密閉ケース9内に流出したガス冷媒は、凝縮器5、膨張装置6、蒸発器7の順に流れて回転式圧縮機4に戻り、冷凍サイクル装置1での冷凍サイクルが実行される。 The gas refrigerant that has flowed into the sealed case 9 flows in the order of the condenser 5, the expansion device 6, and the evaporator 7, returns to the rotary compressor 4, and the refrigeration cycle in the refrigeration cycle apparatus 1 is executed.
 ここで、圧縮機構部12は、シリンダ室16(より詳しくは圧縮室36)内で圧縮されたガス冷媒が吐出される吐出ポートとして、副軸受17に設けられた一方の吐出ポート22と、主軸受18に設けられた他方の吐出ポート26との二つの吐出ポート22、26を有している。そして、一方の吐出ポート22を開閉する一方の吐出弁23と他方の吐出ポート26を開閉する他方の吐出弁27とが開弁する差圧が異なっている。このため、各吐出ポート22、26から吐出されるガス冷媒の吐出量がともに少なくなり、しかも、各吐出ポート22、26を開閉する吐出弁23、27が開弁するタイミングが異なるので、ガス冷媒が各吐出ポート22、26から吐出される際の脈動を抑えることができるとともに脈動の共鳴を防止することができ、回転式圧縮機4から発生する騒音を抑制することかできる。 Here, the compression mechanism unit 12 includes one discharge port 22 provided in the sub-bearing 17 as a discharge port through which the gas refrigerant compressed in the cylinder chamber 16 (more specifically, the compression chamber 36) is discharged, It has two discharge ports 22 and 26 with the other discharge port 26 provided in the bearing 18. The differential pressure at which one discharge valve 23 that opens and closes one discharge port 22 and the other discharge valve 27 that opens and closes the other discharge port 26 open is different. For this reason, both the discharge amount of the gas refrigerant discharged from the discharge ports 22 and 26 is reduced, and the timing of opening the discharge valves 23 and 27 for opening and closing the discharge ports 22 and 26 is different. Can be suppressed from being discharged from the discharge ports 22 and 26, and pulsation resonance can be prevented, and noise generated from the rotary compressor 4 can be suppressed.
 開口面積の小さい一方の吐出ポート22を開閉する一方の吐出弁23が、開口面積が大きい他方の吐出ポート26を開閉する他方の吐出弁27より小さな差圧で開弁されるので、低速回転時であってガス冷媒の吐出量が少ない段階では、低い圧力の時点で一方の吐出弁23が先に開弁されるので、吐出弁23、27を開弁させるために生じる過圧縮による圧力損失を低減させることができ、低速回転時における圧縮性能の向上を図ることができる。 One discharge valve 23 that opens and closes one discharge port 22 having a small opening area is opened with a smaller differential pressure than the other discharge valve 27 that opens and closes the other discharge port 26 having a large opening area. However, when the discharge amount of the gas refrigerant is small, one of the discharge valves 23 is opened first at the time of low pressure, so that the pressure loss due to overcompression that occurs to open the discharge valves 23 and 27 is reduced. The compression performance can be improved during low-speed rotation.
 開口面積が小さい一方の吐出ポート22を開閉する一方の吐出弁23の固有振動数“f”が、開口面積が大きい他方の吐出ポート26を開閉する吐出弁27の固有振動数“f”より大きく形成されている。このため、一方の吐出弁23の応答性(圧力が低下した場合に速やかに閉弁する性能)を良くすることができ、ガス冷媒のシリンダ室16内への逆流を防止して圧縮性能の向上を図ることができる。 The natural frequency “f” of one discharge valve 23 that opens and closes one discharge port 22 having a small opening area is larger than the natural frequency “f” of a discharge valve 27 that opens and closes the other discharge port 26 having a large opening area. Is formed. For this reason, the responsiveness of one discharge valve 23 (the ability to close quickly when the pressure decreases) can be improved, and the backflow of gas refrigerant into the cylinder chamber 16 can be prevented to improve the compression performance. Can be achieved.
 ここで、小さい差圧で吐出弁を開弁させるためには、その吐出弁のばね定数“K”を小さくする必要があり、ばね定数“K”を小さくすると吐出弁の応答性が低下することになる。しかし、吐出弁の開閉部の質量“m”を小さくすれば、上記した数式“f=√(K/m)÷2π”から分かるように、“K”を小さくしても“f”を大きくすることができる。 Here, in order to open the discharge valve with a small differential pressure, it is necessary to reduce the spring constant “K” of the discharge valve. If the spring constant “K” is decreased, the response of the discharge valve is lowered. become. However, if the mass “m” of the opening / closing part of the discharge valve is reduced, as can be seen from the above formula “f = √ (K / m) ÷ 2π”, “f” is increased even if “K” is reduced. can do.
 したがって、開口面積が小さい一方の吐出ポート22を開閉する一方の吐出弁23はサイズが小さく“m”を小さくできる。 Therefore, one discharge valve 23 that opens and closes one discharge port 22 having a small opening area is small in size and can reduce “m”.
このため、一方の吐出弁23は、“K”を小さくして小さい差圧で開弁させることにより低速回転時における吐出弁23を開弁するために生じる過圧縮による圧力損失を低減させて低速回転時の圧縮性能の向上を図りつつ、その吐出弁23の応答性を良くすることによる圧縮性能の向上を図ることができる。 For this reason, one of the discharge valves 23 reduces the pressure loss due to over-compression caused by opening the discharge valve 23 during low-speed rotation by reducing “K” and opening the valve with a small differential pressure. It is possible to improve the compression performance by improving the responsiveness of the discharge valve 23 while improving the compression performance during rotation.
 シリンダ室16内で圧縮されたガス冷媒は、一方の吐出ポート22から吐出されて副軸受側マフラ25内に流入するとともに、他方の吐出ポート26から吐出されて主軸受側マフラ29内に流入する。吐出ポート22、26の開口面積を比較すると、一方の吐出ポート22の開口面積が小さいので、一方の吐出ポート22から吐出されて副軸受側マフラ25内に流入するガス冷媒の量は、他方の吐出ポート26から吐出されて主軸受側マフラ29内に流入するガス冷媒の量より少なくなっている。 The gas refrigerant compressed in the cylinder chamber 16 is discharged from one discharge port 22 and flows into the auxiliary bearing side muffler 25, and is discharged from the other discharge port 26 and flows into the main bearing side muffler 29. . Comparing the opening areas of the discharge ports 22 and 26, since the opening area of one discharge port 22 is small, the amount of gas refrigerant discharged from one discharge port 22 and flowing into the auxiliary bearing side muffler 25 is the other. The amount of gas refrigerant discharged from the discharge port 26 and flowing into the main bearing side muffler 29 is smaller.
 ここで、吐出ポート22から吐出されて副軸受側マフラ25内に流入したガス冷媒は高温であり、このガス冷媒はシリンダ室16の近傍に形成されている連通路30内を通って主軸受側マフラ29内に流入するので、その過程で、シリンダ室16内のガス冷媒を加熱することになる。 Here, the gas refrigerant discharged from the discharge port 22 and flowing into the sub-bearing side muffler 25 is hot, and the gas refrigerant passes through the communication passage 30 formed in the vicinity of the cylinder chamber 16 to the main bearing side. Since it flows into the muffler 29, the gas refrigerant in the cylinder chamber 16 is heated in the process.
 シリンダ室16内のガス冷媒が外部からの熱で加熱されると回転式圧縮機4の圧縮性能が低下することになるが、一方の吐出ポート22から吐出されて副軸受側マフラ25内に流入するガス冷媒の量は、他方の吐出ポート26から吐出されて主軸受側マフラ29内に流入するガス冷媒の量より少ないため、連通路30を通るガス冷媒によるシリンダ室16内のガス冷媒の加熱を抑制することができる。これにより、シリンダ室16内のガス冷媒が外部からの熱により加熱されて回転式圧縮機4の圧縮性能が低下するということを抑制することができる。 When the gas refrigerant in the cylinder chamber 16 is heated by heat from the outside, the compression performance of the rotary compressor 4 is lowered, but it is discharged from one discharge port 22 and flows into the auxiliary bearing side muffler 25. Since the amount of gas refrigerant to be discharged is smaller than the amount of gas refrigerant discharged from the other discharge port 26 and flowing into the main bearing side muffler 29, the gas refrigerant in the cylinder chamber 16 is heated by the gas refrigerant passing through the communication passage 30. Can be suppressed. Thereby, it can suppress that the gas refrigerant in the cylinder chamber 16 is heated by the heat from the outside, and the compression performance of the rotary compressor 4 falls.
 また、一方の吐出ポート22から吐出されて副軸受側マフラ25内に流入するガス冷媒の量が少なくなるので、副軸受側マフラ25の容積を小さくすることができる。そして、副軸受側マフラ25の容積が小さくなることにより、密閉ケース9内に収容される潤滑油に関し、油面を上昇させることなく貯油量を増やすことができ、回転式圧縮機4の性能を長期間に亘って維持することができる。 Further, since the amount of the gas refrigerant discharged from one discharge port 22 and flowing into the auxiliary bearing side muffler 25 is reduced, the volume of the auxiliary bearing side muffler 25 can be reduced. And since the capacity | capacitance of the sub bearing side muffler 25 becomes small, regarding the lubricating oil accommodated in the airtight case 9, the oil storage amount can be increased without raising the oil level, and the performance of the rotary compressor 4 can be increased. It can be maintained for a long time.
 吐出ポート22、26は、一部分がシリンダ室16から外れる位置に形成されているので、吐出ポート22、26の開口面積の全体をシリンダ室16に連通させるようにシリンダ15の内周部に吐出切欠き32、33が形成されている。これらの吐出切欠き32、33が形成されていることにより、シリンダ室16内で圧縮されたガス冷媒がスムーズに吐出ポート22、26から吐出されるようになり、ガス冷媒が吐出ポート22、26に至るまでの流路抵抗が原因となる過圧縮による圧縮損失を低減させることができ、圧縮性能の向上を図ることができる。 Since the discharge ports 22 and 26 are partially formed at positions away from the cylinder chamber 16, the discharge ports 22 and 26 are discharged to the inner peripheral portion of the cylinder 15 so that the entire opening area of the discharge ports 22 and 26 communicates with the cylinder chamber 16. Notches 32 and 33 are formed. By forming the discharge notches 32 and 33, the gas refrigerant compressed in the cylinder chamber 16 is smoothly discharged from the discharge ports 22 and 26, and the gas refrigerant is discharged from the discharge ports 22 and 26. The compression loss due to overcompression caused by the flow path resistance up to can be reduced, and the compression performance can be improved.
 更にまた、これらの吐出切欠き32、33の容積は、開口面積の小さい吐出ポート22に連通する吐出切欠き32の容積が、開口面積の大きい吐出ポート26に連通する吐出切欠き33の容積よりも小さく形成されている。このため、吐出切欠き32、33の総容積を抑制することができるとともにシリンダ室16からのガス冷媒の吐出が終了した時点における吐出切欠き32、33内に残留するガス冷媒の量を抑制することができ、圧縮されたガス冷媒が吐出切欠き32、33内に残留することが原因となる再膨張損失を抑制することができる。 Furthermore, the volume of the discharge notches 32 and 33 is larger than the volume of the discharge notch 33 communicating with the discharge port 26 having a larger opening area than the volume of the discharge notch 32 communicating with the discharge port 22 having a smaller opening area. Is also formed small. For this reason, the total volume of the discharge notches 32 and 33 can be suppressed, and the amount of gas refrigerant remaining in the discharge notches 32 and 33 at the time when the discharge of the gas refrigerant from the cylinder chamber 16 is completed is suppressed. And the re-expansion loss caused by the compressed gas refrigerant remaining in the discharge notches 32 and 33 can be suppressed.
 (第2の実施形態)
 第2の実施形態について、図3に基づいて説明する。なお、第1の実施形態において説明した構成要素と同じ構成要素には同じ符号を付け、重複する説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same component as the component demonstrated in 1st Embodiment, and the overlapping description is abbreviate | omitted.
 第2の実施形態の回転式圧縮機4Aの基本的構成は第1の実施形態と同じであり、異なる点は、第1の実施形態では圧縮機構部12に一つのシリンダ15が設けられているのに対し、第2の実施形態では圧縮機構部12Aに二つのシリンダ41、42が設けられている点である。 The basic configuration of the rotary compressor 4A of the second embodiment is the same as that of the first embodiment. The difference is that in the first embodiment, one cylinder 15 is provided in the compression mechanism section 12 in the first embodiment. On the other hand, in the second embodiment, two cylinders 41 and 42 are provided in the compression mechanism portion 12A.
 隣り合うシリンダ41、42の間には、内部に仕切板内空間43を有する仕切板44が一方の閉塞部材として設けられている。二つのシリンダ41、42のうち、下側に位置する一方のシリンダ41における仕切板44が設けられている側の反対側には他方の閉塞部材である副軸受45が設けられている。 Between the adjacent cylinders 41, 42, a partition plate 44 having a partition plate inner space 43 is provided as one closing member. Of the two cylinders 41, 42, a sub-bearing 45, which is the other closing member, is provided on the side opposite to the side where the partition plate 44 is provided in one cylinder 41 positioned on the lower side.
 上側に位置する他方のシリンダ42における仕切板44が設けられている側の反対側には他方の閉塞部材である主軸受46が設けられている。 A main bearing 46, which is the other closing member, is provided on the opposite side of the other cylinder 42 located on the upper side to the side where the partition plate 44 is provided.
 そして、一方のシリンダ41の両端が仕切板44と副軸受45とで閉塞されることによりシリンダ41の内部にシリンダ室47が形成され、他方のシリンダ42の両端が仕切板44と主軸受46とで閉塞されることによりシリンダ42の内部にシリンダ室48が形成される。 The cylinder chamber 47 is formed inside the cylinder 41 by closing both ends of one cylinder 41 with the partition plate 44 and the auxiliary bearing 45, and both ends of the other cylinder 42 are connected to the partition plate 44 and the main bearing 46. As a result, the cylinder chamber 48 is formed inside the cylinder 42.
 これらの副軸受45と主軸受46とは回転軸11を軸支しており、回転軸11はシリンダ41、42内に挿通されている。回転軸11におけるシリンダ室47内に位置する部分には回転中心から偏心した偏心部20aが設けられ、この偏心部20aにはローラ21aが嵌合されている。さらに、回転軸11におけるシリンダ室48内に位置する部分には回転中心から偏心した偏心部20bが設けられ、この偏心部20bにもローラ21bが嵌合されている。 The auxiliary bearing 45 and the main bearing 46 support the rotary shaft 11, and the rotary shaft 11 is inserted into the cylinders 41 and 42. An eccentric portion 20a that is eccentric from the center of rotation is provided in a portion of the rotary shaft 11 that is located in the cylinder chamber 47, and a roller 21a is fitted to the eccentric portion 20a. Furthermore, an eccentric portion 20b that is eccentric from the center of rotation is provided at a portion of the rotary shaft 11 that is located in the cylinder chamber 48, and a roller 21b is fitted to the eccentric portion 20b.
 仕切板44は、回転軸11の軸方向に重ね合わされた第1分割仕切板44aと第2分割仕切板44bとの二つを連結することにより形成されている。第1・第2分割仕切板44a、44bにはそれぞれ凹状の掘り込み部が形成され、第1・第2分割仕切板44a、44bを連結して仕切板44を形成した場合に、第1・第2分割仕切板44a、44bの掘り込み部が合わさることにより仕切板44内に仕切板内空間43が形成されている。 The partition plate 44 is formed by connecting two of the first divided partition plate 44 a and the second divided partition plate 44 b that are overlapped in the axial direction of the rotating shaft 11. When the first and second divided partition plates 44a and 44b are respectively formed with concave digging portions and the first and second divided partition plates 44a and 44b are connected to form the partition plate 44, the first A partition plate inner space 43 is formed in the partition plate 44 by combining the dug portions of the second divided partition plates 44a and 44b.
 第1分割仕切板44aには、シリンダ室47内で圧縮されたガス冷媒が仕切板内空間43に吐出される一方の吐出ポートである仕切板吐出ポート49aが形成されている。さらに、第1分割仕切板44aには、仕切板吐出ポート49aを開閉する一方の吐出弁である仕切板吐出弁50aと、仕切板吐出弁50aの最大開度を規制する弁押え51aとが取付けられている。 A partition plate discharge port 49a that is one discharge port through which the gas refrigerant compressed in the cylinder chamber 47 is discharged into the partition plate inner space 43 is formed in the first divided partition plate 44a. Further, a partition plate discharge valve 50a that is one discharge valve that opens and closes the partition plate discharge port 49a and a valve presser 51a that regulates the maximum opening of the partition plate discharge valve 50a are attached to the first divided partition plate 44a. It has been.
 第2分割仕切板44bの構成は第1分割仕切板44aと同様であり、シリンダ室48内で圧縮されたガス冷媒が仕切板内空間43に吐出される一方の吐出ポートである仕切板吐出ポート49bが形成されている。さらに、第2分割仕切板44bには、仕切板吐出ポート49bを開閉する一方の吐出弁である仕切板吐出弁50bと、仕切板吐出弁50aの最大開度を規制する弁押え51bとが取付けられている。 The configuration of the second divided partition plate 44b is the same as that of the first divided partition plate 44a, and a partition plate discharge port which is one discharge port through which the gas refrigerant compressed in the cylinder chamber 48 is discharged into the partition plate inner space 43. 49b is formed. Further, a partition plate discharge valve 50b, which is one discharge valve for opening and closing the partition plate discharge port 49b, and a valve presser 51b for regulating the maximum opening of the partition plate discharge valve 50a are attached to the second divided partition plate 44b. It has been.
 副軸受45には、シリンダ室47内で圧縮されたガス冷媒が吐出される吐出ポート52(他方の吐出ポート52)が形成され、さらに、吐出ポート52を開閉する吐出弁53(他方の吐出弁53)と、吐出弁53の最大開度を規制する弁押え54とが取付けられている。また、副軸受45の外周部には、吐出ポート52から吐出されたガス冷媒が流入する副軸受側マフラ55が取付けられている。 A discharge port 52 (the other discharge port 52) through which the gas refrigerant compressed in the cylinder chamber 47 is discharged is formed in the sub-bearing 45, and a discharge valve 53 (the other discharge valve) that opens and closes the discharge port 52 is formed. 53) and a valve presser 54 for restricting the maximum opening of the discharge valve 53 are attached. A sub-bearing side muffler 55 into which the gas refrigerant discharged from the discharge port 52 flows is attached to the outer peripheral portion of the sub-bearing 45.
 主軸受46には、シリンダ室48内で圧縮されたガス冷媒が吐出される吐出ポート56(他方の吐出ポート56)が形成され、さらに、吐出ポート56を開閉する吐出弁57(他方の吐出弁57)と、吐出弁57の最大開度を規制する弁押え58とが取付けられている。また、主軸受46の外周部には、吐出ポート56から吐出されたガス冷媒が流入する主軸受側マフラ59が取付けられている。 The main bearing 46 is formed with a discharge port 56 (the other discharge port 56) through which the gas refrigerant compressed in the cylinder chamber 48 is discharged, and a discharge valve 57 (the other discharge valve) that opens and closes the discharge port 56. 57) and a valve presser 58 for restricting the maximum opening degree of the discharge valve 57 are attached. A main bearing side muffler 59 into which the gas refrigerant discharged from the discharge port 56 flows is attached to the outer peripheral portion of the main bearing 46.
 副軸受側マフラ55内と主軸受側マフラ59内とは、副軸受45とシリンダ41、42と主軸受46とに形成された連通路60を介して連通され、副軸受側マフラ55内に流入したガス冷媒は連通路60を通って主軸受側マフラ59内に流入するようになっている。主軸受側マフラ59には、主軸受側マフラ59内のガス冷媒を密閉ケース9内に流出させる流出孔31が形成されている。 The sub-bearing side muffler 55 and the main bearing-side muffler 59 communicate with each other via a communication passage 60 formed in the sub-bearing 45, the cylinders 41 and 42, and the main bearing 46, and flow into the sub-bearing side muffler 55. The gas refrigerant flows through the communication path 60 into the main bearing side muffler 59. The main bearing side muffler 59 is formed with an outflow hole 31 through which the gas refrigerant in the main bearing side muffler 59 flows into the sealed case 9.
 ここで、仕切板44(第1分割仕切板44a)に形成された仕切板吐出ポート49aと副軸受45に形成された他方の吐出ポート52、及び、仕切板吐出弁50aと他方の吐出弁53との差異について説明する。 Here, the partition plate discharge port 49a formed in the partition plate 44 (first divided partition plate 44a), the other discharge port 52 formed in the auxiliary bearing 45, and the partition plate discharge valve 50a and the other discharge valve 53. The difference from the above will be described.
 仕切板吐出ポート49aと他方の吐出ポート52とは開口面積が異なり、仕切板吐出ポート49aの開口面積は他方の吐出ポート52の開口面積より小さく形成されている。この開口面積の差異に応じ、仕切板吐出弁50aのサイズは他方の吐出弁53のサイズより小さく形成されている。さらに、仕切板吐出弁50aは他方の吐出弁53より小さな差圧で開弁されるようになっている。 The opening area of the partition plate discharge port 49 a and the other discharge port 52 is different, and the opening area of the partition plate discharge port 49 a is smaller than the opening area of the other discharge port 52. The size of the partition plate discharge valve 50 a is smaller than the size of the other discharge valve 53 in accordance with the difference in opening area. Further, the partition plate discharge valve 50 a is opened with a smaller differential pressure than the other discharge valve 53.
 また、仕切板吐出弁50aの固有振動数“f”は、他方の吐出弁53の固有振動数“f”より大きく形成されている。 Further, the natural frequency “f” of the partition plate discharge valve 50 a is formed larger than the natural frequency “f” of the other discharge valve 53.
 仕切板吐出ポート49aと他方の吐出ポート52とは、設計制約上の理由から一部分がシリンダ室47から外れる位置に形成されている。そして、シリンダ41の内周部には、仕切板吐出ポート49aと吐出ポート52の開口面積の全体をシリンダ室47に連通させるように吐出切欠き32、33が形成されている。これらの吐出切欠き32、33を比較すると、仕切板吐出ポート49aに連通する一方の吐出切欠き32の容積は、他方の吐出ポート52に連通する他方の吐出切欠き33の容積よりも小さく形成されている。 Part of the partition plate discharge port 49 a and the other discharge port 52 are formed at positions that are partly removed from the cylinder chamber 47 for reasons of design constraints. Discharge notches 32 and 33 are formed in the inner peripheral portion of the cylinder 41 so that the entire opening area of the partition plate discharge port 49 a and the discharge port 52 communicate with the cylinder chamber 47. Comparing these discharge notches 32 and 33, the volume of one discharge notch 32 communicating with the partition plate discharge port 49a is formed smaller than the volume of the other discharge notch 33 communicating with the other discharge port 52. Has been.
 仕切板44(第2分割仕切板44b)に形成された仕切板吐出ポート49bと主軸受46に形成された他方の吐出ポート56、及び、仕切板吐出弁50bと他方の吐出弁57との差異について説明する。 Difference between the partition plate discharge port 49b formed in the partition plate 44 (second divided partition plate 44b), the other discharge port 56 formed in the main bearing 46, and the partition plate discharge valve 50b and the other discharge valve 57. Will be described.
 これらの差異は、上述した仕切板吐出ポート49aと他方の吐出ポート52、及び、仕切板吐出弁50aと他方の吐出弁53との差異と同様であり、仕切板吐出ポート49bの開口面積は他方の吐出ポート56の開口面積より小さく形成され、仕切板吐出弁50bのサイズは他方の吐出弁57のサイズより小さく形成され、仕切板吐出弁50bは他方の吐出弁57より小さな差圧で開弁されるようになっており、仕切板吐出弁50bの固有振動数“f”は他方の吐出弁57の固有振動数“f”より大きく形成されている。 These differences are the same as the differences between the partition plate discharge port 49a and the other discharge port 52, and the partition plate discharge valve 50a and the other discharge valve 53, and the opening area of the partition plate discharge port 49b is the other. The partition plate discharge valve 50b is formed smaller than the other discharge valve 57, and the partition plate discharge valve 50b is opened with a differential pressure smaller than that of the other discharge valve 57. Thus, the natural frequency “f” of the partition plate discharge valve 50 b is formed larger than the natural frequency “f” of the other discharge valve 57.
 このような構成において、第2の実施形態の回転式圧縮機4Aにおいては、電動機部10に通電されることにより回転軸11が回転子13と共に中心線回りに回転し、この回転により圧縮機構部12Aが駆動され、シリンダ室47、48内でガス冷媒が圧縮される。 In such a configuration, in the rotary compressor 4A of the second embodiment, when the electric motor unit 10 is energized, the rotating shaft 11 rotates around the center line together with the rotor 13, and this rotation causes the compression mechanism unit to rotate. 12A is driven and the gas refrigerant is compressed in the cylinder chambers 47 and 48.
 シリンダ室47内で圧縮されたガス冷媒とシリンダ室48内で圧縮されたガス冷媒とは略同じような動きをするので、シリンダ室47内で圧縮されたガス冷媒を例に挙げて説明する。 Since the gas refrigerant compressed in the cylinder chamber 47 and the gas refrigerant compressed in the cylinder chamber 48 move in substantially the same manner, the gas refrigerant compressed in the cylinder chamber 47 will be described as an example.
 圧縮されたガス冷媒の圧力が設定圧に達すると、仕切板吐出弁50aと吐出弁53とが開弁され、ガス冷媒が仕切板吐出ポート49aと吐出ポート52とから吐出される。仕切板吐出ポート49aから吐出されたガス冷媒は仕切板内空間43内に流入し、吐出ポート52から吐出されたガス冷媒は副軸受側マフラ55内に流入する。 When the pressure of the compressed gas refrigerant reaches the set pressure, the partition plate discharge valve 50a and the discharge valve 53 are opened, and the gas refrigerant is discharged from the partition plate discharge port 49a and the discharge port 52. The gas refrigerant discharged from the partition plate discharge port 49 a flows into the partition plate inner space 43, and the gas refrigerant discharged from the discharge port 52 flows into the auxiliary bearing side muffler 55.
 ここで、シリンダ室47内で圧縮されたガス冷媒が吐出される吐出ポートとして、二つの吐出ポート(仕切板44の仕切板吐出ポート49a、副軸受45の吐出ポート52)が設けられている。そして、仕切板吐出ポート49aを開閉する仕切板吐出弁50aと副軸受45の吐出ポート52を開閉する他方の吐出弁53とが開弁する差圧が異なっている。このため、仕切板吐出ポート49aと吐出ポート52とから吐出されるガス冷媒の吐出量がともに少なくなり、しかも、仕切板吐出ポート49aと吐出ポート52とを開閉する仕切板吐出弁50aと吐出弁53とが開弁するタイミングが異なるので、ガス冷媒が仕切板吐出ポート49aと吐出ポート52とから吐出される際の脈動を抑えることができるとともに脈動の共鳴を防止することができ、回転式圧縮機4Aから発生する騒音を抑制することかできる。 Here, two discharge ports (a partition plate discharge port 49a of the partition plate 44 and a discharge port 52 of the auxiliary bearing 45) are provided as discharge ports from which the gas refrigerant compressed in the cylinder chamber 47 is discharged. The differential pressure at which the partition plate discharge valve 50a that opens and closes the partition plate discharge port 49a and the other discharge valve 53 that opens and closes the discharge port 52 of the auxiliary bearing 45 are different. Therefore, both the discharge amount of the gas refrigerant discharged from the partition plate discharge port 49a and the discharge port 52 are reduced, and the partition plate discharge valve 50a and the discharge valve that open and close the partition plate discharge port 49a and the discharge port 52 Since the timing at which the valve 53 is opened is different, the pulsation when the gas refrigerant is discharged from the partition plate discharge port 49a and the discharge port 52 can be suppressed and resonance of the pulsation can be prevented. The noise generated from the machine 4A can be suppressed.
 開口面積の小さい仕切板吐出ポート49aを開閉する仕切板吐出弁50aが、開口面積が大きい他方の吐出ポート52を開閉する他方の吐出弁53より小さな差圧で開弁されるので、低速回転時であってガス冷媒の吐出量が少ない段階では、低い圧力の時点で仕切板吐出弁50aが先に開弁されるので、吐出弁50a、53を開弁させるために生じる過圧縮による圧力損失を低減させることができ、低速回転時における圧縮性能の向上を図ることができる。 The partition plate discharge valve 50a for opening and closing the partition plate discharge port 49a having a small opening area is opened with a differential pressure smaller than that of the other discharge valve 53 for opening and closing the other discharge port 52 having a large opening area. However, when the gas refrigerant discharge amount is small, the partition plate discharge valve 50a is opened first at the time of low pressure, so that the pressure loss due to overcompression that occurs to open the discharge valves 50a and 53 is reduced. The compression performance can be improved during low-speed rotation.
 開口面積が小さい仕切板吐出ポート49aを開閉する仕切板吐出弁50aの固有振動数“f”が、開口面積が大きい他方の吐出ポート52を開閉する他方の吐出弁53の固有振動数“f”より大きく形成されている。このため、仕切板吐出弁50aの応答性(圧力が低下した場合に速やかに閉弁する性能)を良くすることができ、ガス冷媒のシリンダ室47内への逆流を防止して圧縮性能の向上を図ることができる。 The natural frequency “f” of the partition plate discharge valve 50 a that opens and closes the partition plate discharge port 49 a having a small opening area is equal to the natural frequency “f” of the other discharge valve 53 that opens and closes the other discharge port 52 having a large opening area. It is formed larger. For this reason, the responsiveness of the partition plate discharge valve 50a (the ability to close quickly when the pressure decreases) can be improved, and the backflow of the gas refrigerant into the cylinder chamber 47 can be prevented to improve the compression performance. Can be achieved.
 圧縮されたガス冷媒がシリンダ室47から吐出される際に発生する騒音は、先に開弁される仕切板吐出弁50aの開弁時に最も大きくなるが、仕切板吐出弁50aが設けられている仕切板44は二つのシリンダ41、42に挟まれた位置であるので、シリンダ41、42による遮音効果により回転式圧縮機4A外に漏れ出す騒音を低減させることができる。 The noise generated when the compressed gas refrigerant is discharged from the cylinder chamber 47 is greatest when the partition plate discharge valve 50a that is opened first is opened, but the partition plate discharge valve 50a is provided. Since the partition plate 44 is located between the two cylinders 41 and 42, noise leaking out of the rotary compressor 4 </ b> A can be reduced due to the sound insulation effect of the cylinders 41 and 42.
 シリンダ室48内で圧縮されたガス冷媒は、一部が仕切板吐出ポート49bから吐出されて仕切板内空間43に流入するとともに、他の一部が吐出ポート56から吐出されて主軸受側マフラ59内に流入する。そして、吐出ポート56から吐出されて主軸受側マフラ59内に流入したガス冷媒は、シリンダ室47内で圧縮されて吐出ポート52から吐出されて副軸受側マフラ55内に流入してその後に連通路60を通って主軸受側マフラ59内に流入したガス冷媒と合流し、主軸受側マフラ59に形成された流出孔31から密閉ケース9内に流出する。 Part of the gas refrigerant compressed in the cylinder chamber 48 is discharged from the partition plate discharge port 49b and flows into the partition plate inner space 43, and the other part is discharged from the discharge port 56 to be discharged from the main bearing side muffler. 59 flows in. Then, the gas refrigerant discharged from the discharge port 56 and flowing into the main bearing side muffler 59 is compressed in the cylinder chamber 47 and discharged from the discharge port 52 to flow into the auxiliary bearing side muffler 55 and then communicated. The gas refrigerant that has flowed into the main bearing side muffler 59 through the passage 60 merges, and flows into the sealed case 9 from the outflow hole 31 formed in the main bearing side muffler 59.
 なお、前記各実施形態においては、ブレードとローラが別体のものについて説明したが、ブレードとローラは一体形成しても良い。 In each of the above-described embodiments, the blade and the roller are separately described. However, the blade and the roller may be integrally formed.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.
 4…回転式圧縮機、4A…回転式圧縮機、5…凝縮機、6…膨張装置、7…蒸発器、9…密閉ケース、10…電動機部、11…回転軸、12…圧縮機構部、12A…圧縮機構部、15…シリンダ、16…シリンダ室、17…副軸受(一方の閉塞部材)、18…主軸受(他方の閉塞部材)、21…ローラ、22…一方の吐出ポート、23…一方の吐出弁、25…副軸受側マフラ、26…他方の吐出ポート、27…他方の吐出弁、29…主軸受側マフラ、30…連通路、32…一方の吐出切欠き、33…他方の吐出切欠き、36…圧縮室、41、42…シリンダ、47、48…シリンダ室、43…仕切板内空間、44…仕切板(一方の閉塞部材)、45…副軸受(他方の閉塞部材)、46…主軸受(他方の閉塞部材)、49a、49b…仕切板吐出ポート(一方の吐出ポート)、50a、50b…仕切板吐出弁(一方の吐出弁)、52、56…他方の吐出ポート、53、57…他方の吐出弁、 DESCRIPTION OF SYMBOLS 4 ... Rotary compressor, 4A ... Rotary compressor, 5 ... Condenser, 6 ... Expansion device, 7 ... Evaporator, 9 ... Sealing case, 10 ... Electric motor part, 11 ... Rotary shaft, 12 ... Compression mechanism part, DESCRIPTION OF SYMBOLS 12A ... Compression mechanism part, 15 ... Cylinder, 16 ... Cylinder chamber, 17 ... Sub-bearing (one closing member), 18 ... Main bearing (the other closing member), 21 ... Roller, 22 ... One discharge port, 23 ... One discharge valve, 25 ... sub-bearing side muffler, 26 ... the other discharge port, 27 ... the other discharge valve, 29 ... the main bearing side muffler, 30 ... the communication passage, 32 ... one discharge notch, 33 ... the other Discharge notch, 36 ... compression chamber, 41, 42 ... cylinder, 47, 48 ... cylinder chamber, 43 ... partition plate inner space, 44 ... partition plate (one closing member), 45 ... sub-bearing (other closing member) 46 ... main bearing (the other closing member), 49a, 49b ... partition plate Outflow port (one of the discharge port), 50a, 50b ... partition plate discharge valve (one of the discharge valve), 52, 56 ... the other discharge ports, 53, 57 ... the other of the discharge valve,

Claims (7)

  1.  電動機部とこの電動機部に連結された回転軸により駆動される圧縮機構部とが密閉ケース内に収容され、前記圧縮機構部で作動流体を圧縮する回転式圧縮機において、
     前記圧縮機構部は、シリンダと、このシリンダの両端を閉塞してこのシリンダ内にシリンダ室を形成する一対の閉塞部材と、この閉塞部材を貫通する前記回転軸に嵌合されて前記シリンダ室内で偏心回転するローラと、前記閉塞部材に形成されて前記シリンダ室内に形成される圧縮室内で圧縮された作動流体が吐出される吐出ポートと、前記吐出ポートを開閉する吐出弁とを有し、
     前記一対の閉塞部材における一方の閉塞部材に形成された前記一方の吐出ポートは、前記一対の閉塞部材における他方の閉塞部材に形成された前記他方の吐出ポートより開口面積が小さく形成され、
     開口面積が小さい前記一方の吐出ポートを開閉する前記吐出弁における一方の吐出弁は、前記吐出弁における他方の吐出弁より小さい差圧で開弁されることを特徴とする回転式圧縮機。
    In the rotary compressor in which the electric motor unit and the compression mechanism unit driven by the rotary shaft connected to the electric motor unit are housed in a sealed case, and the working fluid is compressed by the compression mechanism unit,
    The compression mechanism section is fitted into a cylinder, a pair of closing members that close both ends of the cylinder to form a cylinder chamber in the cylinder, and the rotating shaft that passes through the closing member, and A roller that rotates eccentrically, a discharge port that is formed in the closing member and is compressed in a compression chamber formed in the cylinder chamber, and a discharge valve that opens and closes the discharge port.
    The one discharge port formed in one closing member in the pair of closing members is formed to have a smaller opening area than the other discharge port formed in the other closing member in the pair of closing members,
    One rotary valve in the said discharge valve which opens and closes said one discharge port with a small opening area is opened by the pressure difference smaller than the other discharge valve in the said discharge valve, The rotary compressor characterized by the above-mentioned.
  2.  開口面積が小さい前記一方の吐出ポートを開閉する前記一方の吐出弁の固有振動数は、前記他方の吐出弁の固有振動数より大きいことを特徴する請求項1記載の回転式圧縮機。 2. The rotary compressor according to claim 1, wherein a natural frequency of the one discharge valve that opens and closes the one discharge port having a small opening area is larger than a natural frequency of the other discharge valve.
  3.  前記電動機部と前記圧縮機構部とは、前記圧縮機構部が前記電動機部の下側に位置して前記密閉ケース
    内に収容され、
     前記一方の閉塞部材は前記シリンダの下側に位置して前記回転軸を軸支する副軸受であり、前記他方の閉塞部材は前記シリンダの上側に位置して前記回転軸を軸支する主軸受であり、
     前記副軸受には、前記圧縮室内で圧縮されて前記一方の吐出ポートから吐出された作動流体が流入する副軸受側マフラが設けられ、
     前記主軸受には、前記圧縮室内で圧縮されて前記他方の吐出ポートから吐出された作動流体が流入する主軸受側マフラが設けられていることを特徴とする請求項1又は2記載の回転式圧縮機。
    The motor part and the compression mechanism part are housed in the sealed case with the compression mechanism part positioned below the motor part,
    The one closing member is a sub-bearing that is positioned below the cylinder and pivotally supports the rotating shaft, and the other closing member is a main bearing that is positioned above the cylinder and pivotally supports the rotating shaft. And
    The sub-bearing is provided with a sub-bearing side muffler into which the working fluid compressed in the compression chamber and discharged from the one discharge port flows.
    The rotary type according to claim 1 or 2, wherein the main bearing is provided with a main bearing-side muffler into which a working fluid compressed in the compression chamber and discharged from the other discharge port flows. Compressor.
  4.  前記圧縮機構部は複数のシリンダを有し、
     隣り合う前記シリンダの間には内部に仕切板内空間を有する仕切板が前記一方の閉塞部材として設けられ、
     前記一方のシリンダにおける前記仕切板が設けられている側の反対側に位置して前記他方の閉塞部材である副軸受が設けられ、
     前記他方のシリンダにおける前記仕切板が設けられている側の反対側に位置して前記他方の閉塞部材である主軸受が設けられ、
     前記仕切板には、前記圧縮室内で圧縮された作動流体が前記仕切板内空間に吐出される前記一方の吐出ポートである一対の仕切板吐出ポートが形成されるとともにこれらの仕切板吐出ポートを開閉する前記一方の吐出弁である仕切板吐出弁が設けられ、
     前記仕切板吐出ポートの開口面積は前記副軸受と前記主軸受とに形成された前記他方の吐出ポートの開口面積より小さく形成されるとともに、前記仕切板吐出弁は前記副軸受と前記主軸受とに設けられた前記他方の吐出弁より小さい差圧で開弁されることを特徴とする請求項1又は2に記載の回転式圧縮機。
    The compression mechanism has a plurality of cylinders,
    Between the adjacent cylinders, a partition plate having a partition plate internal space is provided as the one closing member,
    A sub-bearing that is the other closing member is provided on the opposite side of the one cylinder in which the partition plate is provided;
    A main bearing which is the other closing member is provided on the opposite side of the other cylinder on the side where the partition plate is provided;
    The partition plate is formed with a pair of partition plate discharge ports which are the one discharge port through which the working fluid compressed in the compression chamber is discharged into the partition plate inner space. A partition plate discharge valve, which is the one discharge valve that opens and closes, is provided,
    An opening area of the partition plate discharge port is formed smaller than an opening area of the other discharge port formed in the sub bearing and the main bearing, and the partition plate discharge valve includes the sub bearing and the main bearing. 3. The rotary compressor according to claim 1, wherein the rotary compressor is opened with a pressure difference smaller than that of the other discharge valve provided in the first and second discharge valves.
  5.  前記吐出ポートは一部が前記シリンダ室から外れる位置に形成され、前記シリンダの内周部に前記吐出ポートの開口面積の全体を前記シリンダ室に連通させる一対の吐出切欠きが形成され、開口面積が小さい前記一方の吐出ポートに連通する前記一方の吐出切欠きの容積は、前記他方の吐出切欠きの容積よりも小さく形成されていることを特徴とする請求項1又は2に記載の回転式圧縮機。 A part of the discharge port is formed at a position away from the cylinder chamber, and a pair of discharge notches are formed in the inner peripheral portion of the cylinder so that the entire opening area of the discharge port communicates with the cylinder chamber. 3. The rotary type according to claim 1, wherein a volume of the one discharge notch communicating with the one discharge port having a small is smaller than a volume of the other discharge notch. Compressor.
  6.  前記吐出ポートは一部が前記シリンダ室から外れる位置に形成され、前記シリンダの内周部に前記吐出ポートの開口面積の全体を前記シリンダ室に連通させる一対の吐出切欠きが形成され、開口面積が小さい前記一方の吐出ポートに連通する前記一方の吐出切欠きの容積は、前記他方の吐出切欠きの容積よりも小さく形成されていることを特徴とする請求項4に記載の回転式圧縮機。 A part of the discharge port is formed at a position away from the cylinder chamber, and a pair of discharge notches are formed in the inner peripheral portion of the cylinder so that the entire opening area of the discharge port communicates with the cylinder chamber. 5. The rotary compressor according to claim 4, wherein a volume of the one discharge notch communicating with the one discharge port having a small size is smaller than a volume of the other discharge notch. .
  7.  請求項1ないし5のいずれか一項に記載の回転式圧縮機と、前記回転式圧縮機に接続される凝縮器と、前記凝縮器に接続される膨張装置と、前記膨張装置と前記回転式圧縮機との間に接続される蒸発器とを備えることを特徴とする冷凍サイクル装置。 The rotary compressor according to any one of claims 1 to 5, a condenser connected to the rotary compressor, an expansion device connected to the condenser, the expansion device, and the rotary type An refrigeration cycle apparatus comprising: an evaporator connected to the compressor.
PCT/JP2015/003684 2014-08-22 2015-07-23 Rotary compressor and refrigeration cycle device WO2016027413A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580040229.0A CN106574620B (en) 2014-08-22 2015-07-23 Rotary compressor and freezing cycle device
EP15834041.4A EP3184822B1 (en) 2014-08-22 2015-07-23 Rotary compressor and refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169557A JP6177741B2 (en) 2014-08-22 2014-08-22 Rotary compressor and refrigeration cycle apparatus
JP2014-169557 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027413A1 true WO2016027413A1 (en) 2016-02-25

Family

ID=55350386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003684 WO2016027413A1 (en) 2014-08-22 2015-07-23 Rotary compressor and refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP3184822B1 (en)
JP (1) JP6177741B2 (en)
CN (1) CN106574620B (en)
WO (1) WO2016027413A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460172B1 (en) 2017-07-24 2019-01-30 株式会社富士通ゼネラル Rotary compressor
JP6961833B2 (en) * 2018-09-14 2021-11-05 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment
CN112145418B (en) * 2019-06-28 2023-01-31 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device
CN112343823B (en) * 2019-08-08 2022-10-11 安徽美芝精密制造有限公司 Compression mechanism and compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278388A (en) * 2003-03-14 2004-10-07 Sanden Corp Hybrid compressor
JP2008082267A (en) * 2006-09-28 2008-04-10 Daikin Ind Ltd Compressor
JP2014005825A (en) * 2012-05-28 2014-01-16 Daikin Ind Ltd Rotary compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730996A (en) * 1985-07-29 1988-03-15 Kabushiki Kaisha Toshiba Rotary compressor with two discharge valves having different frequencies
JPS62218683A (en) * 1986-03-18 1987-09-26 Toshiba Corp Rotary compressor
JP4343627B2 (en) * 2003-03-18 2009-10-14 東芝キヤリア株式会社 Rotary hermetic compressor and refrigeration cycle apparatus
JP6022247B2 (en) * 2011-09-29 2016-11-09 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN104081055B (en) * 2012-03-23 2016-05-18 东芝开利株式会社 Rotary compressor and freezing cycle device
CN103362807B (en) * 2012-04-10 2016-06-08 珠海格力节能环保制冷技术研究中心有限公司 Compressor, the air conditioning system with this compressor and heat pump water heater system
CN203756545U (en) * 2014-03-17 2014-08-06 艾默生环境优化技术(苏州)有限公司 Valve assembly and compressor including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278388A (en) * 2003-03-14 2004-10-07 Sanden Corp Hybrid compressor
JP2008082267A (en) * 2006-09-28 2008-04-10 Daikin Ind Ltd Compressor
JP2014005825A (en) * 2012-05-28 2014-01-16 Daikin Ind Ltd Rotary compressor

Also Published As

Publication number Publication date
CN106574620B (en) 2018-10-09
EP3184822A1 (en) 2017-06-28
EP3184822B1 (en) 2021-03-31
JP2016044600A (en) 2016-04-04
EP3184822A4 (en) 2018-04-04
JP6177741B2 (en) 2017-08-09
CN106574620A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6022247B2 (en) Hermetic compressor and refrigeration cycle apparatus
WO2016027413A1 (en) Rotary compressor and refrigeration cycle device
JP2008240667A (en) Rotary compressor
JP6244231B2 (en) Rotary compressor and refrigeration cycle apparatus
JP6787480B2 (en) Rotary compressor
JP6262101B2 (en) Rotary compressor and refrigeration cycle apparatus
JP6267360B2 (en) Rotary compressor and refrigeration cycle apparatus
JP6635095B2 (en) Rotary compressor
JP6351522B2 (en) Compressor and refrigeration cycle apparatus
CN110520625B (en) Hermetic compressor and refrigeration cycle device
JP6394126B2 (en) Rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
JP2010156246A (en) Compressor
JP6743277B2 (en) Rotary compressor and refrigeration cycle device
JP5343501B2 (en) Rotary compressor
JP6430904B2 (en) Compressor and refrigeration cycle apparatus
JP2017008819A (en) Rotary compressor
JP2010090777A (en) Rotary compressor
JP2005240564A (en) Rotary compressor
JP2008128098A (en) Rotary compressor
JP2015001217A (en) Compressor
JP2006105040A (en) Compressor
JP2014015883A (en) Hermetic type compressor
JP2018009497A (en) Rotary type compressor
JP2017008818A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834041

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015834041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE